
Abstract

Recovery systemsmustsavestatebefore a failure occurs
to enablethesystemto recover fromthe failure. However,
recovery will fail if the recovery systemsavesany state
corruptedby thefault. Thefrequencyandcomprehensive-
nessof how a recovery systemsavesstate has a major
effect on how often the recovery systeminadvertently
savescorruptedstate. This paperexploresand measures
that effect. We measure how often software faults in the
applicationand operating systemcausereal applications
to savecorruptedstatewhenusingdifferenttypesof recov-
erysystems.Wefindthatgenericrecoverytechniques,such
as checkpointingand logging, work well for faults in the
operating system.However, we find that they do not work
well for faults in theapplicationbecausetheveryactions
taken to enable recovery often corrupt the state upon
which successful recovery depends.

1. Intr oduction

Recovering from software faults is a difficult and
complicatedtask.On onehand,the recovery systemmust
save enoughstatebeforethe failure occursto enablethe
systemto recover. On theotherhand,therecovery system
mustnot save any statecorruptedby the fault, sincethat
wouldpreserve theeffectsof thefailurein all futurerecov-
ery attempts.In addition,therecovery systemmustdetect
the failure beforeit corruptscritical stateor sendsincor-
rect information to other processors.Prior recovery
researchhasfocusedprimarily on saving enoughstateto
enablerecovery. Much less attentionhas beengiven to
saving only uncorruptedstate(other thanminimizing the
latency of error detection).Becauseof this emphasison
saving enoughstate,most recovery systemsignore the
impact their own actionsmay have on the likelihood of
saving corrupted state.

In reality, the methodusedto recover from failures
hasa marked effect on the likelihoodthat a programwill

save corruptedstate,andthuson thelikelihoodthatrecov-
ery will succeed.For example, logging eachapplication
event ensuresthat an applicationfailure will effectively
save corruptedstate[10]. Recovery systemsthat ignore
this effect reducethe scopeof failures for which they
recover.

Thegoalof this paperis to explore the interactionof
recovery protocolsandthe likelihoodof saving corrupted
statein thepresenceof softwarefaults(bothin theapplica-
tion and the operatingsystem).We begin by discussing
somefactorsthat influencewhetherthe recovery systems
will save corruptedstate:the comprehensivenessandfre-
quency of the recovery system,the location of the fault,
andthe quality of error detectionpresentin the program.
After describing the setup used in our work, we then
presentexperimentalresultsfrom severalrealapplications
in order to quantify the interactionbetweenthe recovery
method and the likelihood of saving corrupted state.

2. Factors that influence the likelihood of
saving corrupted state

Four mainfactorsaffect the likelihoodthat therecov-
ery systemwill save corruptedstate:the comprehensive-
nessof statesaved by the recovery system,the frequency
of statesaved by the recovery system,the locationof the
fault,andthequality of errordetection.In this section,we
discuss each of these four factors.

The first two factors relate to the systemused to
recover after a failure. Recovery methodsare built into
applicationor systemsoftwareto shieldtheuserfrom the
effects of a failure and to preserve the user’s data.The
recovery systemmust periodically save the stateof the
programso it canrestarttheprogramfrom anappropriate
point aftera failure.Therearetwo maintypesof recovery
systems: application-generic and application-specific.
Application-genericrecoverysystems,suchasthosebased
oncheckpointingandlogging,operateindependentlyfrom
the programbeingrecovered[6]. That is, they requireno

The Impact of Recovery Mechanisms on the Likelihood of Saving Corrupted State

Subhachandra Chandra Peter M. Chen
CoSine Communications EECS Department

subhachandra@computer.org University of Michigan
pmchen@umich.edu

Proceedings of the 2002 International Symposium on Software Reliability Engineering



informationaboutthe semanticsof the statebeingsaved,
andthey requireonly basicinformationabouttheeventsin
the program,suchaswhich eventsarevisible outsidethe
program(“outputevents”)andwhicheventsarenon-deter-
ministic [10]. In contrast,anapplication-specificrecovery
system is written for a specific program and utilizes
semanticinformation specific to that application. Most
applications today include program-specific code to
recover aftera failure,while relatively few rely on generic
methods of recovery.

The next two subsectionsexplore how the compre-
hensivenessandfrequency of the recovery protocolaffect
thelikelihoodof saving corruptedstate.For boththesefac-
tors, therearetrade-offs betweenfailure transparency for
theuser, theamountof work to bedoneby theapplication
programmer, and the likelihood of saving corrupted state.

2.1. Comprehensiveness of state saved by recovery
system

One key designdecisionwhen building a recovery
systemis how much stateto save. Saving statebeforea
failure preserves the user’s work and enablesrecovery
from that point.

Application-specificrecovery systemscan choosea
variety of strategies for saving different piecesof state.
The recovery system can choose to discard (i.e. not
recover) somestateif theuserof a programdoesnot mind
thelossof thatstate;for example,few editorssave thecur-
rent cursorposition. Or, an application-specificrecovery
systemmaychooseto invoke a program-specificfunction
to reconstructa pieceof statebasedon othersaved state;
for example,a web browsermay re-fetchthe mostrecent
webpagebasedon a URL history. Finally, anapplication-
specific recovery systemmay chooseto save a pieceof
stateandrestoreit to thesavedvalueduringrecovery; for
example, the URL history may be saved in a log and
recovered from that log.

In contrast, application-genericrecovery systems
lack informationaboutthesemanticsof differentpiecesof
state.Becausethey do not know which statecanbelost or
how to recover state in an application-specificmanner,
application-genericrecovery systemsmust save all state
andrestoreit duringrecovery. Saving statein this manner
can be done with either checkpointing or logging.

