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Abstract: We describe, with respect to high-level survivability requirements, the validation of a survivable 
publish-subscribe system that is under development. We use a top-down approach that methodically breaks 
the task of validation into manageable tasks, and for each task, applies techniques best suited to its accom-
plishment. These efforts can be largely independent and use a variety of validation techniques, and the re-
sults, which complement and supplement each other, are seamlessly integrated to provide a convincing as-
surance argument. We also demonstrate the use of model-based validation techniques, as a part of the over-
all validation procedure, to guide the system’s design by exploring different configurations and evaluating 
trade-offs. 
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1 INTRODUCTION 

The emergence of large distributed information 
systems to support nation-critical needs (e.g., elec-
trical power distribution, telecommunications, mili-
tary command and control, and health care) has 
spurred research into new system protection strate-
gies that can produce a system whose critical func-
tion will survive in spite of hostile attacks, complex 
failures, or accidents [1]. These new strategies have 
drawn upon traditional approaches such as preven-
tion technologies (e.g., cryptography, authentication, 
and firewalls), detection technologies (e.g., network 
sensors and host-based sensors), fault-tolerance 
technologies (e.g., agreement protocols), and the 
like, and combined them with newer technologies 
that enable dynamic defensive responses such as 
changing security policies or isolating suspected 
components. Successful strategies interleave these 
building blocks into a solution that remains cost-
effective and manageable even when scaled to very 
large systems.  
The validation of survivable systems, like their 
construction, must use an integrated approach. In 
addition to well-known security requirements such 
as confidentiality and integrity, a survivable system 
may also need to satisfy probabilistic constraints on 
its behavior. Such constraints impose different 
modeling and reasoning strategies. This is particu-
larly true of survivable systems that make use of 
intrusion tolerance technologies [2, 3, 4], since by 
definition, intrusion tolerance is a probabilistically 
quantified property of the system. Moreover, since 
impairments may manifest themselves in imple-
mentation details, we must rely on focused testing 

to convince ourselves that the implementation is 
faithful to the modeled design. A successful valida-
tion approach must collect this disparate evidence 
into a single, seamlessly integrated assurance ar-
gument that is convincing to the accreditor.  
Most traditional approaches to validation of secu-
rity have been process-based, usually in the form of 
guidelines [5]. Goal-based evaluations, when at-
tempted, have usually either been based on formal 
methods [6] and aimed to prove that certain security 
properties hold given a specified set of assumptions, 
or been informal, using teams of experts (often 
called “red teams,” e.g., [7]) to try to compromise a 
system. Quantitative methods, in particular prob-
abilistic modeling, have been receiving increasing 
attention as a mechanism to validate security. Any 
probabilistic model intended to validate a secure 
system would have to represent, among other things, 
the attacker’s behavior. Since some of the vulner-
abilities in an information system will be unknown 
at the time the system is designed (and modeled), 
the prediction of when and how an attacker may 
successfully intrude the system is a difficult, but 
critically important problem. Early work on prob-
abilistic validation of secure systems was done by 
Littlewood et al. [8]. Their work was exploratory in 
nature and identified “effort” made by an attacker 
as an appropriate measure of the security of the 
system. Jonsson and Olovsson [9] attempted to 
build a quantitative model of attacker behavior 
using data from several experiments they conducted 
over a two-year period. They postulated that the 
process representing an attacker may be broken into 
multiple phases, each of which has an exponential 
time distribution. Attempts have been made to build 



