
Striping in a RAID Level 5 Disk Array
Peter M. Chen

Computer Science Division
Electrical Engineering and Computer Science Department

University of Michigan
pmchen@eecs.umich.edu

Edward K. Lee
Systems Research Center

Digital Equipment Corporation
eklee@src.dec.com

Abstract: Redundant disk arrays are an increasingly
popular way to improve I/O system performance. Past
research has studied how to stripe data in non-redundant
(RAID Level 0) disk arrays, but none has yet been done on
how to stripe data in redundant disk arrays such as RAID
Level 5, or on how the choice of striping unit varies with the
number of disks. Using synthetic workloads, we derive sim-
ple design rules for striping data in RAID Level 5 disk
arrays given varying amounts of workload information. We
then validate the synthetically derived design rules using
real workload traces to show that the design rules apply well
to real systems.

We find no difference in the optimal striping units for
RAID Level 0 and 5 for read-intensive workloads. For
write-intensive workloads, in contrast, the overhead of
maintaining parity causes full-stripe writes (writes that span
the entire error-correction group) to be more efficient than
read-modify writes or reconstruct writes. This additional
factor causes the optimal striping unit for RAID Level 5 to
be four times smaller for write-intensive workloads than for
read-intensive workloads.

We next investigate how the optimal striping unit var-
ies with the number of disks in an array. We find that the
optimal striping unit for reads in a RAID Level 5 varies
inversely to the number of disks, but that the optimal strip-
ing unit for writes varieswith the number of disks. Overall,
we find that the optimal striping unit for workloads with an
unspecified mix of reads and writes isindependent of the
number of disks.

Together, these trends lead us to recommend (in the
absence of specific workload information) that the striping
unit over a wide range of RAID Level 5 disk array sizes be
equal to 1/2 * average positioning time * disk transfer rate.
1 Introduction

For the past several decades, input/output (I/O) perfor-
mance has not kept up with advances in processing speeds.
Disk arrays have been proposed and used to increase aggre-
gate disk performance by ganging together multiple disks in
parallel [Patterson88]. Redundant disk arrays add error-cor-
recting codes to improve reliability. One popular type of
redundant disk array interleaves data in block-sized units
known as striping units and uses parity to protect against
failures. This type of disk array is known as a RAID Level 5
(Figure 1) [Patterson88].

One of the most crucial parameters in designing a disk
array is the size of the striping unit. The striping unit deter-
mines how alogical request from a user is broken up into
physical disk requests to the disks. This distribution pro-
foundly affects a disk array’s performance—[Chen90]
shows that performance of a non-redundant disk array
(RAID Level 0) can vary by an order of magnitude depend-
ing on the striping unit.

Several papers address how to choose the striping unit
in non-redundant disk arrays [Chen90, Lee93a, Scheuer-
mann91], but none have yet examined how to choose it in a
RAID Level 51. The overhead of maintaining parity in a
RAID Level 5 leads to additional factors in choosing the
best striping unit. The goals of this paper are to
• quantify the effect these additional factors have in

choosing the striping unit,
• create simple design rules for determining the best strip-

ing unit for a range of workloads, and
• quantify how the number of disks in the array affects the

optimal striping unit.
Our key results, found by using synthetic workloads

and verified by using real-world traces, are:
• Concurrency is the single most important feature of a

workload. Knowing concurrency allows one to choose a
single striping unit that achieves near-optimal perfor-
mance for a range of request sizes. That striping unit is S
* average positioning time * disk transfer rate * (concur-
rency - 1) + 1 sector, where S (with 17 disks) is approxi-
mately 1/4 for reads and 1/20 for writes.

• Even without knowing concurrency, one can still choose
a striping unit that guarantees at least 50% of optimal
performance for any concurrency and request size. That

1. [Gray90] describes a scheme called parity striping that
has similar performance to a RAID Level 5 with infinitely
large striping unit. [Gray90] does not investigate different
striping units for RAID Level 5 disk arrays, however.

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19

disk
0

disk
1

disk
2

disk
3

disk
4

Figure 1: Data and Parity Layout in a RAID Level 5
Disk Array. This figures illustrates how data is distributed
in a round-robin manner across disks in a RAID Level 5
disk array. Each number represents one data block; the size
of each data block is called the striping unit. Parity blocks
have the same size and are rotated between the disks. Each
parity block contains the parity for the data blocks in its
row. For example, P0 contains the parity computed over
data blocks 0-3. The specific data distribution shown here
(and used throughout the paper) is called the left-
symmetric distribution [Lee93b].

Proceedings of the 1995 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems

striping unit is Z * average positioning time * disk trans-
fer rate, where Z (with 17 disks) is approximately 2/3 for
reads and 1/6 for writes.

• As the number of disks in the array varies, the best strip-
ing unit for reads increases, but the best striping unit for
writes decreases. These two trends effectively cancel
and the best striping unit over workloads with any mix
of reads and writes, any number of disks, and any con-
currency is 1/2 * average positioning time * disk transfer
rate.

The paper is organized as follows: Section 2 reviews
previous research on disk array striping and describes quali-
tatively how RAID Level 5 disk arrays change the optimal
striping unit. Section 3 describes the experimental setup that
we use in this paper. In Sections 4 and 5, we use synthetic
workloads to derive simple design rules for striping data in
RAID Level 5 disk arrays given varying amounts of work-
load information and disks. We then validate the syntheti-
cally derived design rules in Section 6 using real workload
traces to show that the design rules apply well to real sys-
tems.

2 Background and Previous Work
2.1 Non-Redundant Disk Arrays (RAID Level 0)

We define thestriping unit as the amount of logically
contiguous data stored on a single disk (Figure 1). A large
striping unit will tend to keep a file clustered together on a
few disks (possibly one); a small striping unit tends to
spread each file across many disks.

