
Abstract

Most fault-tolerant systems are designed to stop faulty
programs before they write permanent data or communi-
cate with other processes. This property (halt-on-failure)
forms the core of the fail-stop model. Unfortunately, little
experimental data exists on whether or not program fail-
ures follow the fail-stop model. This paper describes a
tool, based on the SimOS complete-machine simulator,
that can trace how faults propagate through memory, disk,
and functions. Using this tool on the Postgres database
system, we conduct a controlled experiment to measure
how often faulty programs violate the fail-stop model. We
find that a significant number of faults (7%) violate the
fail-stop model by writing incorrect data to stable storage
before halting. We then apply Postgres’ transaction mech-
anism to undo recent changes before a crash and find that
transactions reduce fail-stop violations by a factor of 3.

1. Introduction

Building fault-tolerant systems is a difficult task. A
malfunctioning program may perform arbitrary tasks that
make recovery complicated or impossible. For example, a
malfunctioning program may overwrite critical state or
send incorrect information to other processes. To ease the
task of building fault-tolerant systems, most designers try
to ensure that a malfunctioning program halts before it
writes erroneous data to stable storage or sends incorrect
information to other processes. This property is known as
halt-on-failure [Schneider84] and forms the core of the
fail-stop model. Many fault-tolerant systems assume that
faulty application programs follow this model [Strom85,
Johnson87, Birman91, Costa96].

General mechanisms exist to make systems fail-stop.
For example, Schneider describes a system where each
program runs on multiple processors [Schneider84]. The
processors vote before writing to stable storage and halt if
their results disagree. These types of mechanisms are used
primarily to tolerate independent hardware faults. Unfor-
tunately, software bugs are currently the dominant cause of
failures, accounting for 60-90% of all failures [Gray91].

There are two major ways to make programs fail-stop
in the presence of software bugs, both of which use repli-
cation. The first technique isN-version programming
[Avizienis85], which uses N independent versions of the
same program. Ideally, these versions fail independently
because they are written by different groups. In practice,
these versions are correlated because independent groups
make similar errors. N-version programming is a powerful
technique, but only a small subset of applications can
afford the added expense of writing multiple versions of
the same program.

Because N-version programming is prohibitively
expensive, most applications use a different form of repli-
cation based onerror checking. Instead of replicating a
computation, the application checks the results of the com-
putation based on a heuristic. For example, a program may
verify a message’s checksum after receiving the message.
Recovery blocks are a fault-tolerant scheme that uses error
checking at the end of each block of code (a recovery
block) [Randell75]. When one recovery block fails an
error check, the state of the system is rolled back to the
beginning of the recovery block and another version of the
recovery block is used.Process pairs [Gray86] are similar
to recovery blocks. Whereas recovery blocks invoke a dif-
ferent version of the code, process pairs re-invoke the
same code (possibly on a different computer) and hope the
bug does not repeat itself on the second try. Process pairs

How Fail-Stop are Faulty Programs?

Subhachandra Chandra and Peter M. Chen
Computer Science and Engineering Division

Department of Electrical Engineering and Computer Science
University of Michigan

{schandra,pmchen}@eecs.umich.edu
http://www.eecs.umich.edu/Rio

28th International Symposium on Fault-Tolerant Computing, June 1998



work well in practice because most bugs are non-deter-
ministic (i.e. Heisenbugs).

Both recovery blocks and process pairs useatomic
transactions [Gray93] to roll the state of the system back
to the beginning of the block of code. Transactions help
make the program fail-stop by undoing recent changes to
stable storage (Figure 1). Specifically, transactions undo
the changes to stable storage performed during the current
transaction and hence make the system appear to have
halted at the beginning of the current transaction. When
using transactions, the program will be fail-stop if all erro-
neous writes occur after the beginning of the current trans-
action.

