
RAID-II: A High-Bandwidth Network File Server

Ann L. Drapeau Ken W. Shirriff John H. Hartman Ethan L. Miller
Srinivasan Seshan Randy H. Katz Ken Lutz David A. Patterson1

Edward K. Lee2 Peter M. Chen3 Garth A. Gibson4

Abstract
In 1989, the RAID (Redundant Arrays of Inexpensive

Disks) group at U. C. Berkeley built a prototype disk ar-
ray called RAID-I. The bandwidth delivered to clients by
RAID-I was severely limited by the memory system band-
width of the disk array’s host workstation. We designed our
second prototype, RAID-II, to deliver more of the disk array
bandwidth to file server clients. A custom-built crossbar
memory system called the XBUS board connects the disks
directly to the high-speed network, allowing data for large
requests to bypass the server workstation. RAID-II runs
Log-Structured File System (LFS) software to optimize per-
formance for bandwidth-intensive applications.

The RAID-II hardware with a single XBUS controller
board delivers 20 megabytes/second for large, random read
operations and up to 31 megabytes/second for sequential
read operations. A preliminary implementation of LFS
on RAID-II delivers 21 megabytes/second on large read
requests and 15 megabytes/second on large write opera-
tions.

1 Introduction
It is essential for future file servers to provide high-

bandwidth I/O because of a trend toward bandwidth-
intensive applications like multi-media, CAD, object-
oriented databases and scientific visualization. Even in
well-established application areas such as scientific com-
puting, the size of data sets is growing rapidly due to reduc-
tions in the cost of secondary storage and the introduction of
faster supercomputers. These developments require faster
I/O systems to transfer the increasing volume of data.

High performance file servers will increasingly incorpo-
rate disk arrays to provide greater disk bandwidth. RAIDs,
or Redundant Arrays of Inexpensive Disks [13], [5], use a
collection of relatively small, inexpensive disks to achieve
high performance and high reliability in a secondary stor-
age system. RAIDs provide greater disk bandwidth to a file
by striping or interleaving the data from a single file across
a group of disk drives, allowing multiple disk transfers to
occur in parallel. RAIDs ensure reliability by calculating

1Computer Science Division, University of California, Berkeley, CA
94720

2DEC Systems Research Center, Palo Alto, CA 94301-1044
3ComputerScience and Engineering Division, University of Michigan,

Ann Arbor, MI 48109-2122
4School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA 15213-3891

error correcting codes across a group of disks; this redun-
dancy information can be used to reconstruct the data on
disks that fail. In this paper, we examine the efficient de-
livery of bandwidth from a file server that includes a disk
array.

In 1989, the RAID group at U.C. Berkeley built an ini-
tial RAID prototype, called RAID-I [2]. The prototype
was constructed using a Sun 4/280 workstation with 128
megabytes of memory, four dual-string SCSI controllers,
28 5.25-inch SCSI disks and specialized disk striping soft-
ware. We were interested in the performance of a disk array
constructed of commercially-available components on two
workloads: small, random operations typical of file servers
in a workstation environment and large transfers typical
of bandwidth-intensive applications. We anticipated that
there would be both hardware and software bottlenecks
that would restrict the bandwidth achievable by RAID-I.
The development of RAID-I was motivated by our desire
to gain experience with disk array software, disk controllers
and the SCSI protocol.

Experiments with RAID-I show that it performs well
when processing small, random I/O’s, achieving ap-
proximately 275 four-kilobyte random I/Os per sec-
ond. However, RAID-I proved woefully inadequate
at providing high-bandwidth I/O, sustaining at best 2.3
megabytes/second to a user-level application on RAID-I.
By comparison, a single disk on RAID-I can sustain 1.3
megabytes/second. The bandwidth of nearly 26 of the 28
disks in the array is effectively wasted because it cannot be
delivered to clients.

There are several reasons why RAID-I is ill-suited for
high-bandwidth I/O. The most serious is the memory con-
tention experienced on the Sun 4/280 workstation during
I/O operations. The copy operations that move data be-
tween kernel DMA buffers and buffers in user space sat-
urate the memory system when I/O bandwidth reaches
2.3 megabytes/second. Second, because all I/O on the
Sun 4/280 goes through the CPU’s virtually addressed
cache, data transfers experience interference from cache
flushes. Finally, disregarding the workstation’s mem-
ory bandwidth limitation, high-bandwidth performance is
also restricted by the low backplane bandwidth of the
Sun 4/280’s VME system bus, which becomes saturated
at 9 megabytes/second.

The problems RAID-I experienced are typical of many
workstations that are designed to exploit large, fast caches
for good processor performance, but fail to support ade-
quate primary memory or I/O bandwidth [8], [12]. In such

workstations, the memory system is designed so that only
the CPU has a fast, high-bandwidth path to memory. For
busses or backplanes farther away from the CPU, available
memory bandwidth drops quickly. Thus, file servers incor-
porating such workstations perform poorly on bandwidth-
intensive applications.

The design of hardware and software for our second
prototype, RAID-II [1], was motivated by a desire to de-
liver more of the disk array’s bandwidth to the file server’s
clients. Toward this end, the RAID-II hardware contains
two data paths: a high-bandwidth path that handles large
transfers efficiently using a custom-built crossbar intercon-
nect between the disk system and the high-bandwidth net-
work, and a low-bandwidthpath used for control operations
and small data transfers. The software for RAID-II was
also designed to deliver disk array bandwidth. RAID-II
runs LFS, the Log-Structured File System [14], developed
by the Sprite operating systems group at Berkeley. LFS
treats the disk array as a log, combining small accesses
together and writing large blocks of data sequentially to
avoid inefficient small write operations. A single XBUS
board with 24 attached disks and no file system delivers
up to 20 megabytes/second for random read operations and
31 megabytes/second for sequential read operations. With
LFS software, the board delivers 21 megabytes/second on
sequential read operations and 15 megabytes/second on se-
quential write operations. Not all of this data is currently
delivered to clients because of client and network limita-
tions described in Section 3.4.

