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Abstract. Recently we presented several disk array architectures
designed to increase the data rate and I/O rate of supercomputing
applications, transaction processing, and file systems [Patterson
88]. In this paper we present a hardware performance measure-
ment of two of these architectures, mirroring and rotated parity.
We see how throughput for these two architectures is affected by
response time requirements, request sizes, and read to write
ratios. We find that for applications with large accesses, such as
many supercomputing applications, a rotated parity disk array far
outperforms traditional mirroring architecture. For applications
dominated by small accesses, such as transaction processing, mir-
roring architectures have higher performance per disk than
rotated parity architectures.

1. The I/O Crisis
Over the past decade, processing speed, memory speed,

memory capacity, and disk capacity have all grown tremendously:
� Single chip processors have increased in speed at the

rate of 40%-100% per year [Bell 84, Joy 85].
� Caches have increased in speed 40% to 100% per year.
� Main memory has quadrupled in capacity every two or

three years [Moore 75, Myers 86].
In contrast, disk access times have undergone only modest perfor-
mance improvements. For example, seek time has improved only
about 7% per year [Harker 81]. This imbalanced system growth
has already led to many I/O bound supercomputer applications
[Kim 87]. If the imbalance is not remedied, Amdahl’s Law tells
us that much of the astounding processor speedup and memory
growth will be wasted [Amdahl 67]. Continued improvement in
system performance depends in a large part on I/O systems with
higher data and I/O rates.

One way to increase I/O performance is by using an array
of many disks [Kim 86, Salem 86]. By using many disks, both
throughput (MB per second) and I/O rate (I/O’s per second) can
be increased. Throughput can be increased by having many disks
cooperate in transferring one block of information; the I/O rate
can be increased by having multiple independent disks service
multiple independent requests. With multiple disks, however,
comes lower reliability. According to the commonly used
exponential model for disk failures [Schulze 88], 100 disks have a
combined failure rate of 100 times the failure rate of a single disk.
If every disk failure caused data loss, a 100 disk array would lost
data every few hundred hours. This is intolerable for a sup-
posedly stable storage system. To protect against data loss in the
face of a single disk failure, some sort of data redundancy must
exist.

This paper analyzes the performance of two disk array
redundancy schemes. The performance analysis is based on a set
of experiments carried out an Amdahl mainframe and disk system.
In these experiments, we explore several issues:

� What are the basic differences in throughput and
response time between the various redundancy schemes?

� How does changing the size of an I/O request affect per-
formance of the redundancy schemes?

� How does changing the read/write ratio affect perfor-
mance of the redundancy schemes?

We begin by describing two redundant array organizations and a
simple performance model comparing them. We then present the
hardware environment, the experiment workload design, the
metrics for our results, and the performance results.

We start by running the same workload as the RAID paper
[Patterson 88]: request sizes are full stripe or individual blocks;
requests are all reads or all writes. In Section 7.1, we analyze an
idle system to break down the response time for a basic I/O.
Next, in Section 7.2, we attempt to duplicate the assumptions
made in the RAID paper of unlimited response time by analyzing
a saturated system. In 7.3, we make the experiment more variable
by controlling and equalizing the response times.

When we have finished analyzing the RAID paper work-
load, we begin to use more varied workloads. We again make this
transition by changing one aspect of the workload at a time. In
8.1, we remove the assumption of constant request size by using a
distribution of request sizes. As our last step in making the exper-
iment more realistic, we allow workloads with both reads and
writes.

2. Introduction to Redundant Arrays of Disks
In "A Case for Redundant Arrays of Inexpensive Disks

(RAID)", henceforth referred to as "The RAID paper" [Patterson
88], Patterson, Gibson, and Katz present five ways to introduce
redundancy into an array of disks: RAID Level 1 through RAID
Level 5. Using a simple performance model of these five organi-
zations, they conclude that RAID Level 1, mirrored disks, and
RAID Level 5, rotated parity, have the best performance poten-
tial. This paper focuses on these two RAID Levels, plus the basic
non-redundant RAID Level 0, added to provide a basis of com-
parison between RAID Levels 1 and 5. Figure 1 shows the data
layout in the three redundancy schemes. The rest of this section
summarizes the RAID Levels--see [Patterson 88] for more details.

In all organizations, data are interleaved across all disks
[Kim 86, Salem 86]. We define a stripe of data to be one unit of
interleaving from each disk. For example, the first stripe of data
in Figure 1 consists of logical blocks 0, 1, 2, and 3. The storage
efficiency, a measure of the capacity cost of redundancy, is defined
to be the effective (user) data capacity divided by the total disk
capacity. For RAID Level 0, the effective data capacity equals
the total disk capacity, so the storage efficiency is 100%.

RAID Level 1, mirrored disks, is a traditional way to incor-
porate redundancy in an array of disks [Bitton 88]. In RAID
Level 1, each datum is kept on two distinct disks: a data disk and
a shadow disk. Thus, for RAID Level 1, the effective storage
capacity is half the total disk capacity and the storage efficiency is
50%. Reads can be serviced by either the data disk or the shadow
disk, but, to maintain consistency, writes must be serviced by both
data and shadow disk.