Saving all statevia genericmethodslike checkpoint-
ing andlogginghastwo benefitsandtwo drawbacks.The
first benefitis that saving morestatemakesfailuresmore
transparentto theuser, becausetheuseris lessaffectedby
thefailure.Thesecondbenefitis thatsaving all statefrees
the applicationprogrammerfrom writing codeto recover

state. However, saving more comprehensive state hurts
performance,andit increasesthechancethata failurewill
lead to the recovery systemsaving corruptedstate.The
morecomprehensive thestatethatis saved,themorelikely
it is thatstatecorruptedby thefault will beincludedin the
saved state.Statesaved by application-specificrecovery
mechanismalsomay have beencorruptedby the failure.
However, thesesystemstendto save lessstatethangeneric
recovery systems.Becauseapplication-genericrecovery
systemsmustsave a morecomprehensive setof statethan
application-specificrecovery systems,we expecta higher
fraction of failuresto save corruptedstatewhen using a
generic recovery system.

2.2. Frequency of state saves by recovery system

A secondkey designdecisionwhenbuilding a recov-
ery systemis how frequentlyto save state.As with com-
prehensiveness,the frequency at which state must be
saved is determinedin largepart by whetherthe recovery
system has application-specificknowledge. In essence,
recovery systemsthatknow nothingabouttheapplication
mustsave statewhenever the applicationexecutesevents
that are visible outsidethe program[10]. Recovery sys-
temsthatunderstandapplicationsemanticscansometimes
avoid saving stateat thesetimes.For example,moving the
cursoris visible outsidethe program,but an application-
specificrecovery systemmayknow that theprogramdoes
not need to remember this event after recovery.

Increasingthe frequency of saving stateinvolvesthe
sametrade-offs as increasingthe comprehensivenessof
thestatethat is saved.Saving statemorefrequentlymakes
failuresmoretransparentto theuser, becauselesswork is
lost during a failure. If stateis saved so frequently that
eachvisible event leadsto a statesave, then application
programmersneed not be concernedwith specifying
eventsthat canbe lost, so their job becomeseasier. How-
ever, saving statemorefrequentlyincreasesthe likelihood
that a failure will leadto the recovery systemsaving cor-
ruptedstate.The greaterthe frequency at which stateis
saved,thegreaterthelikelihoodthatstateis savedbetween
thefaultactivationandthehaltingof theprogram.In other
words,morefrequentsavesallow lesstimefor error-detec-
tion mechanismsto detecttheerrorandstoptheprogram.
A failure will save corruptedstateif the recovery system
savesstateafter thefault activationandthatstateincludes
corruptionsinducedby thefault activation.Becauseappli-
cation-genericrecovery systemsmustsave statemorefre-
quently than application-specificrecovery systems,we
expecta higherfractionof failuresto save corruptedstate
when using generic recovery systems.



2.3. Fault location

Another factor that affects how frequently failures
save corruptedstateis the layerof the fault relative to the
recovery system.We view therecovery systemasoccupy-
ing a specificlayer in thesystem.Its job is to recover the
layersabove it, while leaving therecovery of layersbelow
it to otherpartsof thesystem.For example,a checkpoint-
ing library seeksto recoverasingleapplication,but it does
notseekto recover theoperatingsystembelow thatlibrary
[12]. Recovery systemsbelow the operatingsystemseek
to recover the operating system and all applications [2].

Basedon this view, we canclassify faultsasoccur-
ring above, below, or within the recovery system.Faults
that occur above the recovery systemdirectly affect the
stateof theprogramthat is beingrecovered.That is, these
faults will always lead to corruptedstatein the domain
beingrecovered,therebymakingit possiblefor therecov-
ery systemto save corruptedstate.Onereasonthat appli-
cation faults are so difficult to recover from is that they
occur above the recovery systemand can lead easily to
corrupted state being saved.

In contrast,faults that occurbelow the recovery sys-
tem often do not affect stateabove the recovery system.
Faults below the recovery systemcan affect statein the
domainbeingrecoveredonly if the corruptionpropagates
up through the intervening layers.Considera user-level
checkpointinglibrary asanexample.Faultsin theoperat-
ing systemcancrashthesystemwithout ever affectingthe
state of the application linked with the checkpointing
library. If no stateis corruptedin thedomainbeingrecov-
ered,then the recovery systemcannotpossiblysave cor-
rupted state.It is still possiblefor an operatingsystem
fault to corruptapplicationstate(e.g.by corruptinga sys-
tem-call return value), but it is relatively infrequent.

Faults may also occur within the recovery system
itself. For example,a fault within the operatingsystem’s
file-systemcodemaycauseacheckpointinglibrary to save
incorrectcheckpointdata.Faultswithin the recovery sys-
temaresimilar to thosebelow therecovery systemin that
they may or may not affect stateabove the recovery sys-
tem.

2.4. Quality of error detection

The final factor that affectswhetheror not a failure
leadsto corruptedstatebeing saved is the quality of the
errordetectionpresentin thesystemandapplication.One
goalof errordetectionis to stopa faultingprogrambefore
it saves corruptedstateto stablestorage.The longer the
latency betweenfault activation and error detection,the
more likely it is that corrupted state will be saved.