This paper describes the design, implementation and
performance of the RAID-II prototype. Section 2 describes
the RAID-II hardware, including the design choices made
to deliver bandwidth, architecture and implementation de-
tails, and hardware performance measurements. Section
3 discusses the implementation and performance of LFS
running on RAID-II. Section 4 compares other high per-
formance I/O systems to RAID-II, and Section 5 discusses
future directions. Finally, we summarize the contributions
of the RAID-II prototype.

2 RAID-II Hardware

Figure 1 illustrates the RAID-II storage architecture.
The RAID-II storage server prototype spans three racks,
with the two outer racks containing disk drives and the
center rack containing custom-designed crossbar controller
boards and commercial disk controller boards. The center
rack also contains a workstation, called the host, which
is shown in the figure as logically separate. Each XBUS
controller board has a HIPPI connection to a high-speed
Ultra Network Technologies ring network that may also
connect supercomputers and client workstations. The host
workstation has an Ethernet interface that allows transfers
between the disk array and clients connected to the Ethernet
network.

In this section, we discuss the prototype hardware. First,
we describe the design decisions that were made to deliver
disk array bandwidth. Next, we describe the architecture
and implementation, followed by microbenchmark mea-
surements of hardware performance.

2.1 Delivering Disk Array Bandwidth
2.1.1 High and Low Bandwidth Data Paths

Disk array bandwidth on our first prototype was limited by
low memory system bandwidth on the host workstation.
RAID-II was designed to avoid similar performance limi-
tations. It uses a custom-built memory system called the
XBUS controller to create a high-bandwidth data path. This
data path allows RAID-II to transfer data directly between
the disk array and the high-speed, 100 megabytes/second
HIPPI network without sending data through the host work-
station memory, as occurs in traditional disk array storage
servers like RAID-I. Rather, data are temporarily stored in
memory on the XBUS board and transferred using a high-
bandwidth crossbar interconnect between disks, the HIPPI
network, the parity computation engine and memory.

There is also a low-bandwidth data path in RAID-II that
is similar to the data path in RAID-I. This path transfers
data across the workstation’s backplane between the XBUS
board and host memory. The data sent along this path in-
clude file metadata (data associated with a file other than
its contents) and small data transfers. Metadata are needed
by file system software for file management, name trans-
lation and for maintaining consistency between file caches
on the host workstation and the XBUS board. The low-
bandwidth data path is also used for servicing data requests
from clients on the 10 megabits/second Ethernet network
attached to the host workstation.

We refer to the two access modes on RAID-II as the high-
bandwidthmode for accesses that use the high-performance
data path and standard mode for requests serviced by the
low-bandwidth data path. Any client request can be ser-
viced using either access mode, but we maximize utilization
and performance of the high-bandwidthdata path if smaller
requests use the Ethernet network and larger requests use
the HIPPI network.

2.1.2 Scaling to Provide Greater Bandwidth

The bandwidth of the RAID-II storage server can be scaled
by adding XBUS controller boards to a host workstation.
To some extent, adding XBUS boards is like adding disks
to a conventional file server. An important distinction is
that adding an XBUS board to RAID-II increases the I/O
bandwidth available to the network, whereas adding a disk
to a conventional file server only increases the I/O band-
width available to that particular file server. The latter is
less effective, since the file server’s memory system and
backplane will soon saturate if it is a typical workstation.

Eventually, adding XBUS controllers to a host worksta-
tion will saturate the host’s CPU, since the host manages
all disk and network transfers. However, since the high-
bandwidth data path of RAID-II is independent of the host
workstation, we can use a more powerful host to continue
scaling storage server bandwidth.
2.2 Architecture and Implementation of RAID-II

Figure 2 illustrates the architecture of the RAID-II file
server. The file server’s backplane consists of two high-
bandwidth (HIPPI) data busses and a low-latency (VME)
control bus. The backplane connects the high-bandwidth
network interfaces, several XBUS controllers and a host
workstation that controls the operation of the XBUS con-
troller boards. Each XBUS board contains interfaces to the

High Bandiwdth Network
(100 MB/s Ultranet)

Client Workstations

Client WorkstationsHost
Workstation

Ethernet
(10 Mb/s)

Supercomputer

SCSI

HIPPI

RAID-II File Server

VME

Figure 1: The RAID-II File Server and its Clients. RAID-II, shown by dotted lines, is composed of three racks. The
host workstation is connected to one or more XBUS controller boards (contained in the center rack of RAID-II) over
the VME backplane. Each XBUS controller has a HIPPI network connection that connects to the Ultranet high-speed
ring network; the Ultranet also provides connections to client workstations and supercomputers. The XBUS boards
also have connections to SCSI disk controller boards. In addition, the host workstation has an Ethernet network
interface that connects it to client workstations.

HIPPI backplane and VME control bus, memory, a parity
computation engine and four VME interfaces that connect
to disk controller boards.

Figure 3 illustrates the physical packaging of the
RAID-II file server, which spans three racks. To min-
imize the design effort, we used commercially available
components whenever possible. Thinking Machines Cor-
poration (TMC) provided a board set for the HIPPI inter-
face to the Ultranet ring network; Interphase Corporation
provided VME-based, dual-SCSI, Cougar disk controllers;
Sun Microsystems provided the Sun 4/280 file server; and
IBM donated disk drives and DRAM. The center rack is
composed of three chassis. On top is a VME chassis con-
taining eight Interphase Cougar disk controllers. The center
chassis was provided by TMC and contains the HIPPI inter-
faces and our custom XBUS controller boards. The bottom
VME chassis contains the Sun4/280 host workstation. Two
outer racks each contain 72 3.5-inch, 320 megabyte IBM
SCSI disks and their power supplies. Each of these racks
contains eight shelves of nine disks. RAID-II has a total
capacity of 46 gigabytes, although the performance results
in the next section are for a single XBUS board controlling
24 disks. We will achieve full array connectivity by adding
XBUS boards and increasing the number of disks per SCSI
string.

