
Multi-stage replay with Crosscut

Jim Chow, Dominic Lucchetti, Tal

Garfinkel, Geoffrey Lefebvre, Ryan

Gardner, Joshua Mason, Sam Small

VMware

Peter M. Chen
University of Michigan

Analyzing with records

• Detailed recordings of program execution

– Program output, logs

– syslogd

– Ad-hoc records (“printf” debugging)

– Backtraces

– Core dumps

• Useful for analyzing programs

– Correctness, performance, security

Debugging programs with records

• So useful, now commonplace to send records
back to the developers:

Debugging programs with records

• Despite extensive collection of records, programs still
hard to debug

– Program output, logs

– syslogd

– Ad-hoc records (“printf” debugging)

– Backtraces

– Core dumps

• Don’t know everything about a program

• Miss behavior: don’t run all the time, or over all
values---must decide when or what to record
(balancing act)

Application

Instead: record everything, all the time

Virtualization layer

Operating system

• Easy to do with a VMM
• VMM: thin layer between

software stack and HW
• All inputs into system

must pass through the
VMM
– All possible decisions

governed only by these
inputs

Application

Alternative: VM record/replay

Virtualization layer

Operating system

• Easy to do with a VMM
• VMM: thin layer between

software stack and HW
• All inputs into system

must pass through the
VMM
– All possible decisions

governed only by these
inputs

• If we save inputs
– and their timing
– have all non-determinism

we need

Application

Alternative: VM record/replay

Virtualization layer

Operating system

• Easy to do with a VMM
• VMM: thin layer between

software stack and HW
• All inputs into system

must pass through the
VMM
– All possible decisions

governed only by these
inputs

• If we save inputs
– and their timing
– have all non-determinism

we need

• To replay:
– Start from clean state

Application

Alternative: VM record/replay

Virtualization layer

Operating system

Some nice properties:
Complete coverage: all
data, all the time,
app/OS agnostic

Application

Alternative: VM record/replay

Virtualization layer

Operating system

Low, paradoxical
performance
perturbation:

5% overhead

SPEC CPU2005

Some nice properties:
Complete coverage: all
data, all the time,
app/OS agnostic

Application

Alternative: VM record/replay

Virtualization layer

Operating system

Low bandwidth
requirements:
network input +
epsilon (KB/s)

Low, paradoxical
performance
perturbation:

5% overhead

SPEC CPU2005

Some nice properties:
Complete coverage: all
data, all the time,
app/OS agnostic

Application

Alternative: VM record/replay

Virtualization layer

Operating system

Again:
• You need a VMM

• To build tools, must
modify VMM

• Hard to do: not user-
level
• Can be slow

• You need a VM
• Clunky: to debug one
program, you need all

programs, data in
VM.

• But have to replay to
reclaim state:
– Need a replayer.

• Input not
understandable

– Need to feed all inputs to
replayer to get any useful
output.
• Won’t work with

subset.

Goal: replay with discretion

• VM recordings are great.

– Provide great coverage.

• But we want to replay with discretion:

– Don’t require/expose all inputs (no VM).

– Don’t require same abstractions (no VMM).

– Don’t sacrifice coverage for discretion.

• How are we going to do this?

VM replay is a state machine

vm
log

Program
state

vmm
replay

new
machineAbstracted

inputs

• Unhappy one size fits all

• Convert inputs to a new machine

– Represents some computation in original

New
output

Generate abstractions

• Know we can generate new machine for any
abstract state, computation in the log:
– Program output, logs

– syslogd

– Ad-hoc records (“printf” debugging)

– Backtraces

– Core dumps

• VM recordings subsume all of the above.
– Any data we need can be generated.

Application

Fixing replay problems with slices

Virtualization layer

Operating
system

vm
log

In other words:
• Instead of VM log:

– Generate a unit of data,
slice

– Slice is abstracted input
for new machine

Application

Fixing replay problems with slices

Virtualization layer

Operating
system

vm
log

slice

In other words:
• Instead of VM log:

– Generate a unit of data,
slice

– Slice is abstracted input
for new machine

Application

Fixing replay problems with slices

Virtualization layer

Operating
system

vm
log

slice

A slice will:
• Retain useful
information needed
for replay debugging
or analysis

Application

Fixing replay problems with slices

Virtualization layer

Operating
system

vm
log

slice

A slice will:
• Retain useful
information needed
for replay debugging
or analysis

And it will:
• Not require a copy
of the VM
• Not require a VMM
to replay it

Application

Fixing replay problems with slices

Virtualization layer

Operating
system

vm
log

slice

A slice will:
• Retain useful
information needed
for replay debugging
or analysis

And it will:
• Not require a copy
of the VM
• Not require a VMM
to replay it

A slice is any higher-level recording destined for a higher-
level state machine.

What are some useful state machines?

vm
log

Program
state

vmm
replay

• Motivator:

– Replay debugging for Dr. Watson-type crash
dumps

vmm

vmm

vmm

This machine is weird

vm
log

Program
state

vmm
replay

• Motivator:

– Replay for Dr. Watson-type crash dumps

– Requires whole VM

• Fine within an organization

• Silly otherwise

A better machine

vm
log

Program
state

vmm
replay

• Generate inputs for new abstract machine
– Replays just a process

• Given inputs, cannot generate state for other
processes
– Better than original machine

process
replayAbstracted

inputs

Program
state (of

given
process)

How to represent process state

• Retain benefits of original system:

– Record all input to a process

• Including timing, races, shared memory accesses (*)
– (*) at least for VMs that are virtual uniprocessors.

