
VALIDATION OF A SURVIVABLE PUBLISH-SUBSCRIBE SYSTEM

Sankalp Singh†, Adnan Agbaria†, Fabrice Stevens‡, Tod Courtney†,
John F. Meyer††, William H. Sanders†, Partha Pal‡‡

†University of Illinois at Urbana-Champaign, USA.{sankalps, adnan, tod, whs}@crhc.uiuc.edu

‡France Telecom, France. fabrice.stevens@francetelecom.com
††University of Michigan, USA. jfm@eecs.umich.edu

‡‡BBN Technologies, Cambridge, MA, USA. ppal@bbn.com

Abstract: We describe, with respect to high-level survivability requirements, the validation of a survivable
publish-subscribe system that is under development. We use a top-down approach that methodically breaks
the task of validation into manageable tasks, and for each task, applies techniques best suited to its accom-
plishment. These efforts can be largely independent and use a variety of validation techniques, and the re-
sults, which complement and supplement each other, are seamlessly integrated to provide a convincing as-
surance argument. We also demonstrate the use of model-based validation techniques, as a part of the over-
all validation procedure, to guide the system’s design by exploring different configurations and evaluating
trade-offs.

Keywords: Quantitative Validation, Security Verification, Information Assurance, Probabilistic Modeling,
Intrusion Tolerance, Security

1 INTRODUCTION

The emergence of large distributed information
systems to support nation-critical needs (e.g., elec-
trical power distribution, telecommunications, mili-
tary command and control, and health care) has
spurred research into new system protection strate-
gies that can produce a system whose critical func-
tion will survive in spite of hostile attacks, complex
failures, or accidents [1]. These new strategies have
drawn upon traditional approaches such as preven-
tion technologies (e.g., cryptography, authentication,
and firewalls), detection technologies (e.g., network
sensors and host-based sensors), fault-tolerance
technologies (e.g., agreement protocols), and the
like, and combined them with newer technologies
that enable dynamic defensive responses such as
changing security policies or isolating suspected
components. Successful strategies interleave these
building blocks into a solution that remains cost-
effective and manageable even when scaled to very
large systems.
The validation of survivable systems, like their
construction, must use an integrated approach. In
addition to well-known security requirements such
as confidentiality and integrity, a survivable system
may also need to satisfy probabilistic constraints on
its behavior. Such constraints impose different
modeling and reasoning strategies. This is particu-
larly true of survivable systems that make use of
intrusion tolerance technologies [2, 3, 4], since by
definition, intrusion tolerance is a probabilistically
quantified property of the system. Moreover, since
impairments may manifest themselves in imple-
mentation details, we must rely on focused testing

to convince ourselves that the implementation is
faithful to the modeled design. A successful valida-
tion approach must collect this disparate evidence
into a single, seamlessly integrated assurance ar-
gument that is convincing to the accreditor.
Most traditional approaches to validation of secu-
rity have been process-based, usually in the form of
guidelines [5]. Goal-based evaluations, when at-
tempted, have usually either been based on formal
methods [6] and aimed to prove that certain security
properties hold given a specified set of assumptions,
or been informal, using teams of experts (often
called “red teams,” e.g., [7]) to try to compromise a
system. Quantitative methods, in particular prob-
abilistic modeling, have been receiving increasing
attention as a mechanism to validate security. Any
probabilistic model intended to validate a secure
system would have to represent, among other things,
the attacker’s behavior. Since some of the vulner-
abilities in an information system will be unknown
at the time the system is designed (and modeled),
the prediction of when and how an attacker may
successfully intrude the system is a difficult, but
critically important problem. Early work on prob-
abilistic validation of secure systems was done by
Littlewood et al. [8]. Their work was exploratory in
nature and identified “effort” made by an attacker
as an appropriate measure of the security of the
system. Jonsson and Olovsson [9] attempted to
build a quantitative model of attacker behavior
using data from several experiments they conducted
over a two-year period. They postulated that the
process representing an attacker may be broken into
multiple phases, each of which has an exponential
time distribution. Attempts have been made to build

models that take into account behavior of the sys-
tem as well as the attacker, and the uncertainties
therein. Madan et al. [10] have used a semi-Markov
model to evaluate the security properties of the
SITAR architecture, an intrusion-tolerant system.
Their model does not explicitly represent the at-
tacker or the vulnerabilities that may lead to intru-
sions, but represents the state of the system in terms
of high-level events that may lead to failures. Shey-
ner et al. [11] have tried to build attack trees auto-
matically using formal methods, and then analyze
those trees using Bayesian networks. Ortalo et
al. [12] have proposed modeling of known system
vulnerabilities using “privilege graphs,” followed
by a combination of the privilege graphs with sim-
ple assumptions about attacker behavior to obtain
“attack-state graphs.” The latter can be analyzed
using Markov techniques to obtain probabilistic
measures of security. Singh et al. [13] have used
probabilistic modeling to validate an intrusion-
tolerant system, emphasizing the effects of intru-
sions on the system behavior and the ability of the
intrusion-tolerant mechanisms to handle those ef-
fects, while using very simple assumptions about
the discovery and exploitation of vulnerabilities by
the attackers to achieve those intrusions. Gupta et al.
[14] have used a similar approach to evaluate the
security and performance of several intrusion-
tolerant server architectures. In most of the above
efforts, the designers chose modeling assumptions
and model parameterswithout incorporating the
justifications for those choices into a larger valida-
tion framework. Moreover, the representation of the
attacker’s behavior is highly simplified. The chief
value of existing research in this area is that it dem-
onstrated the applicability of these approaches as
evaluation techniques that can be used as compo-
nents of an integrated assurance argument.
The safety-critical systems community has been
using “safety cases” [15] as a means to express
arguments about the guaranteed safety of systems
such as nuclear power plants. While safety cases
allow disparate kinds of evidence to be incorpo-
rated into an overall argument, they primarily serve
as a visual aid, and do not give formal guidelines as
to how an argument/requirement is decomposed,
especially if it is quantitative in nature. The models
used for generating actual evidence in argument
trees are usually simplistic; there is a lack of trace-
ability between the actual design and the models;
and quantitative evidence (typically generated by
probabilistic models) is generally in the form of a
leaf, with no argument subtree enumerating and
justifying the assumptions made in the models.
Furthermore, an approach based on an integrated
argument has not been applied to validation of se-
curity-related properties.

We have recently developed and applied a valida-
tion method for survivable systems that includes the
use of logical arguments, stochastic simulations,
and experiment-based testing with actual system
components (e.g., red teaming [7]). The need for
such diversity is due, in part, to the basic nature of a
survivability requirement, which can generally be
decomposed into sub-requirements that differ with
regard to the types of techniques that can be applied.
We applied the method to a proposed intrusion-
tolerant design for a publish-subscribe system
(hereafter referred to as IT Pub-Sub), both to dem-
onstrate that the proposed design satisfies imposed
survivability requirements and to help us consider
different protection trade-offs as we developed the
final design. The resulting assurance argument in-
corporates each piece of assurance evidence as a
supporting argument of some higher-level claim.
A major component of our validation approach was
probabilistic modeling. The probabilistic models
used an innovative attacker model. The attacker
model has a sophisticated and detailed representa-
tion of various kinds of effects of intrusions on the
behavior of system components (such as a variety
of failure modes). It includes a representation of the
process of discovery of vulnerabilities (both in the
operating system(s) and in the specific applications
being used by the system) and their subsequent
exploitation, and considers an aggressive spread of
attacks through the system by taking into account
the connectivity of the components of the system, at
both the infrastructure and the logical levels. We
believe that this attacker model is applicable to a
wide range of secure and intrusion-tolerant systems.
Moreover, we demonstrate the use of probabilistic
modeling, as embedded in the IVP, to compare
different design configurations, allowing the de-
signers of the system to make choices that maxi-
mize the survivability of the system before it is
actually implemented.
The remainder of the paper is organized as follows.
Section 2 provides an overview of the publish-
subscribe system studied. Section 3 provides the
outline of our validation procedure. Section 4 pro-
vides the details and results of the validation proce-
dure. Finally, we conclude in Section 5 with a
summary of lessons learned and prospects for fur-
ther evolution of our work.