3. Experimental apparatus

In this paper, we evaluatethe effect of varying the
comprehensivenessandfrequency of therecovery system.
We explore both application-genericandapplication-spe-
cific recovery systems,andwe evaluatefaultsbelow and
above the recovery system.The programswe evaluate
detecterrorswith adhocredundancy (primarily assertions
andmemoryaddressrangechecks).Our generalstrategy
is to (1) run a variety of general-purposeapplications
(describedin Section3.1), (2) inject faults (describedin
Section3.2) into an applicationor the operatingsystem
until it fails, (3) recover andcontinuethe applicationand
systemusinga variety of recovery schemes(describedin
Section3.3), then(4) evaluatewhetheror not therecovery
system saved corrupted state (described in Sections 4-6).

3.1. Applications

We usethreegeneral-purposeapplicationsto conduct
our experiments:nvi, Postgresand oleo. nvi is a com-
monly usedUnix text editor andconsistsof about87,000
lines of code.Postgresis a databasemanagementsystem
developedat U.C. Berkeley andconsistsof about327,000
lines of code.oleo is a terminal-basedspreadsheetpro-
gramandconsistsof about53,000linesof code.While our
resultsarespecificto thesoftwarebeingtested,webelieve
that examining several general-purposeapplicationsthat
arein commonusecanhelpcontributeto anunderstanding
of how faults behave in general.

Nvi is an interactive applicationthat readsuserinput
anddisplaysits work on thescreen.It savesoutputto afile
when given a commandby the user. We modified the
application to simulate user input by reading keyboard
input from a text file. This allowed us to automatethe
thousandsof experimentsusedin thispaper. Thekeyboard
input we useconsistsof about8000charactersthat were
logged while we wrote the introduction to a paper.

Postgrescan run in a variety of conditionsranging
from acceptinginput directly from theuserto runningin a
client-server configuration.We run Postgresin the mode
whereit readsSQL commandsfrom a file. TheSQL com-
mandsused to drive Postgresare basedon the TPC-B
benchmark;eachtransactionupdatessomedatain a bank-
ing database.

Oleois aninteractive applicationthatreadsuserinput
anddisplaysits work onthescreen.It savesthestateof the
spreadsheetto a file whengiven a commandby the user.
We modified oleo to readits input from a file. The key-
board input we use to drive oleo replaysthe keystrokes
usedto createthebudgetfor a grantproposalandconsists
of about 500 characters.



The operating system used in our experiments is
FreeBSD2.2.7,which is a versionof Unix basedon the
BSD 4.4 kernel. We used a customized version of
FreeBSD(FreeBSD-Rio)that includedcodeto implement
reliablemain memory[11]. FreeBSD-Rioensuresthat all
file cachedatais written to disk during an operatingsys-
temcrash,whichprovidesthesamelevel of datareliability
as a file systemthat synchronouslywrites all file-cache
data to disk.

3.2. Fault models

We evaluate the failure and recovery behavior of
applicationsin the presenceof applicationand operating
systemfaults.This sectiondescribesthe faults we inject
into the applicationor operatingsystem.The fault-injec-
tion mechanismsaredescribedin moredetailin Chandra’s
dissertation[3]. Our modelsarederivedfrom field studies
of commercialdatabasesandoperatingsystems[14, 13,9]
andfrom prior modelsusedin fault-injectionstudies[1, 8,
7]. Thefaultswe inject rangefrom low-level faultssuchas
flipping bits in memoryto high-level softwarefaultssuch
asmemorymanagementerrorsanduninitializedvariables.
We trigger a fault in the runningapplicationor operating
system at a random time in the program’s execution.
Injectedfaults fall into two categories:bit flips andhigh-
level software faults.

The first category of faults flips randombits in the
applicationor operatingsystem’s heapand stack.These
faultssimulatethecorruptionof a process’s addressspace
by wild pointers and hardware faults.

The secondcategory of faults introducesprogram-
ming errorsinto the applicationor operatingsystem.We
inject thesefaultsby modifying the sourcecode,compil-
ing andrunningthemodifiedsourcecode,thentriggering
a fault dynamically while the program is running. We
modify thesourcecodeby usingacustomparserthatiden-
tifies all potentialpiecesof codewherea particularfault
can be injected, then adds code to inject the fault on
demand.When the fault-triggering mechanismis acti-
vated, it sets a global variable that triggers one of the
instancesof faulty code.A brief descriptionof eachfault
type follows.

Memory-management faults: Thesefaults affect the
program’s dynamicmemoryallocationandde-allocation.
We modified the malloc() and free() routines to free a
block of memorywhile theparticularblock of memoryis
still in use.Our modifiedroutineskeeptrack of allocated
memorythathasnot yet beenfreed.Whenthefault injec-
tion routine is triggered,it prematurelyfreesone of the
allocated blocks of memory still in use.

Off-by-one faults: Thesefaultssimulatesoftwarebugs
wherethe programmerusesthe wrong conditionalopera-

tor to determineif a loop will executeanotheriterationor
terminate.We insert thesebugsby replacingthe operator
“>” with “>=”, and by replacingthe operator“<” with
“<=”. Whena fault is injected,it setsa global variablein
theprogramthatcausestheerroneousoperatorto beused
instead of the original operator.

Initialization faults: Thesefaults simulate software
bugs wherethe programmerfails to initialize a variable.
We insertthesebugsby changingtheinitializationcodeso
that a variableis initialized with zeroor is left uninitial-
ized.

Incorrect branch faults: Thesefaults simulatesoft-
ware bugs wherethe programmerdeclaresa conditional
branch statementinsteadof an iteration statement.We
insert thesebugs by replacingthe keyword “while” with
an “if” statement.

Delete instruction faults: Thesefaults simulatesoft-
warebugswheretheprogrammerforgetsa simpleexpres-
sion statement.We insert thesebugs by skipping over a
simple expression statement.

