
Abstract: A virtual-machinemonitor (VMM) is a use-
ful techniquefor adding functionality below existing
operatingsystemandapplicationsoftware.Oneclassof
VMMs (called Type II VMMs) builds on the abstrac-
tions provided by a host operating system. Type II
VMMs are elegant and convenient, but their perfor-
manceis currently an order of magnitudeslower than
thatachievedwhenrunningoutsidea virtual machine(a
standalonesystem).In this paper, we examinethe rea-
sonsfor this largeoverheadfor TypeII VMMs. We find
that a few simpleextensionsto a hostoperatingsystem
canmake it a muchfasterplatformfor runninga VMM.
Takingadvantageof theseextensionsreducesvirtualiza-
tion overheadfor a Type II VMM to 14-35%overhead,
even for workloads that exercise the virtual machine
intensively.

1. Introduction

A virtual-machinemonitor (VMM) is a layer of
softwarethatemulatesthehardwareof a completecom-
putersystem(Figure1). The abstractioncreatedby the

VMM is called a virtual machine.The hardware emu-
latedby theVMM typically is similar or identicalto the
hardware on which the VMM is running.

Virtual machineswerefirst developedandusedin
the 1960s,with the best-known examplebeing IBM’ s
VM/370 [Goldberg74]. Several properties of virtual
machineshave madethemhelpful for a wide varietyof
uses.First, they cancreatethe illusion of multiple vir-
tual machineson a singlephysicalmachine.Thesemul-
tiple virtual machinescanbeusedto runapplicationson
differentoperatingsystems,to allow studentsto experi-
ment conveniently with building their own operating
system[Nieh00],to enableexistingoperatingsystemsto
run on shared-memorymultiprocessors[Bugnion97],
and to simulatea network of independentcomputers.
Second,virtual machinescan provide a software envi-
ronmentfor debugging operatingsystemsthat is more
convenientthanusinga physicalmachine.Third, virtual
machinesprovide a convenient interface for adding
functionality, suchasfault injection[Buchacker01],pri-
mary-backupreplication [Bressoud96],and undoable
disks. Finally, a VMM provides strong isolation
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Figure 1: Virtual-machine structures. A virtual-machinemonitor is a softwarelayer thatrunson a hostplatformandprovides
an abstractionof a completecomputersystemto higher-level software.The host platform may be the barehardware (Type I
VMM) or a hostoperatingsystem(Type II VMM). The softwarerunningabove the virtual-machineabstractionis calledguest
software (operating system and applications).
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between virtual-machine instances. This isolation
allows a singleserver to run multiple,untrustedapplica-
tions safely [Whitaker02, Meushaw00] and to provide
securityservicessuchasmonitoringsystemsfor intru-
sions [Chen01, Dunlap02, Barnett02].

As a layer of software,VMMs build on a lower-
level hardware or software platform and provide an
interface to higher-level software (Figure 1). In this
paper, we are concernedwith the lower-level platform
that supportsthe VMM. This platform may be the bare
hardware,or it maybeahostoperatingsystem.Building
the VMM directly on the hardwarelowersoverheadby
reducingthenumberof softwarelayersandenablingthe
VMM to take full advantageof the hardwarecapabili-
ties. On the other hand,building the VMM on a host
operatingsystemsimplifiesthe VMM by allowing it to
use the host operating system’s abstractions.

Our goal for this paperis to examineand reduce
the performanceoverheadassociatedwith running a
VMM on a hostoperatingsystem.Building it on a stan-
dard Linux host operatingsystemleadsto an order of
magnitudeperformancedegradationcomparedto run-
ning outsidea virtual machine(a standalone system).
However, we find that a few simple extensionsto the
hostoperatingsystemreducesvirtualizationoverheadto
14-35%overhead,which is comparableto the speedof
virtual machines that run directly on the hardware.

Thespeedof avirtual machineplaysa largepartin
determiningthedomainsfor whichvirtual machinescan
be used.Using virtual machinesfor debugging,student
projects,and fault-injection experimentscan be done
even if virtualization overheadis quite high (e.g. 10x
slowdown). However, usingvirtual machinein produc-
tion environmentsrequiresvirtualizationoverheadto be
much lower. Our CoVirt project on computersecurity
dependson running all applicationsinside a virtual
machine[Chen01].To keepthesystemusablein a pro-
duction environment,we would like the speedof our
virtual machineto bewithin a factorof 2 of astandalone
system.