2 OVERVIEW OF THE IT PUB-SUB
DESIGN

The IT Pub-Sub system consists of multiple clients
communicating with each other through a central
core, as shown in Fig. 1. The core consists of three
zones (or layers) of components: the crumple zone
(outermost layer), the operations zone, and the ex-

ecutive zone (innermost layer). The network con-
nectivity is constrained, through the use of network-
interface-level hardware firewalls and configurable
network switches, to limit direct network connec-
tivity from the outside network to the inner zones.
Communication between machines in each zone is
accomplished via proprietary communication pro-
tocols.
The primary component in the crumple zone is the
access proxy (AP). It functions as a bridge between
the outer (public) network containing the clients
and the inner core network for the remaining zones.
It translates between multiple publicly supported
communication interfaces (such as RMI and
CORBA) and the single internal core communica-
tions protocol. Clients connect to the access proxy
to publish, subscribe, and query IO. Attacks on
clients generate alerts that are forwarded to the core
via the AP, and commands to the client security
components from the core pass back to the client
via the AP.
Inside the crumple zone is the operations zone. It
contains the components that perform the two main
functions of the core: processing IO objects, and
monitoring and maintaining the security of the core
and the clients connected to it. IO processing is
performed by three operations zone components:
the PSQ server (PSQ), the downstream controller
(DC), and the guardian (Gu). The PSQ server re-
ceives IO objects sent to the core via the AP in the
crumple zone. The DC verifies the signatures on
messages sent from clients to ensure data integrity.
The guardian uses scenario-specific and domain-
specific knowledge to identify corruption within the
contents of the IO.
Security monitoring and maintenance are per-
formed by local components distributed across all
of the hosts in the client, the crumple zone, the op-
erations zone, and a centralized correlator (Co) in
the operations zone. The components local to indi-
vidual hosts are sensors, actuators, and local con-
trollers (LC). Sensors are dedicated to intrusion
detection, actuators are mechanisms that carry out
actions when commanded, and an LC is the control
agent responsible for local survivability manage-
ment.
The correlator receives alerts from multiple intru-
sion detection sensors within the client, crumple,
and operations zones, filters out redundant and false
alerts, and forwards serious messages to the system
manager. The correlator interprets the alerts it re-
ceives in the context of the global state of the sys-
tem, allowing it to better identify redundant alerts
and false alarms.
The executive zone contains the system manager
(SM). It serves as the master controller of the IT
Pub-Sub. It monitors intrusion alerts received from

the correlator and generates commands for the ap-
propriate response to counter the intrusion. Human
operators monitor the IT Pub-Sub via displays gen-
erated by the SM, and can manually initiate specific
responses from the SM.

Fig. 1 – The IT Pub-Sub Architecture

The core is redundant, consisting of four quadrants
(or quads) that run different operating systems.
Each quadrant contains copies of all crumple, op-
eration, and executive zone components discussed
previously. Agreement protocols run among the SM
and PSQ servers to ensure a common, collective
view of the system state by human operators view-
ing it through the SM displays, and by clients inter-
acting with the core via the access proxies in the
crumple zone. The baseline configuration of the
system used in our case study assigned the same
operating system to all the hosts within a single
quadrant of the core.

IS

Publishing
Client

AP PSQ
Server

Rep Gu
Co

SM

DC

Quad 1

PSQ Servers
in other Quads

SM in
other Quads

Path
(LAN/WAN)

Subscribing
Client

IS

Publishing
Client

AP PSQ
Server

Rep Gu
Co

SM

DC

Quad 1

PSQ Servers
in other Quads

SM in
other Quads

Path
(LAN/WAN)

Subscribing
Client

Fig. 2 – Publish Data Flow

Among the various data flows in the system, two
are central to the validation effort described in the
sections that follow. The first, which is depicted in
Fig. 2, is the data flow among the system compo-
nents during the publish operation. The publish
operation begins when a client creates an IO to be
published. The IO is signed using the client’s pri-
vate session key and sent to the access proxy in one
of the quadrants through the “publish” protocol.
The access proxy receives the IO through the isola-
tion switch (IS) and sends it to the DC to verify

whether the client is in a valid session. After suc-
cessful verification, the AP sends the IO to the PSQ
server in its quadrant. The PSQ server forwards the
IO to the other PSQ servers in the other quadrants.
Each PSQ server then stores the IO in its repository
(Rep), sends to the client an acknowledgment of the
receipt of the publication, and sends the IO to the
guardian. The guardian performs domain-specific
tests on the IO. If it finds an error in the IO, it sends
an alert to the correlator. The correlator determines,
based on the threat level of the alert and the alert
state of the system, whether the alert is likely to
represent an attack. If it is, the alert is forwarded to
the SM. The SMs collectively decide whether they
should tell the PSQ servers to recall the IO. If there
are no recalls from the SM, the IO is accepted, and
subscribing clients are notified that a new IO is
available. The subscribing clients then query the
system for the available IO.

Fig. 3 – Alert/Response Data Flow of a Client

The second data flow of interest is the
alert/response data flow associated with the intru-
sion detection and tolerance capabilities of the sys-
tem. Alerts are generated on the clients and on
components in the core, and the data flow is similar
for both cases. The data flow for client alerts is
presented in Fig. 3 and described here. When a
sensor in a client host detects an anomalous condi-
tion/attack, it generates an alert and sends it to the
LC on the same host. The LC can either make a
local response, such as restarting a process or re-
placing a corrupted file, or forward the alert to the
core for a coordinated adaptive response by the
correlator. The correlator then decides (using corre-
lation with other alerts) if this alert is critical, de-
termines the compromised client(s), and informs
the SM in its quadrant. The SMs propagate the
reports within the SM group and reach a consensus
to take action. Each SM then generates a command
for the desired response on the client generating the
alert and sends it to the client’s LC via the DC and
AP. The LC commands the appropriate local actua-
tor on the client to take action. If the SM group
determines that a more drastic response is appropri-
ate, the client can be quarantined. Each SM notifies

the policy server (PS) for the hardware-based fire-
wall system and isolates the compromised client.

3 VALIDATION APPROACH

Before we delve into the the details of the valida-
tion, we clarify the nature of high-level survivabil-
ity requirements and formulate a theoretical basis
for their decomposition into sub-requirements. We
then provide an outline of the procedure we em-
ployed to validate the IT Pub-Sub with respect to
particular high-level requirements.

3.1 Survivability Requirements

As defined in [1], survivability is the capability of a
system to fulfill its mission, in a timely manner, in
the presence of attacks, failures, or accidents. A
system is survivable if it has the above-stated capa-
bility according to a specified set of survivability
requirements. The latter are statements that collec-
tively imply what is meant by the system’s “capa-
bility to fulfill its mission in an adverse operational
environment.” (In what follows, it is assumed that
“in a timely manner” is accounted for as part of
“mission fulfillment.”) A survivable system’s op-
erational environment includes both mission-
specific interactions on the part of intended users
(its use environment) and adverse interactions due
to attacks and faults (the attack/fault environment).
The term “capability” is particularly important in
defining survivability requirements. In some in-
stances, it suffices to identify capability with “cer-
tainty,” i.e., fulfillment occurs with probability 1.
However, capability often needs to be otherwise
quantified, and that often involves probabilities. To
illustrate this, let us suppose X is some service that
is essential to fulfilling the system’s mission. Then
a corresponding survivability requirement for the
system, call it ExR for “Example Requirement,”
could be the following.
ExR: Whenever requested, X is successfully deliv-

ered with a probability of at least pX (0 < pX
< 1.0),

where “successfully delivered” needs to be further
elaborated in terms relating to both the system and
the mission objectives. For example, suppose that X
involves the transfer of a data object from one sys-
tem user to another. Then, successful delivery (pro-
vision) of this service, among other things, can
depend on the end-to-end data flow required to
realize X, timeliness of the data flow, and integrity
of the received data object, along with other secu-
rity properties such as authentication (the sender is
an authorized user) and confidentiality (the data
object is not disclosed to an unauthorized recipient).

Generally, a system requirement can be viewed as a
predicate R(s), where the variable s refers to a sys-
tem along with relevant aspects of its operational
environment. When applied to a specific system S,
the proposition R = R(S) is then a requirement for
S, where R is satisfied by S (alternatively, S is
valid with respect to R) if the truth value of R is
true. When a requirement R for a particular system
is being stated, the system is usually understood
from context, and hence not referred to explicitly in
the statement of R. (See the definition of ExR above,
in which we omitted saying “by the system” after
“successfully delivered.”) This practice will be
followed throughout the paper.
With a slight abuse of terminology, we regard a
requirement as being quantitative if deciding
whether R is satisfied by the system entails the
evaluation of at least one quantitative measure. In
the case of high-level survivability requirements,
such quantification is likely probabilistic, as illus-
trated in the example given above. This is due
mainly to uncertainties in the system’s operational
environment (i.e., use environment and attack/fault
environment) together with defense mechanisms
that may behave probabilistically. Evaluation of the
corresponding measure(s) can be based on a model
of the system and its operational environment, ex-
perimentation with an actual system (operating in
an actual or simulated environment), or some com-
bination of the two. In addition to measure evalua-
tion, other techniques need to be brought into play
to determine whether a quantitative requirement is
satisfied. If a requirement is non-quantitative, then
its satisfaction can generally be decided without
direct invocation of evaluation results for any quan-
titative measure. (Indirectly, such results can pro-
vide evidence that the requirement is indeed non-
quantitative.)
Generally, a requirement is specified as a constraint
(typically a bound or equality) on the probabilities
of one or more events. This includes non-
quantitative requirements, which can be viewed as
events with probability 1. Moreover, such prob-
abilities may be conditional, meaning that they are
conditioned on the satisfaction of one or more pre-
conditions. For example, the validation effort might
initially focus on the survivability of the system,
assuming it has been successfully bootstrapped.
That would make it possible to deal with the boot-
strapping process separately, if needed, perhaps
later on in the validation procedure. In the case of
ExR, we may define:
EExR = X is delivered successfully upon request.
CExR = The system has been successfully boot-

strapped, which includes starting the appli-
cation that provides the service X.