Parallelism describes the number of disks that service
a user’s request for data. A higher degree of parallelism
increases the transfer rate that each request sees. However,
as more disks cooperate in servicing each request, more
disks waste time positioning (seeking and rotating) and the
efficiency of the array decreases. We define the degree of
concurrency of a workload as the average number of out-
standing user requests in the system at one time. A small
striping unit causes higher parallelism but supports less con-
currency in the workload; a large striping unit causes little
parallelism but supports more concurrency in the workload.

Fundamentally, disk striping affects the amount of data
that each disk transfers before re-positioning (seeking and
rotating to the next request). This amount of data has a dras-
tic impact on disk throughput. For a Seagate Elite3 disk, if a
disk transfers one sector per random request, throughput
will be 0.03 MB/s; if it transfers one track per request,
throughput will be 1.79 MB/s; if it transfers one cylinder per
request, throughput will be 4.16 MB/s. The choice of strip-
ing unit should maximize the amount of useful data each
disk transfers per request and still make use of all disks.
Large striping units maximize the amount of data a disk
transfers per access but require higher concurrency in the
workload to make use of all disks. Small striping units can
make use of all disks even with low workload concurrency,
but they cause the disks to transfer less data per access.

Chen and Patterson investigate these tradeoffs in a
RAID Level 0 with 16 disks [Chen90]. They find that the
choice of striping unit depends heavily on the workload
concurrency and only minimally on the workload’s average
request size. If concurrency is known, they find that it is
possible to choose a striping unit that guarantees good per-

formance to workloads with that concurrency over a wide
range of sizes. Good performance in this context means get-
ting over 95% of the throughput at the optimal striping unit.
Their choice of striping unit is expressed as S * (average
disk positioning time) * (disk transfer rate) * (workload
concurrency - 1) + 1 sector, where S is called the concur-
rency-slope coefficient and is found to be approximately 1/4
for a 16-disk disk array.

If concurrency is unspecified, a good choice for strip-
ing unit can still be made, although the performance guaran-
tees are weaker than when concurrency is specified. Chen
and Patterson find a good choice of striping unit to be Z *
(average disk positioning time) * (disk transfer rate), where
Z is called the zero-knowledge coefficient, since it applies
when no workload information is given, and is found to be
approximately 2/3 for a 16-disk disk array

Note that the above two equations can be re-written to
depend on only one composite disk parameter: (average
disk positioning time) * (disk transfer rate). [Chen90] calls
this term thedisk performance product.

In this paper, we extend the work of [Chen90] to
RAID Level 5 disk arrays. Section 2.2 describes how the
choice of striping unit in a RAID Level 5 differs from that in
a RAID Level 0 due to the effect of maintaining parity when
performing writes in a RAID Level 5.

Lee and Katz [Lee91, Lee93a] develop an analytic
model of non-redundant disk arrays and derive an equation
for the optimal striping unit to be

Taken together, [Chen90] and [Lee91, Lee93a] con-
clude that the striping unit depends on the disk performance
product and concurrency. [Lee91, Lee93a] conclude that the
optimal striping unit depends on request size, but [Chen90]
shows that this dependence can be ignored with less than a
5% performance penalty.

Scheuermann, Weikum, and Zabback show moderate
performance improvements by allowing different striping
unit for different files [Scheuermann91, Weikum92]. This
performance improvement comes at the cost of additional
complexity and assumes a priori knowledge of the average
request size and peak throughput of applications accessing
each file.
2.2 Block-Interleaved, Parity Disk Arrays (RAID
Level 5)

Like RAID Level 0, RAID Level 5 disk arrays inter-
leave data across multiple disks in blocks called striping
units (Figure 1). To protect against single-disk failures,
RAID Level 5 adds a parity block for each row of data
blocks. These parity blocks are distributed over all disks to
prevent any single disk from becoming a bottleneck. The
group of data blocks over which a parity block is computed
is called aparity group or stripe. In Figure 1, data blocks 0-
3 and parity block P0 compose a stripe.

Note that the distribution, or rotation, of parity blocks
among the disks in the array is independent of the striping
unit. The amount of contiguous parity on a disk is called the
parity striping unit. All current disk arrays set the parity

Disk Performance Product Concurrency 1−() Request Size××
Number Of Disks

striping unit equal to the striping unit.
Reads in a RAID Level 5 are very similar to accesses

(both reads and writes) in a RAID Level 0. Writes in a
RAID Level 5, however, are quite different because they
must maintain correct parity. There are three types of writes
in a RAID Level 5, depending on how the new parity is
computed.
• Full-stripe writes: writes that update all the stripe units

in a parity group. The new parity value for the associated
parity block is computed across all new blocks. For
instance, in Figure 1, writing blocks 0-3 would be a full-
stripe write. No additional read or write operations are
required to compute parity, and hence full-stripe writes
are the most efficient type of writes.

• Reconstruct writes: writes that compute parity by read-
ing in the data from the stripe that arenot to be updated.
Parity is then computed over this data and the new data.
For instance, writing data blocks 0-2 in Figure 1 could
lead to a reconstruct write. The disk array software
would read the values of data block 3, then compute par-
ity over the new data (blocks 0-2) and data block 3.
Reconstruct writes are less efficient than full-stripe
writes because they perform more I/Os per byte written.

• Read-modify writes: writes that compute the new parity
value by 1) reading the old data blocks from the disks to
be updated, 2) reading the old parity blocks for the
stripe, 3) calculating how the new data is different from
the old data, and 4) changing the old parity to reflect
these differences. For instance, writing block 0 in Figure
1 could be done as a read-modify write. To compute the
new parity, the disk array software reads the old value of
block 0 and the old value of parity block P0. It would
then compute parity by seeing how the old value of
block 0 was different from the new value and applying
these differences to the old parity block to generate the
new value of parity block P0. Read-modify writes are
less efficient than full-stripe writes because they must
read the old values of the data and parity blocks. Note
that read-modify writes could be performed as recon-
struct writes. We assume the system chooses the method
that minimizes the total number of I/Os.