The paper is organized as follows. Section 2
describestwo waysto classifyvirtual machines,focus-
ing on the higher-level interfaceprovided by the VMM
and the lower-level platform upon which the VMM is
built. Section3 describesUMLinux, which is theVMM
we use in this paper. Section4 describesa seriesof
extensionsto the hostoperatingsystemthat enablevir-
tual machinesbuilt on the host operatingsystemto
approachthe speedof those that run directly on the
hardware.Section5 evaluatesthe performancebenefits

achievedby eachhostOSextension.Section6 describes
related work, and Section 7 concludes.

2. Virtual machines

Virtual-machinemonitorscan be classifiedalong
many dimensions.This sectionclassifiesVMMs along
two dimensions:the higher-level interfacethey provide
and the lower-level platform they build upon.

The first way we canclassifyVMMs is according
to how closely the higher-level interface they provide
matchesthe interfaceof the physical hardware.VMMs
suchasVM/370 [Goldberg74] for IBM mainframesand
VMware ESX Server [Waldspurger02] and VMware
Workstation[Sugerman01]for x86 processorsprovide
an abstractionthat is identical to the hardware under-
neaththe VMM. Simulatorssuchas Bochs[Boc] and
Virtutech Simics [Magnusson95] also provide an
abstraction that is identical to physical hardware,
althoughthehardwarethey simulatemaydiffer from the
hardware on which they are running.

Severalaspectsof virtualizationmake it difficult or
slow for a VMM to provide aninterfacethat is identical
to the physical hardware. Some architecturesinclude
instructionswhose behavior dependson whether the
CPU is running in privileged or user mode (sensitive
instructions),yet which canexecutein usermodewith-
out causinga trap to the VMM [Robin00].Virtualizing
these sensitive-but-unprivileged instructions generally
requiresbinary instrumentation,which addssignificant
complexity andmay addsignificantoverhead.In addi-
tion, emulatingI/O devices at the low-level hardware
interface(e.g.memory-mappedI/O) causesexecutionto
switch frequently betweenthe guestoperatingsystem
accessingthe device andthe VMM codeemulatingthe
device.To avoid theoverheadassociatedwith emulating
a low-level device interface,mostVMMs encourageor
requirethe userto run a modifiedversionof the guest
operatingsystem.For example,theVAX VMM security
kernel [Karger91], VMware Workstation’s guest tools
[Sugerman01],and Disco [Bugnion97] all add special
drivers in the guestoperatingsystemto acceleratethe
virtualization of some devices. VMMs built on host
operatingsystemsoftenrequireadditionalmodifications
to theguestoperatingsystem.For example,theoriginal
versionof SimOSaddsspecialsignal handlersto sup-
port virtual interruptsand requiresrelinking the guest
operatingsysteminto a different range of addresses
[Rosenblum95];similar changesare neededby User-
Mode Linux [Dike00] and UMLinux [Buchacker01].

Other virtualization strategies make the higher-
level interface further different from the underlying



hardware.The Denali isolationkerneldoesnot support
instructionsthataresensitivebut unprivileged,addssev-
eral virtual instructionsand registers,and changesthe
memory managementmodel [Whitaker02]. Microker-
nelsprovide higher-level servicesabove thehardwareto
supportabstractionssuch as threadsand inter-process
communication[Golub90]. The Java virtual machine
definesa virtual architecturethatis completelyindepen-
dent from the underlying hardware.

A secondway to classify VMMs is accordingto
the platform upon which they are built [Goldberg73].
Type I VMMs such as IBM’ s VM/370, Disco, and
VMware’s ESX Server areimplementeddirectly on the
physical hardware.Type II VMMs arebuilt completely
on top of a hostoperatingsystem.SimOS,User-Mode
Linux, and UMLinux are all implementedcompletely
on top of a host operatingsystem.Other VMMs are a
hybrid betweenTypeI andII: they operatemostlyonthe
physical hardwarebut usethe hostOS to performI/O.
For example,VMware Workstation[Sugerman01]and
Connectix VirtualPC [Con01] use the host operating
system to access some virtual I/O devices.

A hostoperatingsystemmakesa very convenient
platform upon which to build a VMM. Host operating
systemprovide a setof abstractionsthatmapcloselyto
eachpart of a virtual machine[Rosenblum95].A host
processprovidesa sequentialstreamof executionsimi-
lar to a CPU; hostsignalsprovide similar functionality
to interrupts;hostfilesanddevicesprovidesimilar func-
tionality to virtual I/O devices; host memorymapping
andprotectionprovidessimilar functionalityto a virtual
MMU. Thesefeaturesmake it possibleto implementa
VMM as a normal user process with very little code.