ExR = P[EExR|CExR] > pX.
Each event (including preconditions) may be stated
as a conjunction of simpler events, both for clarity
and ease of subsequent requirement decomposition.
Since events are technically sets in the context of
probability theory, throughout the paper, “conjunc-
tion between events” describes the corresponding
set intersection.

3.2 Requirement Decomposition

If feasible, it is helpful to logically decompose a
requirement into (more specific) sub-requirements,
such that if all of the sub-requirements are satisfied
by the system, then the original requirement is sat-
isfied. The primary purpose of the decomposition is
to obtain sub-requirements that can be proved using
the tools available to the validators for logical ar-
gumentation and probabilistic modeling. Our for-
malism is somewhat similar to the formal composi-
tion and refinement framework developed by
Abadi-Lamport [16, 17] and Shankar [18]. How-
ever, their logical formulations do not have prob-
abilistic underpinnings capable of dealing with
quantitative survivability requirements, such as our
formalism aims to provide. More precisely, a logi-
cal decomposition (LD) of a requirement R is a set
of two or more requirements (the sub-requirements
of R) such that their (logical) conjunction implies R.
Formally, let {R1, R2, … , Rm} denote the set of sub-
requirements of requirement R (m > 2) and let ∧
denote conjunction (the logic operator AND). Then,

(R1 ∧ R2 ∧ … ∧ Rm) ⇒ R,

i.e., the conjunction of the sub-requirements (logi-
cally) implies R. Accordingly, in order to validate
the system with respect to R, it suffices to validate
it with respect to each of the sub-requirements. We
rule out trivial conjunctions such as R ∧ R and R ∧
Taut, where Taut is a tautology (is always true).
We also rule out degenerate LDs for which the
conjunction (R1 ∧ R2 ∧ … ∧ Rm) is a contradiction
(is never true), e.g., the sub-requirements are in-
consistent, since in that case (by the definition of
logical implication), requirement R would be trivi-
ally satisfied.
A requirement is decomposable if it admits to an
LD. An LD of R is typically determined by finding
some initial LD of R and then iteratively determin-
ing LDs of decomposable sub-requirements. Note
that conditions of the LD definition are preserved
by such iterations by the transitivity of ⇒.
A requirement R is atomic if it is not logically de-
composed. This applies to the original requirement
(if it is not decomposed) or to any sub-requirement
that is not further decomposed. It is important to
note that the LD process is guided by the need to

Quantitative?

Logical
Decomposition

Yes

Decomposable?

Requirement

Logical
Argumentation

No

Sub-requirements

Yes

No

Q

Quantitative?

Logical
Decomposition

Yes

Decomposable?

Requirement

Logical
Argumentation

No

Sub-requirements

Yes

No

Q

Q

Build High-level Description of System
and its Operational Environment

… Detailed Description of Components …

{
Probabilistic Model of the System and its Operational Environment

Verify
Assumptions

&
Parameter

Values

. . .Not
Valid?

Not
Valid?

Valid? Valid?

Probabilistic Measure(s)

Verify
Assumptions

&
Parameter

Values

Compare with
Sub-requirement

System valid w.r.t. the
Sub-requirementSystem not valid

Q

Build High-level Description of System
and its Operational Environment

… Detailed Description of Components …

{
Probabilistic Model of the System and its Operational Environment

Verify
Assumptions

&
Parameter

Values

. . .Not
Valid?

Not
Valid?

Valid? Valid?

Probabilistic Measure(s)

Verify
Assumptions

&
Parameter

Values

Compare with
Sub-requirement

System valid w.r.t. the
Sub-requirementSystem not valid

Fig. 4 – A Flowchart Depicting the IVP

obtain manageable sub-requirements, so while a
requirement may be atomic because it is not de-
composable (does not admit to an LD), in practice,
a requirement is often atomic because a beneficial
LD is not evident or because the requirement is
basic enough to be dealt with effectively without
further decomposition. If R is decomposed in the
iterative manner described above, the decomposi-
tion may be visualized as a tree, with R as the root
node and the atomic sub-requirements as the leaf
nodes. It follows (due to the preservation of the LD
condition) that R is satisfied if all of its atomic sub-
requirements (leaf nodes for the tree rooted at R)
are satisfied.
Generally, the sub-requirements of an LD of R can
be either quantitative or non-quantitative (see Sec-
tion 3.1). If R is quantitative, then at least one of its
sub-requirements must also be quantitative. The
reason is that logical decomposition cannot elimi-
nate the quantitative aspect(s) of R. Moreover, it is
possible for an LD of a quantitative requirement to
contain more than one quantitative sub-requirement.
Consider the following example. Suppose we have
a requirement R, defined as

R: P[E1 ∧ E2] ≥ p (0 < p < 1),

where E1 and E2 are two events, such that neither of
them is expected to occur with probability 1. Sup-
pose further that these events are not statistically
independent. Nevertheless, R can still be logically
decomposed into two sub-requirements

R1: P[E1] ≥ p1 (0 < p1 < 1),

R2: P[E2|E1] ≥
1p
p ,

where it follows from elementary probability theory
that R1 ∧ R2 ⇒ R. The value of p1 can be specified
by using a probabilistic model of the relevant por-
tion of the system to evaluate P[E1] and letting p1 =

P[E1], thereby satisfying R1. Another model can
then be used to evaluate P[E2|E1] so as to determine
whether R2 is satisfied. Note that (due to the use of
implication), it is sufficient to do this for one value
of p1, and that the independence of the events in-
volved is not a prerequisite for decomposition.

3.3 Outline of the Validation Procedure

Although it is sometimes possible to obtain a vali-
dation result by applying a single validation tech-
nique (e.g, logical argumentation, if the require-
ment is not quantitative), we find that validation
with respect to high-level quantitative survivability
requirements calls for an integrated application of
several techniques. Indeed, we believe that the
means of accomplishing this is a distinguishing
feature of the effort reported herein. We used the
following integrated validation procedure (IVP) to
validate the IT Pub-Sub with respect to a quantita-
tive survivability requirement, say R. The quanti-
fied aspects of R are assumed to be probabilistic
(e.g., probabilities, moments of random variables,
and so forth). The IVP is summarized in Fig. 4, and
the steps are:
1. Formulate a precise statement of R, including

any assumed preconditions regarding the system
and/or its operational environment. The purpose
of this step is to make the goals of the validation
exercise absolutely clear right at the onset, and
also to specify exactly the scope of the valida-
tion by explicitly enumerating the preconditions.
We chose propositional logic in combination
with a simple probabilistic formulation as the
specification formalism, since it easily supports
subsequent decomposition as described in Sec-
tion 3.2.

2. If R admits to logical decomposition, decom-
pose it iteratively using the method described in

Section 3.2, thereby determining its correspond-
ing atomic sub-requirements. Otherwise, R is
the only atomic requirement. This step is in-
tended to break R into manageable sub-
requirements that can be addressed by the tools
and techniques used for probabilistic modeling
or logical argumentation. Each decomposition
of a requirement into sub-requirements is ac-
companied by a proof of the validity of the de-
composition. The proofs would typically use
propositional logic, and might use some prob-
abilistic reasoning if any of the involved sub-
requirements are quantitative.

The following steps are applied to each atomic sub-
requirement Ra. (Ra = R if R is atomic.)
3. If Ra is quantitative, proceed as follows; other-

wise, jump to Step 8. In a natural language (or
some more formal language suited to the task),
describe properties of the system and its opera-
tional environment that can guide model-based
evaluation of the probabilistic measure(s) asso-
ciated with Ra. First, the system components
(and communications among them) relevant to
Ra are identified. This is followed by a descrip-
tion of the following. Note that all the descrip-
tions are in terms of the components and com-
munications identified, i.e., they are specified at
the same level of abstraction.
a) Information flows:

i) Service-related data flows: this is a block
diagram, with the components identified
above as the blocks, representing the pre-
cise sequence, and the nature, of communi-
cations between the components during
normal operation.
ii) Attack-caused intrusion detection and
recovery flows: this is a block diagram rep-
resenting the precise sequence, and nature,
of communications involved in passing
alerts (upon detection of intrusions) and
subsequent recovery commands.
iii) Fault-caused error detection and recov-
ery flows: similar to (ii) above, except that
the alerts are raised upon detection of errors.

b) Use scenario(s): this is closely related to in-
formation flows. Here, the operational set-
ting of the system is described, and might in-
clude details such as frequencies of various
events. A description of the quantitative
measure(s) required to evaluate Ra is also
provided.

c) Attack and fault effects: This is a description
of the possible effects attacks and faults have
on the behavior of the system components.
The emphasis is on enumerating the effects
that can be detrimental to the system’s abil-
ity to satisfy Ra. It usually includes a repre-

sentation of the attacker behavior, in particu-
lar the dynamics of the spread of intrusions
deeper into the system using already intruded
components as launching pads. These de-
scriptions can be based on information from
threat and vulnerability assessment and from
whiteboarding.

