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Abstract

We study the effect of latency arbitrage on allocative efficiency and liquidity in fragmented financial
markets. We propose a simple model of latency arbitrage in which a single security is traded on two
exchanges, with aggregate information available to regular traders only after some delay. An infinitely
fast arbitrageur profits from market fragmentation by reaping the surplus when the two markets diverge
due to this latency in cross-market communication. We develop a discrete-event simulation system to
capture this processing and information transfer delay, and using an agent-based approach, we simulate
the interactions between high-frequency and zero-intelligence trading agents at the millisecond level.
We then evaluate allocative efficiency and market liquidity arising from the simulated order streams,
and we find that market fragmentation and the presence of a latency arbitrageur reduces total surplus
and negatively impacts liquidity. By replacing continuous-time markets with periodic call markets, we
eliminate latency arbitrage opportunities and achieve further efficiency gains through the aggregation of
orders over short time periods.

1 Introduction

Although program trading has been a reality for many years now, the pervasiveness, speed, and autonomy of
trading algorithms are reaching new heights. High-frequency trading (HF T)—characterized by large numbers
of small orders in compressed periods, with positions held for extremely short durations—is estimated to have
accounted for as much as 78% of total trading volume in 2009, up from nearly zero in 1995 [Schneider, 2012].1
The practice of HF'T has generated several public controversies regarding its ramifications for transparency
and fairness of market operations as well as its effects on market volatility and stability.

The debate has been spurred by recent high-profile events: for example, in August 2012, technology
issues in the market-making unit at Knight Capital Group caused a flood of orders for approximately 150
stocks in the New York Stock Exchange. The repeated buying and selling of millions of shares caused
dramatic price changes in these stocks, and as a result, all trades executed at 30% higher or lower than the
opening price were later canceled [Popper, 2012, Valetkevitch and Mikolajczak, 2012]. Another incident of
market turbulence was the so-called “Flash Crash” of May 6, 2010, during which the Dow Jones Industrial
Average exhibited its largest intraday decline (approximately 1,000 points). During a five-minute period,
some companies traded for as low as a penny and as high as nearly $100,000. The rout continued until
an automatic stabilizer on the exchange paused trading for five seconds, after which the markets recovered
[Bowley, 2010]. Some have argued that the fragmented nature of current equity markets is to blame for such
abrupt and severe price changes [Madhavan, 2011, Golub et al., 2012]. These events and the controversy

IDefinitive figures are elusive, but proportions exceeding two-thirds are widely reported, for instance 73% in “SEC runs
eye over high-speed trading,” Financial Times, 29 July 2009. This no doubt includes straightforward monitoring for arbitrage
opportunities—for example between index securities and their defining constituents, which itself has long represented a large
fraction of exchange trading volume.



SIP
S——
NBBO  {wwmmmm

L S——
G—
| J
& milliseconds Order feeds
NBBO*  {mmm

Figure 1: Front-running by exploiting latency differential. Rapid processing of the order stream enables
private computation of the NBBO before it is reflected in the public quote from the SIP.

surrounding HFT underscore the necessity of gaining a greater understanding of how high-frequency trading
and current market structure affects markets and their participants.

Many high-frequency trading strategies exploit advantages in latency—the time it takes to access and
respond to market information. Trading on latency advantages has been estimated to account for $21 billion
in profit per year [Schneider, 2012].> HF traders achieve such advantages by investing in specialized computer
hardware and software, co-locating servers on exchange floors, and in some cases even constructing dedicated
communication lines.

The specific HFT strategy we examine here is latency arbitrage, where an advantage in access and response
time enables the trader to book a certain profit. Arbitrage is the practice of exploiting disparities in the price
at which equivalent goods can be traded in different markets. Such disparities can arise in financial markets
in several ways, most directly by the fragmentation of securities markets across multiple exchanges. This
fragmentation has been a major trend, particularly in the United States over the last decade [Arnuk and
Saluzzi, 2012]. U.S. securities regulations have attempted to mitigate the effect of fragmentation through
the formulation of Regulation NMS, which mandates cross-market communication and the routing of orders
for best execution [Blume, 2007, Securities and Exchange Commission, 2005]. Orders stream into exchanges,
which are required to feed summary information about their best buy and sell orders to an entity called the
Security Information Processor (SIP). The SIP continually updates public price quotes called the “National
Best Bid and Offer” (NBBO).

We illustrate this process and the potential for latency arbitrage in Figure 1. Given order information
from exchanges, the SIP takes some finite time, say ¢ milliseconds, to compute and disseminate the NBBO.
A computationally advantaged trader who can process the order stream in less than § milliseconds can simply
out-compute the SIP to derive NBBO*, a projection of the future NBBO that will be seen by the public.
By anticipating future NBBO, an HFT algorithm can capitalize on cross-market disparities before they are
reflected in the public price quote, in effect jumping ahead of incoming orders to pocket a small but sure
profit. Naturally this precipitates an arms race, as an even faster trader can calculate an NBBO** to see
the future of NBBO*, and so on.

The latency arms race as sketched above is fundamentally an outgrowth of continuous trading: a property
of mechanisms that distinguish precedence according to arbitrarily small time differences. By moving to a
discrete-time model—which introduces short but finite clearing intervals (as in a call market)—we can
neutralize small disparities in information access and response time. A driving question of this work is how
such a mechanism-design intervention would affect market performance.

