When Virtual Is Better Than Real

Peter M. Chen and Brian D. Noble
Department of Electrical Engineering and Computer Science
University of Michigan
pmchen@umich.edu, bnoble@umich.edu

Abstract

This position paper argues that the operating system and
applications currently running on a real machine should
relocate into a virtual machine. This structure enables ser-
vices to be added bel ow the operating system and to do so
without trusting or modifying the operating system or
applications. To demonstrate the usefulness of this struc-
ture, we describe three services that take advantage of it:
secure logging, intrusion prevention and detection, and
environment migration.

1. Intr oduction

First proposedandusedin the 1960s,virtual machines
areexperiencinga revival in the commercialandresearch
communities. Recent commercial products such as
VMware and VirtualPC faithfully emulatecompletex86-
basedcomputers.These productsare widely used (e.g.
VMwarehasmorethan500,000registeredusers)for pur-
posessuchasrunningWindows applicationson Linux and
testing software compatibility on different operatingsys-
tems.At leasttwo recentresearctprojectsalsousevirtual
machines:Disco usesvirtual machinesto run multiple
commodityoperatingsystemson large-scalemultiproces-
sors[4]; Hypervisorusesvirtual machinego replicatethe
execution of one computer onto a backup [3].

Our positionis that the operatingsystemand applica-
tions that currently run directly on real machinesshould
relocateinto a virtual machinerunningon a real machine
(Figurel). The only programghatrun directly on thereal
machinewould be the host operatingsystem,the virtual
machinemonitor, programsthat provide local administra-
tion, and additional services enabled by this virtual-
machine-centricstructure.Most network serviceswould
runin thevirtual machinetherealmachinewould merely
forward netverk paclets for the virtual machine.

This virtual-machine-centrianodel allows us to pro-
vide servicesbelow mostcoderunning on the computey
similar to providing servicesin the hardware of a real

machine.Becausethese servicesare implementedin a
layer of software (the virtual machinemonitor or the host
operatingsystem),they canbe provided more easily and
flexibly thanthey couldif they wereimplementedy mod-
ifying the hardware.In particular we canprovide services
belov the guestoperatingsystemwithout trustingor mod-
ifying it. We believe providing servicesat this layer is
especially useful for enhancing security and mobility

This position paperdescribeghe generalbenefitsand
challengeghat arisefrom running mostapplicationsin a
virtual machine,then describessome example services
and alternatie ways to preide those services.

2. Benefits

Providing servicesby modifying a virtual machinehas
similar benefitsto providing servicesby modifying a real
machine.Theseservicesun separatelyrom all processes
in the virtual machine,including the guestoperatingsys-
tem. This separationbenefits security and portability.
Securityis enhancedecausehe servicesdo not have to
trustthe guestoperatingsystemgthey have only to trustthe
virtual machinemonitor, which is considerablysmaller
andsimpler Trustingthe virtual machinemonitor is akin
to trustingareal processorbothexposea narrav interface
(theinstructionsetarchitecture)ln contrastservicesn an
operatingsystemare more vulnerableto malicious and
randomfaults, becauseoperatingsystemsare larger and
moreproneto securityandreliability holes.Separatinghe
servicesfrom the guestoperatingsystemalso enhances
portability. We canimplementthe serviceswithout need-
ing to changethe operatingsystem,so they can work
across multiple operating systemndors and ersions.

While providing servicesin a virtual machinegains
similar benefitsto providing servicesin a real machine,
virtual machineshave someadwantagesver the physical
machinesthey emulate.First, a virtual machinecan be
modifiedmoreeasilythana physicalmachinepecausehe
virtual machinemonitor that createsthe virtual machine

guest
application

guest
application

guest
application local

administratve

guest operating system

tool

virtual machine monitor + proposed services

host operating system + proposed servici

host machine

Figure 1: Virtual-machine structure. In this model, most applications that currently run on real machines re-
locate into a virtual machine running on the host machine. The virtual machine monitor and local administrative
programs run directly on the host machine. In VMware, the virtual machine monitor issues 1/0O through the host
operating system, so services that manipulate 1/0 events can be implemented in the host operating system [2].