Other reasonscontribute to the attractivenessof
usinga TypeII VMM. Becausea TypeII VMM runsas
a normalprocess,the developeror administratorof the
VMM canusethe full power of the hostoperatingsys-
tem to monitor anddebug the virtual machine’s execu-
tion. For example, the developer or administratorcan
examineor copy the contentsof the virtual machine’s
I/O devicesor memoryor attacha debuggerto the vir-
tual-machineprocess.Finally, the simplicity of Type II
VMMs andtheavailability of severalgoodopen-source
implementationsmake them an excellent platform for
experimenting with virtual-machine services.

A potentialdisadvantageof TypeII VMMs is per-
formance.Currenthost operatingsystemsdo not pro-
vide sufficiently powerful interfaces to the bare
hardware to support the intensive usagepatternsof
VMMs. For example,compilingtheLinux 2.4.18kernel
inside the UMLinux virtual machinetakes18 timesas

long ascompiling it directly on a Linux hostoperating
system.VMMs that run directly on the barehardware
achieve much lower performanceoverhead.For exam-
ple,VMwareWorkstation3.1compilestheLinux 2.4.18
kernel with only a 30% overheadrelative to running
directly on the host operating system.

Thegoalof thispaperis to examineandreducethe
order-of-magnitude performanceoverhead associated
with running a VMM on a host operatingsystem.We
find thata few simpleextensionsto ahostoperatingsys-
tem can make it a much fasterplatform for running a
VMM, while preservingthe conceptualeleganceof the
Type II approach.

3. UMLinux

To conduct our study, we use a Type II VMM
called UMLinux [Buchacker01]. UMLinux was devel-
opedby researchersat theUniversityof Erlangen-Nürn-
berg for usein fault-injectionexperiments.UMLinux is
a Type II VMM: the guest operatingsystemand all
guestapplicationsrun as a single process(the guest-
machine process) on a host Linux operatingsystem.
UMLinux providesa higher-level interfaceto the guest
operatingsystemthat is similar but not identical to the
underlyinghardware. As a result, the machine-depen-
dentportion of the guestLinux operatingsystemmust
bemodifiedto usethe interfaceprovidedby theVMM.
Simpledevice driversmustbeaddedto interactwith the
hostabstractionsusedto implementthe devicesfor the
virtual machine;a few assembly-languageinstructions
(e.g.iret andin/out) mustbereplacedwith function
calls to emulationcode;and the guestkernel must be
relinkedinto adifferentaddressrange[Hoxer02].About
17,000lines of codewereaddedto the guestkernel to
work on the new platform. Applicationscompiled for
thehostoperatingsystemwork without modificationon
the guest operating system.

UMLinux usesfunctionality from thehostoperat-
ing systemthatmapsnaturallyto virtual hardware.The
guest-machineprocessserves as a virtual CPU; host
files and devices serve as virtual I/O devices; a host
TUN/TAP device servesasa virtual network; hostsig-
nalsserve asvirtual interrupts;andhostmemorymap-
ping andprotectionserve asa virtual MMU. Thevirtual
machine’s memory is provided by a host file that is
mappedinto different partsof the guest-machinepro-
cess’s address space. We store this host file in a memory
file system(ramfs) to avoid needlesslywriting to disk
the virtual machine’s transient state.

The addressspaceof the guest-machineprocess
differs from a normal host processbecauseit contains



both the host and guest operating system address ranges
(Figure 2). In a standard Linux process, the operating
system occupies addresses [0xc0000000,
0xffffffff] while the application is given [0x0,
0xc0000000). Because the UMLinux guest-machine
process must hold both the host and guest operating sys-
tems, the address space for the guest operating system
must be moved to occupy [0x70000000,
0xc0000000), which leaves [0x00000000,
0x70000000) for guest applications. The guest kernel
memory is protected using host mmap and munmap sys-
tem calls. To facilitate this protection, UMLinux main-
tains a virtual current privilege level, which is analogous
to the x86 current privilege level. This is used to differ-
entiate between guest user and guest kernel modes, and
the guest kernel memory will be accessible or protected
according to the virtual privilege level.

Figure 3 shows the basic system structure of
UMLinux. In addition to the guest-machine process,
UMLinux uses a VMM process to implement the VMM.