Figure 4 is a block diagram of the XBUS disk array con-
troller board, which implements a 4x8, 32-bit wide cross-
bar interconnect called the XBUS. The crossbar connects
four memory modules to eight system components called
ports. The XBUS ports include two interfaces to HIPPI
network boards, four VME interfaces to Interphase Cougar
disk controller boards, a parity computation engine, and a
VME interface to the host workstation. Each XBUS trans-
fer involves one of the four memory modules and one of
the eight XBUS ports. Each port was intended to support
40 megabytes/second of data transfer for a total of 160
megabytes/second of sustainable XBUS bandwidth.

The XBUS is a synchronous, multiplexed (address/data),
crossbar-based interconnect that uses a centralized,
priority-based arbitration scheme. Each of the eight 32-
bit XBUS ports operates at a cycle time of 80 nanoseconds.
The memory is interleaved in sixteen-word blocks. The
XBUS supports only two types of bus transactions: reads
and writes. Our implementation of the crossbar intercon-
nect was fairly expensive, using 192 16-bit transceivers.
Using surface mount packaging, the implementation re-
quired 120 square inches or approximately 20% of the
XBUS controller’s board area. An advantage of the im-
plementation is that the 32-bit XBUS ports are relatively
inexpensive.

HIPPI (1 Gb/s) HIPPI (1 Gb/s)

VMEVMEVMEVME

TMC-HIPPIS Bus
(64 bits, 100 MB/s)

TMC-HIPPID Bus
(64 bits, 100 MB/s)

TMC-VME Bus
(32 bits, 40 MB/s)

SCSI0
SCSI1

Host Workstation

Ethernet

XBUS Disk Array
Controller

XBUS Disk Array
Controller

XBUS Disk Array
Controller

XBUS Disk Array
Controller

HIPPIS
Interface

HIPPID
Interface

Cougar Disk Controller

Cougar Disk Controller

Cougar Disk Controller

Cougar Disk Controller

RAID-II main chassis

VMEVMEVMEVME VMEVMEVMEVMEVMEVMEVMEVME

Figure 2: Architecture of RAID-II File Server. The host workstation may have several XBUS controller boards
attached to its VME backplane. Each XBUS controller board contains interfaces to HIPPI network source and
destination boards, buffer memory, a high-bandwidth crossbar, a parity engine, and interfaces to four SCSI disk
controller boards.

Two XBUS ports implement an interface between the
XBUS and the TMC HIPPI boards. Each port is unidi-
rectional, designed to sustain 40 megabytes/second of data
transfer and bursts of 100 megabytes/second into 32 kilo-
byte FIFO interfaces.

Four of the XBUS ports are used to connect the XBUS
board to four VME busses, each of which may connect to
one or two dual-string Interphase Cougar disk controllers.
In our current configuration, we connect three disks to each
SCSI string, two strings to each Cougar controller, and
one Cougar controller to each XBUS VME interface for
a total of 24 disks per XBUS board. The Cougar disk
controllers can transfer data at 8 megabytes/second, for a
maximum disk bandwidth to a single XBUS board of 32
megabytes/second in our present configuration.

Of the remaining two XBUS ports, one interfaces to a
parity computation engine. The last port is the VME control

interface linking the XBUS board to the host workstation. It
provides the host with access to the XBUS board’s memory
as well as its control registers. This makes it possible for
file server software running on the host to access network
headers, file data and metadata in the XBUS memory.

2.3 Hardware Performance
In this section, we present raw performance of the

RAID-II [1] hardware, that is, the performance of the hard-
ware without the overhead of a file system. In Section 3.4,
we show how much of this raw hardware performance can
be delivered by the file system to clients.

Figure 5 shows RAID-II performance for random reads
and writes. We refer to these performance measurements
as hardware system level experiments, since they involve
all the components of the system from the disks to the
HIPPI network. For these experiments, the disk system is

8 MB
DRAM

8 MB
DRAM

8 MB
DRAM

8 MB
DRAM

16 word interleave

4 x 8 Crossbar Interconnect
40 MB/s per port

HIPPIS HIPPID XOR
Server
VME

VME0 VME1 VME2 VME3

Figure 4: Structure of XBUS controller board. The board contains four memory modules connected by a 4x8 crossbar
interconnect to eight XBUS ports. Two of these XBUS ports are interfaces to the HIPPI network. Another is a parity
computation engine. One is a VME network interface for sending control information, and the remaining four are
VME interfaces connecting to commercial SCSI disk controller boards.

Figure 3: The physical packaging of the RAID-II File
Server. Two outer racks contain 144 disks and their
power supplies. The center rack contains three chas-
sis: the top chassis holds VME disk controller boards;
the center chassis contains XBUS controller boards
and HIPPI interface boards, and the bottom VME chas-
sis contains the Sun4/280 workstation.

configured as a RAID Level 5 [13] with one parity group of
24 disks. (This scheme delivers high bandwidth but exposes
the array to data loss during dependent failure modes such
as a SCSI controller failure. Techniques for maximizing
reliability are beyond the scope of this paper [4], [16], [6].)