4. Determine detailed descriptions of submodels
corresponding to the relevant components iden-
tified in Step 3, along with explicit statements of
underlying assumptions made for each sub-
model. For each submodel, descriptions elabo-
rate on (1) the participation of the component in
the various information flows described in 3a, (2)
the state to be maintained to evaluate the meas-
ure described in 3b, and (3) effects of intrusions
on the behavior of the component as per 3c. The
descriptions are at a level of detail that permits
relatively straightforward construction of corre-
sponding portions of the probabilistic model in
Step 6. Step 4 also includes identification of the
input parameters required by the model, and
choice of reasonable estimates for their values.

Steps 3 and 4 help the validators make sure they
clearly understand the system design or implemen-
tation being validated, and document that under-
standing. Since the probabilistic model constructed
in Step 6 may not be easily understood by persons
lacking background in probability theory and sto-
chastic modeling, the descriptions prepared in the
above steps can be reviewed by the design-
ers/implementors of the system to ensure compli-
ance with their views. Similarly, the descriptions
help convince the accreditors that the models actu-
ally represent the system being validated. The
above exercise also greatly eases the job of building
the probabilistic model.
5. Verify the modeling assumptions of Step 4 and,

where possible, justify values of the model pa-
rameter values chosen. Since we were validating
a system design (as opposed to an implementa-
tion), several of the parameter values chosen
were based on informal justification rather than
formal proofs or experimentation. The focus in
such a case is more on exploration of the de-
sign/parameter space and identification of the
subspace that ensures compliance with the sur-
vivability requirements, thus leading to a more
survivable system when the chosen design is ac-
tually implemented. The assumptions are also
checked for consistency with any preconditions
in Ra. Furthermore, if a node in the requirement
decomposition tree used independence of the
underlying events to justify the decomposition,
the sets of assumptions in the subtrees rooted at
the children of that node are checked against

each other for the violation of the independence
assumption.

6. Based on the descriptions obtained in Step 4,
construct a probabilistic model of the system
and its operational environment that can support
evaluation of the probability measure(s) associ-
ated with Ra. Several modeling formalisms may
be used. We have used Stochastic Activity Net-
works (SANs) [19], a generalization of stochas-
tic Petri nets, as the modeling formalism. The
models were built using the Möbius tool, which
can either solve them analytically by converting
them into equivalent continuous time Markov
chains, or simulate them by executing multiple
behavioral trajectories until the measures being
evaluated are determined within desired bounds
of accuracy.

7. Based on the model made in Step 6, evaluate the
probability measure(s) associated with Ra. If the
values obtained are within bounds prescribed by
Ra, then Ra is satisfied by the system (the system
is valid with respect to Ra).

8. If Ra is not quantitative, prove that it is satisfied
using logical argumentation.

Note that Steps 4-5 will usually be iterated. For
example, an inability to verify some assumption in
Step 5 may lead to alternative assumption details in
Step 4 (even though realities of the design and its
operational environment remain unchanged).

4 VALIDATION DETAILS

As mentioned in Section 2, the essential services
provided by the core to clients are publish, sub-
scribe, and query. Accordingly, IT Pub-Sub surviv-
ability with respect to these services is a dominant
concern of the validation process. We now describe
the application of the validation procedure outlined
above as it was used to validate the system against
the survivability requirement for the publish service.

4.1 Step 1: Requirement Specification

The “capability to process a publish request suc-
cessfully” was chosen as the survivability require-
ment for the publish service. The first step in the
validation procedure is to formulate a precise
statement of the requirement. To this end, the terms
“capability” and “successfully process a publish
request” need to be defined, together with any pre-
conditions regarding the system and its operational
environment.
Let CPUB be the conjunction of the events represent-
ing the preconditions. In our case, CPUB is the con-
junction of the following two events; the first refers
to the system and the second to the use environment.

1
PUBC =the publishing client is successfully regis-

tered with the IT Pub-Sub core (authentica-
tion).

2
PUBC =the publishing client’s mission application

always passes adequate and accurate infor-
mation to the client.

These reflect the assumptions about the system’s
initial state and invariants during operation, which
are taken as axioms in the subsequent analysis.
Let EPUB be the desired event, i.e., the successful
processing of a request to publish. It is the conjunc-
tion of the following events.

1
PUBE = the data flow of the publish operation is

correct.
2
PUBE = the time required for the publish operation

does not exceed a specified duration tmax
(timeliness).

3
PUBE = the published IO that becomes available to

subscribers has the same essential content
as that assembled by the publishing client
(integrity).

4
PUBE = the published IO is available only to the

other clients via subscribe or query requests
(confidentiality).

Let P[EPUB|CPUB] be the probability of event EPUB,
given that the preconditions hold, i.e., the quantifi-
cation of “capability.” Let the required capability be
denoted by pPUB (0 < pPUB < 1), the lower bound on
P[EPUB|CPUB], where its specified value is typically
a high probability that depends on the nature of the
system use scenario.
The survivability requirement for the IT Pub-Sub
publish service, denoted by PUB, can then be stated
as

PUB: P[EPUB|CPUB] ≥ pPUB.

PUB is therefore a quantitative requirement (in the
sense described in Section 3.1), since deciding
whether it is satisfied by the IT Pub-Sub, entails
evaluation of the quantitative measure P[EPUB|CPUB].
Due to uncertainties in attacks, attack effects (intru-
sions), intrusion effects, and the operation of vari-
ous IT Pub-Sub intrusion tolerance mechanisms,
validation is trivial in the case pPUB = 1, since we
know that PUB cannot be satisfied. At the other
extreme, if the value pPUB = 0 were allowed and so
specified, then PUB would likewise be non-
quantitative. Again, validation would be trivial,
since, in this case, PUB would always be satisfied
(the requirement itself is trivial).

4.2 Step 2: Logical Decomposition

PUB can be initially decomposed into the following
two sub-requirements.

PUB1: P[EPUB| 2
PUBC] ≥ pPUB.

PUB2: P[1
PUBC] = 1.

To establish that {PUB1, PUB2} is an LD of PUB,
we need to show that the defining conditions of an
LD are satisfied, i.e.,

(PUB1 ∧ PUB2) ⇒ PUB.

Suppose the hypothesis holds, i.e., both PUB1 and
PUB2 are true. Generally, if A and B are two events
such that P[A] = 1 then

P[A ∧ B] = P[A] + P[B] – P[A ∨ B]
 = P[B] = P[A]P[B] (1)

where P[A ∨ B] = 1, since the probability of an “or”
event is at least the probability of either disjunct,
and can be no greater than 1. From the above iden-
tity, it follows that any event having probability 1 is
(statistically) independent of an arbitrary event. In
particular, by PUB2, 1

PUBC is independent of both

EPUB and 2
PUBC . Hence,

P[EPUB| 2
PUBC]

][][
][][

][
][

12

12

2

2

PUBPUB

PUBPUBPUB

PUB

PUBPUB

CPCP
CPCEP

CP
CEP ∧

=
∧

=

]|[
][

][21
21

21

PUBPUBPUB
PUBPUB

PUBPUBPUB CCEP
CCP

CCEP
∧=

∧
∧∧

=

]|[PUBPUB CEP=

Since P[EPUB| 2
PUBC] ≥ pPUB (sub-requirement PUB1),

by the above identity we can conclude that
P[EPUB| PUBC] ≥ pPUB,

which is just the original requirement PUB. Hence,
the LD condition holds.

Regarding the four events that define EPUB, a study
of the design reveals that integrity (3

PUBE) and con-

fidentiality (4
PUBE) can likewise be regarded as

probability-1 events, given that precondition 2
PUBC

is satisfied (event 2
PUBC occurs). More precisely, we

have the following sub-requirements of requirement
PUB1.
PUB1,1: PUBPUBPUBPUBPUBPUB pCEEEEP ≥∧∧∧]|[24321
PUB1,2: 1]|[23 =PUBPUB CEP
PUB1,3: 1]|[24 =PUBPUB CEP

To insure that {PUB1,1, PUB1,2, PUB1,3} is an LD of
PUB1, we must again show that the constraint for
LD holds, i.e.,

(PUB1,1 ∧ PUB1,2 ∧ PUB1,3) ⇒ PUB1.

Suppose the above hypothesis holds (PUB1,1,
PUB1,2, and PUB1,3 are true). Extending observation
(1) to conditional probabilities, it follows from

PUB1,2 and PUB1,3 that]|[243
PUBPUBPUB CEEP ∧ = 1.

Using this fact together with the sub-requirements
PUB1,2 and PUB1,3,

]|[24321
PUBPUBPUBPUBPUB CEEEEP ∧∧∧

][

][
243

24321

PUBPUBPUB

PUBPUBPUBPUBPUB

CEEP
CEEEEP

∧∧
∧∧∧∧

=

][]|[

])[(
2243

24321

PUBPUBPUBPUB

PUBPUBPUBPUBPUB

CPCEEP
CEEEEP

∧
∧∧∧∧

=

]|[

][1
][2

2

2

PUBPUB
PUB

PUBPUB CEP
CP

CEP
=

⋅
∧

=

Since
PUBPUBPUBPUBPUBPUB pCEEEEP ≥∧∧∧]|[24321 by

PUB1,1, we conclude from the above identity that
PUB1 is true.
Each sub-requirement available at this stage is spe-
cific enough to be handled by a validation tech-
nique such as probabilistic modeling or logical
argumentation. Hence, we stop the decomposition,
and refer to PUB1,1, PUB1,2, PUB1,3, and PUB2 as
the atomic sub-requirements of PUB, where the
first is quantitative and the other three are non-
quantitative.