models that take into account behavior of the sys-
tem as well as the attacker, and the uncertainties 
therein. Madan et al. [10] have used a semi-Markov 
model to evaluate the security properties of the 
SITAR architecture, an intrusion-tolerant system. 
Their model does not explicitly represent the at-
tacker or the vulnerabilities that may lead to intru-
sions, but represents the state of the system in terms 
of high-level events that may lead to failures. Shey-
ner et al. [11] have tried to build attack trees auto-
matically using formal methods, and then analyze 
those trees using Bayesian networks. Ortalo et 
al. [12] have proposed modeling of known system 
vulnerabilities using “privilege graphs,” followed 
by a combination of the privilege graphs with sim-
ple assumptions about attacker behavior to obtain 
“attack-state graphs.” The latter can be analyzed 
using Markov techniques to obtain probabilistic 
measures of security. Singh et al. [13] have used 
probabilistic modeling to validate an intrusion-
tolerant system, emphasizing the effects of intru-
sions on the system behavior and the ability of the 
intrusion-tolerant mechanisms to handle those ef-
fects, while using very simple assumptions about 
the discovery and exploitation of vulnerabilities by 
the attackers to achieve those intrusions. Gupta et al. 
[14] have used a similar approach to evaluate the 
security and performance of several intrusion-
tolerant server architectures. In most of the above 
efforts, the designers chose modeling assumptions 
and model parameterswithout incorporating the 
justifications for those choices into a larger valida-
tion framework. Moreover, the representation of the 
attacker’s behavior is highly simplified. The chief 
value of existing research in this area is that it dem-
onstrated the applicability of these approaches as 
evaluation techniques that can be used as compo-
nents of an integrated assurance argument.  
The safety-critical systems community has been 
using “safety cases” [15] as a means to express 
arguments about the guaranteed safety of systems 
such as nuclear power plants. While safety cases 
allow disparate kinds of evidence to be incorpo-
rated into an overall argument, they primarily serve 
as a visual aid, and do not give formal guidelines as 
to how an argument/requirement is decomposed, 
especially if it is quantitative in nature. The models 
used for generating actual evidence in argument 
trees are usually simplistic; there is a lack of trace-
ability between the actual design and the models; 
and quantitative evidence (typically generated by 
probabilistic models) is generally in the form of a 
leaf, with no argument subtree enumerating and 
justifying the assumptions made in the models. 
Furthermore, an approach based on an integrated 
argument has not been applied to validation of se-
curity-related properties.  

We have recently developed and applied a valida-
tion method for survivable systems that includes the 
use of logical arguments, stochastic simulations, 
and experiment-based testing with actual system 
components (e.g., red teaming [7]). The need for 
such diversity is due, in part, to the basic nature of a 
survivability requirement, which can generally be 
decomposed into sub-requirements that differ with 
regard to the types of techniques that can be applied. 
We applied the method to a proposed intrusion-
tolerant design for a publish-subscribe system 
(hereafter referred to as IT Pub-Sub), both to dem-
onstrate that the proposed design satisfies imposed 
survivability requirements and to help us consider 
different protection trade-offs as we developed the 
final design. The resulting assurance argument in-
corporates each piece of assurance evidence as a 
supporting argument of some higher-level claim.  
A major component of our validation approach was 
probabilistic modeling. The probabilistic models 
used an innovative attacker model. The attacker 
model has a sophisticated and detailed representa-
tion of various kinds of effects of intrusions on the 
behavior of system components (such as a variety 
of failure modes). It includes a representation of the 
process of discovery of vulnerabilities (both in the 
operating system(s) and in the specific applications 
being used by the system) and their subsequent 
exploitation, and considers an aggressive spread of 
attacks through the system by taking into account 
the connectivity of the components of the system, at 
both the infrastructure and the logical levels. We 
believe that this attacker model is applicable to a 
wide range of secure and intrusion-tolerant systems. 
Moreover, we demonstrate the use of probabilistic 
modeling, as embedded in the IVP, to compare 
different design configurations, allowing the de-
signers of the system to make choices that maxi-
mize the survivability of the system before it is 
actually implemented.  
The remainder of the paper is organized as follows. 
Section 2 provides an overview of the publish-
subscribe system studied. Section 3 provides the 
outline of our validation procedure. Section 4 pro-
vides the details and results of the validation proce-
dure. Finally, we conclude in Section 5 with a 
summary of lessons learned and prospects for fur-
ther evolution of our work.  