More broadly, we seek to understand not only the effects of latency arbitrage on market efficiency and
liquidity, but also the interplay between market fragmentation, clearing mechanisms, and latency arbitrage
strategies in producing this performance. Such questions about HFT implications are inherently computa-
tional, as the very speed of operation renders details of internal market operations—especially the structure

2Profit figures are considerably more uncertain than volume estimates. Kearns et al. [2010] present an interesting approach
to derive an upper bound on HFT profits. Presumably the billions HFT firms invest annually in technology and infrastructure
[Adler, 2012] represent a lower bound on gross trading profit.



of communication channels—systematically relevant to market performance. In particular, the latencies
between market events (transactions, price updates, order submissions) and when market participants ob-
serve these activities become pivotal, as even the smallest differential latency can significantly affect trading
outcomes. Lacking suitable data to study these questions empirically,®> we pursue a simulation approach.
Simulation modeling enables us to incorporate causal premises, specifically presumptions of how trading
behavior is shaped by environmental conditions.

We propose a simple model that captures the effect of latency across two markets with a single security.
Our model is the first to capture the interplay of latency and fragmentation as well as the regulatory envi-
ronment responsible for current equity market structure, and we have the first results quantifying the effect
of latency arbitrage on surplus allocation as a function of latency and market rules. Using an agent-based
approach, we simulate the interactions between high-frequency and background traders. Our simulation
system allows us to compare the performance of fragmented and consolidated market models under the same
underlying order streams. We evaluate efficiency (as measured in terms of total surplus) arising from the
simulated orders, under a range of latency settings. Our main finding is that latency arbitrage not only
reduces profits of the background traders, but also diminishes surplus overall. Perhaps surprisingly, market
fragmentation per se does not harm efficiency; in fact some degree of fragmentation mitigates inefficient
trades that are often executed by a continuous mechanism. The discrete-time call market eliminates la-
tency arbitrage by construction and, by virtue of temporal aggregation, yet more effectively matches orders,
producing significantly greater surplus.

The paper is structured as follows. In Section 2, we discuss related work on agent-based financial markets
and models of HFT and market structure. We describe our two-market model in Section 3. In Sections 4
and 5, we discuss our simulation system and experiments. We present our results in Section 6 and conclude
in Section 7.

2 Related work

2.1 Agent-based financial markets

There is a substantial literature on agent-based modeling (ABM) of financial markets [Buchanan, 2009,
Farmer and Foley, 2009, LeBaron, 2006], much of it geared to reproduce and thereby explain stylized facts
from empirical studies of market behavior. For example, simulated markets have been constructed to repro-
duce phenomena observed in real stock markets, such as bubbles, crashes, and other high-volatility episodes
[LeBaron et al., 1999, Lee et al., 2011]. Because agent behavior is shaped by the market environment, which
includes interactions with other agents over time, such models can support causal reasoning (as in the study
by Thurner et al. [2012] establishing the effect of leverage on price volatility). ABM has also been used to
model financial markets for applications such as portfolio selection [Jacobs et al., 2004] and determining the
distributions of order and trading waiting times in a limit order book [Raberto and Cincotti, 2005].

One prominent example of an agent-based financial market is the Santa Fe artificial stock market [Palmer
et al., 1994, LeBaron, 2002]. JLM Sim, a discrete-event stock market simulator, is another example; however,
it is designed chiefly as a tool for investors rather than for modeling market rules [Jacobs et al., 2004].

2.2 High-frequency trading models

Much of the current literature on the effects of HFT relies on the evaluation of historical order data. Has-
brouck and Saar [2012] use NASDAQ order data to construct sequences of linked messages describing trading
strategies. They find that this low-latency activity improves short-term volatility, spreads, and market depth.
Angel et al. [2011] conclude that the emergence of automated trading and HFT has improved various market
measures such as execution speed and spreads. Additional work suggests a link between HFT and increased

3Q0rder activity at the temporal granularity of interest here is generally unavailable for public research, and it is unclear
whether data on communication latencies and the end-to-end routing of orders among brokers and exchanges is available from
any source. What high-frequency trading data does exist commercially is prohibitively expensive. Moreover, even full details
on conceivably observable trading activity could not directly resolve counterfactual questions, such as the response of financial
markets to possible shocks or the effects of alternative market rules and regulations.



volatility [Arnuk and Saluzzi, 2012]. In a high-profile study released a few months ago, Baron et al. [2012]
find that some kinds of HFT activities directly harm ordinary investors [Popper and Leonard, 2012].

Others rely on theoretical analysis to determine the optimal behavior of high-frequency traders. Avel-
laneda and Stoikov [2008] derive an optimal limit order submission strategy for a single high-frequency trader
acting as a liquidity provider, running numerical simulations to assess the agent’s performance under varying
strategies. Cohen and Szpruch [2012] propose a single-market model of latency arbitrage with one limit order
book and two investors operating at different speeds. The fast trader employs a front-running strategy to
determine in advance the quantity the slow investor intends to trade, using this information to generate a
risk-free profit.