abstractions alayerof software.Secondijt is mucheasier
to manipulatethe stateof a virtual machinethanthe state
of aphysicalmachine Thestateof thevirtual machinecan
be saved, cloned,encrypted moved, or restored noneof
which is easyto do with physical machinesThird, a vir-
tualmachinehasavery fastconnectiorto anothercomput-
ing systemthatis, the hostmachineon which the virtual
machine monitor is running. In contrast, physical
machinesare separatedy physical networks, which are
slower than the memory bus that connectsa virtual
machine with its host.

3. Challenges

Providing servicesat the virtual-machinelevel holds
two challenges.The first is performance.Running all
applicationsabove the virtual machinehurts performance
dueto virtualization overhead For example,systemcalls
in a virtual machine must be trapped by the virtual
machinemonitor and re-directedto the guestoperating
system.Hardware operationgssuedby the guestmustbe
trappedby thevirtual machinemonitor, translatedandre-
issued. Some overhead is unavoidable in a virtual
machine;the servicesenabledby that machinemustout-
weigh this performancecost. Virtualizing an x86-based
machineincursadditionaloverhead$ecause86 proces-
sorsdon't trap on someinstructionsthat mustbe virtual-
ized (e.g. readsof certainsystemregisters).One way to
implement a virtual machinein the presenceof these
“non-virtualizable”instructionsis to re-write the binaries
atruntime to forcetheseinstructionsto trap[13], but this
incurs significant werhead.

Thesecondchallengeof virtual-machineserviceds the
semanticap betweerthevirtual machineandthe service.
Servicedn thevirtual machineoperatebelow the abstrac-
tions provided by the guestoperatingsystemandapplica-
tions. This can make it difficult to provide services.For
example,it is difficult to provide a servicethat checksfile

systemintegrity without knowledgeof on-diskstructures.
Someservicesdo not needary operatingsystemabstrac-
tions; securdogging (Sectiorn4.1) is anexampleof sucha
service.For serviceghatrequirehigherlevel information,
one must re-createthis information in someform. Full
semanticinformation requiresre-implementingguestOS
abstractiongin or belown the virtual machine.However,
there are several abstractions—virtualaddressspaces,
threadsof control, network protocols,andfile systemfor-
mats—thatare sharedacrossmary operatingsystemsBy
observingmanipulationsof virtualized hardware,one can
reconstructthesegeneric abstractionsgnablingservices
that require semantic information.

4. Example services

In this section,we describethree servicesthat can be
provided at the virtual-machinelevel. Othershave used
virtual machinedor mary otherpurposessuchasprevent-
ing one sener from monopolizing machine resources,
educationeasingthe developmentof privileged software,
andsoftware developmentfor differentoperatingsystems
[10].

4.1. Securelogging

Most operatingsystemdog interestingeventsaspartof
their securitystrateyy. For example,a systemmightkeepa
record of login attemptsand receved/sentmail. System
administratoraisethe loggedinformationfor a variety of
purposesFor example,the log may help administrators
understanchow a network intruder gained accesso the
system,or it may help administratorknow whatdamage
theintruderinflicted afterhe gainedaccessUnfortunately
the logging usedin current systemshas two important
shortcomings: integrity and completeness.First, an
attacler caneasilyturn off logging after he takesover the
systemihusthe contentsof thelog cannotbe trustedafter

the point of compromise Second,t is difficult to antici-

pate what information may be neededduring the post-

attackanalysis;ithusthe log may lack informationneeded
to discernhow the intrudergainedaccesr what actions
he took after gining access.