RAID Level 5, rotated parity, incorporates redundancy by
maintaining parity across all disks. For example, P0 in Figure 1c
is the parity of logical blocks 0, 1, 2, and 3. Parity will have to be
updated whenever data is written. If all parity information was
kept on one disk, this disk would see many more requests than
any data disk. To avoid a bottleneck in accessing the parity infor-
mation, it is spread over all disks. There are many ways to spread
this parity information across disks, but this is not within the
scope of this paper. Instead, we have chosen one mapping of
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Figure 1: Three RAID architectures. Data (logical blocks) are interleaved across multiple disks with various redundancies added. In RAID Level 0 (Fig-
ure 1a), no redundancy exists. A stripe of data consists of a logical block from each disk. In RAID Level 1 (Figure 1b), each data disk (disks 0-3) has a sha-
dow disk (disks 4-7). In RAID Level 5 (Figure 1c), parity for each stripe is kept in a parity block. Which physical disk the parity block is kept on is different
for different stripes to reduce hot spots for single block writes (see [Patterson 88]).
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parity information onto disks. As shown in Figure 1c, parity for
stripe 0 is kept on disk 0; parity for stripe 1 is kept on disk 1, and
so on. If there are N disks in the array, the storage efficiency is

N
N −1
� ������� .

3. A Simple Performance Model
In this section we present the simple performance model

used by the RAID paper to compare RAID Levels. First, some
terminology is needed. A user request to read or write data is
called a logical request. A physical request refers to a logical
request after it has been mapped onto the disk array. Often, due to
redundancy information, a physical request will involve more disk
blocks than its logical request. A disk access refers to one con-
tiguous read or write of one disk. Physical requests result in one
or more disk accesses. A logical request that involves all the data
in a stripe is called a full stripe request. A logical request that
involves only part of the data in a stripe is a partial stripe request.
A special type of partial stripe request is an individual request,
which is a request to exactly one disk’s part of a stripe.

The model in the RAID paper is concerned with the max-
imum possible throughput of a disk system. The model drives the
disk system with four types of logical requests: full stripe reads,
full stripe writes, individual reads, and individual writes. To esti-
mate maximum possible throughput, we consider the efficiency of
a RAID: the number of disk accesses of a logical request divided
by the number of disk accesses in its corresponding physical
request.

Because RAID Level 0 has no redundant information, the
number of disk accesses in a physical request is always the same
as in its logical request. Thus RAID Level 0 has an efficiency of
100%, that is, 100% of the disk accesses involve useful data. We
normalize throughput of a RAID by defining relative throughput
of a RAID system running a particular workload as the throughput
of that RAID system relative to the throughput of a non-redundant
array (RAID Level 0) running the same workload (matching
workloads will be described later). The simple model in the
RAID paper estimates relative throughput by the fraction of disk
accesses involving useful data. For example, if the physical
request involves twice as many disks accesses as its correspond-
ing logical request, i.e. the logical to physical mapping doubled
the number of disks accesses involved, then 50% of the disk

accesses would involve useful data and the simple model would
estimate the relative throughput to be 50%.

For all RAID Levels, assuming no failed disks, data can be
read without accessing any redundancy information (these experi-
ments do not measure performance when one or more disks are
not operational). Because of this, the mapping from logical read
requests to physical requests adds no extra disks, and the simple
model predicts a relative throughput for RAID Levels 0, 1, and 5
reads of 100%. As mentioned above, RAID Level 0 also has, by
definition, a relative throughput of 100% for writes. However, for
RAID Levels 1 and 5, physical write requests involve more disk
accesses than their logical write requests, and relative throughput
becomes less than 100%.

To write data in RAID Level 1, both the data disk and the
shadow disk must be written. Thus, a RAID Level 1 physical
write request has twice the number of disk accesses as its logical
request. The simple model estimates relative throughput at 50%
for any size RAID Level 1 write.

For RAID Level 5, both the data disk(s) and the parity
information need to be updated. To compute the new parity, some
reads may need to be issued. Some of these reads snapshot the
image on disk before those blocks are overwritten. We call these
pre-reads. How much information needs to be read depends on
the size of the logical write request. For full stripe writes, no
reads are needed, since the new data completely determines the
new parity of the stripe. Thus, with an N disk array, a full stripe
logical write request involves N-1 disk accesses, and the physical
request involves N disk accesses. This leads us to estimate full

stripe write relative throughput as
N

N −1
� ������� . For partial stripe

writes, parity may be computed either by 1) pre-reading the
current (before writing) data on the data disk(s) and current parity
of the stripe or 2) reading the current data in the rest of the stripe.
For example, in Figure 1c, to write logical blocks 0 and 1, we can
either 1) pre-read logical blocks 0 and 1 and parity block P0 or 2)
read logical blocks 2 and 3. With a partial stripe write of D (less
than N-1) data disks, the first method of computing parity
involves D+1 disk pre-reads, and the second method involves
N −(D +1) disk reads. For an individual block request (D =1) the
first method is better for N ≥4. With this first method, an indivi-
dual request, involving one disk access, generates a physical
request involving four disk accesses (two to read the current data
and current parity and two to write the new data and new parity).



This leads us to estimate relative throughput as 25% for individual
block writes in RAID Level 5.

The estimates for full and individual requests for both
RAID Levels 1 and 5 are summarized in Figure 2.

4. Introducing Realism
Our overall goal in these experiments is to understand

more fully how RAID Levels 1 and 5 perform. This includes
exploring aspects of implementation, workload characterization,
and performance evaluation. The RAID paper estimated perfor-
mance based on maximum possible throughput. A specific goal
of the experiments described here is to measure the performance
of RAID Levels 1 and 5 under more variable workloads and to
compare this measured performance against the simple perfor-
mance estimates in the RAID paper. The performance characteri-
zation in these experiments differs from the RAID paper in the
following areas:
� Real hardware: The analysis done in the RAID paper was a

purely theoretical analysis. It assumed a constant time for disk
accesses and ignored processing overhead. Because these
experiments were carried out on an actual machine with disks,
they have no need to make any of these simplifying assump-
tions.