The VMM process serves two purposes: it redi-
rects to the guest operating system signals and system

calls that would otherwise go to the host operating sys-
tem, and it restricts the set of system calls allowed by
the guest operating system. The VMM process uses
ptrace to mediate access between the guest-machine
process and the host operating system. Figure 4 shows
the sequence of steps taken by UMLinux when a guest
application issues a system call.

The VMM process is also invoked when the guest
kernel returns from its SIGUSR1 handler and when the
guest kernel protects its address space from the guest
application process. A similar sequence of context
switches occurs on each memory, I/O, and timer excep-
tion received by the guest-machine process.

4. Host OS support for Type II VMMs

A host operating system makes an elegant and con-
venient base upon which to build and run a VMM such
as UMLinux. Each virtual hardware component maps
naturally to an abstraction in the host OS, and the
administrator can interact conveniently with the guest-
machine process just as it does with other host pro-
cesses. However, while a host OS provides sufficient
functionality to support a VMM, it does not provide the
primitives needed to support a VMM efficiently.

In this section, we investigate three bottlenecks
that occur when running a Type II VMM, and we elimi-
nate these bottlenecks through simple changes to the
host OS.

We find that three bottlenecks are responsible for
the bulk of the virtualization overhead. First,
UMLinux’s system structure with two separate host pro-
cesses causes an inordinate number of context switches
on the host. Second, switching between the guest kernel
and the guest user space generates a large number of

Figure 2: UMLinux address space. As with all Linux
processes, the host kernel address space occupies
[0xc0000000, 0xffffffff], and the host user address
space occupies [0x0, 0xc0000000). The guest kernel
occupies the upper portion of the host user space
[0x70000000, 0xc0000000), and the current guest
application occupies the remainder of the host user space
[0x0, 0x70000000).
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memory protection operations. Third, switching
between two guest application processes generates a
large number of memory mapping operations.

4.1. Extra host context switches

The VMM process in UMLinux uses ptrace to
intercept key events (system calls and signals) executed
by the guest-machine process. ptrace is a powerful
tool for debugging, but using it to create a virtual
machine causes the host OS to context switch frequently
between the guest-machine process and the VMM pro-
cess (Figure 4).

We can eliminate most of these context switches
by moving the VMM process’s functionality into the
host kernel. We encapsulate the bulk of the VMM pro-
cess functionality in a VMM loadable kernel module.
We also modified a few lines in the host kernel’s system
call and signal handling to transfer control to the VMM

kernel module when the guest-machine process executes
a system call or receives a signal. The VMM kernel
module and other hooks in the host kernel were imple-
mented in 150 lines of code (not including comments).

Moving the VMM process’s functionality into the
host kernel drastically reduces the number of context
switches in UMLinux. For example, transferring control
to the guest kernel on a guest system call can be done in
just two context switches (Figure 5). It also simplifies
the system conceptually, because the VMM kernel mod-
ule has more control over the guest-machine process
than is provided by ptrace. For example, the VMM
kernel module can change directly the protections of the
guest-machine process’s address space, whereas the
ptracing VMM process must cause the guest-machine
process to make multiple system calls to change protec-
tions.

Figure 4: Guest application system call. This picture shows the steps UMLinux takes to transfer control to the guest operating
system when a guest application process issues a system call. The mmap call in the SIGUSR1 handler must reside in guest user
space. For security, the rest of the SIGUSR1 handler should reside in guest kernel space. The current UMLinux implementation
includes an extra section of trampoline code to issue the mmap; this trampoline code is started by manipulating the guest machine
process’s context and finishes by causing a breakpoint to the VMM process; the VMM process then transfers control back to the
guest-machine process by sending a SIGUSR1.
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4.2. Protecting guest kernel space from
guest application processes

The guest-machine process switches frequently
between guest user mode and guest kernel mode. The
guest kernel is invoked to service guest system calls and
other exceptions issued by a guest application process
and to service signals initiated by virtual I/O devices.
Each time the guest-machine process switches from
guest kernel mode to guest user mode, it must first pre-
vent access to the guest kernel’s portion of the address
space [0x70000000, 0xc0000000). Similarly, each
time the guest-machine process switches from guest
user mode to guest kernel mode, it must first enable
access to the guest kernel’s portion of the address space.
The guest-machine process performs these address
space manipulations by making the host system calls
mmap, munmap, and mprotect.