Virtual machinegrovide anopportunityto correctboth
shortcoming®f currentlogging. To improve the integrity
of logging, we can move the logging software out of the
operatingsystemand into the virtual machinemonitor.
The virtual machinemonitoris muchsmallerandsimpler
thanthe guestoperatingsystemandhenceis lessvulnera-
ble to attack.By moving the logging softwareinto the vir-
tual machinemonitor, we move it out of the domainthat
an intruder can control. Even if the intruder gains root
accesor completelyreplaceshe guestoperatingsystem,
he cannotaffect the logging software or the loggeddata.
Loggeddatacanbewritten quickly to the hostfile system,
takingadwantageof thefastconnectiorbetweerthevirtual
machine monitor and the host computer

To improve the completenessf logging, we propose
logging enoughdatato replay the completeexecution of
thevirtual maching3]. Theinformationneededo accom-
plish a faithful replay is limited to a checkpointwith
which to initialize the replayingvirtual machine plusthe
non-deterministicaventsthat affectedthe original execu-
tion of the virtual machinesince the time of the saved
checkpoint.Thesenon-deterministiceventsfall into two
categories:externalinputandtime. Externalinputrefersto
datasentby a non-loggedentity, suchasa humanuseror
an external computer(e.g. a web sener). Time refersto
the exact point in the executionstreamat which an event
takesplace.For example,to replaytheinterleaving pattern
betweenthreads,we must log which instructionis pre-
emptedby a timer interrupt [17] (we assumethe virtual
machine monitor is not running on a multi-processor).
Note that most instructions executed by the virtual
machinedo not needto be logged; only the relatively
infrequent non-deterministiovents need to be logged.

Using the virtual machinemonitor to perform secure
logging raisesa numberof researchquestions.The first
questionregardsthe volumeof log dataneededo support
replay We believe thatthe volumeof datathatneedgo be
logged will not be prohibitive. Local non-deterministic
events,suchasthreadschedulingeventsand userinputs,
areall small. Datafrom disk readscanbe large, but these
aredeterministiqithoughthetime of thedisk interruptsare
non-deterministic).The largest producerof log data is
likely to beincomingnetwork paclets.We canreducethe
volumeof loggednetwork datagreatlyby usingmessage-
logging techniquegdevelopedin the fault-tolerancecom-
munity. For example,thereis no needto log message&ata
recevedfrom computerghatarethemselesbeinglogged,
because¢hesecomputersanbereplayedto reproducehe

sentmessagelata[11]. If all computerson the samelocal
network cooperateduring logging and replay then only
messageseceved from external sitesneedto be logged.
For an importantclassof seners (e.g. web seners), the
volume of datareceved in messagess relatively small
(HTTP GET andPOSTrequests)Last,asdisk pricescon-
tinue to plummet, more computers(especially seners
worthy of being logged) will be able to devote mary
gigabytes to store log data [20].

A secondresearctdirectionis designingtools to ana-
lyze the behaior of avirtual machineduringreplay Writ-
ing useful analysistools in this domainis challenging
becauseof the semanticgap betweenvirtual machine
events and the correspondingoperatingsystemactions.
The analysistool may have to duplicatesomeoperating
systemfunctionality to distill the log into usefulinforma-
tion. For example, the analysistool may needto under-
standthe on-diskfile systemformat to translatethe disk
transfersseenby thevirtual machinemonitorinto file-sys-
tem transfersissuedby the operatingsystem.Translating
virtual machine events into operating system events
becomesespeciallychallenging(and perhapsmpossible)
if the intruder modifiesthe operatingsystem.Onefamily
of analysistools we hope to develop trace the flow of
informationin the system,so that administratorscan ask
questionslike “What network connectionscausedthe
passwerd file to change?”.

4.2. Intrusion prevention and detection

Anotherimportantcomponento a securitystrat@y is
detectingand thwarting intruders.ldeally, thesesystems
prevent intrusionsby identifying intrudersas they attack
the system[9]. Thesesystemsalsotry to detect intrusions
after the fact by monitoring the events and state of the
computerfor signsthata computethasbeencompromised
[8, 12]. Virtual machineffer the potentialfor improving
both intrusion preention and intrusion detection.