– Agnostic to application, OS

process
replayAbstracted

inputs

Program
state (of

given
process)

Choose a representation independent
of OS

• Represented with HW state.
– Address space, registers, memory map, no OS state.

• Given representation, runs deterministic
– Until needs input: syscall, signals, CPU counters, etc.
– Input’s only effect: modify represented state
– Continually supply this state.

proc
address
space

registers

memory
map

VMM

Figure out where state comes from

Application

Operating system

1

2

3

Normal system calls, traps, interrupts

Application

Operating system

1

2

3

System calls, traps, interrupts when slicing a process

4

5

Out flow In flow

• Only comes from 3 places
• Modified VMM

• Hook sites of introduction
• Control flow into/out of
process

VMM

Collect input without OS help

Application

Operating system

1

2

3

System calls, traps, interrupts when slicing a process

4

5

• OS injects state (directly on indirectly)

– Do it with MMU: agnostic to OS.

– Notice modifications to sliced process’s address
space when it’s not running

VMM

How to detect writes

Application

Operating system

1

2

3

System calls, traps, interrupts when slicing a process

4

5

PRE-work POST-work

• OS injects state (directly on indirectly)

– Do it with MMU: agnostic to OS.

– Notice modifications to sliced process’s address
space when it’s not running

A better machine

vm
log

Program
state

vmm
replay

• Slices are standalone recordings:
– Fully capable

– Discrete

– Not specific to OS/VMM
• Why not replay at user-level?

process
replayAbstracted

inputs

Program
state (of

given
process)

High level logs are useful

vm
log

Program
state

vmm
replay

• High level log: any user-level tool can be a replayer.
• User-level a big thing:

– Lots of user-level tools for analyzing “live” programs.
– Crosscut supports running slices in valgrind, Omniscient

debugger, Chronicle. Standard tools, gdb and visual studio.
High level log: Even Windows proc on valgrind.

process
replayAbstracted

inputs

Program
state (of

given
process)

Beyond processes

• Processes not only abstraction

– Sometimes not useful at all.

Script

Language
Interpreter

Virtualization layer

Operating
system

vm
log

Beyond processes

• Processes not only abstraction

– Sometimes not useful at all.

Script

Language
Interpreter

Virtualization layer

Operating
system

vm
log

slice

process

Language
Debugger

– Debugging the
interpreter, not the
script (cannot change
interpreter behavior)

We can solve this with yet another
better machine

vm
log

Program
state

vmm
replay

• Goal: create abstraction of script execution.

– Avoid details of underlying runtime.

script
replayAbstracted

inputs

Program
state (of

given
script)

Recording a script generically is not
possible

• Recording a script generically is not possible.
– Requires intimate knowledge of the interpreter.

• Crosscut provides an API:
– Given to guest software to create their own inputs to

their own machines.

– Guest doesn’t really need an API just to create slices
• What’s wrong with write()?

– Purpose:
• Avoid overhead in the guest for creating the slice. How?

• Do regular VM recording
– Defer slicing to if/when it’s needed.

– Because ex-post-facto, original recording fast

– Can be expensive---off the critical path.

Perl as an example use:

What does the API do?

• Guest has code it wants to run.

• API provides notification to VMM of:
– work (guest code) we’d like to do

– … at a location we want to do it

– On replay, VMM executes the guest code in sandbox.

• Notification mechanism must be fast:
– It is running during original recording.

– Standard signalling mechanism: instruction to trigger
faults
• Triggering faults in original recording too slow

– Regular hypercall mechanisms out: port I/O, #UD

• Silent/fast during recording: memory references, MMU

Perl

How to use API to slice a script

Perl Interpreter

Operating system

1

2

3

Normal script transitions

• What inputs do we want to save?

– How to represent them?

• Modified Perl

– Make deterministic recording of a script

Perl

What inputs do we want to save?

Perl Interpreter

Operating system

1

2

3

Normal script transitions

• Simplistic example: system calls.

• Should be sufficient
– Calls into Perl runtime will result in calls to the system.

If not, they are deterministic.

– Should be able to replay calls to runtime from system
call inputs.

VMM

Script

How to use API to save syscalls

Perl runtime

Operating system

1

2

3

On occasion of slicing a script: intercepting inputs

• Modified Perl runtime:
– Record system call inputs (deferred in sandbox).

• Isn’t this a process replay log?
• The difference: not all system calls belong to script.

– Interpreter initiates some on its own behalf.
– Don’t save those: want interpreter’s behavior capable of change

4

5

6

7

VMM

Script

Want the interpreter to run free

Perl runtime

Operating system

1

2

3

On occasion of slicing a script: intercepting inputs

• When replaying, interpreter runs freely

– It can change it’s behavior, because it’s live.

– When script requests input, fed from log

• Behaves deterministically

4

5

6

7

What can you do with Perl log?

vm
log

Program
state

vmm
replay

• Created a new machine: Perl interpreter + replay
mechanism

• Internal Perl facilities can be used to debug the script: Perl
debugger can set breakpoints, inspect variables.

• A better machine: let Perl interpreter do debugging, more
natural than stapling Perl introspection into a VMM.

script
replayAbstracted

inputs

Program
state (of

given
script)

Goal: record program state

• VM recordings are great.

– Provide great coverage.

• But we want to replay with discretion:

– Don’t require VM.

– Don’t require VMM.

– Don’t sacrifice coverage for discretion.

• Obtain discretion with slices.

– Abstracts replay requirements.

– Doesn’t sacrifice coverage.

fin.