The method used to compute parity depends on the
size of a request and its starting location. In general,writes
that span a larger fraction of the stripe are more efficient
than writes that span a smaller fraction. This factor tends to
make the choice of striping unit for writes in a RAID Level
5 smaller than for reads. The paper uses simulation to study
the effects of the above factors and determine guidelines for
selecting the best striping unit.

3 Experimental Design
3.1 The Disk Model

We model several types of disks in our study. The
default disks are IBM Lightning 3.5” disks [IBM89]. In
order to maintain the same disk array capacity, we only use
the first 300 MB of each disk. Thus the effective average
seek time for the Seagate Elite3 disks is 3 times faster than
if we had spread requests over the entire disk. All disks in
the array are rotationally synchronized, that is, sector 0
passes under the read/write head at the same time for all
disks. Table 1 summarizes the relevant parameters for the

disks we model in this study.
3.2 The Workload

The primary workload we use in this paper is stochas-
tic and characterized by three parameters: degree of concur-
rency, request size, and read/write mix. In Section 6 we
verify our results using traces. We chose to primarily use a
stochastic workload for the following reasons:

Table 1: Disk Model Parameters. Average seek time is
the average time needed to seek between two equally
randomly selected cylinders. Sustained transfer rate is a
function of bytes per sector, sectors per track and
revolution time. IBM Lightning is the IBM 0661 3.5” SCSI
disk drive; Seagate Elite3 is the Seagate ST-43400N 3.5”
SCSI disk drive; and Seagate Wren4 is the Seagate ST-
4350N 5.25” SCSI disk drive. The seek profile for each
disk is computed as seekTime(x) = a * sqrt(x-1) + b * (x-1)
+ c, where x is the seek distance in cylinders, and a, b, and
c are chosen to satisfy the single-cylinder seek time,
average seek time, and max-stroke seek time. The square
root term in the above formula models the constant
acceleration/deceleration period of the disk head and the
linear term models the period after maximum disk head
velocity is reached. We have compared the model to the
seek profile of the Amdahl 6380A [Thisquen88] and IBM
Lightning and have found the model to closely
approximate the seek profile of the actual disk. We did not
model zone-bit recording; instead, we assumed an average
transfer rate over all cylinders.

IBM
Lightning

Seagate
Elite3

Seagate
Wren4

Bytes Per Sector 512 512 512

Sectors Per Track 48 99 53

Tracks Per Cylinder 14 21 9

Cylinders Per Disk 949 2627 1549

Disk Capacity 311 MB 2667 MB 361 MB

Revolution Time 13.9 ms 11.1 ms 16.7 ms

Single Cylinder
Seek Time

2.0 ms 1.7 ms 5.5 ms

Average Seek Time 12.5 ms 11.0 ms 16.5 ms

Max Stroke Seek
Time

25.0 ms 22.5 ms 35.0 ms

Sustained Transfer
Rate

1.8 MB/s 4.6 MB/s 1.6 MB/s

Effective (Simu-
lated) Capacity

300 MB 300 MB 300 MB

Effective Average
Seek Time (first
300 MB of disk)

12.2 ms 4.1 ms 14.9 ms

Effective Average
Positioning Time

19.2 ms 9.7 ms 23.2 ms

Effective Disk Per-
formance Product

33 KB 43 KB 37 KB

• Our goal of synthesizing design rules as a function of
workload required an extremely flexible workload. In
particular, we needed to be able to independently vary
each of three workload parameters: concurrency, request
size, and read/write mix. A stochastic workload allowed
us to easily explore many different workloads. Traces, in
contrast, can provide a realistic snapshot of a system and
workload, but their fixed characteristics would have
unduly limited our study.

• One goal of this paper was to compare our choice of
striping units for RAID Level 5 with the choice of strip-
ing units for RAID Level 0 from previous studies. Previ-
ous studies were done using stochastic workloads, so our
use of a stochastic workload enabled a direct compari-
son.

Concurrency controls the load on the system by spec-
ifying the number of independent processes that are simulta-
neously issuing requests. The number of processes is fixed
during each simulation run and each process repeatedly
issues an I/O request, waits for its completion, and immedi-
ately issues the next request. We simulate concurrencies
between 1 and 20. Unless the striping unit is much smaller
than the average request size, concurrency 1 leaves most
disks idle. On the opposite extreme, workloads with concur-
rency 20 keep all the disks busy.

Request size controls the amount of data for each log-
ical access. We use the following five distributions of
request size:
• exp4KB: An exponential distribution with a mean of 4

KB
• exp16KB: An exponential distribution with a mean of 16

KB
• norm100KB: A normal distribution with a mean and

standard deviation of 100 KB
• norm400KB: A normal distribution with a mean and

standard deviation of 400 KB
• norm1500KB: A normal distribution with a mean and

standard deviation of 1500 KB
The exponential distributions model requests gener-

ated by time-sharing and transaction-processing applica-
tions and the normal distributions model requests generated
by scientific applications. For both types of distributions,
the request sizes generated are always a multiple of a kilo-
byte and are always at least a kilobyte in size; that is, zero
and negative request sizes are not allowed. The means of the
target distributions are adjusted so that the actual mean
request size seen by the array is 4 KB, 16 KB, 100KB, 400
KB, or 1500 KB. In all cases, requests are aligned on kilo-
byte boundaries and are uniformly distributed throughout
the disk array.