Although most applications use error checking to
approximate the fail-stop model, we know of no study that
quantifies experimentally how well this works in practice.
In this paper, we address the question: “For a large soft-
ware system, how often do software bugs cause erroneous
data to be written to stable storage?”. Using the Postgres
database as our target software system, we measure the
frequency of fail-stop violations both with and without
transactions. We find that 7% of software bugs violate the
fail-stop model without transactions. After using Postgres’
transaction mechanism to roll back recent, uncommitted
changes, we find that only 2% of software bugs violate
fail-stop.

Our secondary goal in this paper is to present a tool
that can monitor fault propagation through the program
and measure how quickly the system detects the fault and
halts.

2. A tool to trace fault propagation

2.1. High-level description

Our goal is to monitor the effects of the injected faults
on the program’s behavior. To measure the effect of a fault,

we run the program twice: once without faults (good) and
once with faults (buggy) (Figure 2). Periodically (e.g.
points A/A’ and B/B’ in Figure 2) we compare the states
(memory and disk contents) of the two runs and note the
differences.

Two factors complicate this simple strategy. First, the
runs must be perfectly deterministic and repeatable. Other-
wise, differences between the two runs might be due to
non-determinism instead of faults. Second, the two runs
must be at the same point in their execution whenever they
are compared. Matching execution points is difficult if the
fault affects the control flow of the program. Sections 2.2
and 2.3 describe our strategy for overcoming these two
complications.

2.2. Achieving repeatability

We conduct our experiments on a simulator to make
the runs deterministic and repeatable. Using simulators to
conduct fault experiments has been infeasible in the past.
Some past simulators have been too slow to run large soft-
ware programs; other simulators achieved high speed but
did not simulate the machine in enough detail to run sys-
tem software.

Our tool is based on SimOS, a complete-machine
simulator developed at Stanford University
[Rosenblum95]. SimOS (Digital Alpha version) simulates
an entire Digital Alpha workstation at enough detail to run
unmodified application programs and a slightly modified
Digital Unix kernel. The modifications are limited to low-
level device drivers, such as disk drivers and the system
console. Thus the applications and most of the subsystems
in the kernel cannot distinguish between running on a real
workstation and running on top of SimOS. Because
SimOS simulates the complete machine, our tool can mon-
itor fault propagation through both application and system
software. In addition, SimOS uses advanced techniques
such as binary translation to provide very fast simulation.

Figure 1: Timeline of a program failure . Without transactions, the above timeline violates the fail-stop model,
because the program writes erroneous data to stable storage before detecting the fault and halting.
Transactions undo the changes to stable storage performed during the current transaction and hence make the
system appear to have halted at the beginning of the current transaction. When using transactions, the program
will be fail-stop if all erroneous writes occur after the beginning of the current transaction.

fault
activated

fault detected—transaction
begins

program writes
erroneous data

to stable storage program halts



We run SimOS in a mode that achieves 1/10 the speed of
actual hardware.

Our tool takes advantage of two additional SimOS
features: annotations and checkpoints. Annotations are Tcl
scripts that can be run at specified simulation events with-
out perturbing the program’s execution. We use SimOS
annotations to control the simulation mode and to start
application programs. We use SimOS’s checkpoint mecha-
nism in two ways. First, we use checkpoints to collect rel-
evant machine state (memory and disk contents). Second,
we use checkpoints to speed up simulation by starting
from a checkpoint taken after the simulated machine has
booted.

2.3. Matching execution points

Determining the effect of a fault means comparing the
states (checkpoints) of a good run and a buggy run. To do
this comparison accurately, the two runs must be at the
same point in their execution. For certain types of faults,
the good run and the buggy run proceed in lockstep; that
is, each instruction in the good run has a corresponding
instruction at the same instruction address in the buggy
run. For example, a fault that causes an bank account bal-
ance to be off by $1 will not affect the execution path of
the program. For these types of faults, execution points
can be matched very easily—a point in the buggy run
matches a point in the good run if both have executed the
same number of instructions up to that point.