Intrusion preventerswork by monitoring events that
enteror occur on the system,suchasincoming network
paclets. Signature-basegreventers match these input
events aguinst a databaseof known attacks; anomaly-
basedpreventerslook for input eventsthat differ from the
norm. Both thesetypesof intrusionpreventershave flaws,
however. Signature-basesystemscanonly thwart attacks
that have occurredin the past,beenanalyzed,and been
integratedinto the attack databaseAnomaly-basedsys-
temscanraisetoo mary falsealarmsandmaybe suscepti-
ble to re-training attacks.

A moretrustworthy methodof recognizinganattackis
to simply runtheinputeventonthereal systemandseeing
how the systemrespondsOf course,running suspicious
eventson the real systemrisks compromisingthe system.

However, we cansafelyconducthistypeof testonaclone
of thereal system.Virtual machinesnake it easyto clone
a running system,and an intrusion preventercanusethis
cloneto testhow a suspiciousnput eventwould affectthe
real system.The clone can be run as a hot standbyby
keepingit synchronizedwith the real system(using pri-
mary-backugechniques)or it canbe createdbn thefly in
responseo suspiciousvents.In eithercase clonesadmit
more powerful intrusion preventers by looking at the
responsef the systemto the input eventratherthanlook-
ing only at the input event. Becauseclonesare isolated
from thereal system they alsoallow anintrusionpreven-
ter to run potentially destructve teststo verify the sys-
tem’s health. For example, an intrusion preventer could
forwarda suspiciougacletto a cloneandseeif it crashes
ary running processesOr it could processsuspicious
input on the clone,thenseeif the clone still respondgo
shutdevn commands.

A potentialobstacleo usingclone-basedhtrusionpre-
ventionis the effect of clone creationor maintenancen
the processingof innocentevents. To avoid blocking the
processingof innocent events, an intrusion preventer
would ideally run the clonein the backgroundAllowing
innocenteventsto go forward while evaluatingsuspicious
eventsimplies that theseeventshave looseorderingcon-
straints. For example, a clone-basedbreventer could be
usedto teste-mailmessagefor viruses,becauserdering
constraints between e-mail messages arg loose.

Intrusiondetectordry to detectthe actionsof intruders
after they have compromiseda system. Signs of an
intrudermight includeburstsof outgoingnetwork paclets
(perhapsndicatinga compromiseccomputerlaunchinga
denial-of-serviceattack), modified systemfiles [12], or
abnormalsystem-callpatternsfrom utility programs[8].
As with systemlogging,theseintrusiondetectorgall short
in integrity or completeness-ost-basedntrusion detec-
tors (such as those that monitor systemcalls) may be
turnedoff by intrudersafterthey compromisethe system,
sothey areprimarily usefulonly for detectingtheactof an
intruder breaking into a system.If an intruder evades
detectionat the time of entry, he canoften disarma host-
basedintrusion detectorto avoid detectionin the future.
Network-based intrusion detectors can provide better
integrity by beingseparatérom the hostoperatingsystem
(e.g.in a standalonanetwork router), but they suffer from
a lack of completenessNetwork intrusion detectorscan
seeonly network paclets;they cannotseethemyriadother
eventsoccurringin acomputersystemsuchasdisktraffic,
keyboard ®ents, memory usage, and CPU usage.

Implementingpost-intrusiondetectionat the level of a
virtual machine offers the potential for providing both
integrity and completenessLike a network-basedintru-
sion detectoy virtual-machine-basedntrusion detectors

areseparatdrom the guestoperatingsystemandapplica-
tions. Unlike network intrusion detectors,however, vir-
tual-machine intrusion detectors can see all events
occurring in the virtual machinethey monitor. Virtual-
machineintrusion detectorscan usethis additionalinfor-
mationto implementnew detectionpolicies.For example,
it could detectif the virtual machinereadscertain disk
blocks (e.g. containingpassverds), thenissuesa burst of
CPU actvity (e.g. crackingthe passwrds). Or it could
detectif thevirtual machinehasintenseCPU activity with
no correspondingdyboard actrity.