In a rare application of ABM to HFT, Hanson [2012] finds that market liquidity and total surplus vary
directly with the number of HF traders.

2.3 Modeling market structure and clearing rules

Several prior works seek to identify the effects of market fragmentation and clearing rules, mainly via anec-
dotal evidence elicited from historical data. On the theoretical side, Mendelson [1987] investigates the effect
of consolidation versus fragmentation of periodic call markets, without consideration of arbitrage between
the submarkets. O’Hara and Ye [2011] use historical quote data and execution metrics to demonstrate that
market fragmentation does not appear to harm measures such as spreads, execution speed, and efficiency.
Bennett and Wei [2006] compare the execution costs of stocks that have switched from the NASDAQ to
the more consolidated NYSE, finding evidence that execution costs decline with order flow consolidation.
Amihud et al. [2003] examine the response of equities on the Tel Aviv Stock Exchange to the exercise of
corporate warrants, concluding that consolidation improves liquidity. However, none of these prior studies
attempt to directly model the communication latencies arising from market fragmentation and the resultant
arbitrage opportunities.

Switching to a discrete-time clearing mechanism, as in a call market, has been proposed as a means
to eliminate the exploitation of latency differentials across multiple exchanges [The Government Office for
Science, London, 2012, Sparrow, 2012]. Empirical work on the effects of such a change is limited and again
relies largely on the analysis of historical events. For example, Amihud et al. [1997] investigate the effect of
switching from a daily call auction to a combination of a daily call and continuous trading in the Tel Aviv
Stock Exchange, finding that this event is associated with improvements in market liquidity.

2.4 Our model in relation to prior work

To study latency arbitrage as made possible by market fragmentation, we develop an agent-based model
populated by representative trading strategies interacting within carefully specified market mechanisms. Our
model comprises a latency arbitrageur and multiple non-HF traders, with a single security whose trading
is fragmented across two markets. Our proposed two-market model is unique in capturing the connections
between market fragmentation, communication latencies, regulations, and latency arbitrage. As discussed
above, previous analytical or agent-based HFT models employ a single market or order book—rendering
them incapable of capturing the effect of fragmentation—and they do not incorporate the communication
delays that enable cross-exchange arbitrage.

The focus on accurately modeling communication latencies motivates the study of latency arbitrage and
its effect on efficiency and liquidity from a computational perspective. We implement our model in a discrete-
event simulation system that captures the processing and information transfer delay in the dissemination
of the public NBBO price quote by explicitly modeling the communication patterns between background
investors, exchanges, and the SIP operating in current US equity markets.

3 Two-market model

We propose a simple model for latency arbitrage across two markets populated by a single high-frequency
trader and multiple background traders. We describe the specifics of this model in Section 3.1. In Sections
3.2 and 3.3, we discuss the behaviors of the latency arbitrageur and background traders, respectively. We
present an example of how a latency arbitrage opportunity may arise in this two-market model in Section 3.4.
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Figure 2: Two-market model with one infinitely fast latency arbitrageur and multiple background investors.
A single security is traded on the two markets. Each background investor is associated primarily with one of
the two markets, and its order is routed to its alternate market if and only if the NBBO quote indicates an
immediate execution. The latency arbitrageur has undelayed access to both markets, so it can immediately
detect arbitrage opportunities arising from the delay in NBBO calculation.

3.1 Model description

Our model of latency arbitrage consists of one security traded on two markets, each employing a continuous
double auction (CDA) mechanism. The CDA is a simple and standard two-sided market that forms the basis
for most financial and commodities markets Friedman [1993]. Agents submit bids, or limit orders, specifying
the maximum price at which they would be willing to buy a unit of the security, or the minimum price at
which they would be willing to sell.* CDAs are continuous in the sense that orders may be submitted at any
time. When a new order matches an existing order in the order book, the market clears immediately and the
trade is executed at the limit price of the incumbent order—which is then removed from the book. A buy
order matches and transacts with a sell order when the limits of both parties can be mutually satisfied. CDA
markets also continually publish a price quote consisting of two parts: The BID quote is the highest-price
buy order in the order book, and the ASK quote is the lowest-price sell order. The difference between the
two quote components is called the BID-ASK spread. A CDA invariant is that BID < ASK; otherwise,
the orders would have matched and been removed from the order book.

The two markets are linked by a public NBBO signal (see Figure 2). Limit orders lodged in either
market are forwarded to the SIP, which calculates and reports an NBBO—based on the quotes from the
two markets—with some finite delay up to §. This latency reflects the time required to receive information
about activities in the two markets and compute an updated public price signal.

Retail and institutional investors generate limit orders according to an evolving fundamental (driven by
news) and other private factors. Each non-HF investor is primarily associated with one of the markets, to
which its orders are routed by default. The determination of the optimal order routing is based on the NBBO
quote. The order is sent to the trader’s primary market unless the NBBO indicates that the order could be
executed in the alternate market at a better price than is currently available on the primary market.