4.3 Step 3: High-Level System Description

For the remaining steps of the validation, we will
focus on the quantitative atomic requirement
PUB1,1. With respect to PUB1,1, this step seeks
high-level descriptions of the IT Pub-Sub data flow
for the publish operation, the associated alert and
response data flows, and the attack/intrusion envi-
ronment. The descriptions guide subsequent deter-
mination of the detailed descriptions needed to
construct a probabilistic model that supports
evaluation of the probability measure

]|[24321
PUBPUBPUBPUBPUB CEEEEP ∧∧∧ associated with

PUB1,1.

4.3.1 Data Flows
Both the publish data flow and the attack/alert data
flow are represented as block diagrams depicting
both the relevant components and the sequence of
operations and nature of the communication be-
tween the components. The diagrams (Fig. 2 and
Fig. 3) and the associated descriptions have already
been provided as a part of Section 2 and are not
repeated here.

4.3.2 Attack Model
The attack model makes several important distinc-
tions concerning where attacks occur (location of
both the source and target of an attack) and how
resulting intrusions affect both system and attacker
behavior. In particular, the model accounts for the
fact that once a vulnerability has been discovered in

a target, the attack can quickly propagate to other
instances of that target, provided that they are ac-
cessible (via network connectivity) from the attack
source. If an intruded target (e.g., a host) is com-
promised, then it is possible for the host to serve as
a source of further attacks.
Terminology In order to describe the attack model
more precisely, we make the following distinctions.
An entity of the system is one of the following:
• A host: A computing resource with an operating

system and network interface cards.
• A component: A process that realizes an IT Pub-

Sub function, e.g., an access proxy. Note that
several components typically reside in a single
host (for example, the survivability delegate, the
sensors, the actuator, and the local controller re-
side in the client).

• A process domain (PD): An entity that imple-
ments a component, e.g., the sensor process do-
main implements the sensor component, and the
AP IO (AP_IO) process domain implements the
AP that deals with forwarding IOs.

• An application: The application level of the
process domain.

An intrusion is a possible outcome of an attack. It
occurs if the attack finds a vulnerability in its target
and thereby alters the target’s behavior (the effect
or symptom of the intrusion); otherwise, it is pre-
vented. In other words, an intrusion occurs if an
attack has some effect on the target. The effect can
range from something very benign (e.g., when the
intrusion is “masked” or “blocked”) to the com-
promise of the target such that it can be used as a
platform for launching further attacks. An intrusion
is prevented if the attack can find no vulnerabilities
in its target, thereby obviating any effect. In par-
ticular, if an attack is unable to access its target,
then the attack cannot find a vulnerability, even if
one exists.
An intrusion is tolerated (possibly in the presence
of other tolerated intrusions) if its effect does not
lead to unsuccessful processing of a publish request;
otherwise, it causes a failure.
A new vulnerability, found at time t, is a vulnerabil-
ity that is present in at least one component of the
architecture, and that was not known by the attacker
until time t during the mission. When discovered,
such a vulnerability can be used any number of
times (until the end of the mission) against the vul-
nerable components that the attacker can reach.
A successful attack is repeated if that attack (same
source, same type) is made on a similar target hav-
ing the same vulnerability, in which case it suc-
ceeds very quickly.
A successful attack is propagated if the intruded
target is compromised such that the target becomes
a source of further attacks. If this source can access

a similar target with the same vulnerability, the
original attack can be repeated (see above). The
source can also launch a new attack that attempts to
find a new vulnerability in another target.
The simulation model considers attacks that are
“successful” in the sense that an intrusion occurs
and, moreover, is neither masked nor blocked.
However, if such an intrusion is tolerated (the third
case noted above), the attack does not succeed in
the more usual sense of causing a failure.
Attack Propagation Two basic assumptions under-
lie the construction of the attack model. First, we
assumed that the attacker would discover new vul-
nerabilities slowly. Define MTTD to be the mean
time to discovery of a new vulnerability. Second, it
was assumed that the attacker would exploit newly
discovered vulnerabilities quickly. Once an entity is
intruded following the discovery of a vulnerability,
the attack can be repeated (see the preceding termi-
nology). Define MTTE to be the mean time between
successive exploitations of a known vulnerability.
The typical value of MTTE in our analysis was 5
minutes. It is important to note, however, that re-
peated attacks require targets with the same vulner-
ability, typically entities that are instances of the
original target. Accordingly, design diversity can be
used to reduce the possibility of repeated attacks.
For example, a successful OS-level attack from the
outside, compromising a client running under OS1,
can propagate to hosts connected to the client
(namely, the access proxy in the core). If the access
proxy’s OS is also OS1, the attack can be repeated,
with success (intrusion) coming quickly. On the
other hand, if the access proxy is running under a
different operating system, then the OS diversity
will likely preclude a repeated attack. It is possible
that a given vulnerability exists in more than one
OS. We account for that possibility using a prob-
ability of a common-mode vulnerability. If a vul-
nerability is determined to be common-mode, it will
exist in all OSes used by the IT Pub-Sub.
Types of Attacks Three different types of attacks
were represented in the attack model.
• Infrastructure-level attacks exploit a vulnerabil-

ity found either in the operating system running
on a given host (for instance, a flaw in the
TCP/IP stack), or in a service running on that
host, not related to the IT Pub-Sub (for example,
a flaw in sshd). The attack’s source and target
must be directly connected and communicate
with each other, typically with standard network
protocols. If a vulnerability of that type is dis-
covered, it can be limited to one of the four op-
erating systems, or affect all operating systems
used in the system.

• Data-level attacks exploit a vulnerability in an
IT Pub-Sub application on the targeted compo-

nent. The attack’s source and target are applica-
tions on different hosts. The attack uses the con-
tent of the application data to intrude into the
target. For example, the client sends a corrupted
IO to a PSQ server, resulting in a crash or a cor-
ruption of that host.

• Attacks across process domains allow the at-
tacker to intrude into a different process domain
of the same host by exploiting low-level vulner-
abilities in the operating system. The source and
targets are process domains running on the same
machine.

Successful infrastructure-level attacks are attacks in
depth; the intruder quickly progresses deeply into
one quadrant, because only one vulnerability needs
to be discovered to compromise the common oper-
ating system in the entire quadrant. However,
unless the vulnerability found corresponds to a
common mode failure, the attacker cannot intrude
into any other quadrant, because the other quadrants
are based on hosts with different operating systems.
Data-level attacks provide attacks in breadth; if a
vulnerability is found in the access proxy applica-
tion, then the publishing client can exploit it di-
rectly on the four access proxies. Those attacks are
consequently much more dangerous. Great effort
should be put into reducing the number of data
vulnerabilities, and preventing attackers from ex-
ploiting them.
The first attack on the IT Pub-Sub must be an infra-
structure-level attack, since both of the other types
require control of a machine within the system. For
example, attacks across process domains assume a
compromised process domain for the source of the
attack. Data-level attacks require control of a com-
ponent that is capable of generating IT Pub-Sub
protocol packets, signed with signatures from host-
specific private keys.
Fig. 5 provides an example of attack propagation.
At time t0 = 85 minutes, an infrastructure-level
vulnerability (ILV) is found on the main process
domain of OS1. After a short time, the attacker
exploits that vulnerability on the publishing client
(time t1). From the client, he launches the same
attack on the AP of quadrant 1 at time t2. He con-
tinues in the same way until he has compromised
all the components of quadrant 1 (since they’re all
running the same OS). At time t8 = 230 minutes, a
data-level vulnerability (DLV) on the PSQ server is
found. The attacker uses that vulnerability to com-
promise the three remaining PSQ servers; he can
attack either from the publishing client (times t9 and
t11), or from the PSQ server in the first quadrant
(time t10), since he has control of all those entities.

Fig. 5 – Example of Attack Propagation

Intrusion Effects When any of the three types of
attacks described above is successfully exploited,
the resulting intrusion can have one of the follow-
ing effects.
• Crash of the intruded entity: For the operating

systems that handle process domains (secure
OSes), a crash of a given process domain will
not lead to the crash of other process domains.
On a traditional OS (without process domains),
a crash of a given process will crash the whole
machine (and thus all the processes running on
it).

• Compromise of the intruded entity: The intruded
entity can corrupt or drop data packets, or can
be a source of further attacks. When a process
domain becomes compromised on a secure op-
erating system, the other process domains are
unaffected. However, for traditional operating
systems, compromise of one process also com-
promises the other processes on the machine.

• Denial of service: The intruded entity can re-
duce processing speeds and increase latencies.

Attack Responses The model includes three
mechanisms for responding to a detected intrusion
that is not blocked:
• Type 1: Rapid response. The first and fastest

mechanism is a local and rapid response, based
on an automatic decision made by the LC. Ex-
amples of rapid response include file restoration,
termination of illegal processes, and restarting
of critical processes. On average, this operation
takes one minute.