As with securelogging, a key challengein post-intru-
sion detectionin a virtual machineis how to bridge the
semanticgap betweenvirtual machineeventsand operat-
ing systemevents.This challengés similarto thatencoun-
tered by network-basedintrusion detectors,which must
parse the contents of IP patk.

4.3. Environment migration

Processnigrationhasbeena topic of interestfrom the
early daysof distributedcomputing.Migration allows one
to packagea running computation—eithem processor
collectionof processes—anuhove it to a differentphysi-
cal machine.Using migration, a users computationsan
move as he does,taking advantageof hardware that is
more corenient to the uses’current location.

The earliest systems,including Butler [15], Condor
[14], and Sprite [6], focused on load sharing across
machinegatherthansupportingmobile users Thesdoad-
sharingsystemgypically left residualdependenciesn the
sourcemachinefor transpareng andconsideredan indi-
vidual processasthe unit of migration. This view differs
from thatof mobile userswho considerthe unit of migra-
tion to bethecollectionof all applicationgunningon their
current machine.

Recently migrationsystemshave begunto addresghe
needsof mobile users.Examplesof systemssupporting
mobility include the Teleportingsystem[16] and SLIM
[18]. These systems migrate the user interface of a
machine,leaving the entire set of applicationsto run on
theirhostmachineln thelimit, thedisplaydevice canbea
stateless,thin client. This approachprovides a better
matchto the expectationf amigratinguser andneednot
dealwith residualdependenciedowever, thesesystems
areintolerantof evenmoderatdatengy betweenthe inter-
facedevice andthe cycle sener, andthussupportonly a
limited form of user mobility

Migration basedon virtual machinesolvestheseprob-
lems. Sincethe entire (virtual) machinemoves,thereare
no residualdependenciesA users ervironmentis moved
enmassewhich matches users expectationsBy taking
adwantageof the narrav interfaceprovided by the virtual

machine very simple migrationcodecanrelocatea guest
operating system and its applications.

Thereare several challengeghat mustbe overcometo
provide migrationat the virtual-machindevel. Thefirst is
thata machinehassubstantiaktatethatmustmove with it.
It would beinfeasibleto move this statesynchronouslyn
migration. Fortunately most of this stateis not needed
immediately and much may never be neededat all. We
canpredictwhich stateis neededoonby takingadwantage
of temporallocality in disk and memory accessesThis
predictionis complicatedby the guestoperatingsystems
virtual memory abstraction, because the physical
addresseseenby a virtual machinemonitor are related
only indirectly to accessessuedby applicationsWe can
reconstructnformationaboutvirtual to physicalmappings
by observingmanipulationof virtualized hardware ele-
ments such as the TLB.

After identifying the statelik ely to be neededsoon,we
needa mechanisnio supportmigrationof thatstateto the
new virtual machine.If migrationtimesare exposed,one
cantake adwvantageof efficient, wide-areaconsisteng con-
trol schemessuchasthat provided by Fluid Replication
[5]. Fluid Replicationprovides safety visibility, and per-
formanceacrossthe wide areaidenticalto that offered by
local-aredfile systemsuchasNFS. It dependn typical
file systemaccesgpatternsjn particularalow incidenceof
concurrentdatasharing.Machinemigration, with coarse-
grained,sequentiakharingfits this patternwell, allowing
for migration without undue performance penalty

To provide the most benefit, we must also support
migrationbetweerphysical machineghatarenot entirely
identical. This is difficult becausemost virtual machine
monitorsimprove performanceby accessingsomehard-
ware componentdirectly (e.g. the video frame buffer).
This directaccessomplicatesnattersfor the guestoper-
ating systemwhenmigrating betweenmachineswith dif-
ferent componentsThereare two approacheso solving
this kind of problem.The first is to further virtualize the
componentat a performancecost. The seconds to mod-
ify the guestoperatingsystemto adaptto the new compo-
nent on the fly. The right alternatve dependson the
resourcein question,the performancepenaltyof virtual-
ization, and the comptéy of dynamic adaptation.

