
Abstract
This position paper argues that the operating system and
applications currently running on a real machine should
relocate into a virtual machine. This structure enables ser-
vices to be added below the operating system and to do so
without trusting or modifying the operating system or
applications. To demonstrate the usefulness of this struc-
ture, we describe three services that take advantage of it:
secure logging, intrusion prevention and detection, and
environment migration.

1. Intr oduction

First proposedandusedin the1960s,virtual machines
areexperiencinga revival in thecommercialandresearch
communities. Recent commercial products such as
VMwareandVirtualPCfaithfully emulatecompletex86-
basedcomputers.Theseproductsare widely used (e.g.
VMwarehasmorethan500,000registeredusers)for pur-
posessuchasrunningWindowsapplicationsonLinux and
testingsoftwarecompatibility on differentoperatingsys-
tems.At leasttwo recentresearchprojectsalsousevirtual
machines:Disco usesvirtual machinesto run multiple
commodityoperatingsystemson large-scalemultiproces-
sors[4]; Hypervisorusesvirtual machinesto replicatethe
execution of one computer onto a backup [3].

Our position is that the operatingsystemandapplica-
tions that currently run directly on real machinesshould
relocateinto a virtual machinerunningon a real machine
(Figure1). Theonly programsthatrun directly on thereal
machinewould be the host operatingsystem,the virtual
machinemonitor, programsthatprovide local administra-
tion, and additional services enabled by this virtual-
machine-centricstructure.Most network serviceswould
run in thevirtual machine;therealmachinewould merely
forward network packets for the virtual machine.

This virtual-machine-centricmodel allows us to pro-
vide servicesbelow most coderunning on the computer,
similar to providing servicesin the hardware of a real

machine.Becausetheseservicesare implementedin a
layerof software(thevirtual machinemonitoror thehost
operatingsystem),they canbe provided moreeasilyand
flexibly thanthey couldif they wereimplementedby mod-
ifying thehardware.In particular, we canprovide services
below theguestoperatingsystemwithout trustingor mod-
ifying it. We believe providing servicesat this layer is
especially useful for enhancing security and mobility.

This positionpaperdescribesthe generalbenefitsand
challengesthat arisefrom runningmostapplicationsin a
virtual machine,then describessome example services
and alternative ways to provide those services.

2. Benefits

Providing servicesby modifying a virtual machinehas
similar benefitsto providing servicesby modifying a real
machine.Theseservicesrun separatelyfrom all processes
in the virtual machine,including the guestoperatingsys-
tem. This separationbenefits security and portability.
Securityis enhancedbecausethe servicesdo not have to
trusttheguestoperatingsystem;they haveonly to trustthe
virtual machinemonitor, which is considerablysmaller
andsimpler. Trustingthe virtual machinemonitor is akin
to trustinga realprocessor;bothexposeanarrow interface
(theinstructionsetarchitecture).In contrast,servicesin an
operatingsystemare more vulnerableto malicious and
randomfaults, becauseoperatingsystemsare larger and
moreproneto securityandreliability holes.Separatingthe
servicesfrom the guestoperatingsystemalso enhances
portability. We canimplementthe serviceswithout need-
ing to changethe operatingsystem,so they can work
across multiple operating system vendors and versions.

While providing servicesin a virtual machinegains
similar benefitsto providing servicesin a real machine,
virtual machineshave someadvantagesover the physical
machinesthey emulate.First, a virtual machinecan be
modifiedmoreeasilythanaphysicalmachine,becausethe
virtual machinemonitor that createsthe virtual machine

When Virtual Is Better Than Real

Peter M. Chen and Brian D. Noble
Department of Electrical Engineering and Computer Science

University of Michigan
pmchen@umich.edu, bnoble@umich.edu



abstractionis a layerof software.Second,it is mucheasier
to manipulatethestateof a virtual machinethanthestate
of aphysicalmachine.Thestateof thevirtual machinecan
be saved, cloned,encrypted,moved, or restored,noneof
which is easyto do with physical machines.Third, a vir-
tualmachinehasavery fastconnectionto anothercomput-
ing system,that is, the hostmachineon which the virtual
machine monitor is running. In contrast, physical
machinesare separatedby physical networks, which are
slower than the memory bus that connectsa virtual
machine with its host.