More precisely, let BID; and ASKj;, where j € {1,2}, denote the current BID and ASK quotes,
respectively, in market j. Similarly, let BIDy and ASK y represent the NBBO quote. Background traders
have direct access to the quotes on their primary market and the NBBO, but not to those on the alternate
market. Suppose a trader associated with market 1 generates a limit order to buy a unit at price p. This
order goes to market 2 if and only if p > ASKy and ASKy < ASK;. Otherwise, the order is routed
to market 1, the trader’s primary market. Note that the conditions for submitting to the alternate market
entail that the trader’s order would execute there immediately, if in fact the NBBO reflects the current global
state. If the order is routed to the primary market, it may execute right away (if p > ASK7); otherwise, it
is added to market 1’s order book. The rule for routing sell orders is analogous.

The latency arbitrageur in this model can determine the best prices in each market before the NBBO
updates, due to its ability to receive and process order streams faster than background investors. It can thus
immediately detect an arbitrage situation, which occurs whenever BID; > ASKy or BIDy > ASK;. We
assume the arbitrageur can respond infinitely fast, so it quickly takes the profit from such arbitrage situations

4We assume that there is a limit on the granularity of prices, and thus we represent prices here by integers.



by submitting executable orders to the two markets. Note that the arbitrage opportunity can arise only to
the extent that the NBBO information is out of date. If the SIP were able to compute and disseminate the
NBBO with zero latency, then a new order would always be routed correctly and would thereby execute if
there were a matching order in either market. Any finite delay, however, opens the possibility that an order
is routed to the investor’s primary market when there is a matching order in the alternate market that had
arrived too recently to be admitted in the available NBBO. An out-of-date NBBO can also cause an order to
be improperly routed to the alternate market despite it no longer matching there, even if there is a matching
order in the primary market.

3.2 Latency arbitrageur

The latency arbitrageur (LA) in the two-market model operates as follows. LA first obtains current price
quotes in both markets, then checks whether an arbitrage situation exists. Denote the best price available to
sell at by BID* = max{BIDy, BIDs}, and let ASK* = min{ ASK;, ASK>} be the best price available to
buy. Given a threshold a > 0, LA deems the current state a worthwhile arbitrage opportunity if and only if
BID* > (14 a) ASK*. To execute the arbitrage, LA submits orders exploiting the price differential to the
two markets simultaneously. Under our assumption that LA is infinitely fast, bidding any price at or better
than the current quote would lead to successful execution at the quoted prices. In our implementation, LA
calculates the midpoint m between BID* and ASK™, then submits an order to buy at |[m| to the market
with the better ASK price and an order to sell at price [m] to the market with the better BID price. LA
surplus (i.e., profit) for these trades is BID* — ASK*.

3.3 Background traders

Prices in our model are driven by the activity of background investors. We assume a large population of
potential investors, who arrive to trade one unit in the market according to a Poisson process with rate A.

The bid or offer price the agent submits is determined by two components: its underlying valuation for
the security, which is a product of both fundamental and private factors, and its trading strategy, which
specifies the price of its limit order.

3.3.1 Valuation model

Each agent possesses a private valuation for the security. This depends on a public (global) fundamental
value 7, which evolves according to a mean-reverting stochastic process (similar to the model of LeBaron
[2002]):

re = max {0, K7+ (1 — K)r—1 + s},

where & € [0, 1] specifies the degree to which the fundamental value reverts back to the mean price 7. The
u; term represents the system-wide shock at time ¢, which is normally distributed: u; ~ N (0, Jf).
The private valuation PV; for background trader ¢ is simply a perturbed version of the public fundamental
at the arrival time t(4) of trader i:
PV; =max {0, d;},

where the deviated value is d; ~ N (r4(;), 03y ).

3.3.2 Trading strategy

There is an extensive literature on heuristic strategies for trading in CDAs [Friedman and Rust, 1993,
Wellman, 2011]. Our investigation employs what is perhaps the simplest strategy from this literature: the
aptly named zero intelligence (ZI) strategy [Gode and Sunder, 1993]. ZI and related trading strategies have
been widely employed in agent-based financial models [Farmer et al., 2005, Paddrik et al., 2012], including
MAS studies [Das, 2008, Niu et al., 2010].

A background trader ¢ in our model calculates its private valuation PV; as described above. It then
decides whether to buy or sell a unit of the good (each with probability 1/2). The ZI strategy dictates
that the agent submits a bid or offer offset from its valuation by a random amount—essentially the surplus
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Figure 3: Emergence of a latency arbitrage opportunity over two time steps in our two-market model.
All orders are for single-unit quantities. A red, bolded price highlights a discrepancy between the actual
market state and the NBBO, represented in the diagram as (BIDy, ASKy). At time ¢, the NBBO is up to
date. Background trader ¢ wishes to sell at price 105. Since BIDy < 105 (which indicates non-immediate
execution), the investor’s order is routed to market 1. At time ¢ + 1, the NBBO is out of date, as the
SIP updates the public quote with some delay §. Background trader ¢ + 1 wishes to buy at 109; based on
the NBBO, its order is routed to market 2, its primary market. (Had its order been routed to market 1,
its bid would have transacted immediately.) The submission of its order to the inferior market opens up
an arbitrage opportunity between the two markets (BIDy > ASK;), which LA immediately exploits for a
guaranteed profit.

the agent seeks from the trade. Let R specify the range of offset values. ZI agent ¢ submits its bid at a
nonnegative price p; ~ U [PV; — R, PV;] for buy orders or p; ~ U [PV;, PV; + R] for sell orders.