Unfortunately, many faults directly or indirectly alter
the execution path of the program. For example, a loop

may execute one fewer iteration in the buggy run than in
the good run. Or a branch instruction might be taken in the
buggy run but not in the good run, as shown in Figure 3.
Often, the execution paths of buggy runs and good runs
will diverge for a number of instructions (e.g. one makes
an extra system call), then converge again. We would like
to find these points of divergence and convergence so we
can match execution points during periods of convergence.
Meaningful comparisons of the checkpoints may then be
done at matching execution points. In Figure 3, execution
points A/A’ match, as do points C/C’ and D/D’. In general,
it may be impossible to match certain points in the execu-
tion of the two runs. In Figure 3, for example, execution
point B’ in the buggy run has no corresponding execution
point in the good run.

Our heuristic for finding periods of convergence is to
match traces of instruction addresses. If two runs execute
the same series of instructions (i.e. instructions at the same
addresses), we assume that each instruction in one run cor-
responds to the same instruction in the other run. We use
the Unix diff utility to match these traces. Diff preserves
the ordering of an address trace; if execution points C and
C’ are found to match in Figure 3, then D’ cannot match
an instruction above C. This method works well for our
method of injecting faults, which never inserts or deletes
instructions and hence preserves instruction addresses
between the good program and the buggy program.

We use two passes to collect these traces and check-
points. In the first pass, we run the good program and the
buggy program and collect traces of instruction addresses.
We then diff the two traces, calculate all matching execu-

Figure 2 : High-level description of tool. To measure the effect of a fault, we run the program twice: once
without faults (good), once with faults (buggy). Periodically (e.g. points A and B), we compare the states
(memory and disk contents) of the two runs and note the differences.

good run

A

B

buggy run

A’

B’

compare

compare



tion points, and choose a number of points to take check-
points. In the second pass, we re-run the good program
and the buggy program and take checkpoints at the points
chosen during the first pass.

Recording all instruction addresses generates
extremely long traces. We reduce the size of the trace by
only recording the address of every 256th instruction in
the static program (i.e. instructions whose word address is
divisible by 256). This works well in practice because
periods of convergence or divergence tend to be thousands
of instructions in length. Note that sampling every 256th
instruction executed would not work because one extra
instruction executed would offset the entire trace.

2.4. Detecting corruption

The prior section describes how we match execution
points between the good run and the buggy run. The result
of the second pass is a sequence of checkpoint pairs. Each
pair consists of a checkpoint of the good run and a check-
point (at the matching execution point) of the buggy run.
By comparing the two checkpoints in the pair, we can enu-
merate memory and disk corruption caused by the fault.
We can examine how this list of corruptions grows over
the run to trace fault propagation.

Our tool also remembers which application functions
last wrote to each memory location. We use this to show

how faults propagate through application modules. At
each checkpoint, our tool notes which application function
last wrote each corrupted memory location; this yields a
list of functions whose behavior was corrupted during the
preceding interval. For example, Table 1 shows a series of
three snapshots of the Postgres function space taken at var-
ious points in a run.

2.5. Detecting fail-stop violations

The focus of this paper is detecting fail-stop viola-
tions. Fail-stop violations are defined by the application
files on disk at the end of the buggy run (E’ in Figure 3).
Finding a matching execution point to compare with the
end of the buggy run is non-trivial. Often, no point in the
execution of the good run matches the end of the buggy
run, because the buggy run usually ends in some error rou-
tine (or system signal handler, e.g. core dump). We take a
two-pronged approach to find an execution point in the
good run that approximately matches the end of the buggy
run.

First, we take a checkpoint in the good run at a point
that roughly matches the end of the buggy run. To do this,
we count the number of instructions executed in the buggy
run after the last matching execution points (N instruc-
tions). We then take an approximate-end checkpoint in the
good run N instructions after the last match.