3. Challenges

Providing servicesat the virtual-machinelevel holds
two challenges.The first is performance.Running all
applicationsabove the virtual machinehurtsperformance
dueto virtualizationoverhead.For example,systemcalls
in a virtual machine must be trapped by the virtual
machinemonitor and re-directedto the guestoperating
system.Hardwareoperationsissuedby the guestmustbe
trappedby thevirtual machinemonitor, translated,andre-
issued. Some overhead is unavoidable in a virtual
machine;the servicesenabledby that machinemustout-
weigh this performancecost. Virtualizing an x86-based
machineincursadditionaloverheadsbecausex86 proces-
sorsdon’t trap on someinstructionsthat mustbe virtual-
ized (e.g. readsof certainsystemregisters).One way to
implement a virtual machine in the presenceof these
“non-virtualizable” instructionsis to re-write the binaries
at run time to forcetheseinstructionsto trap[13], but this
incurs significant overhead.

Thesecondchallengeof virtual-machineservicesis the
semanticgapbetweenthevirtual machineandtheservice.
Servicesin thevirtual machineoperatebelow theabstrac-
tionsprovidedby theguestoperatingsystemandapplica-
tions. This can make it difficult to provide services.For
example,it is difficult to provide a servicethatchecksfile

systemintegrity without knowledgeof on-diskstructures.
Someservicesdo not needany operatingsystemabstrac-
tions;securelogging(Section4.1) is anexampleof sucha
service.For servicesthatrequirehigher-level information,
one must re-createthis information in someform. Full
semanticinformation requiresre-implementingguestOS
abstractionsin or below the virtual machine.However,
there are several abstractions—virtualaddressspaces,
threadsof control,network protocols,andfile systemfor-
mats—thataresharedacrossmany operatingsystems.By
observingmanipulationsof virtualizedhardware,onecan
reconstructthesegeneric abstractions,enablingservices
that require semantic information.

4. Example services

In this section,we describethreeservicesthat canbe
provided at the virtual-machinelevel. Othershave used
virtual machinesfor many otherpurposes,suchasprevent-
ing one server from monopolizing machine resources,
education,easingthedevelopmentof privilegedsoftware,
andsoftwaredevelopmentfor differentoperatingsystems
[10].

4.1. Secure logging

Mostoperatingsystemslog interestingeventsaspartof
their securitystrategy. For example,asystemmightkeepa
recordof login attemptsand received/sentmail. System
administratorsusethe loggedinformationfor a variety of
purposes.For example, the log may help administrators
understandhow a network intruder gainedaccessto the
system,or it may help administratorsknow what damage
theintruderinflictedafterhegainedaccess.Unfortunately,
the logging used in current systemshas two important
shortcomings: integrity and completeness.First, an
attacker caneasilyturn off loggingafterhe takesover the
system;thusthecontentsof thelog cannotbetrustedafter

Figure 1: Virtual-machine structure. In this model, most applications that currently run on real machines re-
locate into a virtual machine running on the host machine. The virtual machine monitor and local administrative
programs run directly on the host machine. In VMware, the virtual machine monitor issues I/O through the host
operating system, so services that manipulate I/O events can be implemented in the host operating system [2].

host machine

host operating system + proposed servicesvirtual machine monitor + proposed services

guest operating system

guest
application

guest
application local

administrative
tool

guest
application



the point of compromise.Second,it is difficult to antici-
pate what information may be neededduring the post-
attackanalysis;thusthe log may lack informationneeded
to discernhow the intrudergainedaccessor what actions
he took after gaining access.