For reads, data are read from the disk array into the
memory on the XBUS board; from there, data are sent over
HIPPI, back to the XBUS board, and into XBUS mem-
ory. For writes, data originate in XBUS memory, are sent
over the HIPPI and then back to the XBUS board to XBUS
memory; parity is computed, and then both data and parity
are written to the disk array. For both tests, the system
is configured with four Interphase Cougar disk controllers,
each with two strings of three disks. For both reads and
writes, subsequent fixed size operations are at random lo-
cations. Figure 5 shows that, for large requests, hardware
system level read and write performance reaches about 20
megabytes/second. The dip in read performance for re-
quests of size 768 kilobytes occurs because at that size
the striping scheme in this experiment involves a second
string on one of the controllers; there is some contention
on the controller that results in lower performance when
both strings are used. Writes are slower than reads due
to the increased disk and memory activity associated with
computing and writing parity. While an order of magni-
tude faster than our previous prototype, RAID-I, this is still
well below our target bandwidth of 40 megabytes/second.
Below, we show that system performance is limited by that
of the commercial disk controller boards and our disk in-
terfaces.

Table 1 shows peak performance of the system when

x
x

x

x

x
x

x
x

+
++

+
+

+

+

+

0

5

10

15

20

25

0 500 1000 1500

T
hr

ou
gh

pu
t

(M
B

/s
)

Request Size (KB)

x Writes

+ Reads

Figure 5: Hardware System Level Read and Write
Performance. RAID-II achieves approximately 20
megabytes/second for both random reads and writes.

Peak Performance
Operation (megabytes/second)
Sequential reads 31
Sequential writes 23

Table 1: Peak read and write performance for an XBUS
board on sequential operations. This experiment was
run using the four XBUS VME interfaces to disk con-
trollers boards, with a fifth disk controller attached to
the XBUS VME control bus interface.

sequential read and write operations are performed. These
measurements were obtained using the four Cougar boards
attached to the XBUS VME interfaces, and in addition,
using a fifth Cougar board attached to the XBUS VME
control bus interface. For requests of size 1.6 megabytes,
read performance is 31 megabytes/second, compared to
23 megabytes/second for writes. Write performance is
worse than read performance because of the extra accesses
required during writes to calculate and write parity and
because sequential reads benefit from the read-ahead per-
formed into track buffers on the disks; writes have no such
advantage on these disks.

While one of the main goals in the design of RAID-II
was to provide better performance than our first prototype
on high-bandwidth operations, we also want the file server
to perform well on small, random operations. Table 2
compares the I/O rates achieved on our two disk array pro-
totypes, RAID-I and RAID-II, using a test program that
performed random 4 kilobyte reads. In each case, fifteen
disks were accessed. The tests used Sprite operating sys-
tem read and write system calls; the RAID-II test did not
use LFS. In each case, a separate process issued 4 kilobyte,
randomly distributed I/O requests to each active disk in
the system. The performance with a single disk indicates
the difference between the Seagate Wren IV disks used in
RAID-I and the IBM 0661 disks used in RAID-II. The
IBM disk drives have faster rotation and seek times, mak-

1 disk 15 disks
I/O Rate I/O Rate

System (I/Os/sec) (I/Os/sec)
RAID-I 27 274
RAID-II 36 422

Table 2: Peak I/O rates in operations per second for
random, 4 kilobyte reads. Performance for a single disk
and for fifteen disks, with a separate process issuing
random I/O operations to each disk. The IBM 0661 disk
drives used in RAID-II can perform more I/Os per sec-
ond than the Seagate Wren IV disks used in RAID-I be-
cause they have shorter seek and rotation times. Supe-
rior I/O rates on RAID-II are also the result of the archi-
tecture, which does not require data to be transferred
through the host workstation.

++++++++

+

+

+

+

+
+++0

10

20

30

40

1 10 100 1000 10000 100000

T
hr

ou
gh

pu
t

(M
B

/s
)

Request Size (KB)

Figure 6: HIPPI Loopback Performance. RAID-II
achieves 38.5 megabytes/second in each direction.

ing random operations quicker. With fifteen disks active,
both systems perform well, with RAID-II achieving over
400 small accesses per second. In both prototypes, the
small, random I/O rates were limited by the large number
of context switches required on the Sun4/280 workstation
to handle request completions. RAID-I’s performance was
also limited by the memory bandwidth on the Sun4/280,
since all data went into host memory. Since data need not
be transferred to the host workstation in RAID-II, it deliv-
ers a higher percentage (78%) of the potential I/O rate from
its fifteen disks than does RAID-I (67%).

The remaining performance measurements in this sec-
tionare for specific components of the XBUS board. Figure
6 shows the performance of the HIPPI network and boards.
Data are transferred from the XBUS memory to the HIPPI
source board, and then to the HIPPI destination board and
back to XBUS memory. Because the network is configured
as a loop, there is minimal network protocol overhead. This
test focuses on the HIPPI interfaces’ raw hardware perfor-
mance; it does not include measurements for sending data
over the Ultranet. In the loopback mode, the overhead of
sending a HIPPI packet is about 1.1 milliseconds, mostly
due to setting up the HIPPI and XBUS control registers

++
+

+

+

0

1

2

3

4

5

6

0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Disks

Figure 7: Disk read performance for varying number of
disks on a single SCSI string. Cougar string bandwidth
is limited to about 3 megabytes/second, less than that
of three disks. The dashed line indicates the perfor-
mance if bandwidth scaled linearly.

across the slow VME link. (By comparison, an Ether-
net packet takes approximately 0.5 millisecond to trans-
fer.) Due to this control overhead, small requests result
in low performance on the HIPPI network. For large re-
quests, however, the XBUS and HIPPI boards support 38
megabytes/second in both directions, which is very close
to the maximum bandwidth of the XBUS ports. The HIPPI
loopback bandwidth of 38 megabytes/second is three times
greater than FDDI and two orders of magnitude greater
than Ethernet. Clearly the HIPPI part of the XBUS is not
the limiting factor in determining hardware system level
performance.

Disk performance is responsible for the lower-than-
expected hardware system level performance of RAID-II.
One performance limitation is the Cougar disk controller,
which only supports about 3 megabytes/second on each of
two SCSI strings, as shown in Figure 7. The other lim-
itation is our relatively slow, synchronous VME interface
ports, which only support 6.9 megabytes/second on read
operations and 5.9 megabytes/second on write operations.
This low performance is largely due to the difficulty of syn-
chronizing the asynchronous VME bus for interaction with
the XBUS.