Figure 3: Matching execution points.  Many faults alter the execution path of the program. Section 2.3
describes how we match the execution points of good and buggy runs.

good run

C

buggy run

C’
compare

branch takenbranch not taken

B’

D D’
compare

program halts
E’

}N instructions

{N instructions

approximate end
checkpoint

A A’
compare



Second, we categorize a buggy run as obeying the
fail-stop model if its final disk contents matchany of the
checkpoints in the good run. For example, if the disk con-
tents at the end of the buggy run match the disk contents at
checkpoint C in Figure 3, it is as though the buggy run had
a fail-stop crash at point C. For 85% of the runs in Section
4, the disk contents at the end of the buggy run matched
the approximate-end checkpoint; 8% of the runs matched
an earlier checkpoint, and 7% were fail-stop violations
that did not match any checkpoint.

Detecting fail-stop violations with transactions is sim-
ilar to detecting fail-stop violations without transactions.
The only difference is that the comparison of disk contents
must use thetransactional state of the files. The transac-
tional state of a database is the state of the database after
in-progress transactions have been aborted. Aborting cur-
rent transactions rolls the disk state back to the point
before the current transaction began. Because of this roll-
back process, runs that violate fail-stop with transactions
are usually a subset of the runs that violate fail-stop with-
out transactions.

3. Workload and fault models

We use the Postgres95 database management system
developed at U.C. Berkeley as the software system in our
experiments [Stonebraker87]. While our results are spe-
cific to the software system being tested, we believe Post-
gres is a good example of a large software system with
abundant error checking.

As with all databases, Postgres can abort the transac-
tions in progress at the time of the crash. We use this fea-
ture to measure how many fail-stop violations are masked
by the transaction mechanism. We drive Postgres with a
transaction workload based on TPC-B [TPC90]. The
default configuration of Postgres prints a warning but does
not stop if it detects minor errors. To make Postgres more
fail-stop, we halt the program immediately after any warn-
ing message.

Faults injected into Postgres form the second part of
the workload. Our primary goal in designing these faults is
to generate awide variety of database crashes. Our models
are derived from studies of commercial databases and
operating systems [Sullivan92, Sullivan91, Lee93] and
from prior models used in fault-injection studies
[Barton90, Kao93, Kanawati95, Chen96, Ng97]. The
faults we inject range from low-level hardware faults such

Table 1: Propagation of fault through Postgres functions.  Each snapshot lists the functions whose behavior
has been corrupted at that point in the run. By viewing a sequence of snapshots, our tool can describe the fine-
grained propagation of the fault through the application functions. This particular run was for an interface error
(Section 3) and did not violate the fail-stop model.

Snapshot 1
(at fault activation)

Snapshot 2
(middle of run)

Snapshot3
(when program crashes)

PostgresMain PostgresMain PostgresMain

FileWrite FileWrite

ProcessQueryDesc ProcessQueryDesc

mdcommit mdcommit

mywrite2 mywrite2

showatts showatts

_bt_getroot

_bt_search

_bt_binsrch

ExclusiveLock

ExclusiveUnlock

LockRelease

SingleLockPage

hash_search



as flipping bits in memory to high-level software faults
such as memory allocation errors. We classify injected
faults into three categories: bit flips, low-level software
faults, and high-level software faults. Unless otherwise
stated, we inject 5 faults for each run to increase the
chances that a fault will be triggered. We only consider
runs in which a fault was activated.

The first category of faults flips random bits in the
database’s address space [Barton90, Kanawati95]. We tar-
get theheap and stack areas of the database’s address
space. These faults are easy to inject, and they cause a
variety of different crashes. They are the least realistic of
our bugs, however. It is difficult to relate a bit flip with a
specific error in programming, and most hardware bit flips
would be caught by parity on the data or address bus.

The second category of fault changes individual
instructions in the database text segment. These faults are
intended to approximate the assembly-level manifestation
of real C-level programming errors [Kao93]. We corrupt
assignment statements by changing thesource or destina-
tion register. We corrupt conditional constructs by deleting
branches. We also deleterandom instructions (both
branch and non-branch) by replacing them with NOPs.