Virtual machinesprovideanopportunityto correctboth
shortcomingsof currentlogging.To improve the integrity
of logging, we canmove the logging softwareout of the
operatingsystemand into the virtual machinemonitor.
Thevirtual machinemonitor is muchsmallerandsimpler
thantheguestoperatingsystemandhenceis lessvulnera-
ble to attack.By moving theloggingsoftwareinto thevir-
tual machinemonitor, we move it out of the domainthat
an intruder can control. Even if the intruder gains root
accessor completelyreplacesthe guestoperatingsystem,
he cannotaffect the logging softwareor the loggeddata.
Loggeddatacanbewritten quickly to thehostfile system,
takingadvantageof thefastconnectionbetweenthevirtual
machine monitor and the host computer.

To improve the completenessof logging, we propose
logging enoughdatato replay the completeexecutionof
thevirtual machine[3]. Theinformationneededto accom-
plish a faithful replay is limited to a checkpointwith
which to initialize the replayingvirtual machine,plus the
non-deterministiceventsthat affectedthe original execu-
tion of the virtual machinesince the time of the saved
checkpoint.Thesenon-deterministicevents fall into two
categories:externalinputandtime.Externalinput refersto
datasentby a non-loggedentity, suchasa humanuseror
an external computer(e.g. a web server). Time refersto
the exact point in the executionstreamat which an event
takesplace.For example,to replaytheinterleaving pattern
betweenthreads,we must log which instruction is pre-
emptedby a timer interrupt [17] (we assumethe virtual
machinemonitor is not running on a multi-processor).
Note that most instructions executed by the virtual
machinedo not need to be logged; only the relatively
infrequent non-deterministic events need to be logged.

Using the virtual machinemonitor to perform secure
logging raisesa numberof researchquestions.The first
questionregardsthevolumeof log dataneededto support
replay. We believe thatthevolumeof datathatneedsto be
logged will not be prohibitive. Local non-deterministic
events,suchas threadschedulingeventsanduserinputs,
areall small.Datafrom disk readscanbe large,but these
aredeterministic(thoughthetimeof thedisk interruptsare
non-deterministic).The largest producerof log data is
likely to be incomingnetwork packets.We canreducethe
volumeof loggednetwork datagreatlyby usingmessage-
logging techniquesdevelopedin the fault-tolerancecom-
munity. For example,thereis no needto log messagedata
receivedfrom computersthatarethemselvesbeinglogged,
becausethesecomputerscanbereplayedto reproducethe

sentmessagedata[11]. If all computerson thesamelocal
network cooperateduring logging and replay, then only
messagesreceived from externalsitesneedto be logged.
For an importantclassof servers (e.g. web servers), the
volume of data received in messagesis relatively small
(HTTPGETandPOSTrequests).Last,asdiskpricescon-
tinue to plummet, more computers(especially servers
worthy of being logged) will be able to devote many
gigabytes to store log data [20].

A secondresearchdirection is designingtools to ana-
lyze thebehavior of a virtual machineduringreplay. Writ-
ing useful analysistools in this domain is challenging
becauseof the semanticgap betweenvirtual machine
events and the correspondingoperatingsystemactions.
The analysistool may have to duplicatesomeoperating
systemfunctionality to distill the log into usefulinforma-
tion. For example,the analysistool may needto under-
standthe on-disk file systemformat to translatethe disk
transfersseenby thevirtual machinemonitorinto file-sys-
tem transfersissuedby the operatingsystem.Translating
virtual machine events into operating system events
becomesespeciallychallenging(andperhapsimpossible)
if the intrudermodifiesthe operatingsystem.Onefamily
of analysistools we hope to develop trace the flow of
information in the system,so that administratorscanask
questionslike “What network connectionscausedthe
password file to change?”.

4.2. Intrusion prevention and detection

Another importantcomponentto a securitystrategy is
detectingand thwarting intruders.Ideally, thesesystems
prevent intrusionsby identifying intrudersas they attack
thesystem[9]. Thesesystemsalsotry to detect intrusions
after the fact by monitoring the events and stateof the
computerfor signsthatacomputerhasbeencompromised
[8, 12]. Virtual machinesoffer thepotentialfor improving
both intrusion prevention and intrusion detection.