To measure market efficiency, we compute total surplus (the sum of buyer and seller surplus) for all
background traders. If trader ¢’s limit order transacts at price py, it achieves raw (undiscounted) surplus:

PV; — p; for buy transactions, or
p: — PV for sell transactions.

It follows that the total raw surplus when agent ¢ buys from agent j is PV; — PVj.

We discount a background trader’s raw surplus back to its arrival time at rate p, as in the model of
Goettler et al. [2009]. The discount is intended to represent not the time value of money (which negligible at
this time scale), but rather the traders’ general preference for orders to trade earlier rather than later. Such
time preference may be due to execution risk, for example, or other costs of delay for related transactions.
The raw surplus is discounted by a factor e T, where the execution time T is the difference between
transaction time ¢ and the trader’s arrival time ¢(¢). For a transaction at time ¢, the total surplus with
discounting is:

e—Pt—t(D) (PV; —p) + e—P(t—t(7) (pi — PVj).

If its limit order never transacts, a trader’s surplus is zero.

3.4 Example

Figure 3 illustrates how a latency arbitrage opportunity may arise in our two-market model. At time ¢, the
NBBO quote is BIDy = 104 and ASKy = 110. Consider background trader i, who is primarily associated
with market 1 and who wishes to submit a sell order at 105. To determine optimal order routing, BID; is
compared with the NBBO to identify the better market. As BIDy > BID, the alternate market appears
to be superior. However, as an offer to sell at 105 would not transact immediately (since BIDy = 104),
agent ¢ submits its order to market 1. At the beginning of time step ¢ + 1, for latency § > 1, the SIP has not
yet updated the NBBO quote to include the order submitted at time t. Therefore, the NBBO available to



background investors is out of date: the correct quote would be (104, 105), but the NBBO at time ¢ + 1 is
still (104, 110). This means that the NBBO matches ASK> in market 2, the primary market for incoming
agent ¢ + 1. Consequently, agent ¢ + 1’s buy limit order at price 109 is routed to its primary market. At
this point, BIDs (at price 109, submitted by agent ¢ + 1) exceeds ASK; (at price 105, submitted by agent
1), which defines an arbitrage opportunity. Since LA is infinitely fast, it capitalizes on this disparity by
submitting bids to buy at 107 in market 1 and sell at 107 in market 2, realizing a profit of 4.

4 Simulation System

The financial markets we study are stochastic dynamic systems with discrete states that change in response
to communication events. These events occur at high frequency, and distinctions on the order of milliseconds
can be significant. To faithfully model such systems in simulation, ensuring the unambiguous timing of agent
and market interactions is paramount. We therefore design our system based on principles of discrete-event
simulation (DES), which affords the precise specification of temporal changes in system state. In the DES
framework, a simulation run is modeled as a sequence of events. Each event is an instantaneous occurrence
that marks a change to the system state at a given time, and events are maintained in a queue ordered by
time of occurrence [Banks et al., 2005].

Our DES system simulates the interactions among traders in a set of markets. An event in our system
consists of a sequence of activities that are to be executed by various entities (traders, markets, and the
SIP). The events are ordered in a priority queue by event time and executed sequentially until the event
queue is empty. Multiple events may be scheduled for the same time step, in which case they are executed
deterministically in the order in which they are enqueued.

The list of activities within each event is sequenced by priority, and activities with matching priorities are
inserted in the order they arrive. Priorities are assigned based on activity type (e.g., bid submission, market
clearing). This guarantees determinism in the sequential execution of activities and the correct operation
of markets in our simulations. Using this framework, we ensure the latency arbitrageur is infinitely fast by
inserting its trading strategy activity at the end of every relevant event (such as a market admitting a new
order).

To control the latency of the SIP, we specify three activities: SendToSIP, ProcessQuote, and UpdateNBBO.
The SendToSIP activity is inserted when a market publishes a quote at time ¢; upon execution of this activity,
the market sends its updated quote to the SIP entity and inserts a ProcessQuote and an UpdateNBBO activity,
both to execute at time ¢ 4+ . When ProcessQuote is executed, the SIP updates its stored knowledge of the
best quotes in the markets. It computes and publishes an updated NBBO based on this information during
the execution of the UpdateNBBO activity.

Figure 4 illustrates how the activities in our simulation system are sequenced to reflect the communication
latencies arising as a consequence of market fragmentation. Market 1 clears and publishes an updated quote
at time t;. Market 2 publishes its new quote at time ¢5. For § > ¢ty — ¢1, a ProcessQuote followed by an
UpdateNBBO activity are executed sequentially at t; + 4, as well as at time t5 4+ 9. The UpdateNBBO executing
at t1 + § does not incorporate market 2’s updated quote, as the ProcessQuote activity to add market 2’s
best quote (BIDy, ASK>) is not executed until t5 + ¢. This process serves to model the behavior of the SIP
with a delay of 4.

In our simulation system, a market model specifies the number of markets, their associated clearing
rules, and the population of agents present within the model. To maximize the statistical power of our
experimental comparisons, we simulate multiple market models in parallel. Our model-centric system enables
the juxtaposition of fragmented and consolidated markets and facilitates the comparison of agent behavior
under varying market configurations.