Other workload parameters are possible, such as disk
skew, sequentiality, and burstiness. Skew between the disks
of a round-robin interleaved array is likely to largely
absorbed by higher-level caches if those caches can hold
multiple striping units worth of data. The underlying
sequentiality of a workload is included in the request size
parameter—sequential disk accesses often are simply sin-
gle, large logical requests that have been broken down (and
can easily be recombined by a disk array controller). Bursti-
ness can be thought of as a workload whose concurrency

varies with time. During a burst, concurrency is high;
between bursts, concurrency is low. We synthesize rules for
choosing a single striping unit that achieves good perfor-
mance for a mix of workloads of both high and low concur-
rency.
3.3 The RAID Simulator

Our study is conducted using a detailed simulator of
the disk system. We opted for a simulation-driven study
rather than a queueing-model study because read-modify
writes and reconstruct writes in a RAID Level 5 create syn-
chronization constraints that are very difficult to model ana-
lytically.

The RAID simulator,raidSim, is an event-driven sim-
ulator developed at Berkeley for modeling non-redundant
and redundant disk arrays. It consists of a module for imple-
menting a variety of RAID levels, a module for modeling
disk behavior, and a module for generating synthetic I/O
requests. The only resources modeled are disks. In particu-
lar, resources such as the CPU, disk controllers and I/O bus-
ses are ignored. This allows us to focus on the intrinsic
performance effects of using multiple disks.RaidSim simu-
lates each workload until the mean response time is within
5% of the true mean at a 95% confidence level. This typi-
cally requires simulating several thousand requests. The
disks support request merging (as is provided by an on-disk
cache [Ruemmler94]). That is, if a disk receives two con-
secutive requests two adjacent disk blocks, it services these
requests as though they had been one large requests.
3.4 Metrics

Common disk system performance metrics are
throughput and response time. With a fixed level of concur-
rency and a specific request size, higher throughput always
leads to faster response time.1 In this paper, we use through-
put as the main performance metric. Most throughput values
will be given as a percentage of the maximum throughput
over all striping units. For example, given a particular work-
load, if the maximum throughput over all striping units is 10
MB/s, and a striping unit S yields a throughput of 3 MB/s,
then the throughput for striping unit S will be given as 30%
of maximum throughput.

4 Choosing the Striping Unit
Figure 2 and Figure 3 show the throughput versus the

striping unit for reads and writes over a range of sizes and
concurrencies. We vary the striping unit from 1 KB to 1 MB
and make the following observations:
• At any fixed striping unit, the throughput increases with

larger request sizes and higher degrees of concurrency.
Increasing request sizes allow each disk to access more
data per request; higher degrees of concurrency are able
to make use of more disks.

• Reads perform uniformly better than writes due to the
extra overhead of maintaining parity when writing data.

1. Little’s Law implies that Throughput = Average_Re-
quest_Size * Average_Concurrency/ Response_Time, so
response time can be easily calculated for each workload
from its throughput [Denning78].

 In order to compare trends from different workloads
more easily, we scale the throughput of each workload,
expressing it as a percentage of the maximum throughput
(Figure 4 and Figure 5).

If one knows the parameters of a workload, that is, the
request size distribution, concurrency, and read/write mix,
one can use Figure 4 and Figure 5 to choose the striping unit
which maximizes throughput. However, in most systems,
the exact workload is not known. One of, or possibly both,
the request size and the concurrency will be unspecified.
Thus, it is desirable to be able to choose a good striping unit
with as little knowledge about the workload as possible. In
this paper, we will strive to maximize theminimum percent-
age throughput over a range of workloads. In other words,
we wish to guarantee the highest percentage of maximum
throughput to all workloads in consideration. For example,
if the concurrency is known to be 4 but the request size is
unknown, we can use Figure 4b to choose a striping unit. In
Figure 4b, over the range of request sizes, the striping unit
that maximizes the minimum percentage throughput is 40
KB. At that striping unit, all workloads considered yield at
least 98% of their maximum possible throughput. As in
[Chen90], we find that knowing the workload concurrency
is more important than knowing request size. That is, it is
possible to guarantee a higher percentage of maximum
throughput if we only know the workload concurrency than
if we only know request size.

Figure 2: Read Throughput for a Range of Sizes and
Concurrencies. Throughput is shown as a function of
striping unit. The throughput increases as request sizes or
concurrencies increase, as expected. These results are for
17 IBM Lightning disks.

(a) Concurrency 1 (b) Concurrency 4

(c) Concurrency 8 (d) Concurrency 20

1 10 100 1000
0

10

20

Striping Unit (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

norm1500KB

norm400KB

norm100KB

exp16KB

exp4KB

1 10 100 1000
0

10

20

Striping Unit (KB)

norm1500KB

norm400KB

norm100KB

exp16KB

1 10 100 1000
0

10

20

Striping Unit (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

exp16KB

norm100KB

norm400KB

norm1500KB

exp4KB

1 10 100 1000
0

10

20

Striping Unit (KB)

norm1500KB

norm400KB

norm100KB

exp16KB

exp4KB

4.1 Read Workloads
To verify previous results we start by focusing on per-

formance of reads in a RAID Level 5. As in [Chen90], if we
know the concurrency of a read workload, it is possible to
choose a striping unit that guarantees over 95% of the maxi-
mum throughput for any request sizes. In fact, there is a
range of striping units that guarantee 95% of maximum
throughput to workloads with any request size. Figure 6a
shows the range of these striping units for read workloads as
vertical lines delineated by + signs. Note that higher concur-
rencies lead to larger striping units. This is expected from
the discussion in Section 2.2—higher concurrencies inher-
ently use all disks, so we can then use larger striping units to
maximize the amount of data each disk transfers per logical
request.