Migration is only one of several servicesthat leverage
the easy packaging, storage, and shipment of virtual
machinesClone-basethtrusiondetections oneexample.
One can also extend servicesthat apply to individual
resourcesacrossan entire virtual machine.For example,
cryptographicfile systemsprotectonly file data;oncean
applicationreadssensitve data,it cannotbe madesecure.
However, suspendinga virtual machineto disk whenits

useris away provides process-leel protectionusingonly

the virtual machine services plus file system mechanisms.

5. Alternative structures

Eachof theabove servicescanbeimplementedn other
ways. One alternatve is to include theseservicesin the
operatingsystem.This structuremakes it easierfor the
serviceto accessnformationin termsof operatingsystem
abstractions.For example, an intrusion detector at the
operatingsystemlevel may be able to detectwhen one
user modifies files owned by anotheruser A virtual
machineservice,n contrastpperatedelown the notionsof
users and files and would have to reconstructthese
abstractionsin addition, including theseservicesin the
operatingsystemreducesthe numberof layers and re-
directions,whichwill likely improve performanceelative
to a virtual machine.

However, including servicesin the operatingsystem
hassomedisadwantagesFirst, suchservicesarelimited to
a single operatingsystem(and perhapsa single operating
system version), whereasvirtual-machine services can
supportmultiple operatingsystemsFor example,a secure
loggingservicein avirtual machinecanreplayary operat-
ing system.Second for security servicessuchas secure
logging and intrusion detection,including the servicein
the operatingsystemdependgritically on the integrity of
the operatingsystem Becauseperatingsystemsaretypi-
cally large, comple, andmonolithic,they usuallycontain
security and reliability vulnerabilities. For example, the
Linux 2.2.16kernelcontainecdat least7 securityholes[1].
In particular securelogging is challengingto provide in
the operatingsystembecausanintrudermaytry to crash
thesystento preventthelog tail from beingwrittento sta-
ble storage.

Someof the disadwantagef including servicesn the
operatingsystemcan be mitigated by re-structuringthe
operatingsysteminto multiple protectiondomains[19]
and placing security-relatedservicesin the most-pri-
legedring. This approachis similar to kernelsthatinclude
only the minimum set of services[7]. However, this
approachrequiresre-writing the entire operatingsystem,
and frequent crossings between multiple protection
domains dgrade performance.

A differentapproachs to add servicesto a language-
specificvirtual machinesuchas Java. Language-specific
virtual machinespotentially have more information than
the operatingsystemwhich may be helpful for someser-
vices.However, theseserviceswvould be availableonly for
applicationswrittenin thetargetlanguageFor the system-
wide servicesdescribedabove, the entire systemwould
have be written in the tget language.

6. Conclusions

Running an operatingsystemand most applications
insidea virtual machineenablesa systemdesignerto add
servicesbelow the guestoperatingsystem.This structure
enablesservicesto be provided without trusting or modi-
fying the guestoperatingsystemor the applications.We
have describedthree servicesthat take adwantageof this
structure:securelogging, intrusion prevention and detec-
tion, and emronment migration.

Adding servicesvia a virtual machineis analogouso
adding network servicesvia a firewall. Both virtual
machinesand firewalls interceptactionsat a universal,
low-level interface,and both mustovercomeperformance
andsemantic-gp problems.Justasnetwork firewalls have
provenusefulfor addingnetwork serviceswe believe vir-
tual machineswill prove usefulfor addingservicedor the
entire computer

7. References

[1] Linux Kernel Version 2.2.16 Security Fixes, 2000.
http://www.linuxsecurity.com/adviso-
ries/slackware_advisory-481.html.

[2] VMware Virtual Machine Technology. Technical report,
VMware, Inc., September 2000.