� Response time: The only performance metric in the RAID
paper was maximum possible throughput. These experiments
will measure and control both throughput and response time.

� Synthetic workload: Because the analysis in the RAID paper
was theoretical and extremely simple, it used unrealistic work-
loads. These experiments refine the workloads in three ways:

(1) The RAID paper used an infinite workload, i.e., the
disks were fully utilized. These experiments intro-
duce contention, resulting in more realistic (subop-
timal) disk utilization.

(2) The RAID paper workloads had a constant logical
request size of either 100% full stripe requests or
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Figure 2: Relative Throughput According to a Simple Model. Shown
is the estimated throughput of RAID Level 1 (mirrored RAID) and RAID
Level 5 (rotated parity RAID) as a percentage of the estimated throughput
of RAID Level 0 (non-redundant RAID) [Patterson 88]. RAID Level 5
large write performance is calculated assuming 11 total disks (N=11).

100% individual requests. These experiments deal
with a distribution of request sizes, including partial
stripe accesses and accesses larger than a full stripe.

(3) The RAID paper workloads were either 100% reads
or 100% writes. These experiments explore a range
of read/write ratios.

Note that these experiments are not running application
programs (benchmarks), but rather an artificially generated distri-
bution of I/O requests (synthetic workload). We choose to use
synthetic workloads because they are easier to parameterize than
benchmarks, making it possible to explore a range of different
user workloads. Synthetic workloads also avoid the access pattern
biasing of individual operating systems.

5. Metrics for Comparing RAID Levels
When comparing RAID Levels, we are interested in perfor-

mance (throughput and response time) and cost. Synthesizing a
single metric for comparison is not easy. Because storage
efficiency differs between RAID Level 0 (100%), Level 1 (50%),

and Level 5 (
N

N −1
� ������� ), RAID systems with the same user data

capacity need different numbers of disks and so have different
costs. There are at least two ways to address this issue.

If we hold the total number of disks constant between
RAID Levels, then comparing costs is trivial. However, compar-
ing the performance of such RAID systems is tricky because it is
unclear how to define an equal workload between systems with
different user data capacities. For example, consider two disk sys-
tems, A and B, both with the same number of total disks. Suppose
that system A has a storage efficiency of 50% and system B has a
storage efficiency of 100%. Thus, system B has twice the user
data capacity as system A. If A and B receive the same workload,
then data in B is accessed half as frequently as data in A. To com-
pensate, we may wish to present B with double the workload that
A receives. Unfortunately, it is unclear what constitutes a double
workload: double the request rate? Double the request size?

To allow equivalent workloads, these experiments, main-
tain equal data capacities between RAID Levels. However, with
D disks of user data, RAID Level 0 needs D total disks, RAID
Level 1 needs 2D total disks and RAID Level 5 needs D+1 total
disks. Thus, costs and raw disk bandwidth of the different RAID
Levels are no longer equal. We must therefore factor in costs
when presenting performance.

One method to factor in costs is to simply present the raw
performance and cost separately. For example, in one of the
experiments, a RAID Level 1 used 20 disks and yielded a
throughput of 20 MB/s. The corresponding RAID Level 5 system
used 11 disks and yielded a throughput of 10 MB/s. In general,
RAID Level 1 needs nearly twice as many disks as RAID Level 5
and has much higher cost. Having more disks, RAID Level 1
generally yields higher performance than RAID Level 5. It then
becomes the reader’s responsibility to synthesize this performance
and cost data.

A second method to combine performance and cost is to
divide the performance by the number of disks. As this only
makes sense for throughput, response time will be addressed
separately. RAID Level 1 has twice as many disks as RAID Level
0, and so we divide RAID Level 1 throughput by two to normalize
relative to RAID Level 0. By dividing the throughput by the
number of disks, we are tacitly assuming that a RAID Level 0
with 2D disks should perform twice as well as a RAID Level 0
with D disks. This assumption can be false if performance is not
disk limited. In general, we may be unfairly penalizing RAID
Level 1 because we are not providing RAID Level 1 with twice
the total resources (processor, memory, etc.) of RAID Level 0.
We are only doubling the disk resources. In particular, if CPU



power is the limiting factor to performance, then doubling the disk
resources will not double throughput. CPU power tends to limit
performance as more disks are used. Therefore, we limit the
number of disks used to ensure that CPU power does not greatly
impact performance and RAID Levels with more disks are not
unfairly penalized. We will limit almost all experiments in this
paper to 20 disks or less. To check that this method of presenting
data is fair, we verify that throughput per disk remains constant as
we scale the number of disks. This second method of combining
throughput and cost is the one used in this paper.

Although throughput scales with the number of disks used,
response time does not. We define the 90th percentile response
time to be the time in which 90% of the requests in the run were
serviced, similar to [Anon 85]. For example, a 90th percentile
response time of 1 second would mean that 90% of all requests in
that run returned to the user within 1 second. To maintain a valid
comparison between RAID Levels, we vary the rate of requests to
force different RAID Levels to have the same 90th percentile
response time. With this equal 90th percentile response time, we
then compare the throughput of the different RAID Levels.