Unfortunately, calling mmap, munmap, or mpro-
tect on large address ranges incurs significant over-

head, especially if the guest kernel accesses many pages
in its address space. In contrast, a standalone host
machine incurs very little overhead when switching
between user mode and kernel mode. The page table on
x86 processors need not change when switching
between kernel mode and user mode, because the page
table entry for a page can be set to simultaneously allow
kernel-mode access and prevent user-mode access.

We developed two solutions that use the x86 paged
segments and privilege modes to eliminate the overhead
incurred when switching between guest kernel mode
and guest user mode. Linux normally uses paging as its
primary mechanism for translation and protection, using
segments only to switch between privilege levels. Linux
uses four segments: kernel code segment, kernel data
segment, user code segment, and user data segment.
Normally, all four segments span the entire address
range. Linux normally runs all host user code in CPU
privilege ring 3 and runs host kernel code in CPU privi-
lege ring 0. Linux uses the supervisor-only bit in the
page table to prevent code running in CPU privilege ring
3 from accessing the host operating system’s data (Fig-
ure 6).

Our first solution protects the guest kernel space
from guest user code by changing the bound on the user
code and data segments (Figure 7). When the guest-
machine process is running in guest user mode, the
VMM kernel module shrinks the user code and data seg-
ments to span only [0x0, 0x70000000). When the
guest-machine process is running in guest kernel mode,
the VMM kernel module grows the user code and data
segments to its normal range of [0x0, 0xffffffff].
This solution added only 20 lines of code to the VMM
kernel module and is the solution we currently use.

One limitation of the first solution is that it
assumes the guest kernel space occupies a contiguous
region directly below the host kernel space. Our second
solution allows the guest kernel space to occupy arbi-
trary ranges of the address space within [0x0,
0xc0000000) by using the page table’s supervisor-
only bit to distinguish between guest kernel mode and
guest user mode (Figure 8). In this solution, the VMM
kernel module marks the guest kernel’s pages as accessi-
ble only by supervisor code (ring 0-2), then runs the
guest-machine process in ring 1 while in guest kernel
mode. When running in ring 1, the CPU can access
pages marked as supervisor in the page table, but it can-
not execute privileged instructions (such as changing the
segment descriptor). To prevent the guest-machine pro-
cess from accessing host kernel space, the VMM kernel
module shrinks the user code and data segment to span

Figure 5: Guest application system call with VMM kernel
module. This picture shows the steps taken by UMLinux with
a VMM kernel module to transfer control to the guest
operating system when a guest application issues a system
call.
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only [0x0, 0xc0000000). Theguest-machineprocess
runsin ring 3 while in guestusermode,which prevents
guestusercodefrom accessingthe guestkernel’s data.
Thisallows theVMM kernelmoduleto protectarbitrary
pagesin [0x0, 0xc0000000) from guestusermode
by settingthesupervisor-only bit on thosepages.It does
still requirethe host kernel and useraddressrangesto
each be contiguous.

4.3. Switching between guest application
processes

A third bottleneckin a TypeII VMM occurswhen
switchingaddressspacesbetweenguestapplicationpro-
cesses.Changingguestaddressspacesmeanschanging
thecurrentmappingbetweenguestvirtual pagesandthe
pagein the virtual machine’s “physical” memoryfile.
Changingthis mappingis doneby calling munmap for
the outgoingguestapplicationprocess’s virtual address
space,thencalling mmap for eachresidentvirtual page

in the incoming guest application process.UMLinux
minimizesthecallsto mmap by doingit on demand,i.e.
as the incoming guestapplicationprocessfaults in its
addressspace.Even with this optimization, however,
UMLinux generatesa large numberof calls to mmap,
especiallywhen the working setsof the guestapplica-
tion processes are large.

To improve the speedof guestcontext switches,
we enhancethe host OS to allow a single processto
maintainseveraladdressspacedefinitions.Eachaddress
spaceis definedby a separatesetof pagetables,andthe
guest-machineprocessesswitches between address
spacedefinitionsvia a new hostsystemcall switch-
guest. To switchaddressspacedefinitions,switch-
guest needsonly to changethe pointer to the current
first-level page table. This task is much faster than
mmap’ing each virtual page of the incoming guest
applicationprocess.We modify the guestkernel to use
switchguest whencontext switchingfrom oneguest
application processto another. We reuse initialized

Figure 6: Segment and page protections when running a
normal Linux host processes. A normalLinux hostprocess
runsin CPUprivilege ring 3 andusestheusercodeanddata
segment.The segmentboundsallow accessto all addresses,
but thesupervisor-only bit in thepagetablepreventsthehost
processfrom accessingthe host operatingsystem’s data.In
order to protect the guestkernel’s datawith this setup,the
guest-machine process must munmap or mprotect
[0x70000000, 0xc0000000) before switching to guest
user mode.
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addressspacedefinitions to minimize the overheadof
creatingguestapplicationprocesses.We take care to
prevent the guest-machine process from abusing
switchguest by limiting it to 1024differentaddress
spacesandcheckingall parameterscarefully. This opti-
mization added 340 lines of code to the host kernel.