• Type 2: Secure reboot. This operation is carried
out in two phases: automatically shutting down
the host and then manually restarting it. The
shutdown is performed by the SM through DC
and LC. Restarting has to be done manually by
the operator sitting at the console. The reason is
that the client application will also need to be
restarted, which will require the user to perform
some action, such as providing a password or
swiping a smart card. Moreover, the shutdown
will give the client operator the opportunity to
introduce diversity, perhaps by removing some
services or changing the firewall policies.

• Type 3: Permanent isolation. The decision to
isolate is taken by the SM through the PS. The
decision is made by the SM in the core; there-
fore, this operation requires more time, on aver-
age 7 minutes.

4.4 Step 4: Detailed Descriptions

This step elaborates the Step 3 descriptions to an
extent that permits relatively straightforward con-
struction of corresponding components of the prob-
abilistic model. It also explicitly enumerates all the
assumptions the probabilistic model makes that are
verified, and, if found to be correct, justified, using
logical arguments. For the purpose of illustration,
we will limit our attention to the AP component,
along with certain details concerning the use and
attack models.
If the AP is not compromised, it forwards desig-
nated traffic from the Quadrant Isolation Switch to
core quadrant components and vice versa. The AP,
like several other components in IT Pub-Sub, has
process domains, which are similar to sandboxed
virtual machines running on the same host. The AP
handles different types of traffic, and each type,
including IOs sent from publishing clients to the
core, is handled by a different process domain. If an
IO is sent by a publishing client to the AP (the cli-
ent sends the IO to a randomly chosen quadrant),
the token accompanying the IO is sent to the quad-
rant’s DC to assist in the determination of whether
the publishing client is in a session. If the DC’s
response is positive, the IO is forwarded to the PSQ
server.
In addition, the AP forwards sensor alerts from
client-side sensors to the correlator, heartbeats from
client components to the DC, acknowledgments
from PSQ servers to clients, notifications from PSQ
servers to subscribing clients, commands from the
DC to clients’ LCs, and commands from ADF pol-
icy servers to clients’ ADF NICs.
The following assumptions are identified in the
model for the AP component:
AP1: Only well-formed traffic is forwarded by a
correct AP.
AP2: An AP can change the traffic through it, but
cannot re-sign the content.
AP3: An AP cannot access the contents of an IO if
application-level end-to-end encryption is being
used.
AP4: If the AP is compromised, it can launch ILA
to the following components: client, PSQ, DC,
correlator, and PS.
AP5: If the AP is compromised, it can launch DLA
to the following components: PSQ, guardian, DC,
and the publish-subscribe middleware components,

as well as the IDS components on the clients, corre-
lator, and SM.
The time-to-discovery (TTD) and time-to-exploit
(TTE) are assumed to be exponentially distributed.
Accordingly, the values assigned to MTTD and
MTTE (see the description of the attack model
above for definition) parameters of the attack model
will be such that MTTE « MTTD. This reflects the
fact that the TTD of a new vulnerability is typically
much longer than its subsequent TTE.
Once an intrusion has occurred, it has one of the
three possible effects described in Step 3 (crash,
compromise, or DoS), which we assume will occur
with probabilities (parameters of the attack model)
pcr, pco, and pdos, respectively. When a process do-
main on an AP is compromised, data that flows
through it can be altered as follows. If any alert and
command traffic passes through, it is dropped
(blocked). If the process domain handles IOs, it will
corrupt an IO if it has access to the client’s key
(since the process domains can change the signature
of the IO according to the corrupted content); oth-
erwise, it will drop the IO. It can also act as a
source for further attacks (both ILA and DLA) on
other entities. Compromised sensors are not able to
detect intrusions. When an alert is generated by the
IDS, the recovery options are as follows. On the
first alert, the affected process domain is restarted.
On the next three, the entire AP is rebooted. On the
fifth alert, the AP is quarantined (using the ADF
NICs).

4.5 Step 5: Justification of the Assumptions

The goal in this step is to justify the model assump-
tions made in Step 4. We used logical argumenta-
tion in this step. Other techniques, such as formal
methods and experimentation, were also utilized for
some of the assumptions. In the complete descrip-
tion of the model in Step 4, a total of 31 assump-
tions were justified using logical argument and
experimental results. These arguments use very
low-level system details, and, in the interest of
space, we do not list them here. Interested readers
can refer to [20] for details.

4.6 Step 6: Construction of the Probabilistic
Model

Based on detailed descriptions of the type illus-
trated in Step 4, a probabilistic model was con-
structed using Möbius [21] that supports evaluation
of the probability measure P[1

PUBE ∧ 2
PUBE | 3

PUBE

∧ 4
PUBE ∧ 2

PUBC]. We used stochastic activity net-
works (SANs) [19] as the formalism. Behaviorally,
a model constructed with SANs represents (meas-

ure-relevant) behavior of the IT Pub-Sub platform
in the presence of publish demands and random
attack-caused intrusions. Structurally, the atomic
SAN submodels represent various components of
the design and its use/attack environment; descrip-
tions of them were documented during Step 4. The
overall model is constructed by using replicate and
join operations to compose the atomic submodels.

Fig. 6 – Composed Model of the IT Pub-Sub

Graphically, a composed model can be viewed as a
tree, in which the atomic SAN submodels corre-
spond to leaf vertices of the tree, and joins or repli-
cates correspond to internal vertices. A Join vertex
combines two or more different SAN submodels,
each of which can itself be a composed model (rep-
resented by a subtree). A Rep (or Replicate) node
generates multiple copies of its submodel (again,
each submodel can itself be a composed model).
Different submodels in a composed SAN interact
through shared state variables.
As depicted in Fig. 6, the system is viewed (for the
purpose of validating the requirement PUB1,1) as
two clients (Join PubClient and SubClient) commu-
nicating with the core (Rep Core) through the net-
work (submodel Path). The clients have four proc-
ess domains, represented by four submodels under
the Join (IT Pub-Sub publish functionality, the sen-
sors, the actuator, and the local controller). The
fifth submodel under each of these Joins is the at-
tack model. The two remaining submodels (meas-
ures and attack_discovery) assist model-based for-
mulation of the measures evaluated.
The core is a replication of four quadrants (sub-
model Quad). As shown in Fig. 7, each quadrant is
a Join of several submodels (Access Proxy, PSQ,
DC, Guardian, Correlator, PS, and SM), represent-
ing all of the core components. As presented in
Fig. 1, the access proxy, PSQ server, downstream
controller, and guardian have IDS components;
therefore, their respective Joins have IDS submod-
els (for instance, AP_Se, AP_Ac, and AP_LC).
For each node represented in the composed models
of Fig. 6 and Fig. 7, an atomic SAN model is built.
Atomic SANs encode the state variables represent-
ing the components they are modeling, and provide
transitions with specified delay distributions that

can change the state. They provide the ability to
include complex enabling functions for the transi-
tions, and complex completion functions to ma-
nipulate the state upon completion of transitions.
Each atomic SAN basically implements the descrip-
tion for the corresponding component in Step 4. A
detailed description of all the atomic SANs con-
structed is provided in [22].

Fig. 7 – Composed Model of the IT Pub-Sub Core

Quadrant

The point to note is that the entire model construc-
tion is driven by the measure we intend to evaluate.
In particular, the SANs have state variables main-
taining a count of the number of publish attempts
by the clients, and the number of those attempts for
which the events 1

PUBE ∧ 2
PUBE occur. Furthermore,

the construction of the model always assumes
3
PUBE , 4

PUBE , and PUBC are given, and thus does
not include any state for keeping track of those
events.

4.7 Step 7: Evaluation for Validation Against
Requirement

Based on the model of step 6, this step evaluates the
probability measure

p1,1 = P[1
PUBE ∧ 2

PUBE | 3
PUBE ∧ 4

PUBE ∧ 2
PUBC]

associated with the atomic quantitative requirement
PUB1,1. If p1,1 > pPUB (the required lower bound),
then PUB1,1 is satisfied by the system (the system is
valid with respect to PUB1,1).
The IT Pub-Sub system is envisaged to be used for
short (of the order of a day or two) durations. Let-
ting dM denote the duration (in hours) of a use sce-
nario, p1,1 is formulated as the fraction of publica-
tion requests during dM that are processed success-
fully, i.e., the fraction for which the event

1
PUBE ∧ 2

PUBE , given 3
PUBE , 4

PUBE , and 2
PUBC , oc-

curs. For three different choices of dM, Fig. 8(a)
displays the values of p1,1 as a function of the
MTTD of a new vulnerability (in minutes). Those
vulnerabilities are assumed to be exploited very
quickly, i.e., MTTE = 2 minutes. The publishing
client publishes a new IO every 5 minutes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

MTTD (min)

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l P
ub

lis
he

s

12-hour mission
24-hour mission
48-hour mission

0

200

400

600

800

1000

1200

10 100 1000 10000

MTTD (min)

To
ta

l N
um

be
r o

f I
nt

ru
sio

ns

12-hour mission

24-hour mission
48-hour mission

(a) p1,1 versus MTTD (minutes) (b) Total number of intrusions versus MTTD (minutes)

Fig. 8 – Variation of Measures with Change in MTTD

In particular, if (1) new vulnerabilities are discov-
ered at an average rate of no more than once per
day (MTTD > 1440 minutes), which is a fairly ag-
gressive assumption, (2) the value of pPUB used is
0.95, and (3) the mission duration is 12 hours, then
the IT Pub-Sub is valid with respect to PUB1,1.
In addition to measures associated directly with
quantitative survivability requirements, the model
constructed in Step 5 is sufficiently detailed to sup-
port evaluation of a variety of other survivability-
related measures. For example, to understand how
the number of successful attacks (those that cause
intrusions) relates to a value of p1,1, the measure

n = the total number of intrusions during dM

can likewise be evaluated as a function of MTTD.
Comparing Fig. 8(a) with Fig. 8(b), we see how the
probability p1,1 of successfully processing a publish
request during dM varies inversely with the total
number n of successful intrusions experienced dur-
ing a mission of the same duration.