Intrusion preventerswork by monitoring events that
enteror occur on the system,suchas incoming network
packets. Signature-basedpreventers match these input
events against a databaseof known attacks; anomaly-
basedpreventerslook for input eventsthatdiffer from the
norm.Both thesetypesof intrusionpreventershave flaws,
however. Signature-basedsystemscanonly thwart attacks
that have occurredin the past,beenanalyzed,and been
integratedinto the attack database.Anomaly-basedsys-
temscanraisetoo many falsealarmsandmaybesuscepti-
ble to re-training attacks.

A moretrustworthy methodof recognizinganattackis
to simply run theinputeventon therealsystemandseeing
how the systemresponds.Of course,running suspicious
eventson the real systemrisks compromisingthe system.



However, wecansafelyconductthis typeof testonaclone
of therealsystem.Virtual machinesmake it easyto clone
a runningsystem,andan intrusionpreventercanusethis
cloneto testhow a suspiciousinput eventwould affect the
real system.The clone can be run as a hot standbyby
keepingit synchronizedwith the real system(using pri-
mary-backuptechniques),or it canbecreatedon thefly in
responseto suspiciousevents.In eithercase,clonesadmit
more powerful intrusion preventers by looking at the
responseof thesystemto theinput eventratherthanlook-
ing only at the input event. Becauseclonesare isolated
from therealsystem,they alsoallow an intrusionpreven-
ter to run potentially destructive teststo verify the sys-
tem’s health.For example,an intrusion preventer could
forwarda suspiciouspacket to a cloneandseeif it crashes
any running processes.Or it could processsuspicious
input on the clone,thenseeif the clonestill respondsto
shutdown commands.

A potentialobstacleto usingclone-basedintrusionpre-
vention is the effect of clonecreationor maintenanceon
the processingof innocentevents.To avoid blocking the
processingof innocent events, an intrusion preventer
would ideally run the clone in the background.Allowing
innocenteventsto go forwardwhile evaluatingsuspicious
eventsimplies that theseeventshave looseorderingcon-
straints.For example, a clone-basedpreventer could be
usedto teste-mailmessagesfor viruses,becauseordering
constraints between e-mail messages are very loose.

Intrusiondetectorstry to detecttheactionsof intruders
after they have compromiseda system. Signs of an
intrudermight includeburstsof outgoingnetwork packets
(perhapsindicatinga compromisedcomputerlaunchinga
denial-of-serviceattack), modified systemfiles [12], or
abnormalsystem-callpatternsfrom utility programs[8].
As with systemlogging,theseintrusiondetectorsfall short
in integrity or completeness.Host-basedintrusion detec-
tors (such as those that monitor systemcalls) may be
turnedoff by intrudersafter they compromisethesystem,
sothey areprimarily usefulonly for detectingtheactof an
intruder breaking into a system. If an intruder evades
detectionat the time of entry, he canoftendisarma host-
basedintrusion detectorto avoid detectionin the future.
Network-based intrusion detectors can provide better
integrity by beingseparatefrom thehostoperatingsystem
(e.g.in a standalonenetwork router),but they suffer from
a lack of completeness.Network intrusion detectorscan
seeonly network packets;they cannotseethemyriadother
eventsoccurringin acomputersystem,suchasdisk traffic,
keyboard events, memory usage, and CPU usage.

Implementingpost-intrusiondetectionat the level of a
virtual machineoffers the potential for providing both
integrity and completeness.Like a network-basedintru-
sion detector, virtual-machine-basedintrusion detectors

areseparatefrom theguestoperatingsystemandapplica-
tions. Unlike network intrusion detectors,however, vir-
tual-machine intrusion detectors can see all events
occurring in the virtual machinethey monitor. Virtual-
machineintrusiondetectorscanusethis additionalinfor-
mationto implementnew detectionpolicies.For example,
it could detect if the virtual machinereadscertain disk
blocks(e.g.containingpasswords),thenissuesa burst of
CPU activity (e.g. cracking the passwords). Or it could
detectif thevirtual machinehasintenseCPUactivity with
no corresponding keyboard activity.