We specify an agent population by describing an arrival process, a process for assigning valuations,
and the correspondent trading strategies. In our implementation, a separate pool of background investors
are created for each market model under study. We ensure that identical sequences of arrival times and
pseudorandom number generator seeds are used to initialize these agents. Since the global fundamental
remains consistent across the market models, each ZI agent bid is essentially duplicated within each model.
This conveniently allows us to compare the performance of multiple market configurations using the same
underlying order stream.
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Figure 4: Event queue during the dissemination and processing of updated market quotes for NBBO com-
putation, given latency d > to — t;. There are two markets, M7 and M. When the NBBO update activity
executes at time t; 4+ d, the SIP has just processed market 1’s best quote (BID;, ASK7) at time ty; this is
therefore the most up-to-date information that could be reflected in the NBBO at time ¢ + 4.

To isolate the ramifications of market fragmentation, we consider two forms of centralized market mod-
els in our simulations: a CDA and a call market. In contrast to a continuous-time market, clearing in
a discrete-time or call market takes place at designated intervals. A call market eliminates latency arbi-
trage opportunities, as the periodic clearing mechanism makes it impossible to gain or exploit informational
advantages over other market participants within the clearing interval.

5 Experiments

Our experiments evaluate a variety of market configurations with respect to several performance measures.
The configurations address the following central issues:

e Presence of latency arbitrage: We include configurations of the two-market model with and without
LA.

e Market fragmentation: Along with the two-market model, we evaluate a centralized configuration
where the two markets are consolidated as one.

e Market clearing rules: Along with continuous markets, we include a discrete-time call market
setting. To facilitate direct comparison, in each run we set the clearing interval of the call market to
equal the NBBO update latency.

We are interested in the following performance characteristics:
e Allocative efficiency: Total surplus (welfare) is our key measure of market performance.

e Liquidity: Markets are liquid to the extent they maintain availability of opportunities to trade at
prevailing prices. Two indicators of liquidity are fast execution and tight BID-ASK spreads. We



measure ezecution time by the difference in time between order submission and transaction for orders
that eventually trade. Execution time is potentially important to investors for many reasons, including
the risk of changes in valuation while an order is pending, the effect of transaction delay on other
contingent decisions, and general time preference. These factors are reflected in our surplus measures
through the discount rate, but a direct evaluation of execution time may also be of interest. We
also measure spread, which is the distance between prices quoted to buyers and sellers. Spreads are
measured over the first 3000 milliseconds in each simulation, as the majority of background traders
arrive within this time.

e Volatility: We measure volatility as the log of the standard deviation of midquote prices (as sampled
every 250 time steps) over the same interval as spreads.

For each latency setting, we perform 200 simulation runs. The duration of each simulation is 15000 time
steps (each step can be interpreted as one millisecond), and there are 250 ZI agents within each market
model. An equal proportion of background traders is assigned primary affiliation with each market in a
model. In the centralized call market, orders transact at a uniform price each time the market clears. This
transaction price is the midpoint between the BID and ASK quotes in the discrete-time market at the time
of the clear.

We select environment parameters that generate sufficient arbitrage opportunities. The threshold « for
LA is fixed at 0.001. We set the mean fundamental value 7 = 100, 000, mean-reversion parameter £ = 0.05,
and the variance parameters UI%V = 100,000, 000 and 2 = 150,000, 000. All bids have single-unit quantities,
and we assume zero transaction costs. The range for bid shading by background traders is R = 2000. The
arrival rate parameter is A = 0.075; a ZI agent arrives, on average, every 13 to 14 time steps. All ZI agents
submit their limit orders before the end of the simulation. The continuous discount rate p is 0.0006 for all
background traders. We select this high value of p to exert a strong bias in favor of LA and against call
markets—the profit of the latency arbitrageur is unaffected by discounting as it is infinitely fast, and call
markets impose an inherent delay in trading.

6 Results

We find that the presence of a latency arbitrageur reduces total surplus (Section 6.1) and has a mixed effect
on market liquidity, reflected in slightly improved execution times but widened bid-ask spreads (Section 6.2).
Eliminating fragmentation with a central CDA lowers spreads while producing surplus and execution metrics
between the with and without LA cases. Replacing continuous markets with periodic call markets eliminates
latency arbitrage opportunities and achieves substantial efficiency gains (Section 6.3).

6.1 Effect of LA on market efficiency

Figure 5 displays the total discounted surplus, over multiple latency settings, for the centralized CDA and
the two-market model with and without a latency arbitrageur. The total surplus of the two-market model
without LA, as well as that of the centralized CDA market (an unfragmented continuous-time market),
exceeds that of the two-market model with LA, whether or not the profits of LA are counted. In other
words, the latency arbitrageur takes surplus away from the background investors, and the amount it deducts
exceeds the gross trading profit it accrues.