4.8 Step 8: Satisfaction of Non-quantitative
Atomic Requirements

Validation with respect to the non-quantitative
atomic requirements PUB1,2, PUB1,3, and PUB2 is
accomplished using logical argumentation. Given
that validity has been established with regard to the
quantitative atomic requirement PUB1,1 in Step 7
above, the system is then valid with respect to the
original requirement PUB. The argumentation used
is similar to that used for validation of assumptions,
and in the interest of space we do not provide the
details here. Details are presented in [20].

4.9 Other Evaluation Results: Exploring De-
sign Choices

In addition to validating the system against the
high-level survivability requirements, we also used
the probabilistic model developed as a part of the
IVP application to study design trade-offs and ex-
plore the behavior of the system in different operat-
ing configurations and attack environments. Such
studies are possible because each component of the
system model contains a set of input parameters
that define aspects of the component’s functionality,
such as the rate of data publishes or the type of
operating system used on a host. These are in addi-
tion to parameters that define the characteristics of
the attackers on the system, such as the time be-
tween vulnerability discoveries (MTTD) and the
time to exploit known vulnerabilities (MTTE).
We present results for two of the studies performed:
effect of the degree of operating system diversity
among the four quadrants in the core and effect of
the autonomous distributed firewall (ADF NIC)
policies.

4.9.1 Effect of Diversity
In this experiment, we studied two different OS
configurations in the following way:
• 4 OS: the access proxy, downstream controller,

PSQ servers, and system manager in a given
quadrant run the same operating system. Each
quadrant uses a different OS. The policy server
is available in only one operating system. There-
fore, there is no possible variation for this com-
ponent. This case corresponds to the default
configuration of the system.

• 1 OS: all the components in the core (apart from
the policy servers) run the same operating sys-
tem.

Also, to make a fair comparison between the two
options, all OSes are secure.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

100 300 500 700 900

MTTD (min)

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l P
ub

lis
he

s

1 OS 4 OS

Fig. 9 – p1,1 versus MTTD: 4 OS vs 1 OS

The graph presented in Fig. 9 is based on an as-
sumption of a less aggressive attacker than we con-
sidered in the baseline case; here, the attacker can
only execute infrastructure attacks and attacks
across process domains. The figure illustrates the
difference between the two options mentioned
above. It shows p1,1 versus the vulnerability discov-
ery rate. Diversity significantly increases the per-
formance of the design: for MTTD = 200 minutes,
p1,1 is about 0.97 for the 4-OS case, versus 0.90 for
1 OS, i.e., a 70% improvement of the unavailability
(0.10 versus 0.03). The gap between the two curves
is noticeable at all rates.
A similar experiment was done for all types of at-
tack, including the data-level attacks. In that case,
the two curves were closer. Data-level attacks are
the most dangerous type of attack, as they can take
out the same component in every quad. For exam-
ple, a compromised client could launch a data-level
attack against the four PSQ servers, which could
result in the crash (or compromise) of all four. If
that happened, no further PSQ requests would be
handled, and the core would be considered down.
For the results presented here, we assumed that the
data-level vulnerabilities could be considerably
reduced not only by the effort put into the imple-
mentation of, for example, the PSQ, but also by the
semantic checks done on the access proxy for any
incoming traffic to the core.

4.9.2 ADF NIC Policies
ADF NICs are local firewalls on each component,
administered by the policy servers in the core. The
third experiment compares three ADF NIC policies,
assuming that only infrastructure-level attacks and
attacks across process domains are allowed. The

first policy is to allow all communications between
any two processes of any two components. The
second is a per-component policy, allowing only
certain components to communicate with each other
(for instance, the AP can talk to the PSQ server in
its quad, but the client cannot communicate directly
with any PSQ server). Finally, the third one is a
per-process-domain policy, restricting communica-
tions between specific processes.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

100 1000

MTTD (min)

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l P
ub

lis
he

s

Per process domain

Per component

No restriction

Fig. 10 – p1,1 versus MTTD: ADF Policy Study

Fig. 10 presents the results reflecting the three con-
figurations. The graphs reveal that the per-process-
domain policy is by far the best of all three: when
MTTD = 100 minutes, p1,1 = 84.4% for the no-
restriction policy, versus 90.0% for the per-
component, and 98.5% for the per-process-domain
one, which corresponds to a 90% improvement of
the unavailability (from 15.6% down to 1.5%).
The per-process-domain restriction can also be
interpreted as having a ruleset that describes which
ports from which machines can communicate with
which ports of the other machines. It is a very suc-
cessful way to increase the survivability of the sys-
tem, and therefore should be implemented. How-
ever, it comes with a price, as it limits the develop-
ers by forcing them to allocate fixed port numbers,
and also might limit the usability of the machines
for purposes other than the PSQ functionalities.

5 CONCLUSION

The complexity of emerging survivable systems,
especially those that make use of multiple security
approaches and technologies, calls for an integrated
approach to survivability validation. We have pre-
sented the validation of a survivable publish-
subscribe system using a top-down approach that
begins with a precise formulation of a specific sur-
vivability requirement, and then systematically
decomposes the problem into manageable tasks. As

a part of the procedure, stochastic models of the
system and of the attacker were presented. We con-
ducted model-based experiments that evaluated the
survivability of the system when stressed by vari-
ous types of attacks by measuring the probability of
success for the transactions between the clients and
the core. The results show that if the average time
between discoveries of new vulnerabilities is longer
than one day, more than 95% of the publishes are
processed correctly. The system model was used to
study design trade-offs, one of which was that OS
diversity in the design significantly improved the
performance. Another design trade-off became
apparent when we compared three ADF NIC poli-
cies: a per-process-domain policy leads to the high-
est availability, but constrains developers.
We described a sophisticated attacker behavior
model that has wide applicability when using prob-
abilistic modeling techniques for evaluating large
networked information systems.
The integrated validation procedure (IVP) used in
this work provided a collaborative environment in
which a team of individuals with varied areas of
expertise was able to work efficiently and optimally
to produce an assurance argument that was con-
vincing to the accreditors of the above effort. The
IVP gave the designers of the system several in-
sights into the relative merits of different protection
trade-offs by comparing various algorithms, fea-
tures, or infrastructures. The IVP also brought out
hidden assumptions and residual requirements that
forced the designers to consider issues that they
might otherwise have overlooked. We hope the
outlined procedure can be used by other security
researchers and practitioners to validate similar
survivable systems with respect to high-level quan-
titative survivability requirements.
The work described in this paper is an instance of
an evolving validation methodology. In the future,
we plan to use the IVP to validate other intrusion-
tolerant systems to ascertain and further refine its
generic applicability, using an even wider array of
evaluation techniques as the building blocks of the
assurance argument. We also intend to explore
avenues for further automation, such as in the de-
composition of requirements, identification of ap-
propriate assumptions, and presentation of the
completed argument.

Acknowledgments
This research was supported by DARPA contract
number F30602-02-C-0134. We would like to
thank Franklin Webber and the other members of
the DPASA team for the development of the system
design and their contribution to the attack model.
We would like to thank Steve Dawson, Joshua
Levy, and Robert A. Riemenschneider at SRI Inter-

national and Charles Payne at Adventium Labs for
their work on the logical arguments. We would like
to thank our colleagues at DARPA, particularly Jay
Lala and Lee Badger, and at AFRL, particularly
Patrick Hurley, for their constructive comments and
support of this work. We would also like to thank
Jenny Applequist for her editorial assistance.

6 REFERENCES

[1] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F.
Lipson, T. Longstaff, and N. R. Mead. Survivable
Network Systems: An Emerging Discipline. Tech-
nical Report CMU/SEI-97-TR-013, CMU Soft-
ware Engineering Institute, November 1997.

[2] M. Cukier, J. Lyons, P. Pandey, H. V. Ramasamy,
W. H. Sanders, P. Pal, F. Webber, R. Schantz,
J. Loyall, R. Watro, M. Atighetchi, and J. Gossett.
Intrusion Tolerance Approaches in ITUA. In Sup-
plement of the 2001 International Conference on
Dependable Systems and Networks, pages B-64-B-
65, Göteborg, Sweden, July 2001.

[3] Y. Deswarte, L. Blain, and J. C. Fabre. Intrusion
Tolerance in Distributed Computing Systems. In
Proceedings of the IEEE Symposium on Research
in Security and Privacy, pages 110-121, May 1991.