We can express our choice of striping unit as a linear
function of workload concurrency by 1) fixing the striping
unit choice for a concurrency of one at 1 sector (0.5 KB),
and 2) measuring the minimum slope of any striping unit vs.
concurrency line that lies entirely in the displayed range.1

Our choice of striping unit in Figure 6 can then be expressed

Figure 3: Write Throughput for a Range of Sizes and
Concurrencies. Throughput is shown as a function of
striping unit. The throughput increases as request sizes or
concurrencies increase, as expected. These results are for
17 IBM Lightning disks. Note that write throughput is
uniformly lower than read throughput (Figure 2), due to
the extra overhead of maintaining parity in a RAID Level
5.

(a) Concurrency 1 (b) Concurrency 4

(c) Concurrency 8 (d) Concurrency 20

1 10 100 1000
0

5

10

15

20

Striping Unit (KB)

T
hr

ou
gh

pu
t (

M
B

/s
) norm1500KB

norm400KB

norm100KB

exp16KB

exp4KB
1 10 100 1000

0

5

10

15

20

Striping Unit (KB)

norm1500KB

norm400KB

norm100KB

exp16KB

1 10 100 1000
0

5

10

15

20

Striping Unit (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

norm1500KB

norm400KB

norm100KB

exp16KB

exp4KB
1 10 100 1000

0

5

10

15

20

Striping Unit (KB)

norm1500KB

norm400KB

norm100KB

exp16KB

as

The Slope term can be expressed as Sr * (disk performance
product), where Sr is called theconcurrency-slope coeffi-
cient and can be shown to be independent of disk technol-
ogy (Table 2). For 17 IBM Lightning disks, the slope of this
line is 7.3 KB and hence Sr is 0.22. This matches with
results in [Chen90].

Next let us consider the case where we know the work-
load is 100% reads but have no information about the con-
currency or request size. In this case we can choose a good
compromise striping unit by superimposing all the graphs in
Figure 4 and using the striping unit that guarantees the high-
est percentage of maximum performance to all workloads.
As in [Chen90] we express this choice as

1. The minimum slope was chosen rather than the mean
slope to enhance load balancing among disks.

Figure 4: Read Performance for a Range of Sizes and
Concurrencies, Shown as Percentage of Maximum
Throughput. Percentage of maximum throughput is
shown as a function of the striping unit. The circled point
on each graph indicates the striping unit that guarantees the
highest percentage of maximum throughput to all
workloads shown on that graph. Note that increasing
concurrency leads to larger optimal striping units.

(a) Concurrency 1 (b) Concurrency 4

(c) Concurrency 8 (d) Concurrency 20

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

%
 M

ax
 T

hr
ou

gh
pu

t

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

%
 M

ax
 T

hr
ou

gh
pu

t

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

exp4KB
exp16KB

norm100KB
norm400KB

norm1500KB

Striping Unit Slope Concurrency 1−()× 1 sector+=

Striping Unit Zr Disk Performance Product×=

For 17 IBM Lightning disks, the compromise striping
unit for reads is 24 KB and hence Zr is 0.73. This striping
unit guarantees at least 70% of the maximum performance
to workloads with any request size or concurrency. Again,
this matches closely to previous results. Table 2 lists results
for different disk types and shows that Zr and Sr are inde-
pendent of disk technology.
4.2 Write Workloads

Now that we have verified that reads in a RAID Level
5 using the left-symmetric parity placement [Lee93b] lead
to identical striping unit choices as I/Os in a non-redundant
disk array, we turn our attention to writes in a RAID Level
5. From the discussion in Section 2.2, we expect that the
best striping unit for write-intensive workloads will be
smaller than those for read-intensive workloads.

Figure 6 shows the range of optimal striping units for
writes as vertical bars delineated by • signs. For write-inten-

Figure 5: Write Performance for a Range of Sizes and
Concurrencies, Shown as Percentage of Maximum
Throughput. Percentage of maximum throughput is
shown as a function of the striping unit. The circled point
on each graph indicates the striping unit that guarantees the
highest percentage of maximum throughput to all
workloads shown on that graph. Note that the optimal
striping unit for write-intensive workloads is smaller than
for the read-intensive workloads in Figure 4.

(a) Concurrency 1 (b) Concurrency 4

(c) Concurrency 8 (d) Concurrency 20

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

%
 M

ax
 T

hr
ou

gh
pu

t

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

%
 M

ax
 T

hr
ou

gh
pu

t

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

exp4KB
exp16KB

norm100KB
norm400KB

norm1500KB

sive workloads, it is not always possible to choose a striping
unit for a specific concurrency that yields 95% performance
for all request sizes. In Figure 6a, we show the striping unit
choice that yields the best performance for all striping units
for writes by • signs. These striping unit choices are almost
as good as for read-intensive workloads—they always yield
performance of at least 93%.

Note that the range of optimal striping units in Figure
6 is uniformly lower for writes than for reads, as expected.
Writes perform better when striped across more disks, since

Figure 6: Striping Unit Chosen Versus Concurrency—
17 IBM Lightning Disks. Shown here is the range of
striping units which yield at least 95% (Figure a) or 90%
(Figure b) of the maximum throughput for all request sizes
(exp4KB, exp16KB, norm100KB, norm400KB,
norm1500KB) for reads and writes. The range for a
workload with 100% reads is wider and marked by +
signs. The range for workloads with 100% writes is much
narrower and marked by • signs. Write workloads are not
always able to attain 95% performance, so Figure a shows
the striping unit that yields the highest performance for all
workloads (which is always at least 93%). The dashed
lines are the lines with smallest slope that lie entirely in
the striping unit range.

0 5 10 15 20
0

100

200

300

400

500

Concurrency
0 5 10 15 20

0

100

200

300

400

500

Concurrency

S
tr

ip
in

g
U

ni
t R

an
ge

 (
K

B
)

(a) 95% Performance Criterion (b) 90% Performance Criterion

Table 2: Values of Concurrency-Slope and Zero-
Knowledge Coefficients for 3 Disk Types. This table
shows the values of the various coefficients useful in
choosing the striping unit. Over three very different disks,
the values of each coefficient are relatively independent of
disk type.

