
ReVirt
Enabling Intrusion Analysis through

Virtual Machine Logging and Replay

George Dunlap
Samuel Talmadge King

Sukru Cinar
Murtaza Basrai
Peter M. Chen

University of Michigan

Introduction: Security

� Administrators routinely deal with intrusions

� 'Post-mortem' analysis

� How the attack worked

� What they saw, what they changed

� Available data

� Disk image

� Security logs

� Firewall logs

The Weakness of Security Logs

� Integrity

� Attacker's first move is to subvert the logs

� Delete or modify, or at least disable

� Completeness

� Still require lots of educated guesses

� Can't account for non-determinism

� Encryption renders even a packet log useless

!
Attacker breaks in

Attacker subverts
logging

CoVirt and ReVirt

� The CoVirt project

� Add security services to virtual machines

� ReVirt

� Log enough to reconstruct and replay the entire
execution of a system

� Instruction-by-instruction replay of entire virtual
machine

� View the entire state of the system at an arbitrary
point in history

� Watch the execution as it progressed

Virtual Machine Overview

� Virtual machine monitor

� Current system: “Hosted” VMM architecture

� Security aspects of virtual machines

� Simpler interface, smaller codebase

� VMM limits access to host functionality

Host hardware

Host operating system
VMM kernel module

Guest operating system

Guest
application

Guest
application

Guest
application

UMLinux: Linux on Linux

� Linux ported to run on 'Linux' architecture

� Guest OS and all applications run within a single
host process

� Virtual devices

	 Disk: host raw partition. RTC: gettimeofday().

	 Network: host TUN/TAP.

� Virtual interrupts implemented with signals

	 Timer: SIGALRM. Device I/O: SIGIO.

	 Page fault: SIGSEGV. Syscall(int80): SIGUSR1.

Complete Replay

CPU
architected

registers
Memory

Load / Store

Complete Replay

CPU
architected

registers
Memory

Disk

Load / Store

Complete Replay

CPU
architected

registers
Memory

Disk

Load / Store

Complete Replay

CPU
architected

registers
Memory

Disk

Keyboard

Load / Store

Complete Replay

CPU
architected

registers
Memory

Disk

Network

Keyboard

Load / Store

Complete Replay

CPU
architected

registers
Memory

Disk

Network

Keyboard

Asynchronous
Interrupts

Load / Store

Complete Replay: Summary

 Architecturally visible state transitions

� Same starting state + same input => same state
transitions

� Checkpoint and restore the initial state

 Log when non-deterministic input happens, and
make it happen the same way on replay.

� External data: keyboard, network, external clock

� Time: when asynchronous interrupts happen

Replaying Interrupts

� Asynchronous virtual interrupts

� Must be delivered at the exact point in the
instruction stream

� Performance counters available on P4, Athlon

� (instruction pointer, branch count) unique identifier
for an instruction in the stream

� Before delivering an interrupt, record (eip,bc)

� During replay, deliver at the same (eip,bc)

The ReVirt System

� Log syscalls containing external data

� Give same data during replay

� Deliver virtual interrupts at same point

Hardware

Host OS

ReVirt Logging & Replay

VMM kernel module

UMLinux Guest OS

Guest App Guest App Guest App

Details, Details...

� Intel “Repeat String” (repz) instructions

� Log ecx register as well

� Hardware performance counters count interrupts

� Have the OS count interrupts and compensate

�

RDTSC instruction

� Disable or emulate with gettimeofday()

Experiment Questions

� How do we know it's doing the same thing?

 What's the overhead of virtualization?

! Doesn't running in a VM make it too slow?

" What's the overhead of logging?

Don't you have to log too much data?

$ Doesn't it slow things down too much?

% How fast can I replay?