5. Performance results

This section evaluatesthe performancebenefits
achievedby eachof theoptimizationsdescribedin Sec-
tion 4.

We first measurethe performanceof threeimpor-
tant primitives: a null systemcall, switching between
two guest application processes(each with a 64 KB
working set),andtransferring10 MB of datausingTCP
acrossa100Mb/sEthernetswitch.Thefirst two of these
microbenchmarks come from the lmbench suite
[McVoy96].

We also measureperformanceon three mac-
robenchmarks.POV-Ray is a CPU-intensive ray-tracing
program. We render the benchmarkimage from the
POV-Raydistributionatquality8. kernel-build compiles
the complete Linux 2.4.18 kernel (make bzImage).
SPECweb99measuresweb server performance,using
the 2.0.36 Apache web server. We configure
SPECweb99with 15 simultaneousconnectionsspread
over two clients connectedto a 100 Mb/s Ethernet
switch. kernel-build and SPECweb99exercisethe vir-
tual machineintensively by makingmany systemcalls.
They are similar to the I/O-intensive and kernel-inten-
sive workloads used to evaluate Cellular Disco
[Govil00]. All workloadsstart with a warm guestfile
cache.Each results representsthe averageof 5 runs.
Variance across runs is less than 3%.

All experimentsare run on an computerwith an
AMD Athlon 1800+CPU, 256 MB of memory, and a
SamsungSV4084IDE disk. The guestkernel is Linux
2.4.18 ported to UMLinux, and the host kernels for
UMLinux areall Linux 2.4.18with differentdegreesof
supportfor VMMs. All virtual machinesareconfigured
with 192 MB of “physical” memory. The virtual hard
disk for UMLinux is storedon a raw disk partition on
thehostto avoid doublebuffering thevirtual diskdatain
the guestandhostfile cachesandto prevent the virtual
machinefrom benefittingunfairly from the host’s file
cache.The host and guestfile systemshave the same
versions of all software (based on RedHat 6.2).

We measurebaseline performanceby running
directly on the hostoperatingsystem(standalone).The
hostusesthesamehardwareandsoftwareinstallationas
the virtual-machinesystemsand hasaccessto the full
256 MB of host memory.

We useVMwareWorkstation3.1 to illustrate the
performanceof VMMs thatarebuilt directlyon thehost
hardware. We choseVMware Workstationbecauseit
executesmostly on host hardware and becauseit is
regarded widely as providing excellent performance.
However, notethatVMwareWorkstationmaybeslower
than a Type I VMM that is ideal for the purposesof
comparingwith UMLinux. First, VMwareWorkstation
issuesI/O throughthe host OS ratherthan controlling
thehostI/O devicesdirectly. Second,unlike UMLinux,
VMware Workstation can support unmodified guest
operatingsystems,and this capability forcesVMware
Workstationto do extra work to provide thesameinter-
faceto theguestOSasthehosthardwaredoes.Thecon-
figurationfor VMwareWorkstationmatchesthat of the
other virtual-machine systems,except that VMware

Figure 8: Segment and page protections when running the
guest-machine process (solution 2). This solution protects
the guestkernel spacefrom guestapplicationprocessesby
markingthe guestkernel’s pagesasaccessibleonly by code
running in CPU privilege ring 0-2 and running the guest-
machineprocessin ring 1 whenexecutingguestkernelcode.
To prevent the guest-machineprocessfrom accessinghost
kernelspace,theVMM kernelmoduleshrinkstheusercode
and data segment to span only [0x0, 0xc0000000).
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Workstation uses the host disk partition’s cacheable
block device for its virtual disk.

Figures9 and10 summarizeresultsfrom all per-
formance experiments.