3 The RAID-II File System
In the last section, we presented measurements of the

performance of the RAID-II hardware without the over-
head of a file system. Although some applications may
use RAID-II as a large raw disk, most will require a file
system with abstractions such as directories and files. The
file system should deliver to applications as much of the
bandwidth of the RAID-II disk array hardware as possible.
RAID-II’s file system is a modified version of the Sprite
Log-Structured File System (LFS) [14]. In this section, we
first describe LFS and explain why it is particularly well-
suited for use with disk arrays. Second, we describe the
features of RAID-II that require special attention in the LFS

implementation. Next, we illustrate how LFS on RAID-II
handles typical read requests from a client. Finally, we dis-
cuss the measured performance and implementation status
of LFS on RAID-II.

3.1 The Log-Structured File System
LFS [14] is a disk storage manager that writes all file

data and metadata to a sequential append-only log; files
are not assigned fixed blocks on disk. LFS minimizes the
number of small write operations to disk; data for small
writes are buffered in main memory and are written to disk
asynchronously when a log segment fills. This is in contrast
to traditional file systems, which assign files to fixed blocks
on disk. In traditional file systems, a sequence of random
file writes results in inefficient small, random disk accesses.

Because it avoids small write operations, the Log-
Structured File System avoids a weakness of redundant
disk arrays that affects traditional file systems. Under a
traditional file system, disk arrays that use large block in-
terleaving (Level 5 RAID [13]) perform poorly on small
write operations because each small write requires four
disk accesses: reads of the old data and parity blocks and
writes of the new data and parity blocks. By contrast, large
write operations in disk arrays are efficient since they don’t
require the reading of old data or parity. LFS eliminates
small writes, grouping them into efficient large, sequential
write operations.

A secondary benefit of LFS is that crash recovery is very
quick. LFS periodically performs checkpoint operations
that record the current state of the file system. To recover
from a file system crash, the LFS server need only process
the log from the position of the last checkpoint. By contrast,
a UNIX file system consistency checker traverses the entire
directory structure in search of lost data. Because a RAID
has a very large storage capacity, a standard UNIX-style
consistency check on boot would be unacceptably slow. For
a 1 gigabyte file system, it takes a few seconds to perform
an LFS file system check, compared with approximately
20 minutes to check the consistency of a typical UNIX file
system of comparable size.

3.2 LFS on RAID-II
An implementation of LFS for RAID-II must efficiently

handle two architectural features of the disk array: the sep-
arate low- and high-bandwidth data paths, and the separate
memories on the host workstation and the XBUS board.

To handle the two data paths, we changed the original
Sprite LFS software to separate the handling of data and
metadata. We use the high-bandwidth data path to transfer
data between the disks and the HIPPI network, bypassing
host workstation memory. The low-bandwidth VME con-
nection between the XBUS and the host workstation is used
to send metadata to the host for file name lookup and loca-
tion of data on disk. The low-bandwidth path is also used
for small data transfers to clients on the Ethernet attached
to the host.

LFS on RAID-II also must manage separate memories
on the host workstation and the XBUS board. The host
memory cache contains metadata as well as files that have
been read into workstation memory for transfer over the
Ethernet. The cache is managed with a simple Least Re-
cently Used replacement policy. Memory on the XBUS
board is used for prefetch buffers, pipeliningbuffers, HIPPI
network buffers, and write buffers for LFS segments. The

file system keeps the two caches consistent and copies data
between them as required.

To hide some of the latency required to service large
requests, LFS performs prefetching into XBUS memory
buffers. LFS on RAID-II uses XBUS memory to pipeline
network and disk operations. For read operations, while
one block of data is being sent across the network, the next
blocks are being read off the disk. For write operations, full
LFS segments are written to disk while newer segments are
being filled with data. We are also experimenting with
prefetching techniques so small sequential reads can also
benefit from overlapping disk and network operations.

From the user’s perspective, the RAID-II file system
looks like a standard file system to clients using the slow
Ethernet path (standard mode), but requires relinking of
applications for clients to use the fast HIPPI path (high-
bandwidth mode). To access data over the Ethernet, clients
simply use NFS or the Sprite RPC mechanism. The fast
data path across the Ultranet uses a special library of file
system operations for RAID files: open, read, write,
etc. The library converts file operations to operations on an
Ultranet socket between the client and the RAID-II server.
The advantage of this approach is that it doesn’t require
changes to the client operating system. Alternatively, these
operations could be moved into the kernel on the client and
would be transparent to the user-level application. Finally,
some operating systems offer dynamically loadable device
drivers that would eliminate the need for relinking applica-
tions; however, Sprite does not allow dynamic loading.

3.3 Typical High and Low Bandwidth Requests
This section explains how the RAID-II file system han-

dles typical open and read requests from a client over the
fast Ultra Network Technologies network and over the slow
Ethernet network attached to the host workstation.

In the first example, the client is connected to RAID-II
across the high-bandwidthUltranet network. The client ap-
plication is linked with a small library that converts RAID
file operations into operations on an Ultranet socket connec-
tion. First, the application running on the client performs an
open operation by calling the library routineraid_open.
This call is transformed by the library into socket opera-
tions. The library opens a socket between the client and the
RAID-II file server. Then the client sends an open com-
mand to RAID-II. Finally, the RAID-II host opens the file
and informs the client.