As with securelogging, a key challengein post-intru-
sion detectionin a virtual machineis how to bridge the
semanticgap betweenvirtual machineeventsandoperat-
ing systemevents.Thischallengeis similar to thatencoun-
tered by network-basedintrusion detectors,which must
parse the contents of IP packets.

4.3. Environment migration

Processmigrationhasbeena topic of interestfrom the
earlydaysof distributedcomputing.Migration allows one
to packagea running computation—eithera processor
collectionof processes—andmove it to a differentphysi-
cal machine.Using migration,a user’s computationscan
move as he does,taking advantageof hardware that is
more convenient to the user’s current location.

The earliest systems,including Butler [15], Condor
[14], and Sprite [6], focused on load sharing across
machinesratherthansupportingmobileusers.Theseload-
sharingsystemstypically left residualdependencieson the
sourcemachinefor transparency, andconsideredan indi-
vidual processasthe unit of migration.This view differs
from thatof mobileusers,who considertheunit of migra-
tion to bethecollectionof all applicationsrunningontheir
current machine.

Recently, migrationsystemshave begun to addressthe
needsof mobile users.Examplesof systemssupporting
mobility include the Teleportingsystem[16] and SLIM
[18]. These systems migrate the user interface of a
machine,leaving the entire set of applicationsto run on
theirhostmachine.In thelimit, thedisplaydevicecanbea
stateless,thin client. This approachprovides a better
matchto theexpectationsof amigratinguser, andneednot
dealwith residualdependencies.However, thesesystems
areintolerantof evenmoderatelatency betweenthe inter-
facedevice andthe cycle server, andthussupportonly a
limited form of user mobility.

Migration basedon virtual machinessolvestheseprob-
lems.Sincethe entire (virtual) machinemoves,thereare
no residualdependencies.A user’s environmentis moved
enmasse,which matchesa user’s expectations.By taking
advantageof the narrow interfaceprovided by the virtual



machine,very simplemigrationcodecanrelocatea guest
operating system and its applications.

Thereareseveral challengesthat mustbe overcometo
provide migrationat thevirtual-machinelevel. Thefirst is
thatamachinehassubstantialstatethatmustmovewith it.
It would beinfeasibleto move this statesynchronouslyon
migration. Fortunately, most of this state is not needed
immediately, and much may never be neededat all. We
canpredictwhichstateis neededsoonby takingadvantage
of temporallocality in disk and memory accesses.This
predictionis complicatedby the guestoperatingsystem’s
virtual memory abstraction, because the physical
addressesseenby a virtual machinemonitor are related
only indirectly to accessesissuedby applications.We can
reconstructinformationaboutvirtual to physicalmappings
by observingmanipulationof virtualized hardware ele-
ments such as the TLB.

After identifying thestatelikely to beneededsoon,we
needa mechanismto supportmigrationof thatstateto the
new virtual machine.If migrationtimesareexposed,one
cantakeadvantageof efficient,wide-areaconsistency con-
trol schemes,suchas that provided by Fluid Replication
[5]. Fluid Replicationprovidessafety, visibility, andper-
formanceacrossthewide areaidenticalto thatofferedby
local-areafile systemssuchasNFS.It dependson typical
file systemaccesspatterns,in particulara low incidenceof
concurrentdatasharing.Machinemigration,with coarse-
grained,sequentialsharing,fits this patternwell, allowing
for migration without undue performance penalty.

To provide the most benefit, we must also support
migrationbetweenphysicalmachinesthatarenot entirely
identical. This is difficult becausemost virtual machine
monitors improve performanceby accessingsomehard-
ware componentsdirectly (e.g. the video frame buffer).
This directaccesscomplicatesmattersfor theguestoper-
ating systemwhenmigratingbetweenmachineswith dif-
ferent components.Thereare two approachesto solving
this kind of problem.The first is to further virtualize the
component,at a performancecost.Thesecondis to mod-
ify theguestoperatingsystemto adaptto thenew compo-
nent on the fly. The right alternative dependson the
resourcein question,the performancepenaltyof virtual-
ization, and the complexity of dynamic adaptation.