In summary, we compare different RAID Levels by:
(1) maintaining equal user data capacity to simplify the equal-

ization of workloads
(2) forcing comparable 90th percentile response time for all

RAID Levels
(3) measuring throughput and dividing by the number of disks

involved to get throughput per disk as the main perfor-
mance metric.

6. Experiment Implementation
Experiments were run on an Amdahl mainframe under

UTS, which is a version of System V Unix. See Table 1 for
hardware characteristics. To prevent channel conflicts, we use
only one disk per string. This approximates a system which uses
buffers to avoid data transfer conflicts, as was assumed in [Patter-
son 88].

By using synthetic workloads instead of application
software, we eliminate the need for a file system structure.
Instead, we simply read and write bytes on the disks. This enables
us to simulate a large range of I/O access patterns without dealing
with the logistics of many benchmarks. In our experiment, the
reads and writes are done by user processes accessing raw devices
[UTS 88].

To achieve a certain target 90th percentile response time,
we control the number of outstanding logical requests in the sys-
tem (queue depth). We periodically check the number of requests
that were satisfied within the target 90th percentile response time,
and adjust the allowed number of outstanding logical requests
accordingly.

The parameters of the synthetic workload are 90th percen-
tile response time target, read/write ratio, request size distribution,
and data distribution. When a request is generated, we stochasti-
cally choose read or write, request size, and starting location of
the data. Each choice is made independently of past choices.
Note that these parameters determine the logical request stream
and are independent of the RAID organization (the logical to phy-
sical mapping).

The request size is generated in a number of different
ways, depending on the workload. One method is to force all
accesses for a run to be a fixed size. This is the assumption used
in the simple model, for example, 100% full stripe requests. Since
these experiments are run with 10 data disks and track striping, a
full stripe is 10 tracks (400 KB) and an individual request is 1
track (40 KB). A second method for choosing request sizes is to
use a distribution. We choose two distributions in particular: an
exponential distribution with a small mean, approximating

transaction processing and UNIX file systems, and a normal distri-
bution with a large mean and standard deviation, approximating
supercomputing and image processing workloads.

Because logical requests are logically contiguous and
striped over all disks, a logical request’s location is specified by
the location of its first block: a disk number and a stripe number.
We select the stripe number of each request uniformly among all
stripes to ensure random seeks.

For most of this paper, we choose the starting disk accord-
ing to the aligned distribution. This is intended to be the data dis-
tribution which yields optimal performance. The aligned data dis-
tribution tries to 1) minimize the number of partial stripes, and 2)
spread the I/O load evenly across disks. It minimizes the number
of partial stripes by aligning data on full stripe boundaries where
possible. For request sizes smaller than a full stripe, it chooses the
starting disk according to a uniform distribution. In the second
method, the unaligned data distribution, we no longer make any
attempt align data on full stripe boundaries. We also create hot
disks by favoring certain disks.

7. The RAID Paper Workload
The simple model analyzed performance under four types

of workloads: large reads, large writes, small reads, and small
writes. While continuing to direct our experiments toward under-
standing these four types of workloads, we seek to make them
more variable as discussed in Section 4. Rather than jump from
the analysis presented in the RAID paper directly to our most
variable workload, we make the transition in a number of smaller
steps.

Request sizes in the RAID paper workload are large (a full
stripe) or small (individual blocks). Runs are either 100% reads
or 100% writes. With the RAID paper assumption of infinite
workload, disks are always 100% utilized, and data distribution
has no effect. To approximate this situation, we use a very high
workload and the aligned data distribution.

7.1. Idle System Request Latency
To understand the hardware of this experiment, we first

break down the time of a basic I/O. This is done by analyzing the
average response time of a single request in an idle system. We
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processors 2
cycle time 15 ns
memory size 256 MB
data cache 64 KB
instruction cache 32 KB
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cylinders/disk 885
tracks/cylinder 15
sectors/track 10
bytes/sector (fixed format) 4 KB
average seek 15 ms
average rotational latency 8.3 ms
maximum transfer rate 2.4 MB/s
disk caching off
disk scheduling FIFO�������������������������������������������������������������������
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Table 1: Hardware Statistics of Processor and Disk Resources [Am-
dahl 5890, Amdahl 6380].
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Figure 3: Lifetime of Requests. The lifetime of each type of request is traced by measuring the time spent in various stages of servicing the request: request
overhead, IO CPU time, disconnect, synchronization, and connect.



trace the lifetime of an average request by measuring and model-
ing the time spent in various stages of servicing the request (Fig-
ure 3). We also measure the average end-to-end response time of
a request and check that this is equal to the sum of the average
times spent in each stage. In all cases, the average response time
was within 2% of the sum of the average time spent in each stage.

Average response time breaks down as follows:
� request overhead: time spent by UTS in issuing a logical

request.
� IO CPU time: measured CPU time for the device driver to

issue and receive I/O’s, including the channel processing time.
IO CPU time ranges from 1.5 ms to 1.8 ms.

� disconnect time: measured time spent in seek and rotational
latency.

� synchronization: additional time due to multiple independent
disks doing random seeks and rotations. This is not measured,
but rather calculated based on statistics given in Section 6.
Also see Section 7.1.1.

� connect time: measured time spent in transferring data [IBM
87]. For full track data transfers, connect time is 16.2 ms.

Note that request overhead is measured per logical request. IO
CPU time, disconnect time, and connect time are all measured per
disk access.