Change destination variable faults: Thesefaultssim-
ulatesoftwarebugswheretheprogrammerassignsa value
to thewrongvariable.We insertthesebugsby replacinga
destination variable in an assignmentstatementwith
another variable.

3.3. Recovery systems

As describedin Section2, thedesignof the recovery
systemaffectsthe likelihoodthat failurescausecorrupted
stateto be saved. This sectiondescribesthree recovery
systemswe useto evaluatetheseeffectsquantitatively. We
describehow andwheneachof our threerecovery system
savesandrecoversstate,andwe describehow we detect
saved corruptedstatewhen using eachrecovery system.
The first recovery systemexemplifies a typical applica-
tion-specificrecovery system,while the secondrecovery
systemexemplifiesa typical application-genericrecovery
system.The third recovery systemrepresentsan interme-
diatepoint alongthe continuumbetweenapplication-spe-
cific and application-generic recovery.

Application-specific recovery. Most applicationsprovide
an application-specificrecovery system. This type of
recovery systemis written by theapplicationprogrammer,
who cantake advantageof his/herknowledgeof program
semanticsand user requirementsto minimize both the
amountof statesaved and the frequency of saving that
state.Thescopeandfrequency of statesavedvariesfor our
three applications.Nvi saves the stateof the file being
editedwhendirectedby the userandalsosavesrecovery
state to a temporaryfile when triggeredby the built-in
auto-save mechanism.Postgrescommitsthe stateof each



transaction to the databasefile at the end of each
transaction.Oleo saves the stateof the spreadsheetonly
whentheuserissuesa savecommand;unlikenvi, oleohas
no auto-save mechanism.

We detectwhen an applicationor operating-system
failuresavescorruptedstateby examiningthestateof file
data(stablestorage)aftertheapplicationor operatingsys-
temcrashes.Wecomparethecrashstateof thesefileswith
asetof referencestatesfor thesefiles.Thesetof reference
statesis generatedby runningtheapplicationwithout any
faultsandarchiving thecompletehistoryof thesetof files
(i.e. all versionsthat the set of files goesthroughduring
theprogram’s execution).After a failure,we comparethe
crashstateof thefilesagainsteachversionin thereference
set.If the crashstateof the files matchesany of the ver-
sionsin thereferenceset,thenthefailurehasnotcorrupted
thedataonstablestoragecomparedto a fault-freerun.For
thesefaults,therunwill completesuccessfullyafterrecov-
ery if theusercontinuesenteringinput from thepoint rep-
resentedby the matchedstateand the fault doesnot re-
occur. However, if the crashstateof the files doesnot
matchany of the versionsin the referenceset, then the
failure has causedthe application to commit incorrect
state,andthis statewill be visible to the applicationafter
recovery.

Postgresincludesa mechanismto abort transactions
thatwerein-progressat thetime of thecrash.This mecha-
nism rolls backchangesto the databasefile that werenot
yetcommittedat thetimeof thecrash.Wemakefull useof
Postgres’s application-specificrecovery mechanismby
rolling back uncommittedtransactionsbeforecomparing
against the set of referencestates.Prior resultsindicate
that the transactionmechanismsignificantly reducesthe
number of failures that save corrupted state [4].

Application-generic recovery. This recovery systemuses
an application-genericcheckpointing library (Discount
Checking)to recover the application[10]. Checkpointing
systems like Discount Checking are unaware of the
semanticsof applicationdataandoutputevents,andhence
they must be conservative in how frequently and
comprehensively they save state. Application-generic
recovery systemsmust save all applicationstatethrough
checkpointingor logging at eachevent visible to the user
(theseare commonly called “output commits” [6]). We
expect application-genericrecovery systems to save
corruptedstatemore often due to their higher frequency
and greater comprehensiveness of saving state.

We detectwhen an applicationor operating-system
failuresavescorruptedstateby having DiscountChecking
recover theapplicationfrom its lastcheckpointandtrying
to completethe program’s execution.We deactivate the
fault injectionmechanismduring recovery so thatno new

faults are injected. As a result, the recovering run will
completesuccessfullyif and only if the last checkpoint
beforethe crashcontainsno corrupteddata.As described
in Section 2, an application-level fault saves corrupted
stateif a checkpoint(which savesall applicationstate)is
taken after the fault was activated.An operatingsystem
fault saves corruptedstateif it leadsto applicationstate
being corrupted,and an applicationcheckpointis taken
after the corruption.

Low-frequency application-generic recovery. This
recovery system is similar to an application-generic
recovery system, but takes checkpointsonly when an
application-specificrecovery systemwould save state.As
with application-generic recovery, we use Discount
Checking to save the complete state of the process.
However, we modify DiscountCheckingin this systemto
take checkpoints only when the application-specific
recovery system would save state. We detect saved
corruptedstatefor this strategy in thesamemanneraswe
do for application-generic,i.e. by recovering from the
most recent checkpoint.

This recovery systemrepresentsanintermediatepoint
betweenpureapplication-specificandapplication-generic
recovery systems.We measureits behavior to try to sepa-
rate out the two factors (comprehensivenessand fre-
quency) that differ between application-specific and
application-genericrecovery systems.We canget an idea
of the effect of the increasedcomprehensivenessof an
application-genericrecovery system by comparing the
low-frequency application-genericrecovery systemwith
theapplication-specificrecovery system(sincethey differ
only in comprehensiveness).Likewise,we cangetan idea
of theeffect of the increasedfrequency of anapplication-
genericrecovery systemby comparingthe low-frequency
application-genericrecovery systemwith the application-
generic recovery system(since they differ only in fre-
quency).