Migration is only oneof several servicesthat leverage
the easy packaging, storage, and shipment of virtual
machines.Clone-basedintrusiondetectionis oneexample.
One can also extend servicesthat apply to individual
resourcesacrossan entire virtual machine.For example,
cryptographicfile systemsprotectonly file data;oncean
applicationreadssensitive data,it cannotbemadesecure.
However, suspendinga virtual machineto disk when its

useris away providesprocess-level protectionusingonly
the virtual machine services plus file system mechanisms.

5. Alternative structures

Eachof theaboveservicescanbeimplementedin other
ways. One alternative is to include theseservicesin the
operatingsystem.This structuremakes it easierfor the
serviceto accessinformationin termsof operatingsystem
abstractions.For example, an intrusion detectorat the
operatingsystemlevel may be able to detectwhen one
user modifies files owned by another user. A virtual
machineservice,in contrast,operatesbelow thenotionsof
users and files and would have to reconstruct these
abstractions.In addition, including theseservicesin the
operatingsystemreducesthe numberof layers and re-
directions,which will likely improve performancerelative
to a virtual machine.

However, including servicesin the operatingsystem
hassomedisadvantages.First, suchservicesarelimited to
a singleoperatingsystem(andperhapsa singleoperating
system version), whereasvirtual-machineservicescan
supportmultiple operatingsystems.For example,a secure
loggingservicein avirtual machinecanreplayany operat-
ing system.Second,for securityservicessuchas secure
logging and intrusion detection,including the servicein
theoperatingsystemdependscritically on the integrity of
theoperatingsystem.Becauseoperatingsystemsaretypi-
cally large,complex, andmonolithic,they usuallycontain
security and reliability vulnerabilities.For example, the
Linux 2.2.16kernelcontainedat least7 securityholes[1].
In particular, securelogging is challengingto provide in
theoperatingsystem,becauseanintrudermaytry to crash
thesystemto preventthelog tail from beingwritten to sta-
ble storage.

Someof thedisadvantagesof includingservicesin the
operatingsystemcan be mitigated by re-structuringthe
operatingsysteminto multiple protectiondomains[19]
and placing security-relatedservicesin the most-privi-
legedring. This approachis similar to kernelsthat include
only the minimum set of services [7]. However, this
approachrequiresre-writing the entire operatingsystem,
and frequent crossings between multiple protection
domains degrade performance.

A differentapproachis to addservicesto a language-
specificvirtual machinesuchas Java. Language-specific
virtual machinespotentially have more information than
theoperatingsystem,which maybehelpful for someser-
vices.However, theseserviceswould beavailableonly for
applicationswritten in thetargetlanguage.For thesystem-
wide servicesdescribedabove, the entire systemwould
have be written in the target language.



6. Conclusions

Running an operatingsystemand most applications
insidea virtual machineenablesa systemdesignerto add
servicesbelow the guestoperatingsystem.This structure
enablesservicesto be provided without trustingor modi-
fying the guestoperatingsystemor the applications.We
have describedthreeservicesthat take advantageof this
structure:securelogging, intrusionpreventionanddetec-
tion, and environment migration.

Adding servicesvia a virtual machineis analogousto
adding network services via a firewall. Both virtual
machinesand firewalls intercept actions at a universal,
low-level interface,andbothmustovercomeperformance
andsemantic-gapproblems.Justasnetwork firewallshave
provenusefulfor addingnetwork services,we believe vir-
tual machineswill prove usefulfor addingservicesfor the
entire computer.

7. References

[1] Linux Kernel Version 2.2.16 Security Fixes, 2000.
http://www.linuxsecurity.com/adviso-
ries/slackware_advisory-481.html.

[2] VMware Virtual Machine Technology. Technical report,
VMware, Inc., September 2000.