The last and most extensive category of faults imitate
specific programming errors in the database [Sullivan91].
These are targeted more at specific programming errors
than the previous fault category. We inject aninitialization
fault by deleting instructions responsible for initializing a
variable at the start of a procedure [Kao93, Lee93]. We
inject pointer corruption by 1) finding a register that is
used as a base register of a load or store and 2) deleting the
most recent instruction before the load/store that modifies
the base register [Sullivan91, Lee93]. We do not corrupt
the stack pointer register, as this is used to access local
variables instead of as a pointer variable. We inject an
allocation management fault by modifying the database’s
malloc procedure to occasionally free the previously allo-
cated block of memory. Malloc is set to inject this error
every 0-5000 times it is called. We inject acopy overrun
fault by modifying the database’s bcopy procedure to
occasionally increase the number of bytes it copies. The
length of the overrun was distributed as follows: 50% cor-
rupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4
KB. This distribution was chosen by starting with the data
gathered in [Sullivan91] and modifying it somewhat
according to our specific platform and experience. bcopy
is set to inject this error every 0-5000 times it is called. We
inject off-by-one errors by changing conditions such as >
to >=, < to <=, and so on. We mimic commonsynchroni-
zation errors by randomly causing the procedures that
acquire/free a lock to return without acquiring/freeing the

lock. We injectinterface errors by corrupting one of the
arguments passed to a procedure.

Fault injection cannot mimic the exact behavior of all
real-world database system crashes. However, the wide
variety of faults we inject (13 types), the random nature of
the faults, and the number of runs we performed (650) give
us confidence that our experiments cover a wide range of
real-world faults. Table 2 shows examples of how real-
world programming errors can manifest themselves as the
faults we inject in our experiments.

4. Results

The results in this paper were collected over several
machine-months of fault-injection experiments. We only
consider runs in which a fault was activated (50 of these
runs for each type of fault). In 55% of the runs, Postgres or
the operating system detected the error and halted the pro-
gram. In 44% of the runs, Postgres ran to completion. In
the remaining 1% of the runs, Postgres enters an infinite
loop; we killed these runs after 100 million instructions
(normal runs finish after 57 million instructions).

The main goal of our paper is to measure how often
program failures violate the fail-stop model. Table 3 shows
that fail-stop violations occur for a significant fraction of
the runs (7%). In these runs, Postgres detects the error and
haltsafter stable storage has been corrupted by the fault.
This frequency is disturbingly high, because it implies that
any fault-tolerant protocol that depends on the program
being fail-stop will not work 7% of the time.

Transactions are able to make a program more fail-
stop by undoing recent changes to stable storage. The
right-hand column of Table 3 shows that transactions are
quite effective at reducing fail-stop violations, lowering
the frequency of fail-stop violations from 7% to 2%. This
implies that most erroneous writes to stable storage occur
during the transaction that detected the error. It also
implies that errors tend to affect the data being modified
by the current transaction, because modifications outside
the current transaction are not undone by the transaction
mechanism.

Figure 4 plots the fault detection latency (how long
the program runs after the fault is activated) versus the
number of corrupted memory words at the end of the run.
Runs that violate the fail-stop model are circled. Runs that
violate the fail-stop model with transactions are repre-
sented by filled-in circles.

Table 4 shows the median fault latencies for various
types of runs: all runs, runs that violate fail-stop, runs that
violate fail-stop when using transactions. As expected,
runs that continue long after the fault is activated have
more opportunity to damage permanent data. Hence the



Table 2: Relating faults to programming errors.  This table shows examples of how real-world programming
errors can manifest themselves as the faults we inject in our experiments. None of the errors shown above
would be caught during compilation.