Read
Workloads

Write
Workloads

Read and
Write

Workloads

Disk Type Sr Zr Sw Zw Zrw

17 Lightnings .22 .73 .051 .18 .48

17 Elite3 .30 .67 .066 .19 .58

17 Wren4 .22 .68 .051 .17 .46

Average .25 .69 .056 .18 .51

they then require less accesses to compute the new parity.
Smaller striping units thus lead to more efficient writes; this
makes the range of optimal striping units lower for write-
intensive workloads than the range for read-intensive work-
loads. Also note that even very high concurrency workloads
do not lead to very large optimal striping units. This ceiling
on the optimal striping unit arises because writes yield bet-
ter performance when they utilize all the disks by issuing
full-stripe writes rather than by utilizing the workload con-
currency. Of course, this must be balanced by the fact that
the disk array is more efficient when a disk transfers a larger
amount of data for a logical request.

By lowering our criterion of good performance to 90%
(Figure 6b), we can again use a simple linear equation to
describe our choice of striping units at each concurrency.
The lower, dashed line in Figure 6b describes the following
equation for striping unit:

where Sw is the concurrency-slope coefficient for writes and
is equal to 0.051. Thus the slope for writes is approximately
four times shallower than the slope for reads. Table 2 shows
that the values of Sw for different disks is relatively con-
stant.

If no information is given about concurrency or
request size, we can choose a good compromise striping
unit for write-intensive workloads as we did for reads. We
superimpose all graphs in Figure 5 and choose the striping
unit that guarantees the highest percentage of maximum
performance to all workloads. For write-intensive work-
loads on 17 IBM Lightning disks, this compromise striping
unit is 6 KB, so Zw, which is the optimal striping unit
divided by the disk performance product for IBM Lightning
disks, is 0.18. A 6 KB striping unit guarantees at least 73%
of maximum performance to all workloads tested. We tabu-
late the values of Zw using other disk technologies and find
that Zw is independent of disk type.

Without knowledge of the read/write mix of the work-
load, it is still possible to choose a striping unit that per-
forms reasonably well for all workloads. By superimposing
the graphs in Figure 4 and Figure 5, we can find the striping
unit that guarantees the best performance to all read or write
workloads of arbitrary concurrency and request size. This
striping unit is 16 KB and guarantees 60% of maximum
throughput to workloads with any request size, concurrency,
and mix of reads and writes. We express this choice in terms
of the disk-performance product as

where Zrw is 0.48. Thus, for a 17-disk disk array and in the
absence of any workload information, we recommend a
striping unit of approximately half the product of the aver-
age positioning time and the single-disk transfer rate.

5 Varying the Number of Disks
We have expressed our recommendations for striping

unit for a 17-disk disk array in terms of coefficients S and Z
and the disk performance product. Disk arrays with more or
less than 17 disks will have different values for these coeffi-
cients, because the number of disks affects the tradeoffs dis-
cussed in Section 2.2. With more disks, smaller striping

Sw Disk Performance Product Concurrency 1−()×× 1 sector+

Striping Unit Zrw Disk Performance Product×=

units are needed to ensure that all disks are used. Con-
versely, with fewer disks, each disk is more precious, lead-
ing to larger striping units to avoid tying up too many disks.
Thus we expect that the coefficients will vary inversely to
the number of disks in the array. Figure 7 shows that Zr does
indeed vary inversely to the number of disks. [Lee91,
Lee93a] predict that the striping unit will vary inversely to
the square root of the number of disks. We find empirically
that the optimal striping unit for read-intensive workloads
varies inversely to the cube root of the number of disks.

Surprisingly, Zw increases as the number of disks
increases. This trend means that as the number of disks in
the array decreases, the optimal striping unit also decreases
and each write request is best striped overmore disks. To
understand this, recall that limiting a write request to a few
disks causes more read-modify writes. These read-modify
writes cause extra read operations to the parity and data
blocks, which increases disk utilization by a factor of
approximately 2. In a disk array with less disks, this
increased disk utilization ties up a higher fraction of the
disks and severely hinders performance. Thus, the optimal
striping unit is smaller with less disks to cause more full-
stripe writes and hence decrease the number of read-modify
writes.

Figure 7: How Striping Units Vary with Number of
Disks. This figure shows that the zero-knowledge
coefficients Zr, Zw, and Zrw vary differently with the
number of disks. Since the striping unit is directly
proportional to Z, the best striping unit varies in the same
way as the various Z coefficients. For read-intensive
workloads, Zr decreases as the number of disks increases
because smaller striping units are needed to ensure that all
disks are used. For write-intensive workloads, Zw
decreases as the number of disks decreases because the
extra overhead of read-modify writes becomes prohibitive
when there are less disks. These two trends effectively
cancel each other out, and so the overall choice of striping
unit without knowing the read/write mix is approximately
0.5 and is independent of the number of disks. The optimal
striping units using the values of Zrw shown here
guarantees approximately 60% of maximum throughput to
all workloads. For read-intensive workloads, a striping
unit derived from Zr guarantees approximately 70% of
maximum throughput for all workloads. For write-
intensive workloads, a striping unit derived from Zw
guarantees approximately 70% of maximum throughput.

Zr

Zw

Zrw

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0

Number of Disks

Z
er

o-
K

no
w

le
dg

e
C

oe
ffi

ci
en

t (
Z

rw
)

The combination of these trends leads to a fairly con-
stant value for Zrw at 0.5. Thus, without any workload
knowledge about request size, concurrency, or mix of reads
and writes, one should choose a striping unit equal to half
the disk performance product. For our three disk types
(using the true seek time, not the shortened seek time of the
first 300 MB of each disk), this leads to striping units of 18
KB for the IBM Lightning disks, 38 KB for the Seagate
Elite3 disks, and 20 KB for the Seagate Wren4 disks.