7.1.1. Synchronizing Multiple Disks
There are two types of synchronization between multiple

disks, seek distance and rotational latency. In most cases, such as
RAID Level 0 full stripe reads or writes and RAID Level 1 indivi-
dual writes, only rotations need to be synchronized. Seek distance
among disks that cooperate in a request are usually the same—the
sole exception being RAID Level 5 small writes. Because work-
loads are homogeneous, disks that cooperate in any request
cooperate for all requests. For example, for RAID Level 1 indivi-
dual writes, each data or shadow disk pair always seek to the same
track. Thus, for RAID Level 0 full stripe reads or writes, RAID
Level 1 full stripe reads or writes and individual writes, and RAID
Level 5 full stripe reads or writes, multiple rotations lengthen the
total request time in proportion to the number of disks involved.
Synchronizing N multiple rotations is equivalent to taking the
maximum of N uniform random variables distributed between 0
and 16.7 ms. The expected value of such a distribution is

N +1
N

� ������� ×16.7 ms. The difference between this expected value and

the average rotational latency of one disk (8.3 ms) is the penalty
for synchronizing multiple rotations.

The second type of synchronization, synchronizing both
seeks and rotations, is relevant only for RAID Level 5 individual
writes. The RAID paper assumed that a RAID Level 5 individual
write was four equal disk accesses. Because the four disk
accesses are issued to two disks, each disk sees a pair of requests:
first a read of the current data or parity, then a write of the new
data or parity. The lifetime shown in Figure 3 focuses on one of
these disks, say the data disk. Note the two distinct disk accesses
in the broken out trace of RAID Level 5 individual writes in Fig-
ure 3. For the first disk access (the read), we need to add syn-
chronization because we are using two independent disks. How-
ever, because parity is on different disks for different stripes, two
disks that cooperate in one request do not necessarily cooperate in
the next request. Thus, two disks in a request could have different
current head positions. Because of this, we need to synchronize
not only different rotations, but also different seek distances. Just
as we synchronized multiple rotations by taking their maximum,
we synchronize multiple seek + rotations by taking the maximum
of a number of random variables, each distributed as a seek +
rotation. By Monte Carlo simulation, we find this adds approxi-
mately 3.6 ms to an average seek plus an average rotation.

For the second disk access (the write), no seek is needed.
Because the disk has just finished reading the old data, the new
data can be written without moving the disk head. However, we
do see a full rotation instead of an average rotation. Thus, we
save an average seek (15 ms) but pay an extra half rotation (8.3
ms). We refer to this as RAID Level 5 saving a seek.

7.1.2. Request Overhead
Request overhead changes drastically with the number of

disks involved in a request. For example, for RAID Level 0,
request overhead jumps from .7 ms for individual reads/writes to
10.9 ms for full stripe reads/writes. This drastic increase is a side
effect of running on an idle system. In an idle system, queues at
the device driver are empty, and each disk access of a multiple
disk request starts as soon as that access reaches the driver queue.
Starting these disk accesses delays the rest of the logical request
from being issued. Under normal loads, disks are usually working
on a previous request, and the entire logical request is free to be
issued without waiting for any disk I/O’s to start. For example,
for full stripe requests to a non-idle system, the request overhead
is approximately 3.5 ms per logical request.

Request overhead also increases with the number of total
disks in the system. This is due to the increased overhead in
managing more disks. In general, this effect is much less pro-
nounced on a non-idle system. However, it is true that RAID
Level 1’s 20 disks require more CPU power than RAID Level 0’s
10 disks. By limiting the experiments to 20 disks as discussed in
Section 5.2, we prevent this increased CPU demand from unfairly
penalizing the throughput per disk of RAID Level 1.

7.1.3. Seek Optimization
RAID Level 1 reads are almost identical to RAID Level 0

reads. A key difference, however, is the disconnect time. The
disconnect time of RAID Level 1 is shorter because RAID Level
1 requests can choose between two disks which have the same
data. By choosing the copy of the data which results in the shorter
seek time, the average disconnect time drops 3-4 ms from RAID
Level 0 [Bitton 88].

7.2. Analyzing a Saturated System
As discussed in Section 6, we control system load by con-

trolling the number of outstanding logical requests in the system.
Increasing the target 90th percentile response time allows the sys-
tem to have more outstanding logical requests. This causes higher
disk utilization and correspondingly higher throughput. By vary-
ing the load, we can graph absolute throughput per disk versus
90th percentile response time. Figures 4 show these graphs for
the RAID paper workloads: large reads, large writes, small reads,
and small writes. As before, large means a full stripe; small
means an individual request (one track).

Note that the minimum 90th percentile response times are
those discussed in Section 7.1. As expected, when we allow
requests to have longer service times, we see higher throughput.
Eventually, when the disks are fully utilized, increasing the 90th
percentile response time no longer increases the throughput. The
RAID paper analysis deals with this point of maximum
throughput. By presenting RAID Levels 1 and 5’s maximum
throughput per disk relative to RAID Level 0’s, we can make a
direct comparison to the performance predicted in the RAID paper
(Figure 5).