Now the application can perform read and write oper-
ations on the file. Suppose the application does a large
read using the library routineraid_read. As before, the
library converts this read operation into socket operations,
sending RAID-II a read command that includes file posi-
tion and request length. RAID-II handles a read request
by pipelining disk reads and network sends. First, the file
system code allocates a buffer in XBUS memory, deter-
mines the position of the data on disk, and calls the RAID
driver code to read the first block of data into XBUS mem-
ory. When the read has completed, the file system calls the
network code to send the data from XBUS memory to the
client. Meanwhile, the file system allocates another XBUS
buffer and reads the next block of data. Network sends and
disk reads continue in parallel until the transfer is complete.
LFS may have several pipeline processes issuing read re-
quests, allowing disk reads to get ahead of network send

operations for efficient network transfers.
On the client side, the network data blocks are received

and read into the application memory using socket read
operations. When all the data blocks have been received,
the library returns from the raid_read call to the appli-
cation.

In the second example, we illustrate the handling of a
read request sent over the relatively slow Ethernet. A client
sends standard file system open and read calls to the
host workstation across its Ethernet connection. The host
workstation sends the read command over the VME link to
the XBUS board. The XBUS board responds by reading
the data from disk into XBUS memory and transferring
the data to the host workstation. Finally, the host worksta-
tion packages the data into Ethernet packets and sends the
packets to the client.

3.4 Performance and Status
This section describes the performance of LFS running

on RAID-II. These measurements show that LFS performs
efficiently on large random read and write operations, de-
livering about 65% of the raw bandwidth of the hardware.
LFS also achieves good performance on small random write
operations by grouping small writes into larger segments.

All the measurements presented in this section use a
single XBUS board with 16 disks. The LFS log is inter-
leaved or “striped” across the disks in units of 64 kilobytes.
The log is written to the disk array in units or “segments” of
960 kilobytes. The file system for RAID-II is still under de-
velopment; it currently handles creation, reads, and writes
of files, but LFS cleaning (garbage collection of free disk
space in the log) has not yet been implemented. Because
we don’t have sufficiently fast network clients, many of the
file server measurements in this section don’t actually send
data over the network; rather, data are written to or read
from network buffers in XBUS memory.

Figure 8 shows performance for random read and write
operations for RAID-II runningLFS. For each request type,
a single process issued requests to the disk array. For
both reads and writes, data are transferred to/from network
buffers, but do not actually go across the network. The
figure shows that for random read requests larger than 10
megabytes, which are effectively sequential in nature, the
file system delivers up to 20 megabytes/second, approx-
imately 68% of the raw sequential hardware bandwidth
described in Table 1. Smaller random reads have lower
bandwidth due to an average overhead of 23 milliseconds
per operation: 4 milliseconds of file system overhead and
19 milliseconds of disk overhead. The file system over-
head should be reduced substantially as LFS performance
is tuned.

The graph also shows random write performance. For
random write requests above approximately 512 kilobytes
in size, the file system delivers close to its maximum value
of 15 megabytes/second. This value is approximately 65%
of the raw sequential write performance reported in Table
1. Random writes perform as well as sequential writes for
much lower request sizes than was the case for read oper-
ations. This is because LFS groups together random write
operations and writes them to the log sequentially. The
bandwidth for small random write operations is better than
bandwidth for small random reads, suggesting that LFS has
been successful in mitigating the penalty for small writes on

+
+

+

+

+

+

+

+
++++++

xxx
x

x

x
x

x

x

x
x

0

5

10

15

20

25

1 10 100 1000 10000

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

+ Reads

x Writes

Figure 8: Performance of RAID-II running the LFS file
system.

a RAID Level 5 architecture. Small write performance is,
however, limited because of approximately 3 milliseconds
of network and file system overhead per request.

Figure 8 showed RAID-II performance without sending
data over the network. Next we consider network perfor-
mance for reads and writes to a single client workstation;
we have not yet run these tests for multiple clients. Per-
formance on write operations to RAID-II is limited by the
client; we currently don’t have a client that can deliver
enough bandwidth to saturate the disk array. A SPARC-
station 10/51 client on the HIPPI network writes data to
RAID-II at 3.1 megabytes per second. Bandwidth is lim-
ited on the SPARCstation because its user-level network
interface implementation performs many copy operations.
RAID-II is capable of scaling to much higher bandwidth;
utilization of the Sun4/280 workstation due to network op-
erations is close to zero with the single SPARCstation client
writing to the disk array.

Performance on network reads from the disk array is lim-
ited by our initial network device driver implementation. To
perform a data transfer, we must synchronize operation of
the HIPPI source board and the host. Although the source
board is able to interrupt the host, this capability was not
used in the initial device driver implementation. Rather,
for reasons of simplicity, the host workstation waits while
data are being transmitted from the source board to the net-
work, checking a bit that indicates when the data transfer
is complete. This rather inefficient implementation limits
RAID-II read operations for a single SPARCstation client
to 3.2 megabytes/second. In the implementation currently
being developed, the source board will interrupt the CPU
when a transfer is complete. With this modification, we
expect to deliver the full file system bandwidth of RAID-II
to clients on the network, although the network implemen-
tation on the SPARCstation will still limit the bandwidth to
an individual workstation client.

4 Existing File Server Architectures
RAID-II is not the only system offering high I/O perfor-

mance. In this section, we highlight some important char-
acteristics of several existing high-performance I/O systems
and explain how they relate to the design of RAID-II.

4.1 File Servers for Workstations
File servers for a workstation computing environment

are not designed to provide high-bandwidth file access to
individual files. Instead, they are designed to provide low-
latency service to a large number of clients via NFS [15]. A
typical NFS file server is a UNIX workstation that is trans-
formed into a server by adding memory, network interfaces,
disk controllers, and possiblynon-volatilememory to speed
up NFS writes. All workstation vendors offer NFS servers
of this type. The problem with using a workstation as a file
server is that all data transfers between the network and the
disks must pass across the workstation’s backplane, which
can severely limit transfer bandwidth. It has been shown
that the bandwidth improvements in workstation memory
and I/O systems have not kept pace with improvements in
processor speed [12].