6 Verification Using Traces
In this section, we use I/O traces from real systems to

validate the design rules derived using synthetic workloads,
verifying that our recommended striping unit performs well
under specific workloads. The traces we use come from
Miller and Katz’s supercomputing workload study and cap-
ture the I/Os from a range of climate modeling, aerody-
namic, turbulence, and structural dynamics applications
[Miller91]. The traces are at the file system level and did not
capture the disk location of each access, so we processed the
traces using a simple, extent-based file allocation. Each file
is allocated as a single, contiguous extent in the disk array’s
logical address space. Concurrencies greater than one are
simulated by running multiple instantiations of the same
trace at the same time, using disjoint file spaces and starting
each trace after a random delay.

We first simulated each trace separately on an array of
17 Seagate Elite3 disks and found that they fell into one of
two main categories. Traces in the first category, repre-
sented byvenus (simulation of venus’ atmosphere), perform
large (approximately 400 KB) I/Os. Traces in the second
category, represented byccm (community climate model),
perform relatively small (16-32 KB), highly sequential I/Os.
The vertical lines in Figure 8-Figure 10 show the striping
unit we recommend if no workload information is given (21
KB for the Seagate Elite3 disks with the 300 MB capacity
limit).

Figure 8 shows that workloads with all large I/Os per-
form best with very small striping units over all concurren-

Figure 8: Performance of venus Trace. For a trace with
predominantly large I/Os, small striping units perform best
over a range of concurrencies. The vertical shows the
striping unit we recommend without any advance
workload information. Though it guarantees reasonable
performance to all concurrencies (66%), it can certainly be
improved upon with more specific workload knowledge.

concurrency 1
concurrency 2

concurrency 4

concurrency 8

concurrency 20

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

%
 M

ax
 T

hr
ou

gh
pu

t

cies. This agrees with the workloads with large requests in
Figure 4 and Figure 5. Our recommendation of 21 KB per-
forms reasonably well, at least 66% of the maximum possi-
ble performance for each concurrency, though knowing in
advance that the request size is large would certainly make
it possible to achieve higher performance.

Figure 9a shows that no single striping unit performs
well for workloads with relatively small, sequential I/Os.
Our recommendation yields close to the best possible per-
formance, but this only guarantees about 30% of the maxi-
mum possible performance to each concurrency. This low
performance guarantee is due to the workload with concur-
rency one. Because most of the I/Os in the trace were
sequential, a workload with only one process can achieve
much better performance by using a small striping unit.
With a small striping unit, all disks always seek and transfer
in parallel. Because the workload is sequential, using small
striping units does not cause extra seeks. In contrast, when
one process runs on a disk array with large striping units, a
single disk seeks and transfers the data, then another disk
seeks and transfers the next request, etc. In essence, having
a small striping unit allows the disk array to overlap the
seeks for all 17 disks, even with only one process issuing
I/Os. This phenomenon does not occur at concurrencies
higher than one, since multiple, interleaved processes dis-
rupt the workload sequentiality and prevent the disks from
servicing more than one request after each seek.

There are several ways to prevent this sharp perfor-
mance drop-off for workloads with concurrency one.1 The
best way, though often impractical, is to modify the applica-

Figure 9: Performance of ccm Trace. Figure a shows the
performance of the ccm trace, comprised mostly of
relatively small (32 KB), sequential requests. The
workload with concurrency one achieves much higher
performance with small striping units because they allow
the disks to service multiple, sequential requests without
seeking. Figure b shows the same workload after grouping
is used to combine multiple, sequential requests into a few
large ones. In Figure a, no single striping unit achieves
good performance for all workloads, though our
recommended striping unit (shown as a vertical line) does
about as well as any other. In Figure b, our recommended
striping unit achieves almost 80% of the best possible
performance for each individual workload.

(a) without grouping (b) with grouping

concurrency 1

concurrency 1

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)
1 10 100 1000

0

20

40

60

80

100

Striping Unit (KB)

tion or the operating system to group multiple I/Os together
into a single larger I/O (a form of prefetching). With larger
requests, disk arrays with large striping units can achieve
the same disk parallelism that arrays with small striping
units can. An easier solution that does not require modifying
the application is to have all idle disks seek to the same
position as the active disk. This overlaps the seeks, but not
the transfers, of multiple disks. Figure 9b shows the perfor-
mance resulting from grouping multiple sequential requests
into a single, large one for one process. We see that our rec-
ommended striping unit is able to perform much better here,
guaranteeing 80% performance to all concurrencies.

Finally, we merged all the traces into a single compos-
ite trace and explored how the composite trace performed
under different concurrencies. Figure 10 shows that, similar
to Figure 9a, no single striping unit performs well for all
concurrencies. Again, concurrency one performs differently
than other concurrencies, but for a different reason. Mixing
the traces removes all sequentiality between requests, but
small striping units still perform significantly better than
large ones for concurrency one. The reason is that perform-
ing only full striped I/Os allows the disk arms to seek in uni-
son, even when not performing sequential requests. This is
faster than synchronizing 17 randomly positioned disk arms
and improves performance. No workload transformation
can change this phenomenon—it is simply a benefit of very
small striping units (RAID Level 3).