Fault Type
Example of Programming Error

Correct Code Faulty Code

destination reg.
numFreePages  =

count(freePageHeadPtr)
numPages  =

count(freePageHeadPtr)

source reg.
numPages = physicalMemorySize

/ pageSize
numPages = virtualMemorySize

/ pageSize

delete branch while  (flag) {body} if (flag) {body}

delete random inst. for (i=0; i<10; i++,j++) {body} for (i=0; i<10; i++) {body}

initialization function () {int i=0; ...} function () {int i; ...}

pointer ptr = ptr->next->next ; ptr = ptr->next;

allocation
ptr = malloc(N); use ptr; use ptr;

free(ptr);
ptr = malloc(N); use ptr; free(ptr) ; use ptr

copy overrun for (i=0; i<sizeUsed ; i++) {a[i] = b[i]}; for (i=0; i<sizeTotal ; i++) {a[i] = b[i]};

off-by-one for (i=0; i<size; i++) for (i=0; i<=size; i++)

synchronization getWriteLock;  write(); freeWriteLock; write();

interface error insert(buf , index); insert(buf1 ,index);

Table 3: Frequency of fail-stop violations in Postgres.  This table shows that fail-stop violations occur about
7% of the time without transactions. By undoing recent changes to stable storage, transactions are able to
reduce fail-stop violations by a factor of 3.

Fault Category
# of

Runs
 Fail-stop Violations

Fail-stop Violations
with Transactions

heap 50 5 0

stack 50 1 1

destination reg. 50 6 2

source reg. 50 2 1

delete branch 50 3 2

delete random inst. 50 6 3

initialization 50 1 0

pointer 50 3 0

allocation 50 3 0

copy overrun 50 4 1

off-by-one 50 8 3

synchronization 50 0 0

 interface error 50 4 2

Total 650 46 (7%) 15 (2%)



fault latency for runs that violate the fail-stop model is
three times as high as the overall average. Using transac-
tions prevents fail-stop violations in most cases. Fail-stop
violations with transactions occur only for very long
latency faults in which the program continues beyond the
transaction that wrote corrupted data.

5. Related work

Many prior studies have used software fault injection;
see [Iyer95] for an excellent introduction to the overall
area and a summary of past fault injection techniques.

Most fault injection studies focus on the final effect of the
error (e.g. fault latency). Very few studies seek to under-
stand and trace how errors propagate during the crash, and
we know of no prior study that measures how often pro-
gram failures violate the fail-stop model. More work is
clearly needed in this area, especially in light of how many
fault-tolerant systems are based on the fail-stop model.

The most relevant work to this paper is the FINE fault
injector and monitoring environment [Kao93]. FINE uses
software to emulate hardware and software bugs into the
Unix operating system and monitors how the fault propa-
gates through the kernel. To trace fault propagation, a

Figure 4 : Fault detection latency versus amount of corruption.  Each run is shown as a dot. Fail-stop
violations are circled. Fail-stop violations with transactions are shown as filled-in circles.

100 101 102 103 104 105 106 107 108

Number of Words Corrupted

100

101

102

103

104

105

106

107

108

F
au

lt 
A

ct
iv

at
io

n 
La

te
nc

y 
(#

 o
f I

ns
tr

uc
tio

ns
)

Table 4: Median fault latencies.  Runs that violate fail-stop tend to have longer fault latency than average, and
only very long latency faults cause fail-stop when using transactions. A complete run of Postgres on our
workload executes 57 million instructions.

Median Fault Latency

All runs 4.3 million instructions

Fail-stop violations 13.8 million instructions

Fail-stop violations with transactions 24.5 million instructions



FINE user manually specifies key variables at the begin-
ning of each experiment. These variables are printed out at
user-specified probe points. Traces from faulty and good
runs can be compared to identify how the fault is propagat-
ing. Our tool differs from FINE in several key ways:

• We monitor all memory locations, while FINE traces
only those memory locations specified by the user.

• We monitor disk corruption, which is crucial to detect-
ing fail-stop violations.