Note that when latency is zero, the various market models generate identical trade sequences for any
given order stream. The NBBO is always correct if there is no delay, so background trader orders are
always routed to the right market and no arbitrage opportunities emerge. It follows that the various market
models at zero latency produce the same total undiscounted surplus. There is a subtle disparity, however,
in discounted surplus between the CDA and call markets—even at zero latency. CDA trades are executed
at the price of the incumbent order, whereas call markets set uniform prices. The pricing rule of the market
effectively dictates how surplus is distributed. For a zero-length clearing interval, the call market’s uniform
price occurs at the midpoint between the incumbent and new matching orders. Since the new matching order
clears immediately, only the incumbent order’s surplus is discounted; therefore, different ways of distributing
the surplus yield different discounted totals. Among the CDA models, the surplus division is the same, so
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Figure 5: Total discounted surplus in the two-market (2M) model, both with and without a latency arbi-
trageur, and in the centralized CDA market. In the two-market model with LA, both the total surplus (ZI
+ LA) and discounted background trader surplus (ZI only) are plotted. The discount rate p is 0.0006. Each
point reflects the average over 200 runs for each latency setting.

Table 1: P-values for the comparison of total surplus between the centralized CDA /call markets and the
two-market model (2M) with and without LA. For instance, the row “CDA vs 2M (LA)” gives the p-values
for the superiority in surplus of the centralized CDA market over the two-market model with LA. The
p-values are computed by resampling 10,000 times.

| Latency | o [ 100 ] 200 [ 300 | 400 [ 500 | 600 [ 700 | 800 [ 900 [ 1000
CDA vs 2M (LA) 0.4938 | 0.0015 | 0.0004 | 0.0002 0 0 0 0 0 0 0
Call vs 2M (LA) 1.0000 0 0 0 0 0 0 0 0 0.0038 | 0.7548
2M (no LA) vs 2M (LA) | 0.4952 0 0 0 0 0 0 0 0 0 0
2M (no LA) vs CDA 0.5046 | 0.0350 | 0.0047 | 0.0004 | 0.0035 | 0.0020 | 0.0031 | 0.0027 | 0.0032 | 0.0022 | 0.0046
Call vs 2M (no LA) 1.0000 0 0 0 0 0 0 0.2153 | 0.9905 | 1.0000 | 1.0000

discounting produces the same result. The equality of surplus at zero latency is verified for all four curves
in Figure 5, which represent various CDA models simulated in parallel for the same order streams.

We use resampling to compute p-values for: (1) the pairwise differences between the centralized markets
and the two-market model, both with and without LA; and (2) the mean difference between the two-
market model with and without LA. These results are shown in Table 1. The p-values represent the
probability of obtaining surplus differences at least as extreme as those observed if the actual distributions
were identical. At zero latency, the p-values between continuous markets are approximately 0.5 because
the market configurations behave identically in that setting. The call market surplus at zero latency is
significantly lower (hence p =~ 1.0), due to the differential effect of discounting noted above. For latencies
greater than zero, we find that the differences between the top three curves shown in Figure 5 are all
statistically significant. LA degrades efficiency in the two-market model, and centralizing the markets in a
combined CDA outperforms the fragmented market with LA.

It may seem counterintuitive that the two-market model without LA is significantly better than the
centralized CDA. It turns out that for continuous markets, fragmentation can actually provide a benefit, as
the separated markets are less likely to admit inefficient trades (i.e., where both traders’ values fall on the
same side of the longer-term equilibrium price) that arise due to the vagaries of arrival sequences. LA defeats
this benefit by ensuring that any orders that would match in the central CDA also trade in the fragmented
case, albeit with LA rather than with a counterpart investor.
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Figure 6: Mean execution time, median spread, and volatility. Execution time is the difference between bid
submission and transaction times, and spread is the amount by which ASK exceeds BID. The spreads
in the two-market models (2M) are the average of the individual markets. Price volatility is based on the
standard deviation of midquote prices sampled every 250 time steps. Spreads and volatility are measured
over a time period of length 3000. Each point reflects the average over all observations for each latency.

6.2 Effect of LA on liquidity and volatility

We also evaluate the effect of latency arbitrage on market liquidity, as measured via execution times and
BID-ASK spreads. Figure 6(a) shows that execution time is highest for the two-market model without LA.
The fastest trade execution is achieved in the two-market model with LA, which is qualitatively consistent
with findings in the literature that trading at lower latencies improves overall execution time [Angel et al.,
2011, Garvey and Wu, 2010, Riordan and Storkenmaier, 2012]. The improvement in execution time is at
best approximately 30 milliseconds, however, which is generally unobservable by non-HF traders.

Figure 6(b) shows that the highest spreads are those in the two-market model with LA. LA also slightly
exacerbates NBBO spreads, which are smaller than spreads of individual markets. The impact of latency
arbitrage and market fragmentation on volatility (Figure 6(c)) is minimal, as the differences across the three
market configurations are not statistically significant. Overall, LA reduces trading delay at the cost of
somewhat widened spreads. The increase in spread could reflect an implicit transaction cost responsible for
part of the significant surplus reduction observed above.
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Figure 7: Total discounted surplus, mean execution time, median spread, and log price volatility for the
centralized call market and the two-market (2M) model with LA. Each point reflects the average over all
observations for each latency setting.