One way of achieving higher performance than is pos-
sible from a UNIX workstation server is to use special-
purpose software and hardware. An example is the
FAServer NFS file server [9]. The FAServer does not run
UNIX; instead it runs a special-purpose operating system
and file system tuned to provide efficient NFS file service.
This reduces the overhead of each NFS operation and al-
lows the FAServer to service many more clients than a
UNIX-based server running on comparable hardware. The
underlying hardware for the FAServer is a standard work-
station, however, so the FAServer suffers from the same
backplane bottleneck as a UNIX workstation when han-
dling large transfers.

Another special-purpose NFS file server is the Auspex
NS6000 [11]. The Auspex is a functional multi-processor,
meaning that the tasks required to process an NFS request
are divided among several processors. Each processors
runs its own special-purpose software, tailored to the task
it must perform. The processors are connected together
and to a cache memory by a high-speed bus running at
55 megabytes/second. The Auspex does contain a host
workstation that runs UNIX, but it is not involved in serving
of NFS requests. File data are transferred between the
network and the disks over the high-speed bus without
being copied into the workstation memory. In this sense
the Auspex architecture is similar to that of RAID-II, but
it differs in the use of special-purpose processors to handle
requests.

4.2 Supercomputer File Systems
Supercomputers have long used high performance I/O

systems. These systems fall into two categories: high-
speed disks attached directly to the supercomputer and
mainframe-managed storage connected to the supercom-
puter via a network.

The first type of supercomputer file system consists of
many fast parallel transfer disks directly attached to a su-
percomputer’s I/O channels. Each high-speed disk might
transfer at a rate of 10 megabytes/second; typically, data
might be striped across 40 of these disks. Data are usually
copied onto these high-speed disks before an application

is run on the supercomputer [10]. These disks do not pro-
vide permanent storage for users. The file system is not
designed to provide efficient small transfers.

The other type of supercomputer file system is the
mainframe-managed mass storage system. A typical sys-
tem, such as the NASA Ames mass storage system NAS-
tore [17], provides both disk and tertiary storage to clients
over a network. The bandwidth of such systems is typi-
cally lower than that of the parallel transfer disk systems.
NAStore, for example, sustains 10 megabytes/second to
individual files.

RAID-II was designed to perform efficiently on small
file accesses as well as on large transfers. A system similar
in design philosophy to RAID-II is Los Alamos National
Laboratory’s High Performance Data System (HPDS) [3].
Like RAID-II, HPDS attempts to provide low latency on
small transfers and control operations as well as high band-
width on large transfers. HPDS connects an IBM RAID
Level 3 disk array to a HIPPI network; like RAID-II, it has
a high-bandwidth data path and a low-bandwidth control
path. The main difference between HPDS and RAID-II is
that HPDS uses a bit-interleaved, or RAID Level 3, disk
array, whereas RAID-II uses a flexible, crossbar intercon-
nect that can support many different RAID architectures.
In particular, RAID-II supports RAID Level 5, which can
execute several small, independent I/Os in parallel. RAID
Level 3, on the other hand, supports only one small I/O at
a time.

5 Future Directions
5.1 Planned Use of RAID-II

We plan to use RAID-II as a storage system for two new
research projects at Berkeley. As part of the Gigabit Test
Bed project being conducted by the U.C. Berkeley Com-
puter Science Division and Lawrence Berkeley Laboratory
(LBL), RAID-II will act as a high-bandwidthvideo storage
and playback server. Data collected from an electron mi-
croscope at LBL will be sent from a video digitizer across
an extended HIPPI network for storage on RAID-II and
processing by a MASPAR multiprocessor.

The InfoPad project at U.C. Berkeley will use the
RAID-II disk array as an informationserver. In conjunction
with the real time protocols developed by Prof. Domenico
Ferrari’s Tenet research group, RAID-II will provide video
storage and play-back from the disk array to a network of
base stations. These base stations in turn drive the radio
transceivers of a pico-cellular network to which hand-held
display devices will connect.

5.2 Striping Across File Servers: The Zebra File
System

Zebra [7] is a network file system designed to provide
high-bandwidth file access by striping files across multiple
file servers. Its use with RAID-II would provide a mecha-
nism for striping high-bandwidth file accesses over multiple
network connections, and therefore across multiple XBUS
boards. Zebra incorporates ideas from both RAID and
LFS: from RAID, the ideas of combining many relatively
low-performance devices into a single high-performance
logical device, and using parity to survive device failures;
and from LFS the concept of treating the storage system as
a log, so that small writes and parity updates are avoided.

There are two aspects of Zebra that make it particularly
well-suited for use with RAID-II. First, the servers in Zebra
perform very simple operations, merely storing blocks of
the logical log of files without examining the content of the
blocks. Little communication would be needed between
the XBUS board and the host workstation, allowing data
to flow between the network and the disk array efficiently.
Second, Zebra, like LFS, treats the disk array as a log,
eliminating inefficient small writes.

6 Conclusions
The RAID-II disk array prototype was designed to de-

liver much more of the available disk array bandwidth
to file server clients than was possible in our first proto-
type. The most important feature of the RAID-II hard-
ware is the high-bandwidth data path that allows data to
be transferred between the disks and the high-bandwidth
network without passing through the low-bandwidth mem-
ory system of the host workstation. We implement this
high-bandwidth data path with a custom-built controller
board called the XBUS board. The XBUS controller uses a
4�8 crossbar-based interconnect with a peak bandwidth of
160 megabytes/second. File system software is also essen-
tial to delivering high bandwidth. RAID-II runs LFS, the
Log-Structured File System, which lays out files in large
contiguous segments to provide high-bandwidth access to
large files, groups small write requests into large write re-
quests to avoid wasting disk bandwidth, and provides fast
crash recovery. We are pleased with the reliability of the
XBUS controller and disk subsystem. The system has been
in continuous operation for six months with no failures.