• By matching execution timelines (Section 2.3), we are
able to match corresponding checkpoints between
good and faulty runs.

In summary, FINE is appropriate for tracing fault
propagation at a high level. The user of FINE needs inti-
mate knowledge of how the system works in order to spec-
ify the variables and probe points. Our tool traces fault
propagation at a low level and is able to monitor compre-
hensively the entire system state.

A prior paper from the Rio project measures database
corruption by running a pre-determined workload, moni-
toring the progress of the workload, and comparing the
results after a crash with the pre-determined, correct
answers at the point of the crash [Ng97]. The prior study
compares the transactional state of the data (after changes
from in-progress transactions are undone), so these results
correspond to the right-most column of Table 3 (fail-stop
violations with transactions). Our results match those in
the prior study: 2% of crashes violate fail-stop when trans-
actions are used. The methodology used in the current
paper is much more general than that used in prior paper,
however. We can measure fail-stop violations for arbitrary
applications at arbitrary points in the computation. The
method used in the prior study works only when correct
answers can be pre-determined for each point in the com-
putation. We also compare results with and without trans-
actions to determine how effectively transactions hide fail-
stop violations, something that could not be easily done in
[Ng97].

6. Conclusions and future work

While many systems depend on programs being fail-
stop, no prior study has measured how often programs
actually stop before corrupting permanent data. We have
described a tool that can trace how faults propagate
through memory, disk, and functions. Using this tool on
the Postgres database system, we have shown that a signif-
icant number of faults (7%) violate the fail-stop model.
Transactions undo recent changes to stable storage and are
able to reduce the number of fail-stop violations by a fac-
tor of 3. Based on these findings, we recommend that more

system designers use transactions to increase their sys-
tem’s reliability.

This paper evaluates the fail-stop property on a single
application. In the future, we plan to broaden the scope of
our conclusions by repeating this study on more applica-
tions. In particular, we plan to measure how often distrib-
uted applications violate the fail-stop model by sending
corrupted messages to other processes. We also plan to use
our tool’s ability to trace fault propagation to understand
more fully what happens during a program failure.

7. Acknowledgments

We would like to thank the Stanford SimOS team for
providing and supporting the SimOS complete machine
simulator. In particular, Edouard Bugnion wrote the Alpha
port of SimOS that forms the basis of our tool. Wee Teck
Ng (University of Michigan) provided the fault-injector
used in this paper.

This research was supported in part by NSF grant
MIP-9521386, Digital Equipment Corporation, and the
University of Michigan. Peter Chen was also supported by
an NSF CAREER Award (MIP-9624869).

8. References

[Avizienis85] Algirdas Avizienis. The N-Version Approach to
Fault-Tolerant Software.IEEE Transactions on
Software Engineering, SE-11(12):1491–1501,
December 1985.

[Barton90] James H. Barton, Edward W. Czeck, Zary Z. Se-
gall, and Daniel P. Siewiorek. Fault injection ex-
periments using FIAT.IEEE Transactions on
Computers, 39(4):575–582, April 1990.

[Birman91] Kenneth Birman, Andre Schiper, and Pat
Stephenson. Lightweight Causal and Atomic
Group Multicast.ACM Transactions on Comput-
er Systems, 9(3):272–314, August 1991.

[Chen96] Peter M. Chen, Wee Teck Ng, Subhachandra
Chandra, Christopher M. Aycock, Gurushankar
Rajamani, and David Lowell. The Rio File
Cache: Surviving Operating System Crashes. In
Proceedings of the 1996 International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS),
pages 74–83, October 1996.

[Costa96] Manuel Costa, Paulo Guedes, Manuel Sequeira,
Nuno Neves, and Miguel Castro. Lightweight
Logging for Lazy Release Consistent Distributed
Shared Memory.Operating Systems Design and
Implementation (OSDI), October 1996.