4. Measurement methodology

Our main goal is to comparethe impactof different
recovery systemson the likelihood of saving corrupted
state.To enablea direct comparison,we would like to
comparehow different recovery systemsbehave on the
samefault.A naturalway to accomplishthis is to run three
fault-injectionexperiments,whereeachexperimentinjects
thesamefault at thesamepoint in executionbut usesdif-
ferent systems to recover after the failure. However,
becausethe randomtimer mechanismwe use to inject
faultsis non-deterministic,we cannotrepeatablyinject the
samefault at the samepoint in executionacrossmultiple
runs.Instead,we enablea direct comparisonon the same



fault by applyingall threerecovery systemsduring a sin-
gle fault-injectionrun and evaluatingseparatelywhether
eachrecovery systemsaved corruptedstatefor that fault.
This techniqueallows us to comparedifferent recovery
systemson thesamefault,andit alsospeedsupourexper-
imentssignificantly. Evenwith thisoptimization,thefault-
injection experimentsfor this papertook many machine-
months.

The following describeshow we usea single fault-
injectionrun to evaluateall threeof our recovery systems.
We run an experimentwith the application linked with
DiscountCheckingsaving stateat the higher frequency.
We detectwhen application-genericrecovery saves cor-
ruptedstatesimply by having DiscountCheckingrecover
from the most recentcheckpoint.We alsomeasurewhen
low-frequency application-genericrecovery saves cor-
rupted state from that sameexperimentby having Dis-
count Checkingrecover from the checkpointthat would
have been taken most recently under a low-frequency
recovery system.We measurewhen application-specific
recovery savescorruptedstatefrom that sameexperiment
by examining the crashstateof the files as describedin
Section 3.3.

In eachfault-injection run, there are three possible
outcomes.First, theprogrammayfinishexecutionwith the
correctfinal result.This outcomeindicatesthat the fault
injectedin this experimentdid not causean error, either
becausethefaultwasnotactivatedor becausethefaulthad
no lastingeffect (e.g.it changeda variablethatwasover-
written beforebeingread).We areinterestedin evaluating

thebehavior of failures,sowe discardtheseruns.Second,
theprogrammayfinish executionbut have thewrongfinal
result.This outcomeindicatesthat the system’s andpro-
gram’s error checking overlooked the failure. Because
theseruns arenot detectedaserrorsby the normalerror
detectionmechanisms,they do not trigger recovery. Like
the runs that save corruptedstate,theseruns prevent the
programfrom finishing correctly (i.e. they finish incor-
rectly). Third, the programor operatingsystemmay fail
andrecover. We areprimarily interestedin this third out-
come,as it is the only outcomewhosebehavior depends
on the recovery system.We usethe methodsdescribedin
Section3.3 to evaluatewhethera run with this outcome
saves corrupted state (and hence cannot recover).

5. Results of application-level faults

We first measurethe behavior of faultsoriginatingin
the application.As mentionedabove, we only consider
runsthatfinish with a wrongfinal resultor that fail before
finishing.About 3-4%of all therunsinto which we inject
faultsfall into oneof thesetwo categories.For eachappli-
cation,we repeatthe fault-injectionexperimentsuntil we
obtain50 faulty runs(i.e. failuresor undetectederrors)for
eachfault type.This givesusa total of 400datapointsfor
each of the three applications.

Table1 shows the resultsfor nvi. 9% of the runswe
considercompleteincorrectlywithout triggeringtheerror-
detectionmechanism.Theserunsareshown in the right-
mostcolumnof all tables.For runsin which anerrorwas

Table 1. Results for nvi (application faults). Only faulty runs are represented (runs that either crashed or ran
to completion with incorrect results). The Undetected Errors column gives the number of faulty runs in which the
fault was never detected and the program ran to completion with incorrect results. The middle columns show the
number of runs that saved corrupted state and thereby could not recover correctly. The remainder of the runs
crashed then recovered successfully.

Fault
Faulty
Runs

Runs That Sa ve Corrupted State
Undetected

ErrorsApp-Specific
Low-Freq

App-Generic
App-Generic

Stack 50 0 0 0 0

Alloc 50 24 40 50 0

Heap 50 6 12 35 8

Off by One 50 6 7 9 12

Init Errors 50 0 2 2 0

Delete Branch 50 25 27 34 8

Delete Inst 50 12 14 24 3

Change Dest Var 50 1 5 8 5

Total 400 74 (19%) 107 (27%) 162 (41%) 36 (9%)



detected,many still savedcorruptedstateandhencecould
not recover successfully. Application-specific recovery
hadthe lowest fraction of runs that saved corruptedstate
(19%). The fraction of runs that saved corruptedstate
increasedto 41% when using an application-generic
recovery scheme.This dramatic increaseis due to the
increasedcomprehensivenessand frequency of saving
statewhenusingan application-genericrecovery system.
Weattemptto isolatetheeffectsof thesetwo factors(com-
prehensivenessandfrequency) by usingthelow-frequency
application-genericrecovery system.Under this recovery
system,27% of faulty runsdo not completesuccessfully,

which is slightly closerto the application-specificresults
than to the application-genericresults.Lowering the fre-
quency at which stateis saved significantly reducesthe
fractionof runsthatdo not completecorrectly, even if the
recovery system still saves all application state.

Table2 shows theresultsfor Postgres.Thefractionof
runs that saved corruptedstateis much smaller than for
nvi. We attribute this to two factors.First, Postgreshas
very thorougherror detection,in part becauseits applica-
tion domain(databases)placesa high premiumon stop-
ping the systembefore data integrity is compromised.
Second,Postgresupdatesdatawithin atomictransactions,

Table 2. Results f or Postgres (application faults).