Figure 5 shows that, for most of these workloads, the sim-
ple model in the RAID paper accurately predicts the actual perfor-
mance of real hardware. However, there are significant differ-
ences. In RAID Level 1, relative throughput for reads is higher
than predicted by our simple model. Recall that the simple model
assumed all disk accesses took a constant amount of time.
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Figure 4: Throughput vs. Response Time. Throughput is graphed as a function of 90th percentile response time target for 4 types of I/O requests: indivi-
dual reads and writes, full stripe reads and writes. These graphs were generated by keeping a fixed number of logical requests in the queue and measuring the
resulting throughput and 90th percentile response time. The data distribution used here is aligned. Because of the random distribution of requests, work-
loads with individual requests require a much higher load to saturate the disk system than workloads with full stripe requests.
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Figure 5: Comparing Maximum Throughput Against Simple Model.
The measured maximum throughput per disk relative to RAID Level 0 is
compared against the estimates made in the RAID paper [Patterson 88].
The only significant differences occur for RAID Level 1 reads, due to seek
optimization, and RAID Level 5 individual writes, due to saving a seek.
� ���������������������������������������������������������������������������������������������������������

Because of seek optimization, this assumption is no longer valid.
We adjust the simple model by defining relative throughput as the
total disk-time used by a RAID Level 0 logical request divided by
the total disk-time used by the RAID Level in question. When
seen in this light, we can easily adjust for different access times.
Due to seek optimization, the disk-time for RAID Level 1 reads is
4 ms per disk less than RAID Level 0. This represents approxi-
mately 10% of the total disk-time, so the adjusted simple model
predicts a relative throughput of 110% for RAID Level 1. The
measured relative throughput is close to this prediction, ranging
from 112% - 115%.

A RAID Level 5 small write causes two disks to perform a
seek, an average rotation, a full track transfer, a full rotation, and a
second full track transfer (each disk takes 72 ms, yielding a disk-
time of 144 disk-ms). The total disk-time for RAID Level 0 small
writes is approximately 40 disk-ms. Thus, while the simple model
predicts a relative throughput of 25%, the adjusted simple model
predicts a relative throughput of 40/144 = 28%. This agrees with
the measured performance. The adjusted model does not change
the relative throughput estimates for other RAID Levels and
workloads.

7.3. Maintaining Equal Response Times
Section 7.2 compared the maximum throughputs of dif-

ferent RAID Levels. However, the different RAID Levels reach
maximum throughput at different response times. It is unfair to
compare RAID Levels at different target response times. By forc-
ing all RAID Levels to have equal 90th percentile response times,
we generate a fairer comparison. Figure 4 showed that throughput
for all RAID Levels drops as the 90th percentile response time
target decreases. To better understand how throughput changes
with response times for each RAID Level, we graph throughput
per disk versus 90th percentile response time in a slightly different
way. Instead of absolute throughput per disk, we graph the per-
centage of each RAID Level’s maximum throughput. For exam-
ple, since RAID Level 0’s maximum throughput per disk is .906

MB/s/disk for small writes, RAID Level 0 throughput is graphed
as a percentage of .906 MB/s/disk in Figure 6a. RAID Level 1’s
maximum throughput per disk for small writes is .438 MB/s, so
throughput per disk is graphed as a percentage of .438 MB/s in
Figure 6a.

These response time behavior graphs show us what to
expect when we maintain equal 90th percentile response times for
each RAID Level. For example, in Figure 6a, we see that at any
90th percentile response time less than 1000 ms, RAID Level 5
achieves a lower percentage of its maximum throughput than
RAID Level 0. This is caused by RAID Level 5 small writes’
longer idle response times (Section 7.1.1). Thus, RAID Level 5’s
relative throughput (relative to RAID Level 0) for small writes
will decrease. In contrast, RAID Level 1 small writes follow
RAID Level 0 small writes very closely at all 90th percentile
response times. Thus we expect RAID Level 1 small writes to
maintain the same relative throughput.

In the remainder of this paper, we will use one specific
90th percentile response time for each workload. The target 90th
percentile response time for each workload is set at four times the
minimum 90th percentile response time for that workload on an
idle RAID Level 0 (Section 7.1). That is, if 90% of all requests
on an idle RAID Level 0 return in time t, we control the response
time such that 90% of all requests return in time 4*t. For full
stripe requests, target 90th percentile response time is 268 ms; for
individual requests, target 90th percentile response time is 200
ms1. This is intended to allow some freedom to queue requests in
order to achieve higher throughput without allowing response
times to grow too large. Notice that four times the idle RAID
Level 0 90th percentile response time for large requests easily
exceeds the 90th percentile response time needed to achieve max-
imum throughput. An interesting future experiment would be to
restrict large requests to a small percent over the minimum 90th
percentile response time.

Figure 7 shows the relative throughput per disk of RAID
Levels 1 and 5 before and after equalizing to these target 90th per-
centile response times. Note that at the particular 90th percentile
response times we chose, only two workloads show significant
change relative to RAID Level 0: RAID Level 5 small writes and
RAID Level 1 small reads. We discussed previously how the
throughput for RAID Level 5 small writes changed as we main-
tained equal 90th percentile response times. Similarly, Figure 6b
shows that, at our 200 ms target 90th percentile response time,
RAID Level 1 is at a slightly higher percentage of its maximum
throughput than RAID Level 0.

This section has focused on 90th percentile response times.
We have seen that limiting 90th percentile response times causes
less than maximum throughput for all RAID Levels. In general,
RAID Levels with longer idle response times are penalized more
than RAID Levels with shorter idle response times.