[4] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-
Tolerant Enclaves. In Proceedings of the IEEE In-
ternational Symposium on Security and Privacy,
pages 216-224, Oakland, CA, May 2002.

[5] US Department of Defense Trusted Computer Sys-
tem Evaluation Criteria (“Orange Book”).
http://www.radium.ncsc.mil/tpep/library/ rain-
bow/5200.28-STD.html, December 1985. DoD
5200.28-STD.

[6] C. Landwehr. Formal Models for Computer Secu-
rity. Computer Surveys, 13(3):247-278, September
1981.

[7] J. Lowry. An Initial Foray into Understanding Ad-
versary Planning and Courses of Action. In Pro-
ceedings of the DARPA Information Survivability
Conference and Exposition II (DISCEX’01), pages
123-133, 2001.

[8] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor,
S. Page, D. Wright, J. Doboson, J. McDermid, and
D. Gollmann. Towards Operational Measures of
Computer Security. Journal of Computer Security,
2(2-3):211-229, 1993.

[9] E. Jonsson and T. Olovsson. A Quantitative Model
of the Security Intrusion Process Based on At-
tacker Behavior. IEEE Transactions on Software
Engineering, 23(4):235-245, April 1997.

[10] B. B. Madan, K. Goševa-Popstojanova,
K. Vaidyanathan, and K. S. Trivedi. Modeling and
Quantification of Security Attributes of Software
Systems. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks
(DSN 2002), pages 505-514, June 2002.

[11] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and
J. Wing. Automated Generation and Analysis of
Attack Graphs. In Proceedings of the 2002 IEEE

Symposium on Security and Privacy, pages 273-
284, May 2002.

[12] R. Ortalo, Y. Deswarte, and M. Kaâniche. Experi-
menting with Quantitative Evaluation Tools for
Monitoring Operational Security. IEEE Transac-
tions on Software Engineering, 25(5):633-650,
1999.

[13] S. Singh, M. Cukier, and W. H. Sanders. Probabil-
istic Validation of an Intrusion-Tolerant Replica-
tion System. In Proceedings of the 2003 Interna-
tional Conference on Dependable Systems and
Networking (DSN-2003), pages 615-624, San
Francisco, CA, 2003.

[14] V. Gupta, V. Lam, H. V. Ramasamy, W. H. Sand-
ers, and S. Singh. Dependability and Performance
Evaluation of Intrusion-Tolerant Server Architec-
tures. In Proceedings of LADC 2003: The 1st Latin
American Symposium on Dependable Computing,
Lecture Notes in Computer Science, volume 2847,
pages 81-101, São Paulo, Brazil, October 2003.

[15] P. G. Bishop and R. E. Bloomfield. The SHIP
Safety Case Approach. In Proceedings of the 1995
IFAC Conference on Computer Safety, Reliability
and Security (SafeComp95), pages 437-451, Belgi-
rate, Italy, October 1995.

[16] M. Abadi and L. Lamport. Conjoining Specifica-
tions. Technical Report 118, Digital Equipment
Corporation Systems Research Center, December
1993.

[17] L. Lamport. Temporal Logic of Actions. ACM
Transactions on Programming Languages and
Systems, 16(3):872-923, May 1994.

[18] N. Shankar. A Lazy Approach to Compositional
Verification. Technical Report TSL-93-08, SRI In-
ternational, 1993.

[19] J. F. Meyer, A. Movaghar, and W. H. Sanders.
Stochastic Activity Networks: Structure, Behavior,
and Application. In Proceedings of the Interna-
tional Conference on Timed Petri Nets, pages 106-
115, Torino, Italy, July 1985.

[20] W. H. Sanders. CDR validation report. Technical
Report CDRL A007-R2, BBN Tehnologies, 2003.

[21] D. D. Deavours, G. Clark, T. Courtney, D. Daly,
S. Derisavi, J. M. Doyle, W. H. Sanders, and P. G.
Webster. The Möbius Framework and Its Imple-
mentation. IEEE Transactions on Software Engi-
neering, 28(10):956-969, October 2002.

[22] Fabrice Stevens. Validation of an Intrusion-
Tolerant Information System Using Probabilistic
Modeling. Master’s thesis, University of Illinois at
Urbana-Champaign, 2004.

AUTHOR BIOGRAPHIES

SANKALP SINGH is a Ph.D. student in
the Department of Computer Science at
the University of Illinois, Urbana-
Champaign. His research interests include
security quantification and validation. He
received his B.Tech. in Computer Science

and Engineering from the Indian Institute of Technology,
Kanpur in 2001 and his M.S. in Computer Science from

the University of Illinois in 2003. His email address is
sankalps@crhc.uiuc.edu.

ADNAN AGBARIA received his B.A,
M.A, and Ph.D. degrees in 1994, 1997,
and 2002 respectively. Both the B.A.
and M.A. are in Mathematics and
Computer Science, from Haifa
University, and the Ph.D. is in computer

science from Technion - Israel Institute of Technology.
Currently, he works as a postdoctoral research associate
in the Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign. His research interests
include fault-tolerant and intrusion-tolerant computing,
network security, parallel and distributed computing, and
computer networking. He is also a member of the ACM
and IEEE. His email address is adnan@crhc.uiuc.edu.

FABRICE STEVENS received his B.S.
in Computer Engineering from ENST
(Ecole Nationale Superieure des Tele-
communications, Paris, France) in 2002,
and his M.S. in Computer Engineering
from the University of Illinois at Urbana-

Champaign in 2004. He is currently working on network
security at France Telecom Research and Development.
His email address is fabrice.stevens@francetelecom.com.

TOD COURTNEY received his
Bachelor degree in Computer
Engineering in 1994 and his Masters in
Electrical Engineering in 1996, both from
the University of Illinois. He is currently
a researcher at the University of Illinois.

His interests include performance, dependability, and
security system evaluation, as well as stochastic model-
ing algorithms and software. His email address is
tod@crhc.uiuc.edu.

JOHN F. MEYER is a Professor
Emeritus in the Department of Electrical
Engineering and Computer Science at the
University of Michigan, Ann Arbor,
Michigan. He has been active in computer
and systems research for over 45 years,

resulting in a wide variety of publications concerning the
areas of fault-tolerant computing and system evaluation.
He joined the Michigan faculty in 1967 and, in addition
to his university appointments, has held visiting research
appointments at laboratories in England, France, Italy,
Japan, and Sweden. Prior to 1967, he was a Research
Engineer at the California Institute of Technology Jet
Propulsion Laboratory, where his contributions included
the first patent issued to the National Aeronautics and
Space Administration. His current research interests
concern the development and application of models for
evaluating the performability and survivability of dis-
tributed computer and communication systems. He is a
Life Fellow of the IEEE and has served the IEEE Com-
puter Society in various capacities, including Chair of
the Technical Committee on Fault-Tolerant Computing
and membership on the Society’s Board of Governors.
He is also active in IFIP and has received the Silver Core

from their General Assembly for his services to Working
Group 10.4. His email address is jfm@eecs.umich.edu.

WILLIAM H. SANDERS is a Donald
Bigger Willett Professor of Engineering
in the Department of Electrical and
Computer Engineering and the
Coordinated Science Laboratory at the
University of Illinois. He is the Director

of the Information Trust Institute (ITI) at the University
of Illinois. He is serving as the Vice-Chair of IFIP Work-
ing Group 10.4 on Dependable Computing. In addition,
he serves on the editorial board of Performance Evalua-
tion and is the Area Editor for Simulation and Modeling
of Computer Systems for the ACM Transactions on
Modeling and Computer Simulation. He is a past Chair
of the IEEE Technical Committee on Fault-Tolerant
Computing. He is a Fellow of the IEEE and the ACM.
Dr. Sanders’s research interests include perform-
ance/dependability evaluation, dependable computing,
and reliable distributed systems. He has published more
than 160 technical papers in those areas. He served as the
General Chair of the 2003 Illinois International Multi-
conference on Measurement, Modelling, and Evaluation
of Computer-Communication Systems. He has served as
co-Chair of the program committees of the 29th Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-
29), the Sixth IFIP Working Conference on Dependable
Computing for Critical Applications, Sigmetrics 2003,
PNPM 2003, and Performance Tools 2003, and has
served on the program committees of numerous confer-
ences and workshops. He is a co-developer of three tools
for assessing the performability of systems represented
as stochastic activity networks: METASAN, UltraSAN,
and Möbius. Möbius and UltraSAN have been distrib-
uted widely to industry and academia; more than 300
licenses for the tools have been issued to universities,
companies, and NASA for evaluating the performance,
dependability, security, and performability of a variety of
systems. He is also a co-developer of the Loki distrib-
uted system fault injector and the AQuA/ITUA middle-
wares for providing dependability/security to distributed
and networked applications. His email address is
whs@crhc.uiuc.edu.

PARTHA PAL is a division scientist
at BBN Technlogies, and he leads the
survivability research thrust in the
Distributed Systems Advanced
Middleware Technology group. He is
currently working on the architecture,

design, implementation, and evaluation of a pathfinder
system for the U.S. Dept. of Defense. He is a senior
member of the IEEE. His email address is
ppal@bbn.com.

