
Persistency programming 101

Aasheesh Kolli§, Steven Pelley†, Ali Saidi‡, Peter M. Chen§, and Thomas F. Wenisch§

§University of Michigan, {akolli,pmchen,twenisch}@umich.edu
†Snowflake Computing, steven.pelley@snowflakecomputing.com

‡ARM, ali.saidi@arm.com

Emerging non-volatile memory (NVRAM) technolo-
gies offer the durability of disk with byte-addressability
and access latencies similar to DRAM. Future systems
will likely attach these NVRAMs to a DRAM-like mem-
ory bus [1, 2]. Such systems enable the construction of
high performing, in-memory, recoverable data structures
(RDS) [1, 2]. The tenets of creating RDSs revolve around
ordering writes to the data structure. However, existing
architectures do not provide efficient mechanisms to or-
der writes all the way through NVRAM. Pelley, Chen,
and Wenisch [3] introduce persistency models (drawing
on memory consistency model research) to reason about
and order writes to NVRAM. Here, we introduce no-
tation to concisely and precisely define the models to
help draw better parallels to existing memory consis-
tency models. These precise definitions make it easier
to reason about the interaction between instruction exe-
cution and NVRAM write order. Achieving the desired
order of NVRAM writes across threads is tricky. We
show two generic coding patterns to illustrate how to
leverage persistency models to achieve the desired or-
der of writes. In particular, one code pattern (observe)
leverages relaxed persistency models and can be used to
enforce only the absolute minimum NVRAM write or-
derings required for correct recovery.

1. Memory persistency models
Memory events: We formalize Pelley’s persistency
models in terms of order relations over memory events.
We consider two kinds of events, loads and stores (to
persistent or volatile address spaces), which we collec-
tively call memory accesses. We use the term “persist”
to refer to the act of durably writing a store to persis-
tent memory. We assume persists are performed atomi-
cally (with respect to failures) at 8-byte granularity. By
“thread”, we refer to execution contexts—cores or hard-
ware threads. We use the following notation:

� Li
a: A load from thread i to address a

� Si
a: A store from thread i to address a

� M i
a: A load or store by thread i to address a

Persist memory order: We reason about two order-
ing relations over memory events. Volatile memory order
(VMO) is an ordering relation over all memory events
(loads, stores and their values) as prescribed by the con-
sistency model. Persist memory order (PMO) comprises
the same events, however, events are instead ordered by
the constraints imposed by the persistency model. We
denote these ordering relations as:

� A ≤v B: A occurs no later than B in VMO
� A ≤p B: A occurs no later than B in PMO

An ordering relation between stores in PMO implies
the corresponding persist actions are ordered; that is,
A ≤p B → B may not persist before A.
Strong persist atomicity: Memory consistency mod-
els often guarantee that stores to a single address are
serialized (store atomicity). Persistency models could
guarantee persist atomicity, persists to the same address
are serialized. Pelley argues persistency models should
provide strong persist atomicity (SPA), to preclude non-
intuitive behavior (e.g., recovery to states unreachable
under fault-free execution). SPA requires that conflict-
ing accesses (accesses to the same address, at least one
being a store) ordered in VMO are also ordered in PMO.

Si
a ≤v M j

a → Si
a ≤p M j

a

M i
a ≤v Sj

a →M i
a ≤p Sj

a

(1)

SPA is guaranteed by all the persistency models de-
scribed below. SPA is critical to constructing precise
ordering dependences across threads (see section 2).
Strict persistency: Under strict persistency, the con-
sistency model governs both VMO and PMO; that is,
the two are identical. So, for any two stores ordered
by the consistency model, the corresponding persists are
also ordered. Under strict persistency:

M i
a ≤v M j

b ↔M i
a ≤p M j

b (2)

While strict persistency is the most intuitive of the per-
sistency models, it is not the best performing. By order-
ing persists per VMO, strict persistency enforces order-
ings typically not required for recovery correctness [3].
Relaxed persistency: Relaxed persistency models
govern PMO independent of the memory consistency
model. These models provide programmers with addi-
tional memory events, to prescribe only those ordering
constraints in PMO required to ensure correct recovery.
Epoch persistency: The epoch persistency model, a
relaxed persistency model, introduces a new memory
event, the “persist barrier” (different from memory con-
sistency barriers). We denote persist barriers issued by
thread i as PBi. Under epoch persistency, any two mem-
ory accesses on the same thread separated by a persist
barrier are ordered in PMO.

M i
a ≤v PBi ≤v M i

b →M i
a ≤p M i

b (3)

Persist barriers separate a thread’s execution into or-
dered epochs (persists from an epoch are concurrent).
Epoch persistency is similar to the model described
in [2], though Pelley introduces some subtle differences.

