ReVirt

Enabling Infrusion Analysis tThrough
Virtual Machine Logging and Replay

George Dunlap
Samuel Talmadge King
Sukru Cinar
Murtaza Basrai

Peter M. Chen

University of Michigan

Infroduction: Security

Administrators routinely deal with intrusions

'Post-mortem' analysis
How the attack worked
What they saw, what they changed

Available data
Disk image
Security logs

Firewall logs

The Weakness of Security Logs

Attacker subverts
logging

Attacker breaks in
Integrity

Attacker's first move is to subvert the logs

Delete or modify, or at least disable
Completeness

Still require lots of educated guesses

Can't account for non-determinism

Encryption renders even a packet log useless

CoVirt and ReVirt

The CoVirt project

Add security services to virtual machines

ReVirt

Log enough to reconstruct and replay the entire
execution of a system

Instruction-by-instruction replay of entire virtual
machine

View the entire state of the system at an arbitrary
point in history

Watch the execution as it progressed

Virtual Machine Overview

Guest Guest Guest
application 8 application application

Guest operating system

Virtual machine monitor
Current system: “Hosted” VMM architecture
Security aspects of virtual machines
Simpler interface, smaller codebase

VMM limits access to host functionality

UMLINnux: Linux on LiNnux

Linux ported to run on 'Linux' architecture

Guest OS and all applications run within a single
host process

Virtual devices
Disk: host raw partition. RTC: gettimeofday().
Network: host TUN/TAP.

Virtual interrupts implemented with signals
Timer: SIGALRM. Device I/O: SIGIO.
Page fault: SIGSEGV. Syscall(i nt 80): SIGUSRI.

Complete Replay

Complete Replay

Complete Replay

Complete Replay

Complete Replay

Complete Replay

Complete Replay: Summary

Architecturally visible state transitions

Same starting state + same input => same state
transitions

Checkpoint and restore the initial state

Log when non-deterministic input happens, and
make it happen the same way on replay.

External data: keyboard, network, external clock

Time: when asynchronous interrupts happen

Replaying Inferrupts

Asynchronous virtual interrupts

Must be delivered at the exact point in the
instruction stream

Performance counters available on P4, Athlon

(instruction pointer, branch count) unique identifier
for an instruction in the stream

Before delivering an interrupt, record (ei p, bc)

During replay, deliver at the same (ei p, bc)

The ReVirt System
Guest App Guest App

UMLinux Guest OS
VMM kernel module
ReVirt Logging & Replay
Host OS

Log syscalls containing external data

Give same data during replay

Deliver virtual interrupts at same point

Detalls, Dertails...

Intel “Repeat String” (r epz) instructions
Log ecx register as well

Hardware performance counters count interrupts
Have the OS count interrupts and compensate

RDTSC instruction
Disable or emulate with gettimeofday()

Experiment Questions

How do we know it's doing the same thing?
What's the overhead of virtualization?

Doesn't running in a VM make it too slow?
What's the overhead of logging?

Don't you have to log too much data?

Doesn't it slow things down too much?

How fast can I replay?

Correctness: Sanity Checks

Output

System behavior
UMLinux makes 14 host system calls regularly
Check to see that they're in the same order
Internal data
Compare registers at each system call
Sparse (i nstruction pointer, branch count) space
Check (el p, bc) at each system call

Check for (ei p, bc) existence at virtual interrupts

Correctness: Experiments

Microbenchmark

Several guest processes with shared memory, with
an explicit race condition

Check for same output during replay
Macrobenchmark

Boot, start Gnome session, two concurrent builds
over NFS, surf the web simultaneously

15,000,000 host system calls
55,000 virtual interrupts

Experiments: Performance
Setup

AMD Athlon 1800+
Samsung SV4084 IDE Disk
Linux 2.4.18 guest / host / standalone kernel

Redhat 6.2 install for guest / standalone system
Standalone: 256 MB
ReVirt: Host total 2566MB, Guest 192MB

Factor in memory overhead of virtualization

Virtual HD on a raw partition to avoid host
caching effects

Experiments: Workload

POV-Ray raytracer

CPU-bound, few processes, little disk I/O
Kernel build: 2.4.18 stock kernel
NF'S kernel build

Warm cache numbers reported

SPEC Web 99

Apache 2.0.36; 2 clients, 15 simultaneous
connections

Daily use test: 24 hrs

Performance Results

|| Standalone
B UMLinux
|| Log

.| Replay

o)
E
c
)
o
g,
o)
N
©
c
o
Z

0.03
I

POV-Ray Kernel Build NFS SpecWeb Daily Use
Workload

Workload

POV-Ray
Kernel-build
NFS kernel-build
SPECweb99

IDEVIVAINE

LoQ Size

Compressed log
growth rate

0.04 GB/Day
0.08 GB/Day
1.2 GB/Day
1.4 GB/Day
0.2 GB/Day

Time to fill a 100 GB disk

7.4 years
3.4 years
2.9 months
2.4 months
1.5 years

ANaAlysis

Can roll back to any arbitrary point in the attack
Look in from outside

Complete memory & disk state
Look from inside

Start the VM running from an arbitrary point

Log in to system and look around

Future Work

Analysis tools

Checkpointing a “live” system

More creative uses of replay
Partial replay & continue

Hypothesis testing

Binary search
Cooperative logging
Extend “the box” to other logged systems

Conclusions

Current logging systems lack integrity and
completeness

CoVirt enhances integrity by moving services
beneath a virtual machine

ReVirt adds completeness by allowing complete
replay of a VM

Virtualization & logging adds 1-70% overhead

A single disk can store a log for several months

Questions

Trusted Computing Base

TCB of current research implementation
VMM, host kernel, X server
Guest OS use of host kernel limited

UMLinux given access to only one host file

Can't interact directly with other host programs
Other possible implementations
VMWare ESX Server
Microkernel, exokernel

Denali

Related Work

Hypervisor
Many similar techniques and ideas, different goals
Hypervisor duplicates input and throws it away
We log input and replay it later

S4: Self-Securing Storage
Complete log of disk states

Issues: Removable Media

Solution 1: Log it as an external data source

CDs: ~700 MB

One per hour = 17GB/day
6 days to fill 100GB even uncompressed

DVDs: up to 87GB?
Solution 2: Jukebox
Bring “inside the box”, don't need to log...

...but can't change

Solution 3: Require user to re-insert media

Issues: Log Flooding

What if you run out of space for the log?
Must stop the system or abandon replay

Turns break-in into DoS attack

Can still see what the attacker did

Attacker has no direct control over log

Network data most likely way of flooding log
Noticeable

Technical Stuff

Micro-architectural non-determinism
Only care about architecturally visible state

Architecturally in-visible state:

Branch prediction
Cache misses

Out-of-order execution

Memory: DMA, Alpha prefetching & reordering
Don't allow DMA to guest OS

Don't allow access to mmio (pre-fetched reads)

Shared-Memory Mulfiprocessors

True SMM is very hard

Log/Replay memory write/read interleaving?
We know of no good way to do this
Disco

Ran non-SMM kernels on SMM
Takes partial advantage of SMM hardware

Performance Counters

Are the performance counters accurate?
We don't need correctness, only consistency
(eip,bc) cross-checking: one or the other is wrong
Don't they count interrupts, which are non-det?
AMD: interrupts; P4s: iret instructions

Kernel sees most interrupts

SMM

Compensate for non-deterministic events