Performance results for the RAID-II hardware and the
Log Structure File System are good. The RAID-II hard-
ware with a single XBUS controller board achieves about
20 megabytes/second for random read and write opera-
tions and 31 megabytes/second for sequential read oper-
ations. This performance is an order of magnitude im-
provement compared to our first prototype, but somewhat
disappointing compared to our performance goal of 40
megabytes/second. The performance is limited by the SCSI
disk controller boards and by the bandwidth capabilities of
our disk interface ports. RAID-II performs well on small,
random I/O operations, achieving approximately 400 four-
kilobyte random I/Os per second to fifteen disks. A prelim-
inary implementation of LFS delivers 21 megabytes/second
on large random read operations and 15 megabytes/second
for moderately large random write operations into HIPPI
network buffers on the XBUS board from RAID-II con-
figured with a single XBUS board. Preliminary network
performance shows that RAID-II can read and write 3
megabytes/second to a single SPARCstation client. This
network interface is currently being tuned; we soon expect
to deliver the full RAID-II file system bandwidth to clients.

If the RAID-II project were developed with the network
hardware available today, ATM network interfaces would
likely be a better choice than HIPPI. The use of HIPPI in
RAID-II had several disadvantages. Connections to HIPPI
remain very expensive, especially when the cost of switches
needed to implement a network is included. While the
bandwidth capabilities of HIPPI are a good match for su-
percomputer clients, the overhead of setting up transfers
makes HIPPI a poor match for supporting a large number
of client workstations.

Finally, unless workstation memory bandwidth im-
proves considerably, we believe a separate high-bandwidth
data path like the XBUS board that connects the disks and
the network directly is necessary to deliver high bandwidth
I/O from a workstation-based network file server. The
use of Log Structured File System software maximizes the
performance of the disk array for bandwidth-intensive ap-
plications.

Acknowledgments
We would like to thank John Ousterhout for his sug-

gestions for improving this paper and his participation in
the development of RAID-II. We would also like to thank
Mendel Rosenblum, Mary Baker, Rob Pfile, Rob Quiros,
Richard Drewes and Mani Varadarajan for their contribu-
tions to the success of RAID-II. Special thanks to Theresa
Lessard-Smith and Bob Miller.

This research was supported by Array Technolo-
gies, DARPA/NASA (NAG2-591), DEC, Hewlett-Packard,
IBM, Intel Scientific Computers, California MICRO, NSF
(MIP 8715235), Seagate, Storage Technology Corporation,
Sun Microsystems and Thinking Machines Corporation.

References
[1] Peter M. Chen, Edward K. Lee, Ann L. Drapeau,

Ken Lutz, Ethan L. Miller, Srinivasan Seshan, Ken
Shirriff, David A. Patterson, and Randy H. Katz. Per-
formance and Design Evaluation of the RAID-II Stor-
age Server. International Parallel Processing Sympo-
sium Workshop on I/O in Parallel Computer Systems,
April 1993. Also invited for submission to the Journal
of Distributed and Parallel Databases, to appear.

[2] Ann L. Chervenak and Randy H. Katz. Perfomance
of a Disk Array Prototype. In Proceedings SIGMET-
RICS, May 1991.

[3] Bill Collins. High-Performance Data Systems. In
Digest of Papers. Eleventh IEEE Symposium on Mass
Storage Systems, October 1991.

[4] Garth A. Gibson, R. Hugo Patterson, and M. Satya-
narayanan. Disk Reads with DRAM Latency. Third
Workshop on Workstaion Operating Systems, April
1992.

[5] Garth Alan Gibson. Redundant Disk Arrays: Re-
liable, Parallel Secondary Storage. PhD thesis, U.
C. Berkeley, April 1991. Technical Report No.
UCB/CSD 91/613.

[6] Jim Gray, Bob Horst, and Mark Walker. Parity Strip-
ing of Disc Arrays: Low-Cost Reliable Storage with
Acceptable Throughput. In Proceedings Very Large
Data Bases, pages 148–161, 1990.

[7] John H. Hartman and John K. Ousterhout. The Zebra
Striped Network File System. In Proceedings of the
14th ACM Symposium on Operating Systems Princi-
ples, December 1993.

[8] John L. Hennessy and Norman P. Jouppi. Computer
Technology and Architecture: An Evolving Interac-
tion. IEEE Computer, 24:18–29, September 1991.

[9] David Hitz. An NFS File Server Appliance. Technical
Report Technical Report TR01, Network Appliance
Corporation, August 1993.

[10] Reagan W. Moore. File Servers, Networking, and
Supercomputers. Technical Report GA-A20574, San
Diego Supercomputer Center, July 1991.

[11] Bruce Nelson. An Overview of Functional Multipro-
cessing for NFS Network Servers. Technical Report
Technical Report 1, Auspex Engineering, July 1990.

[12] John K. Ousterhout. Why Aren’t Operating Systems
Getting Faster as Fast as Hardware. In Proceedings
USENIX Technical Conference, June 1990.

[13] David A. Patterson, Garth Gibson, and Randy H. Katz.
A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings ACM SIGMOD, pages 109–
116, June 1988.

[14] Mendel Rosenblum and John Ousterhout. The Design
and Implementation of a Log-Structured File System.
In Proc. ACM Symposium on Operating Systems Prin-
ciples, pages 1–15, October 1991.

[15] Russel Sandberg, David Goldbert, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and Implementa-
tion of the Sun Network Filesystem. In Summer 1985
Usenix Conference, 1985.

[16] Martin Schulze, Garth Gibson, Randy H. Katz, and
David A. Patterson. How Reliable is a RAID? In Pro-
ceedings IEEE COMPCON, pages 118–123, Spring
1989.

[17] David Tweten. Hiding Mass Storage Under UNIX:
NASA’s MSS-II Architecture. In Digest of Papers.
Tenth IEEE Symposium on Mass Storage Systems,
May 1990.