Fault
Faulty
Runs

Runs That Sa ve Corrupted State
Undetected

ErrorsApp-Specific
Low-Freq

App-Generic
App-Generic

Stack 50 0 16 17 1

Alloc 50 0 22 24 0

Heap 50 0 0 44 2

Off by One 50 0 0 0 8

Init Errors 50 0 2 3 2

Delete Branch 50 0 0 38 6

Delete Inst 50 1 2 6 5

Change Dest Var 50 2 2 3 0

Total 400 3 (1%) 44 (11%) 135 (34%) 24 (6%)

Table 3. Results f or oleo (application faults).

Fault
Faulty
Runs

Runs That Sa ve Corrupted State
Undetected

ErrorsApp-Specific
Low-Freq

App-Generic
App-Generic

Stack 50 0 0 3 0

Alloc 50 0 2 34 9

Heap 50 0 0 12 19

Off by One 50 0 0 10 7

Init Errors 50 0 3 15 8

Delete Branch 50 0 0 19 7

Delete Inst 50 0 2 9 18

Change Dest Var 50 3 3 5 20

Total 400 3 (1%) 10 (3%) 107 (27%) 88 (22%)



andthisallowsPostgresto oftenroll thecomputationback
to a point beforethefault wasinjected(whenusingappli-
cation-specific recovery). Postgres’ application-specific
recovery only savescorruptedstate3 timesin our experi-
ments.However, note that the numberof runs that save
corruptedstateincreasesfrom 3 to 135 when switching
from application-specificto application-genericrecovery!
As with nvi, lowering the frequency of saving stategains
muchof the benefitof application-specificrecovery. This
is becausethefrequency of savesin Postgresis verysmall,
thusthereis a high probability that thefault wastriggered
after the last statecommit. In thesecases,no stateis cor-
rupt at the time of the last checkpoint,andincreasingthe
comprehensivenessof statesaved cannotcausecorrupted
state to be saved.

Table 3 shows the results for oleo using our three
recovery systems. oleo’s application-specificrecovery
savescorruptedstateonly 3 timesin our experiments.As
with Postgres,we attribute this to the low frequency of
saving statein oleo—stateis saved only when the user
issuesa save command.This view is supportedby the
resultswith low-frequency application-genericrecovery,
which shows that saving a comprehensive set of state
increasesonly slightly the runsthatsavedcorruptedstate,
aslong asthestateis savedat a low frequency. However,
the higher frequency of saving state under application-
generic recovery dramatically increasesthe fraction of
runs that save corruptedstateto 27%. For oleo, a very
large fraction of faulty runs (22%) completeincorrectly
without triggeringany error-detectionmechanism.Appar-
ently this applicationhasvery sparseerrordetection.This
large numberof undetectederrorslimits the effectiveness
of any recovery scheme.

6. Results of operating system faults

We next measurethe behavior of faults injectedinto
the operatingsystem.As mentionedabove, we only con-
sider runs that finish with a wrong final resultor runs in
which the targetprogramor operatingsystemfails before
the applicationfinishes.About 10% of all the runs into
which we injectedfaultsfell into oneof thesetwo catego-
ries. We repeat the fault-injection experiments till we
obtain 50 candidateruns for eachfault type per applica-
tion. This givesusa total of 400runsfor eachof thethree
applications.Before recovering the programfrom a fail-
ure,wefirst rebootaversionof theoperatingsystemwith-
outany of our injectedfaults;this ensuresthatany failures
after recovery are due to corruptedstatethat was saved
before the failure. We also reboot before each run.

Table 4 shows the results for nvi when faults are
injectedinto theoperatingsystem.Notethatthefractionof
runs that save corruptedstate(for all threerecovery sys-
tems)is muchlowerwhenfaultsareinjectedinto theoper-
ating system than when faults are injected into the
application.The fraction of runsthat save corruptedstate
with application-specificrecovery dropsfrom 19%to 2%;
the fraction with application-genericrecovery dropsfrom
41%to 18%;andthefractionwith low-frequency applica-
tion-specificrecovery dropsfrom 27% to 5%. Thesebig
dropsin the numberof runs that save corruptedstateare
dueto the fault beingbelow the recovery system,asdis-
cussedin Section2.3.For anoperatingsystemto savecor-
ruptedstatein theapplication,it mustfirst leakout of the
operatingsystemandcorrupt the stateof the application.
The primary interactionpathbetweenan applicationand
the operatingsystemis the system-callinterface.These

Table 4. Results f or nvi (operating system faults).

Fault
Faulty
Runs

Runs That Sa ve Corrupted State
Undetected

ErrorsApp-Specific
Low-Freq

App-Generic
App-Generic

Stack 50 0 1 6 0

Alloc 50 1 5 19 0

Heap 50 2 3 4 0

Off by One 50 0 6 11 0

Init Errors 50 3 2 8 1

Delete Branch 50 1 2 12 0

Delete Inst 50 0 1 6 0

Change Dest Var 50 2 0 5 0

Total 400 9 (2%) 20 (5%) 71 (18%) 1 (0%)



interfacesare narrow and are used less frequently than
normal application instructions,so it is common for a
faultyoperatingsystemto crashbeforecorruptingapplica-
tion state.However, notethatcomprehensive andfrequent
saving of state,asis donein application-genericrecovery,
dramaticallyincreasesthe likelihood of saving corrupted
state,even when faults are injected below the recovery
layer.