Correctness: Sanity Checks

& Output

' System behavior

(UMLinux makes 14 host system calls regularly

) Check to see that they're in the same order

* Internal data

+ Compare registers at each system call

, Sparse (instruction pointer, branch count) space

- Check (eip,bc) at each system call

. Check for (eip,bc) existence at virtual interrupts

Correctness: Experiments

/ Microbenchmark

0 Several guest processes with shared memory, with
an explicit race condition

1 Check for same output during replay

2 Macrobenchmark

3 Boot, start Gnome session, two concurrent builds
over NFS, surf the web simultaneously

4 15,000,000 host system calls

5 55,000 virtual interrupts

Experiments: Performance
Setup

6 AMD Athlon 1800+

7 Samsung SV4084 IDE Disk

8 Linux 2.4.18 guest / host / standalone kernel

9 Redhat 6.2 install for guest / standalone system

: Standalone: 256MB

; ReVirt: Host total 256MB, Guest 192MB

< Factor in memory overhead of virtualization

= Virtual HD on a raw partition to avoid host
caching effects

Experiments: Workload

> POV-Ray raytracer

? CPU-bound, few processes, little disk I/O

@ Kernel build: 2.4.18 stock kernel

A NFS kernel build

B Warm cache numbers reported

C SPEC Web 99

D Apache 2.0.36; 2 clients, 15 simultaneous
connections

E Daily use test: 24 hrs

Performance Results

POV-Ray Kernel Build NFS SpecWeb Daily Use
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.01

1.58

1.44

1.13

1.7

1.54

1.17

1

1.73

1.58

1.04

0.03

Standalone
UMLinux
Log
Replay

Workload

N
or

m
al

iz
ed

 R
un

tim
e

Log Size

Workload Time to fill a 100 GB disk

POV-Ray 0.04 GB/Day 7.4 years

Kernel-build 0.08 GB/Day 3.4 years

NFS kernel-build 1.2 GB/Day 2.9 months

SPECweb99 1.4 GB/Day 2.4 months

Daily use 0.2 GB/Day 1.5 years

Compressed log
growth rate

Analysis

F Can roll back to any arbitrary point in the attack

G Look in from outside

H Complete memory & disk state

I Look from inside

J Start the VM running from an arbitrary point

K Log in to system and look around

Future Work

L Analysis tools

M Checkpointing a “live” system

N More creative uses of replay

O Partial replay & continue

P Hypothesis testing

Q Binary search

R Cooperative logging

S Extend “the box” to other logged systems

Conclusions

T Current logging systems lack integrity and
completeness

U CoVirt enhances integrity by moving services
beneath a virtual machine

V ReVirt adds completeness by allowing complete
replay of a VM

W Virtualization & logging adds 1-70% overhead

X A single disk can store a log for several months

Questions

Trusted Computing Base

Y TCB of current research implementation

Z VMM, host kernel, X server

[Guest OS use of host kernel limited

\ UMLinux given access to only one host file

] Can't interact directly with other host programs

^ Other possible implementations

_ VMWare ESX Server

` Microkernel, exokernel

a Denali

Related Work

b Hypervisor

c Many similar techniques and ideas, different goals

d Hypervisor duplicates input and throws it away

e We log input and replay it later

f S4: Self-Securing Storage

g Complete log of disk states

Issues: Removable Media

h Solution 1: Log it as an external data source

i CDs: ~700 MB

j One per hour = 17GB/day

k 6 days to fill 100GB even uncompressed

l DVDs: up to 87GB?

m Solution 2: Jukebox

n Bring “inside the box”, don't need to log...

o ...but can't change

p Solution 3: Require user to re-insert media

Issues: Log Flooding

q What if you run out of space for the log?

r Must stop the system or abandon replay

s Turns break-in into DoS attack

t Can still see what the attacker did

u Attacker has no direct control over log

v Network data most likely way of flooding log

w Noticeable

Technical Stuff

x Micro-architectural non-determinism

y Only care about architecturally visible state

z Architecturally in-visible state:

{ Branch prediction

| Cache misses

} Out-of-order execution

~ Memory: DMA, Alpha prefetching & reordering

� Don't allow DMA to guest OS

� Don't allow access to mmio (pre-fetched reads)

Shared-Memory Multiprocessors

� True SMM is very hard

� Log/Replay memory write/read interleaving?

� We know of no good way to do this

� Disco

� Ran non-SMM kernels on SMM

� Takes partial advantage of SMM hardware

Performance Counters

� Are the performance counters accurate?

� We don't need correctness, only consistency

� (eip,bc) cross-checking: one or the other is wrong

� Don't they count interrupts, which are non-det?

� AMD: interrupts; P4s: iret instructions

� Kernel sees most interrupts

� SMM

� Compensate for non-deterministic events