TheoriginalUMLinux is hundredsof timesslower
for null systemcallsandcontext switchesandis notable
to saturatethe network. UMLinux is 8x asslow asthe
standalonehostonSPECweb99,18xasslow asthestan-
dalonehost on kernel-build and 10% slower than the
standalonehostonPOV-Ray. BecausePOV-Rayis com-
pute-bound,it doesnot interactmuchwith theguestker-
nel and thus incurs little virtualization overhead.The
overheadsfor SPECweb99andkernel-build arehigher
becausethey issue more guest kernel calls, each of
which mustbetrappedby theVMM kernelmoduleand
reflected back to the guest kernel by sending a signal.

VMMs thatarebuilt directly on thehardwareexe-
cutemuchfasterthana Type II VMM without hostOS
support.VMware Workstation3.1 executesa null sys-
tem call nearlyasfastasthe standalonehost,cansatu-
rate the network, and is within a factor of 5 of the
context switch time for a standalonehost. VMware
Workstation3.1 incurs an overheadof 6-30% on the
intensive macrobenchmarks(SPECweb99and kernel-
build).

Our first optimization (Section 4.1) moves the
VMM functionality into the kernel.This improvesper-
formanceby a factor of about2-3 on the microbench-
marks, and by a factor of about 2 on the intensive
macrobenchmarks.

Our secondoptimization (Section4.2) usesseg-
mentboundsto eliminatetheneedto call mmap, mun-
map, and mprotect when switching betweenguest
kernelmodeandguestusermode.Addingthisoptimiza-
tion improvesperformanceonnull systemcallsandcon-
text switches by another factor of 5 (beyond the
performancewith just thefirst optimization)andenables
UMLinux to saturatethe network. Performanceon the
two intensive macrobenchmarksimprovesby a factorof
3-4.

Our final optimization (Section 4.3) maintains
multiple addressspacedefinitionsto speedup context
switchesbetweenguestapplicationprocesses.Thisopti-
mizationhaslittle effect on benchmarkswith only one
mainapplicationprocess,but it hasa dramaticaffect on
benchmarkswith more than one main applicationpro-
cess.Adding this optimization improves the context
switchmicrobenchmarkby a factorof 13 andimproves
kernel-build by a factor of 2.

With all three host OS optimizationsto support
VMMs, UMLinux runs all macrobenchmarkswell
within our performancetargetof a factorof 2 relative to
standalone.POV-Ray incurs1% overhead;kernel-build
incurs 35% overhead; and SPECweb99incurs 14%
overhead.These overheadsare comparableto those
attained by VMware Workstation 3.1.

The largest remaining source of virtualization
overheadfor kernel-build is the cost and frequency of
handling memory faults. kernel-build createsa large
numberof guestapplicationprocesses,eachof which
mapsits executablepageson demand.Each demand-
mappedpagecausesasignalto bedeliveredto theguest
kernel,which mustthenaskthe hostkernelto mapthe
new page.In addition,UMLinux currentlydoesnotsup-
port theability to issuemultiple outstandingI/Os on the
host. We plan to updatethe guestdisk driver to take
advantageof non-blockingI/O when it becomesavail-
able on Linux.

6. Related work

User-Mode Linux is a Type II VMM that is very
similar to UMLinux [Dike00].Our discussionof User-
ModeLinux assumesa configurationthatprotectsguest
kernel memory from guestapplicationprocesses(jail
mode). The major technical difference between the
User-Mode Linux and UMLinux is that User-Mode
Linux usesa separatehostprocessfor eachguestappli-
cationprocess,while UMLinux runsall guestcodein a
single host process.Assigning eachguestapplication
processto a separatehostprocesstechniquespeedsup
context switchesbetweenguestapplicationprocesses,
but it leadsto complicationssuchaskeepingtheshared
portionof theguestaddressspacesconsistentanddiffi-
cult synchronizationissueswhenswitchingguestappli-
cation processes [Dike02a].

User-Mode Linux in jail mode is faster than
UMLinux (without host OS support) on context
switches(157 vs. 2029 microseconds)but slower on
systemcalls (296 vs. 96 microseconds)and network
transfers(54 vs. 39 seconds).User-Mode Linux in jail
modeis fasteron kernel-build (1309vs. 2294seconds)
andslower on SPECweb99(200 vs. 172 seconds)than
UMLinux without host OS support.