Table5 shows theresultsfor Postgreswhenfaultsare
injectedinto theoperatingsystem.As with nvi, operating-
systemfaults causefewer undetectedapplicationerrors
and runs that save corruptedstatethan application-level

faults. As with application-level faults, operating-system
faultssavecorruptedstatelessfrequentlyfor Postgresthan
they do in nvi, which is probablydueto Postgres’s more
robust error detection.For Postgres,application-generic
recovery and low-frequency application-genericrecovery
both causea similar increasein the numberof runs that
save corruptedstatewhen comparedto application-spe-
cific recovery. Onereasonfor therelatively small increase
for application-genericrecovery is thatour Postgreswork-
loadmakesfewersystemcallsthanour input-intensivenvi
workload (65,000 versus 147,000), and this limits the

Table 5. Results for Postgres (operating system faults). No results are reported for Alloc faults because
running the Postgres workload with operating system faults did not trigger any crashes or undetected errors.

Fault
Faulty
Runs

Runs That Sa ve Corrupted State
Undetected

ErrorsApp-Specific
Low-Freq

App-Generic
App-Generic

Stack 50 0 5 5 0

Heap 50 1 3 3 0

Off by One 50 0 0 0 0

Init Errors 50 0 0 0 0

Delete Branch 50 1 2 2 0

Delete Inst 50 0 1 2 0

Change Dest Var 50 0 0 0 1

Total 350 2 (1%) 11 (3%) 12 (3%) 1 (0%)

Table 6. Results f or oleo (operating system faults).

Fault
Faulty
Runs

Runs That Sa ve Corrupted State
Undetected

ErrorsApp-Specific
Low-Freq

App-Generic
App-Generic

Stack 50 4 0 3 0

Alloc 50 0 0 0 0

Heap 50 1 1 1 0

Off by One 50 3 0 0 0

Init Errors 50 0 1 1 0

Delete Branch 50 1 3 4 0

Delete Inst 50 5 0 1 0

Change Dest Var 50 3 4 4 0

Total 400 17 (4%) 9 (2%) 14 (3%) 0 (0%)



opportunityfor operating-systemfaultsto corruptapplica-
tion state.

Table 6 shows the results for oleo when faults are
injectedinto the operatingsystem.The resultsaresimilar
to the other applicationsin the reductionof undetected
errorsandrunsthatsavecorruptedstaterelative to applica-
tion faults. One anomaly in the results for oleo is that
application-specificrecoveryactuallysavescorruptedstate
slightly more frequently than when using application-
generic recovery. Becauseapplication-genericrecovery
saves state more frequently and comprehensively than
application-specificrecovery, our intuition is that all runs
that save corruptedstateunderapplication-specificrecov-
ery should also save corruptedstate under application-
genericrecovery. After investigating the runsthat contra-
dictedthis intuition, we discoveredthat, for eachof these
runs, the corruptedstatebeing saved in application-spe-
cific recovery is causedby anoperating-systemerrorwhen
oleois writing thefiles usedby application-specificrecov-
ery. In contrast,application-genericrecovery usesDis-
countChecking,which savesstatevia a memory-mapped
file, andthis interfaceuseslessoperating-systemfunction-
ality than direct file systemoperations.Hencethe lower
number of corrupted state saves in application-generic
recovery is due to a more robust methodof saving state
comparedto application-specificrecovery. We also see
this effect in a few runs of nvi (Table 4, Init errorsand
Change Dest Var).

7. Related work

While many researchershave designedand imple-
mentedvariousrecovery schemes,we know of nonewho
hasevaluatedhow thetypeof recoverysystemchangesthe
likelihood of corrupted state being saved (and hence
changesthe likelihood of recovery completingsuccess-
fully).

An earlierpaperby ChandraandChen[4] presented
an initial study on how often software faults violate the
fail-stop model (by saving corruptedstate) for a single
application(Postgres)underapplication-specificrecovery.
The methodologyand scopeof the earlier study differs
from the current paper. The earlier study evaluatesfail-
stop behavior only for application-level faults and uses
only application-specificrecovery, whereasthe present
paperevaluatesfaultsin theoperatingsystemandapplica-
tion, andusesthreedifferentrecovery systems.Theearlier
studyis alsolessaccurateatdeterminingwhena runsaves
corruptedstate,becauseit takesonly periodicsnapshotsof
thefile state,whereasthecurrentpaperarchivesthecom-
plete history of the set of application files.

Costa,et al. evaluatedthe impact of hardware and
softwarefaultsin theOracledatabase[5]. They foundthat

1%of therunsresultedin datacorruption,i.e.datathatdid
not matchthe TPC-Cconsistency checksfor their work-
load.This figureis a percentageof all runs,mostof which
did not leadto a failure; thepercentageof faulty runsthat
resultedin datacorruptionwould be several timeshigher.
Theseexperimentsrepresentdatacorruptionswhile using
application-specificrecovery. Our researchdiffers from
this researchby investigating the effect of otherrecovery
systems,as well as by investigating several applications,
and including operating system faults.

Lowell, et al. explore genericrecovery and describe
two invariantsneededto ensurethat recovery is possible
andtransparent[10]. The paperusessomeof the experi-
mentsincludedin thepresentpaperto evaluatehow often
theseinvariantscanbeupheldsimultaneously. Thepresent
paperdiffers by measuringand comparingboth applica-
tion-specificand application-genericrecovery, as well as
anintermediatepointbetweenthesestylesof recoverysys-
tems.