8. More Variable Workloads
In Section 7, we analyzed the RAID paper workload of full

stripe or individual requests, 100% reads or 100% writes. We
started by analyzing idle systems (minimum 90th percentile
response time) and saturated systems (maximum throughput). We
finished by analyzing systems with equivalent 90th percentile
response times. While still maintaining equivalent 90th percentile
response times, we now begin modifying the workload com-
ponents: request size, data distribution, and read/write ratio.
�����������������������������������������������������������������������

1The average response times at these target 90th percentile response
times are 230 ms for full stripe requests and 104 ms for individual re-
quests.
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Figure 6: Percentage of Maximum Throughput. Throughput per disk for each RAID Level is shown as a percentage of the maximum throughput per disk
for that RAID Level. Thus, we can see the relative effects of changing the 90th percentile response time target. For example, in Figure 6a, RAID Level 5
achieves a lower percentage of its maximum throughput than either RAID Level 0 or 1 at all target response times. Individual reads and writes are 40 KB;
full stripe reads and writes are 400 KB. Data distribution is aligned.



8.1. Distributing Request Sizes
A key characteristic of any workload is the logical request

size distribution. Until now, all large requests have been full
stripe requests and all small requests have been individual
requests. Thus, with 10 disks and track-level striping, large
requests have been exactly 400 KB and individual requests have
been exactly 40 KB. However, in real-world systems, large
requests are often much larger than 400 KB [Bucher 80] and small
requests are often much smaller than 40 KB [Ousterhout 85, Anon
85]. Also, applications rarely issue requests that are all the same
size. We therefore make two changes to the request size distribu-
tion:
(1) We no longer restrict the workloads to one particular size.

Rather, we use a distribution of request sizes. For large
requests, we generate request sizes derived from a normal
distribution; for small requests, we generate request sizes
based on an exponential distribution.

(2) We change the average size of both large and small
requests: an average large request changes from 400 KB
to 1.5 MB (approximately 4 stripes); an average small
request changes from 40 KB to 6 KB, the closest we could
come to one 4KB sector.

Thus, the large requests get larger and the small requests
get smaller. This significant change will alter many of our results;
qualitatively, however, what we have learned so far will still hold.
Seek optimization will continue to benefit RAID Level 1 reads;
RAID Level 5 small writes will still save a seek. Changes to our
target 90th percentile response times will follow the changes in
RAID Level 0 minimum 90th percentile response times (new 90th
percentile response time targets will be 780 ms for large requests
and 148 ms for small requests).

Because large requests using our new size distributions will
usually cover multiple stripes, each disk transfers more informa-
tion per seek than before and absolute throughput will increase by

r,w: request size = individual = 40 KB

R,W: request size = full stripe = 400 KB
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Figure 7: Before and After Equalizing Response Times. Throughput
per disk relative to RAID Level 0 is shown before and after maintaining
equal 90th percentile response times. We see that equalizing to our target
90th percentile response times affects relative throughput for RAID Level
1 individual reads and RAID Level 5 individual writes.

60%-80% for all RAID Levels. In contrast, because small
requests are smaller on average, less data is transferred per seek
and absolute throughput for small requests will decrease 75%-
80% for all RAID Levels. In Figure 8, we show the relative
throughput before and after we distribute and change the means of
the request sizes. The following four subsections discuss these
results.

8.1.1. RAID Level 1
With larger requests, each disk access takes longer.

Because of this, savings due to seek optimization are a smaller
fraction of the access time of each disk. Thus, RAID Level 1
large reads, which benefit from seek optimization, show less per-
formance advantage over RAID Level 0. However, we do expect
RAID Level 1 to still have slightly higher throughput per disk
than RAID Level 0. Unfortunately, the request overhead for
RAID Level 1 is 3-4 ms higher than for RAID Level 0. This can-
cels out the slight performance advantage of seek optimization,
and makes RAID Level 1 throughput for large reads equal to
RAID Level 0.

With the other workloads, large writes, small reads, and
small writes, the relative throughput of RAID Level 1 remains
unchanged.

8.1.2. RAID Level 5 Small Writes
As shown in Figure 8, RAID Level 5 small writes improve

in relative throughput per disk. Two factors combine to cause this
improvement. First, by saving a seek on the data and parity write,
we save a fixed amount of time. With smaller requests, the total
request time is shorter and this seek savings is a slightly larger
fraction of the entire request time. This larger seek savings
accounts for 1% of the 6% change we see in Figure 8.

R,W: request size = normal distribution, mean 1.5 MB
r,w: request size = exponential, mean 6 KB
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Figure 8: Relative Throughput Before and After Changing Request
Sizes. In this figure, we see how the throughput of RAID Levels 1 and 5
change relative to RAID Level 0 as request sizes are distributed. Distri-
buting the request sizes decreased the relative throughput per disk for
RAID Level 1 large reads due to the lessening importance of seek optimi-
zation. RAID Level 5 large reads decreased in relative throughput due to
reading the parity tracks. RAID Level 5 large writes decreased in relative
throughput due to the presence of partial stripe writes. RAID Level 5
small writes increased in relative throughput due to a different 90th per-
centile response time target. Data distribution is aligned.



Most of the improved relative throughput is due to select-
ing a 90th percentile response time target which is more favorable
for RAID Level 5 small writes than the 90th percentile response
time target for undistributed request sizes. In Figure 6a,
throughput at the target response time (200 ms) was at 59% of
maximum throughput for RAID Level 5 and 81% for RAID Level
0. After distributing requests sizes, a graph similar to Figure 6a
would show that throughput at the target response time (148 ms)
remains roughly the same for RAID Level 0 (85%). However,
this graph would also show that RAID Level 5 at this response
time is closer to its maximum throughput (72%) than before. As a
result, RAID Level 5’s relative throughput increases.