[Gray86] Jim Gray. Why do computers stop and what can
be done about it? InProceedings of the 1986
Symposium on Reliability in Distributed Software
and Database Systems, pages 3–12, January



1986.

[Gray91] Jim Gray and Daniel P. Siewiorek. High-Avail-
ability Computer Systems.IEEE Computer,
24(9):39–48, September 1991.

[Gray93] Jim Gray and Andreas Reuter.Transaction Pro-
cessing: Concepts and Techniques. Morgan
Kaufmann Publishers, Inc., 1993.

[Iyer95] Ravishankar K. Iyer. Experimental Evaluation.
In Proceedings of the 1995 International Sympo-
sium on Fault-Tolerant Computing, pages 115–
132, July 1995.

[Johnson87] David B. Johnson and Willy Zwaenepoel. Send-
er-Based Message Logging. InProceedings of
the 1987 International Symposium on Fault-Tol-
erant Computing, pages 14–19, July 1987.

[Kanawati95] Ghani A. Kanawati, Nasser A. Kanawati, and
Jacob A. Abraham. FERRARI: A Flexible Soft-
ware-Based Fault and Error Injection System.
IEEE Transactions on Computers, 44(2):248–
260, February 1995.

[Kao93] Wei-Lun Kao, Ravishankar K. Iyer, and Dong
Tang. FINE: A Fault Injection and Monitoring
Environment for Tracing the UNIX System Be-
havior under Faults.IEEE Transactions on Soft-
ware Engineering, 19(11):1105–1118,
November 1993.

[Lee93] Inhwan Lee and Ravishankar K. Iyer. Faults,
Symptoms, and Software Fault Tolerance in the
Tandem GUARDIAN Operating System. InIn-
ternational Symposium on Fault-Tolerant Com-
puting (FTCS), pages 20–29, 1993.

[Lowell97] David E. Lowell and Peter M. Chen. Free Trans-
actions with Rio Vista. InProceedings of the
1997 Symposium on Operating Systems Princi-
ples, October 1997.

[Ng97] Wee Teck Ng and Peter M. Chen. Integrating Re-
liable Memory in Databases. InProceedings of

the 1997 International Conference on Very Large
Data Bases (VLDB), pages 76–85, August 1997.

[Randell75] Brian Randell. System Structure for Software
Fault Tolerance.IEEE Transactions on Software
Engineering, 1(2):220–232, June 1975.

[Rosenblum95] Mendel Rosenblum, Stephen A. Herrod, Emmett
Witchel, and Anoop Gupta. Complete computer
system simulation: the SimOS approach.IEEE
Parallel & Distributed Technology: Systems &
Applications, 3(4):34–43, January 1995.

[Schneider84] Fred B. Schneider. Byzantine Generals in Action:
Implementing Fail-Stop Processors.ACM Trans-
actions on Computer Systems, 2(2):145–154,
May 1984.

[Stonebraker87] M. Stonebraker. The design of the POSTGRES
storage system. InProceedings of the 1987 Inter-
national Conference on Very Large Data Bases,
pages 289–300, September 1987.

[Strom85] Robert E. Strom and Shaula Yemini. Optimistic
Recovery in Distributed Systems.ACM Transac-
tions on Computer Systems, 3(3):204–226, Au-
gust 1985.

[Sullivan91] Mark Sullivan and R. Chillarege. Software De-
fects and Their Impact on System Availability–A
Study of Field Failures in Operating Systems. In
Proceedings of the 1991 International Sympo-
sium on Fault-Tolerant Computing, June 1991.

[Sullivan92] Mark Sullivan and Ram Chillarege. A Compari-
son of Software Defects in Database Manage-
ment Systems and Operating Systems. In
Proceedings of the 1992 International Sympo-
sium on Fault-Tolerant Computing, pages 475–
484, July 1992.

[TPC90] TPC Benchmark B Standard Specification. Tech-
nical report, Transaction Processing Performance
Council, August 1990.