8. Conclusions

Our goalwasto studyhow a recovery system’s mech-
anismfor saving stateaffects the likelihood that the sys-
tem will save corrupted state and thereby prevent
successfulrecovery. Becauserecovery systemsdependon
the statethey save, any corruptionsto that statewill pre-
vent recovery from succeeding.Genericrecovery systems
that work for generalapplicationsareespeciallyvulnera-
ble,becausetheir lack of knowledgeabouttheapplication
causesthemto save a morecomprehensive setof stateat a
higherfrequency thanwhat is neededto recover a specific
application.This increasedfrequency andcomprehensive-
nessof saving stateincreasesthe likelihoodthat they will
save thestateof thefault itself. Ourexperimentscompared
application-specificand application-genericrecovery and
also examinedthe separateeffects of increasedcompre-
hensiveness and increased frequency.

For application-level faults,we found that using the
error detection and recovery built into the application
caused1-19%of faulty runsto save corruptedstate.Using
a genericrecovery systemincreasedthe fraction of runs
that saved corruptedstateto 27-41%,with more of the
increasedueto ahigherfrequency of saving statethanto a
more comprehensive set of statebeing saved. This high
frequency of saving corruptedstatecalls into questionthe
viability of usinggenericrecovery to survive application-
level software faults.

Resultsweremoreencouragingwhenwe considered
faults below the recovery system,such as faults in the
operatingsystem.For thesefaultsto save corruptedstate,
they mustfirst propagateinto statesaved by the recovery
system.Our resultsshowed that only a few percentageof



operating-systemfaults saved corrupted state for most
applications and recovery systems.

Theseresultsshedlight on the relationshipbetween
thestate-saving methodsusedby recoverysystemsandthe
likelihood that recovery will completesuccessfully. Our
hopeis that this work will encouragethe designof better
fault detectionandrecoverymechanisms.Recoverymech-
anismsshouldtake careto minimize thechanceof saving
corruptstate.Futurerecovery systemsmay requireappli-
cation knowledge to save less state less frequently. We
believe a fruitful area for future researchto be hybrid
application-specific/ application-genericrecoverysystems
that can accomplishthis without undue burden on the
application programmer.

9. References

[1] JamesH. Barton, EdwardW. Czeck, ZaryZ. Segall, and
DanielP.Siewiorek.FaultinjectionexperimentsusingFIAT.
IEEE Transactions on Computers, 39(4):575–582,April
1990.

[2] ThomasC. Bressoudand FredB. Schneider.Hypervisor-
BasedFault-Tolerance.In Proceedings of the 1995 Sympo-
sium on Operating Systems Principles, pages1–11,Decem-
ber 1995.

[3] SubhachandraChandra.An Evaluation of the Recovery-Re-
lated Properties of Software Faults. PhDthesis,Universityof
Michigan, September 2000.

[4] SubhachandraChandraand PeterM. Chen.How Fail-Stop
areFaultyPrograms?In Proceedings of the 1998 Symposium
on Fault-Tolerant Computing (FTCS), pages240–249,June
1998.

[5] DiamantinoCosta,TiagoRilho, andHenriqueMadeira.Joint
Evaluation of Performanceand Robustnessof a COTS
DBMS throughFault-Injection.In Proceedings of the 2000
International Symposium on Fault-Tolerant Computing, June
2000.

[6] E. N. Elnozahy,LorenzoAlvisi, Yi-Min Wang,andDavidB.
Johnson.A Surveyof Rollback-RecoveryProtocolsin Mes-
sage-PassingSystems.TechnicalReport CMU-CS-99-148,
Carnegie Mellon University, June 1999.

[7] GhaniA. Kanawati,NasserA. Kanawati,andJacobA. Abra-
ham.FERRARI:A FlexibleSoftware-BasedFaultandError
Injection System. IEEE Transactions on Computers,
44(2):248–260, February 1995.

[8] Wei-LunKao,RavishankarK. Iyer,andDongTang.FINE: A
Fault InjectionandMonitoring Environmentfor Tracingthe
UNIX SystemBehaviorunderFaults.IEEE Transactions on
Software Engineering, 19(11):1105–1118, November 1993.

[9] InhwanLeeandRavishankarK. Iyer. Faults,Symptoms,and
SoftwareFaultTolerancein theTandemGUARDIAN Oper-
atingSystem.In Proceedings of the 1993 International Sym-
posium on Fault-Tolerant Computing (FTCS), pages20–29,
1993.

[10] DavidE. Lowell, SubhachandraChandra, and PeterM.
Chen.ExploringFailureTransparencyandtheLimits of Ge-
neric Recovery.In Proceedings of the 2000 Symposium on
Operating Systems Design and Implementation (OSDI), pag-
es 289–304, October 2000.

[11] WeeTeckNg andPeterM. Chen.TheDesignandVerifica-
tion of theRio File Cache.IEEE Transactions on Computers,
50(4):322–337, April 2001.

[12] JamesS. Plank,Micah Beck,andGerry Kingsley.Libckpt:
TransparentCheckpointingunderUnix. In Proceedings of the
Winter 1995 USENIX Conference, pages213–224,January
1995.

[13] Mark Sullivan and R. Chillarege. Software Defects and
Their Impacton SystemAvailability–A Studyof Field Fail-
uresin OperatingSystems.In Proceedings of the 1991 Inter-
national Symposium on Fault-Tolerant Computing, June
1991.

[14] Mark SullivanandRamChillarege.A Comparisonof Soft-
wareDefectsin DatabaseManagementSystemsandOperat-
ing Systems.In Proceedings of the 1992 International
Symposium on Fault-Tolerant Computing, pages475–484,
July 1992.