1



Thread 1 Thread 2
lock L
store A
PB
unlock L

lock L
PB
store B
unlock L

(a) Lock

Thread 1 Thread 2
lock L
store A
unlock L

lock L
load A
PB
store B
unlock L

(b) Observe

Figure 1: Ordering persists across threads/strands.

Strand persistency: Strand persistency divides pro-
gram execution into strands. Strands are logically in-
dependent segments of execution that happen to ex-
ecute in the same thread. Strands are separated by
the strand barrier (SB) memory event. Strand barri-
ers from thread i are denoted as SBi. The strand bar-
rier clears all prior PMO constraints from prior instruc-
tions, effectively making each strand a separate thread
(with respect to persistency). Memory accesses within
a strand are ordered using persist barriers (eq 3). Un-
der strand persistency, any two memory accesses on the
same thread separated by a persist barrier without an
intervening strand barrier are ordered in PMO.

(M i
a ≤v PBi ≤v M i

b) ∧ (6 ∃SBi : M i
a ≤v SBi ≤v M i

b)

→M i
a ≤p M i

b (4)

2. Coding Patterns to Order Persists
We next discuss coding patterns that can be used to en-
force desired persist ordering constraints across thread-
s/strands. Persists on a single thread (or strand under
strand persistency) are ordered either by VMO (strict
persistency) or by persist barriers (epoch and strand per-
sistency). Enforcing persist order across threads is more
complex; as with VMO, these orderings must be estab-
lished using conflicting accesses. For the sake of brevity,
from here on we assume that the underlying memory
consistency model is sequential consistency (SC).

Figure 1 illustrates coding patterns to establish or-
der for a simple scenario under each model. Consider
two stores to addresses A and B, executed on different
threads (or strands), which are protected by a single lock
L, we assume thread 1 wins: S1

A ≤v S2
B . Our objective is

to use the persistency models to ensure that the persists
of A and B follow the same order: S1

A ≤p S2
B .

The definition of strict persistency (eq 2) ensures the
desired order of persists. Below, we describe two tech-
niques lock and observe, employed under relaxed persis-
tency models to achieve the desired persist ordering.
Lock: The central intuition is to leverage the conflict-
ing accesses of the concurrency control mechanism (i.e.,
locks), which establish required constraints (e.g., mutual
exclusion) in VMO, to also establish the required order-
ing constraints in PMO. Figure 1a shows how to order

persists to A and B under epoch persistency using persist
barriers PB1 and PB2. We denote the unlock operation
on thread 1 as S1

L and the lock operation on thread 2 as
S2
L. The program orders of thread 1, thread 2 and the

ordering property of persist barriers (eq. 3) ensures that:

S1
A ≤v PB1 ≤v S1

L → S1
A ≤p S1

L (5)

S2
L ≤v PB2 ≤v S2

B → S2
L ≤p S2

B (6)

From conflicting accesses to lock L and SPA (eq 1)

S1
L ≤v S2

L → S1
L ≤p S2

L (7)

By transitivity and eqs. 5-7, we ensure that S1
A ≤p

S2
B . This same reasoning extends to strands (instead

of threads) under strand persistency.
Observe: Instead of relying on lock L for conflicting
accesses, we can explicitly observe (using loads) the spe-
cific addresses after which subsequent persists should be
ordered, and then issue a persist barrier. Figure 1b il-
lustrates this pattern. S1

A’s persist is unordered with
respect to any other persist on Thread 1 or (absent L2

A

and PB2 we have included) Thread 2. Note that the
lock L still ensures mutual exclusion and ordering of the
(volatile) execution of the critical sections but, by itself,
will not order the persists of A and B. Since thread 1 ac-
quires lock L first, from VMO and SPA (eq 1), we have:

S1
A ≤v L2

A → S1
A ≤p L2

A (8)

From the program order of Thread 2 and the ordering
property of persist barriers (eq. 3), we have:

(L2
A ≤v PB2 ≤v S2

B)→ L2
A ≤p S2

B (9)

By transitivity and eqs. 8 and 9, we have S1
A ≤p S2

B .
Again, the above reasoning extends to strands as well.
In fact, by placing all persists on their own strands and
using the observe technique, it is possible to enforce only
the required ordering constraints, even under SC.

To conclude, we introduced precise definitions for per-
sistency models and used the definitions to detail generic
approaches to enforce the desired order of persists.

References

[1] J. Coburn, A. Caulfield, A. Akel, L. Grupp,
R. Gupta, R. Jhala, and S. Swanson. Nv-heaps:
Making persistent objects fast and safe with next-
generation, non-volatile memories. In Proceedings of
ASPLOS, 2011.

[2] J. Condit, E. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through byte-
addressable, persistent memory. In Proceedings of
SOSP, 2009.

[3] S. Pelley, P. Chen, and T. Wenisch. Memory persis-
tency. In Proceedings of ISCA, 2014.

2