[3] ThomasC. Bressoudand FredB. Schneider.Hypervisor-
BasedFault-Toleranceln Proceedings of the 1995 Sympo-
sium on Operating Systems Principles, pagesl-11,Decem-
ber 1995.

[4] EdouardBugnion,ScottDevine,Kinshuk Govil, andMendel
RosenblumDisco: RunningCommodityOperatingSystems
on ScalableMultiprocessorsACM Transactions on Comput-
er Systems, 15(4):412—-447, November 1997.

[5] LandonP. Cox and BrianD. Noble. Fluid Replication.In
Proceedings of the 2001 Inter national Conference on Distrib-
uted Computing Systems, April 2001.

[6] FredDouglisandJohnOusterhoutTransparenProcessMi-
gration: DesignAlternativesandthe Sprite Implementation.
Software Practice and Experience, 21(7), July 1991.

[7] DawsonR. Engler,M. FransKaashoekand Jame<'Toole
Jr. Exokernel:an operatingsystemarchitecturefor applica-
tion-levelresourcamanagementn Proceedings of the 1995
Symposiumon Operating Systems Principles, page251-266,
December 1995.

[8] StephanieForrest,StevenA. Hofmeyr, Anil Somayaji,and
ThomasA. Longstaff.A senseof self for Unix processedn
Proceedings of 1996 | EEE Symposium on Computer Security
and Privacy, 1996.

[9] lan Goldberg,David Wagner,Randi Thomas,and Eric A.
Brewer.A SecureEnvironmentfor UntrustedHelper Appli-
cations.In Proceedings of the 1996 USENIX Technical Con-
ference, July 1996.

[10] RobertP. Goldberg.Survey of Virtual Machine Research.
|EEE Computer, pages 34—45, June 1974.

[11] David B. Johnsonand Willy Zwaenepoel.Sender-Based
Messagd_ogging. In Proceedings of the 1987 International
Symposium on Fault-Tolerant Computing, pagesl4—19,July
1987.

[12] GeneH. Kim andEugeneH. Spafford.The designandim-
plementatiorof Tripwire: afile systemintegrity checker.In
Proceedings of 1994 ACM Conference on Computer and
Communications Security, November 1994,

[13] Kevin Lawton.Runningmultiple operatingsystemsoncur-
rently on an1A32 PC usingvirtualizationtechniques1999.
http://plex86.org/research/paper.txt.

[14] M. J.Litzkow. RemoteUNIX: turningidle workstationsnto
cycle serversIn Proceedings of the Summer 1987 USENIX
Technical Conference, pages 381-384, June 1987.

[15] D. A. Nichols. Usingidle workstationsin a sharedcomput-
ing environmentln Proceedings of the 1987 Symposium on
Operating System Principles, pages 5-12, November 1987.

[16] T. Richardson,F. Bennet,G. Mapp, and A. Hopper. Tele-
portingin an X window systemenvironment!| EEE Personal
Communications, 1(3):6—12, 1994.

[17] Mark RussinovichandBryce Cogswell.Replayfor concur-
rent non-deterministicshared-memorgpplications.In Pro-
ceedings of the 1996 Conference on Programming Language
Design and Implementation (PLDI), pages258-266,May
1996.

[18] BrianK. Schmidt,MonicaS. Lam, andJ. DuaneNorthcutt.
Theinteractiveperformanceof SLIM: a statelessthin-client
architectureln Proceedings of the 1999 Symposium on Oper -
ating Systems Principles, pages 32—47, December 1999.

[19] Michael D. SchroedeandJeromeH. Saltzer A hardwarear-
chitecturefor implementingprotectionrings. Communica-
tions of the ACM, 15(3):157-170, March 1972.

[20] JohnD. Strunk,GarthR. GoodsonMichaelL. Scheinholtz,
CraigA.N. Soules,and GregoryR. Ganger. Self-securing
storageProtectinglatain compromisedystemsln Proceed-
ings of the 2000 Symposium on Operating Systems Design
and Implementation (OSDI), October 2000.