6.3 Discrete-time call market

Lastly, we evaluate the effect of switching to a discrete-time market. Figure 7(a) shows that the total surplus
in the centralized call market far exceeds that of the two-market model with LA. By aggregating orders
over time, call markets essentially perform a more informed clear, and thus they are less prone to executing
inefficient trades than CDAs [Economides and Schwartz, 1995]. Recall that in our call market simulation,
the latency setting dictates the clearing period. From the figure, we can see that the surplus of the call
market increases dramatically between clearing periods 0 and 100, then peaks at latency 200 before declining
steadily. This behavior is a reflection of discounting, which we apply at a high rate (p = 0.0006) in order to
bias against periodic clearing. We select the smallest discount rate such that we obtain lower surplus—within
the range of latencies evaluated—in the centralized call market than in the two-market model with LA. At
this discount rate, there is an approximately 45% decline in utility for a fixed amount of trade profit, for every
additional second of execution time. In other words, an extremely strong preference for small improvements
in execution time is necessary before the welfare of the two-market model with LA approaches that of the
centralized call market. Even with such steep discounting, the call market significantly outperforms the two-
market model with LA for latencies between 100 and 900, dipping to no significant difference at latency 1000
(Table 1). Recall that the difference in total discounted surplus at zero latency is because the call market
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selects a uniform price for each clear, thereby increasing the incumbent (earlier) bid’s share of surplus and
consequently reducing total discounted surplus.

As shown in Figure 7(b), the mean execution time in the centralized call market is much higher than
that of the two-market model with LA. Unsurprisingly, we find a linear relationship between latency and
execution time in the call market model. As market clears occur less frequently in the call market, it takes
longer for a bid to match and be removed from the order book. Moreover, as latency increases and the
NBBO gets progressively out of date, submitted orders are more prone to be routed to the inferior market.
As a result, submitted bids may linger in the order book for a while before a matching order arrives.

In Figure 7(c), we observe that the tightest spread is realized in the centralized call market. The median
spread decreases with latency due to the accumulation of bids in the order book, which is indicative of
greater liquidity in the market. The temporal aggregation in the centralized call market is also responsible
for decreased volatility relative to the two-market model with LA (Figure 7(d)).

6.4 Relationship between transactions and surplus

Figure 8 shows the total number of transactions for each market model, averaged over all observations at a
given latency. In Figure 8(a), the number of transactions in the centralized call market declines as latency
increases; this corresponds to the slowdown in surplus gains at higher latencies for any additional delay.
The number of transactions in the centralized CDA (Figure 8(b)) and the two-market model without LA
(Figure 8(c)) are comparable, though slightly lower in the latter. This is consistent with our observations
of surplus patterns in Figure 5. The two-market model without LA results in higher surplus despite a
reduction in number of transactions, indicating that each transaction in the fragmented model is associated
with more surplus on average than in the centralized CDA. Figure 8(d) shows a breakdown of the number
of transactions attributed to the background ZI agents (light bar) and LA (dark bar). The number of LA
transactions increases with latency, as the number of arbitrage opportunities grows as the NBBO update
delay increases. Whereas the total number of transactions with LA is higher than those in the other market
models, the average surplus per transaction is considerably lower. This provides further evidence that trades
in the fragmented markets with LA are often outside the efficient set.

7 Conclusion

To understand an important phenomenon in high-frequency trading, we introduced a two-market model of
latency arbitrage. We implemented this model in a system combining agent-based modeling and discrete-
event simulation in order to evaluate the interplay of latency arbitrage, market fragmentation, and market
design, as well as their consequences for market performance. Our results demonstrate that market efficiency
is negatively affected by the actions of a latency arbitrageur, with no countervailing benefit in liquidity or
any other measured characteristic. This key finding holds even given an extreme temporal discount factor,
which we imposed in order to tip the scales to favor shorter execution intervals. Taking into consideration
the substantial operational costs of the latency arms race would only amplify our conclusions about the
harmful implications of this practice.

Virtually all modern financial markets employ continuous trading, which enables speed-advantaged
traders to make risk-free profits over fragmented markets and which degrades overall efficiency. Our proposed
alternative is a discrete-time call market, which eliminates latency arbitrage opportunities and improves ef-
ficiency. A call market prevents high-frequency traders from gaining a latency advantage, thereby increasing
surplus for background traders. Aggregating orders over small, regular time intervals provides additional
efficiency gains, and in fact these benefits appear to overshadow the gains attributable specifically to neu-
tralizing latency arbitrage.

Our model offers a tool to policymakers and other researchers to more rigorously evaluate financial market
rules. We believe it can play a constructive role in the debate around HFT and market structure, and we
invite others—including those who may have reservations regarding the conclusions here—to propose either
alternative scenarios or structural elements that could be incorporated within our general framework. As
for any simulation model, our results are valid only to the extent our assumptions capture the essence of
real-world markets, and we are eager to explore extensions that would test the limits of our conclusions.
For example, the current model relies on an exceedingly simple characterization of trader behavior, and it
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Figure 8: Total number of transactions in each market model. In Figure 8(d), the light bar represents the
total number of ZI transactions, and the dark bar represents LA transactions. Each bar reflects the average
over all observations for each latency setting.

considers a limited range of regulatory mechanisms and responses. Additional avenues for further study
include examining the impact of more sophisticated HFT and background trader strategies (such as those
using historical information or responding to LA price signals) as well as the effect of introducing other types
of traders such as market makers. It would also be interesting to examine interactions between multiple HF T's
employing differing strategies and to evaluate this model from a game-theoretic perspective.
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