Figure 10 shows that if you place high value on work-
loads with concurrency one, choose a small striping unit.
However, if you value workloads with both high and low
concurrencies, then our recommendation of half the disk
performance product performs as well as any other striping
unit. And if you do not value concurrency one workloads,
this paper’s recommended striping unit provides excellent

1. Note that workloads that leave many disks idle are poor
candidates to run on disk arrays.

Figure 10: Performance of Composite Trace. As for the
ccm trace, no single striping unit guarantees good
performance for all concurrencies, though our
recommended striping unit (21 KB) performs as well as
any other (circle A). For concurrency one, the best striping
unit is small. For all others, our recommended striping unit
guarantees at least 85% of the best performance for each
workload (circle B).

1 10 100 1000
0

20

40

60

80

100

Striping Unit (KB)

%
 M

ax
 T

hr
ou

gh
pu

t

concurrency 1

B
A

performance to all workloads, guaranteeing at least 85% of
the best possible performance. These results agree with the
major results of Section 4: 1) knowing concurrency enables
one to choose a near-optimal striping unit, and 2) without
knowing workload concurrency, the best striping unit is
approximately 1/2 * average positioning time * disk transfer
rate (21 KB for the 300 MB capacity Seagate Elite3 disks).

7 Conclusions
We have investigated how to stripe data in a RAID

Level 5 disk array for a variety of workloads, both synthetic
workloads and application traces. We found that reads in a
RAID Level 5 behaved similarly to reads and writes in a
non-redundant disk array. The resulting optimal striping
unit for reads traded off two factors: 1) making use of all the
disks in the array and 2) having each disk transfer as much
as possible before repositioning. Write-intensive workloads,
on the other hand, achieved optimal performance at smaller
striping units (1/4 the size for a 17-disk disk array) on RAID
Level 5 than on RAID Level 0. This was because full-stripe
writes performed better than read-modify or reconstruct
writes. Smaller striping units led to more full-stripe writes
and correspondingly better performance.

For both reads and writes in a RAID Level 5, concur-
rency was the most important workload factor in choosing
an optimal striping unit. The optimal striping unit increased
with concurrency for both reads and writes, but the rate of
increase was approximately four times more gradual for
writes than for reads. Again, this was due to full-stripe
writes performing better than read-modify or reconstruct
writes. We also noted that even infinite levels of concur-
rency did not lead to arbitrarily large striping units for
writes. This ceiling on the striping unit for writes occurred
because writes “prefer” to utilize all the disks by issuing
full-stripe writes rather than by depending on the work-
load’s concurrency.

Next, we investigated the effect of varying the number
of disks in a RAID Level 5. We found that the striping unit
for read-intensive workloads decreased as the number of
disks increased, but that the striping unit for write-intensive
workloads increased as the number of disks increased. Both
these trends sought to lower the number of disks each
request occupied as the number of disks in the array
decreased. The combined effect of these opposing trends
was that, without any workload knowledge of the read/write
mix, the optimal striping unit stayed fairly constant at half
the disk performance product. Thus, in the absence of any
workload knowledge, we recommend a striping unit of 1/2 *
average positioning time * disk transfer rate for RAID Level
5 disk arrays with any number of disks.

Last, we validated our main design rule by using I/O
traces gathered from a range of scientific workloads. As
found using stochastic workloads, specific workloads can
achieve their best performance by using a carefully tailored
striping unit. This was especially true for workloads with
very large requests or concurrency one. For systems that run
a range of workloads, the traces verified that our simple
design rule accurately selects a near-optimal striping unit.

8 References
[Chen90] Peter M. Chen and David A. Patterson.

Maximizing Performance in a Striped Disk
Array. In Proceedings of the 1990 International
Symposium on Computer Architecture, pages
322–331, May 1990.

[Denning78] Peter J. Denning and Jeffrey P. Buzen. The
Operational Analysis of Queueing Network
Models. ACM Computing Surveys, 10(3),
September 1978.

[Gray90] Jim Gray, Bob Horst, and Mark Walker. Parity
Striping of Disc Arrays: Low-Cost Reliable
Storage with Acceptable Throughput. In
Proceedings of the 16th Very Large Database
Conference, pages 148–160, 1990. VLDB XVI.

[IBM89] IBM 0661 Disk Drive Product Description–
Model 371. Technical report, IBM, July 1989.

[Lee91] Edward K. Lee and Randy H. Katz. An Analytic
Performance Model of Disk Arrays and its
Applications. Technical Report UCB/CSD
91/660, University of California at Berkeley,
1991.

[Lee93a] Edward K. Lee and Randy H. Katz. An Analytic
Performance Model of Disk Arrays. In
Proceedings of the 1993 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, pages 98–109, May 1993.

[Lee93b] Edward K. Lee and Randy H. Katz. The
Performance of Parity Placement in Disk Arrays.
IEEE Transactions on Computers, 42(6), June
1993.

[Miller91] Ethan L. Miller and Randy H. Katz.
Input/Output Behavior of Supercomputing
Applications. InProceedings of Supercomputing
1991, pages 567–576, November 1991.

[Patterson88] David A. Patterson, Garth Gibson, and
Randy H. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). InInternational
Conference on Management of Data (SIGMOD),
pages 109–116, June 1988.

[Ruemmler94] Chris Ruemmler and John Wilkes. An
Introduction to Disk Drive Modeling.IEEE
Computer, pages 17–28, March 1994.

[Scheuermann91] Peter Scheuermann, Gerhard Weikum, and
Peter Zabback. Automatic Tuning of Data
Placement and Load Balancing in Disk Arrays.
Database Systems for Next-Generation
Applications: Principles and Practice, 1991.
DBS-92-91.

[Thisquen88] Jean Thisquen. Seek Time Measurements.
Technical report, Amdahl Peripheral Products
Division, May 1988.

[Weikum92] Gerhard Weikum and Peter Zabback. Tuning of
Striping Units in Disk-Array-Based File
Systems. InProceedings of the 2nd International
Workshop on Research Issues on Data
Engineering: Transaction and Query
Processing, pages 80–87, 1992.