[3] ThomasC. Bressoudand FredB. Schneider.Hypervisor-
BasedFault-Tolerance.In Proceedings of the 1995 Sympo-
sium on Operating Systems Principles, pages1–11,Decem-
ber 1995.

[4] EdouardBugnion,ScottDevine,KinshukGovil, andMendel
Rosenblum.Disco:RunningCommodityOperatingSystems
onScalableMultiprocessors.ACM Transactions on Comput-
er Systems, 15(4):412–447, November 1997.

[5] LandonP. Cox and BrianD. Noble. Fluid Replication.In
Proceedings of the 2001 International Conference on Distrib-
uted Computing Systems, April 2001.

[6] FredDouglisandJohnOusterhout.TransparentProcessMi-
gration:DesignAlternativesandthe SpriteImplementation.
Software Practice and Experience, 21(7), July 1991.

[7] DawsonR. Engler,M. FransKaashoek,andJamesO’Toole
Jr. Exokernel:an operatingsystemarchitecturefor applica-
tion-level resourcemanagement.In Proceedings of the 1995
Symposium on Operating Systems Principles, pages251–266,
December 1995.

[8] StephanieForrest,StevenA. Hofmeyr, Anil Somayaji,and
ThomasA. Longstaff.A senseof self for Unix processes.In
Proceedings of 1996 IEEE Symposium on Computer Security
and Privacy, 1996.

[9] Ian Goldberg,David Wagner,Randi Thomas,and Eric A.
Brewer.A SecureEnvironmentfor UntrustedHelperAppli-
cations.In Proceedings of the 1996 USENIX Technical Con-
ference, July 1996.

[10] RobertP. Goldberg.Surveyof Virtual MachineResearch.
IEEE Computer, pages 34–45, June 1974.

[11] DavidB. Johnsonand Willy Zwaenepoel.Sender-Based
MessageLogging. In Proceedings of the 1987 International
Symposium on Fault-Tolerant Computing, pages14–19,July
1987.

[12] GeneH. Kim andEugeneH. Spafford.The designandim-
plementationof Tripwire: a file systemintegrity checker.In
Proceedings of 1994 ACM Conference on Computer and
Communications Security, November 1994.

[13] Kevin Lawton.Runningmultiple operatingsystemsconcur-
rently on an IA32 PC usingvirtualizationtechniques,1999.
http://plex86.org/research/paper.txt.

[14] M. J.Litzkow. RemoteUNIX: turningidle workstationsinto
cycle servers.In Proceedings of the Summer 1987 USENIX
Technical Conference, pages 381–384, June 1987.

[15] D. A. Nichols.Using idle workstationsin a sharedcomput-
ing environment.In Proceedings of the 1987 Symposium on
Operating System Principles, pages 5–12, November 1987.

[16] T. Richardson,F. Bennet,G. Mapp, and A. Hopper.Tele-
portingin anX windowsystemenvironment.IEEE Personal
Communications, 1(3):6–12, 1994.

[17] Mark RussinovichandBryceCogswell.Replayfor concur-
rent non-deterministicshared-memoryapplications.In Pro-
ceedings of the 1996 Conference on Programming Language
Design and Implementation (PLDI), pages258–266,May
1996.

[18] BrianK. Schmidt,MonicaS. Lam, andJ.DuaneNorthcutt.
Theinteractiveperformanceof SLIM: a stateless,thin-client
architecture.In Proceedings of the 1999 Symposium on Oper-
ating Systems Principles, pages 32–47, December 1999.

[19] MichaelD. SchroederandJeromeH. Saltzer.A hardwarear-
chitecturefor implementingprotectionrings. Communica-
tions of the ACM, 15(3):157–170, March 1972.

[20] JohnD. Strunk,GarthR. Goodson,MichaelL. Scheinholtz,
CraigA.N. Soules,and GregoryR. Ganger.Self-securing
storage:Protectingdatain compromisedsystems.In Proceed-
ings of the 2000 Symposium on Operating Systems Design
and Implementation (OSDI), October 2000.