8.1.3. RAID Level 5 Large Reads
For full stripe reads (before distributing request sizes), the

relative throughput of RAID Level 5 was 100%. This result was
expected, as no extra redundant information needed to be read,
and the number of disk accesses in the physical request equaled
the number of disk accesses in the logical request. However, with
larger requests, covering multiple stripes, we can no longer simply
read the data and ignore parity. For example, in Figure 1c, if the
logical request reads logical tracks 0-13, disk 1 must read its phy-
sical tracks 0, 2, and 3. Because the experiment is run in user-
level, we do not have control of the channel program. Rather,
because physical tracks 0, 2, and 3 are not contiguous, we must
issue two separate I/O’s to disk 1. First, read physical track 0.
Second, read physical track 2-3. Unfortunately, by the time the
driver is able to complete the first I/O and issue the second I/O,
the disk has rotated enough to miss the start of track 2. Thus,
issuing two I/O’s in order to skip over the parity track costs a full
rotation, the same as simply reading the parity track and issuing
one large I/O.

An average size (4 full stripes, or 40 tracks) request will
need to skip over two parity tracks. The overhead, then, is 2/40 or
5%. This accounts for the 5% drop in throughput shown in Figure
8.

8.1.4. RAID Level 5 Large Writes
For writes which exactly cover a number of full stripes,

performance is straightforward. To maintain the parity informa-
tion, one parity track must be written for every 10 data tracks.
Full stripe writes do not need to read any information. However,
when request sizes become distributed, most requests will not
cover an exact number of full stripes. Usually, one or both ends
of the request will be a partial stripe. For example, in Figure 1c, if
a logical request covers logical tracks 0-13, stripes 0, 1, and 2 are
full stripe writes but stripe 3 is only partially written (logical
tracks 12 and 13). Thus, although stripes 0-2 act as full stripe

writes with relative throughput
N

N −1
� ������� , stripe 3 acts as a partial

stripe write. As discussed in Section 3, partial stripe writes can

have relative performance ranging from 25% to
N

N −2
� ������� , depending

on the size of the partial stripe.
In this section, we allow at most one partial stripe per

request. This is done by using the aligned data distribution (see
Section 6). With this data distribution, requests larger than one
full stripe are forced to either begin or end at a full stripe boun-
dary. Introducing one partial stripe per request causes the relative
throughput of RAID Level 5 large writes to drop from 90% to
80%. When we use data distributions that do not align data on
full stripe boundaries, we see up to two partial stripes per request,
and another 10% drop in relative throughput of RAID Level 5
large writes. As requests get larger and partial stripes become a
smaller fraction of the entire request, this penalty for partial stripe
writes will decrease. For instance, for requests over 100 MB, the

penalty for partial stripe writes might be less than 1%. In the
remainder of the paper, we use the unaligned data distribution and
allow more than one partial stripe per request.

8.2. Mixing Reads and Writes
Many different types of workloads exist in the real world.

Very few, if any, are 100% reads or writes. We have used 100%
reads or writes to better understand how varying other workload
parameters affects performance. Now, keeping equalized 90th
percentile response times, distributed request sizes, and unaligned
data distributions, we at last mix reads and writes. In Figure 9a,
we see that, for large requests, at almost all mixtures of reads and
writes, RAID Level 5 has significantly higher throughput per disk
than RAID Level 1. For small requests (Figure 9b), we see that,
because of RAID Level 5’s poor small write performance and
RAID Level 1’s seek optimization for reads, RAID Level 1 has
higher throughput per disk than RAID Level 5. Notice that
throughput at all intermediate read/write ratios is not well-
modeled by a weighted mixture of the 100% read and 100% write
performance. Such a linear model is generally optimistic.

9. Summary
We have started with a simple model for performance and,

step by step, measured performance with more and more variable
workloads. We first measured maximum throughput using the
RAID paper workload of 100% reads or writes, individual or full
stripe requests. We found that the simple model accurately
predicted performance for most cases. The main exception was
RAID Level 1 reads, where seek optimization causes higher than
expected throughput.

Second, we equalized 90th percentile response times. We
found that equalizing response times hurt the relative throughput
of RAID Levels with higher idle system response times (RAID
Level 5 small writes) and helped the relative throughput of RAID
Levels with lower idle system response times (RAID Level 1
small reads).

Third, we distributed the request sizes and made large
requests larger and small requests smaller. We found that seek
optimization ceased to noticeably help RAID Level 1 large reads.
RAID Level 5 large reads were penalized for skipping parity
tracks. RAID Level 5 large writes suffered from partial stripe
writes. Even more partial stripe writes were generated by allow-
ing unaligned requests.

In conclusion, we look at Figure 9. Note that for small
requests, RAID Level 1 consistently yields higher throughput per
disk than RAID 5. In contrast, for large requests, RAID Level 5
almost always performs better than RAID Level 1. From 0%
reads to almost 95% reads, RAID Level 5 yields higher
throughput per disk than RAID Level 1. We conclude that for
applications with predominantly large requests, RAID Level 5,
rotated parity, clearly outperforms RAID Level 1, mirroring.

The full version of this paper appears in [Chen 89] and
explores additional issues, such as further varying the request size
distribution, varying the unit of interleaving, scaling the number
of disks, and connecting more than one disk per string. We are
continuing to analyze the performance of disk arrays. In particu-
lar, we are interested in arrays of small disks. We have built and
are currently evaluating a disk array of 30-50 CDC Wren 5.25"
disk drives. One step in that evaluation will be to carry out exper-
iments similar to the ones in this paper. Further work will entail
building a file system and running real world benchmarks on that
system.
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