Concurrentlywith our work on host OS support
for VMMs, the author of User-Mode Linux proposed
modifyingthehostOSto supportmultipleaddressspace
definitionsfor a singlehostprocess[Dike02a].Like the
optimization in Section 4.3, this would speed up
switchesbetweenguestapplicationprocessesandallow
User-Mode Linux to run all guestcodein a singlehost



Figure 9: Microbenchmark results. This figure compares the performance of different virtual-machine monitors on three
microbenchmarks: a null guest system call, context switching between two 64 KB guest application processes, and receiving 10
MB of data over the network. The first four bars represent the performance of UMLinux with increasing support from the host OS.
Each optimization level is cumulative, i.e. it includes all optimizations of the bars to the left. The performance of a standalone
host (no VMM) is shown for reference. Without support from the host OS, UMLinux is much slower than a standalone host.
Adding three extensions to the host OS improves the performance of UMLinux dramatically.
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Figure 10: Macrobenchmark results. This figure compares the performance of different virtual-machine monitors on three
macrobenchmarks: the POV-Ray ray tracer, compiling a kernel, and SPECweb99. The first four bars represent the performance
of UMLinux with increasing support from the host OS. Each optimization level is cumulative, i.e. it includes all optimizations
of the bars to the left. The performance of a standalone host (no VMM) is shown for reference. Without support from the host
OS, UMLinux is much slower than a standalone host. Adding three extensions to the host OS allows UMLinux to approach the
speed of a Type I VMM.
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process.Implementationof this optimization is cur-
rently underway [Dike02b], though User-Mode Linux
still usestwo separatehostprocesses,onefor the guest
kernel and one for all guestapplicationprocesses.We
currentlyuseUMLinux for our CoVirt researchproject
on virtual machines[Chen01]becauserunningall guest
codein a singlehostprocessis simpler, usesfewer host
resources,and simplifies the implementationof our
VMM-based replay service (ReVirt) [Dunlap02].

The SUNY Palladiumprojectuseda combination
of pageand segmentprotectionson x86 processorsto
divide a single addressspaceinto separateprotection
domains[Chiueh99].Our secondsolutionfor protecting
theguestkernelspacefrom guestapplicationprocesses
(Section4.2)usesasimilarcombinationof x86 features.
However, theSUNY Palladiumprojectis morecomplex
becauseit needsto supportamoregeneralsetof protec-
tion domains than UMLinux.

Reinhardt,et al. implementedextensionsto the
CM-5’s operatingsystemthat enableda singleprocess
to createand switch betweenmultiple addressspaces
[Reinhardt93].This capabilitywasaddedto supportthe
WisconsinWind Tunnel’s parallelsimulationof parallel
computers.

7. Conclusions and future work

Virtual-machinemonitorsthat are built on a host
operatingsystemare simple and elegant, but they are
currently an order of magnitudeslower than running
outside a virtual machine, and much slower than VMMs
thatarebuilt directly on thehardware.We examinedthe
sourcesof overheadfor a VMM thatrun on a hostoper-
ating system.

Wefoundthatthreebottlenecksareresponsiblefor
thebulk of theperformanceoverhead.First, thehostOS
requireda separatehostuserprocessto controlthemain
guest-machineprocess,andthis generateda largenum-
ber of hostcontext switches.We eliminatedthis bottle-
neck by moving the small amount of code that
controlledthe guest-machineprocessinto the hostker-
nel. Second,switchingbetweenguestkernelandguest
userspacegenerateda largenumberof memoryprotec-
tion operationson the host.We eliminatedthis bottle-
neck in two ways.Onesolutionmodifiedthe hostuser
segment bounds;the other solution modified the seg-
mentboundsandrantheguest-machineprocessin CPU
privilege ring 1. Third, switching betweentwo guest
applicationprocessesgenerateda largenumberof mem-
ory mappingoperationson thehost.We eliminatedthis
bottleneckby allowing a singlehostprocessto maintain
several addressspacedefinitions.In total, 510 lines of

codewereaddedto thehostkernelto supportthesethree
optimizations.

With all three optimizations, performanceof a
TypeII VMM on macrobenchmarksimprovedto within
14-35% overheadrelative to running on a standalone
host(no VMM), evenon benchmarksthatexercisedthe
VMM intensively. The main remainingsourceof over-
headwas the large numberof guestapplicationpro-
cessescreated in one benchmark(kernel-build) and
accompanying pagefaultsfrom demandmappingin the
executable.

In thefuture,we planto reducethesizeof thehost
operatingsystemusedto supporta VMM. Much of the
code in the host OS can be eliminated,becausethe
VMM usesonly a small numberof systemcalls and
abstractionsin the hostOS. Reducingthe codesizeof
the host OS will help make Type II VMMs a fast and
trusted base for future virtual-machine services.
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