2 OVERVIEW OF THE IT PUB-SUB 
DESIGN 

The IT Pub-Sub system consists of multiple clients 
communicating with each other through a central 
core, as shown in Fig. 1. The core consists of three 
zones (or layers) of components: the crumple zone 
(outermost layer), the operations zone, and the ex-



ecutive zone (innermost layer). The network con-
nectivity is constrained, through the use of network-
interface-level hardware firewalls and configurable 
network switches, to limit direct network connec-
tivity from the outside network to the inner zones. 
Communication between machines in each zone is 
accomplished via proprietary communication pro-
tocols. 
The primary component in the crumple zone is the 
access proxy (AP). It functions as a bridge between 
the outer (public) network containing the clients 
and the inner core network for the remaining zones. 
It translates between multiple publicly supported 
communication interfaces (such as RMI and 
CORBA) and the single internal core communica-
tions protocol. Clients connect to the access proxy 
to publish, subscribe, and query IO. Attacks on 
clients generate alerts that are forwarded to the core 
via the AP, and commands to the client security 
components from the core pass back to the client 
via the AP.  
Inside the crumple zone is the operations zone. It 
contains the components that perform the two main 
functions of the core: processing IO objects, and 
monitoring and maintaining the security of the core 
and the clients connected to it. IO processing is 
performed by three operations zone components: 
the PSQ server (PSQ), the downstream controller 
(DC), and the guardian (Gu). The PSQ server re-
ceives IO objects sent to the core via the AP in the 
crumple zone. The DC verifies the signatures on 
messages sent from clients to ensure data integrity. 
The guardian uses scenario-specific and domain-
specific knowledge to identify corruption within the 
contents of the IO.  
Security monitoring and maintenance are per-
formed by local components distributed across all 
of the hosts in the client, the crumple zone, the op-
erations zone, and a centralized correlator (Co) in 
the operations zone. The components local to indi-
vidual hosts are sensors, actuators, and local con-
trollers (LC). Sensors are dedicated to intrusion 
detection, actuators are mechanisms that carry out 
actions when commanded, and an LC is the control 
agent responsible for local survivability manage-
ment.  
The correlator receives alerts from multiple intru-
sion detection sensors within the client, crumple, 
and operations zones, filters out redundant and false 
alerts, and forwards serious messages to the system 
manager. The correlator interprets the alerts it re-
ceives in the context of the global state of the sys-
tem, allowing it to better identify redundant alerts 
and false alarms.  
The executive zone contains the system manager 
(SM). It serves as the master controller of the IT 
Pub-Sub. It monitors intrusion alerts received from 

the correlator and generates commands for the ap-
propriate response to counter the intrusion. Human 
operators monitor the IT Pub-Sub via displays gen-
erated by the SM, and can manually initiate specific 
responses from the SM.  
 

 
 

Fig. 1 – The IT Pub-Sub Architecture 
 

The core is redundant, consisting of four quadrants 
(or quads) that run different operating systems. 
Each quadrant contains copies of all crumple, op-
eration, and executive zone components discussed 
previously. Agreement protocols run among the SM 
and PSQ servers to ensure a common, collective 
view of the system state by human operators view-
ing it through the SM displays, and by clients inter-
acting with the core via the access proxies in the 
crumple zone. The baseline configuration of the 
system used in our case study assigned the same 
operating system to all the hosts within a single 
quadrant of the core. 
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Fig. 2 – Publish Data Flow 

 

Among the various data flows in the system, two 
are central to the validation effort described in the 
sections that follow. The first, which is depicted in 
Fig. 2, is the data flow among the system compo-
nents during the publish operation. The publish 
operation begins when a client creates an IO to be 
published. The IO is signed using the client’s pri-
vate session key and sent to the access proxy in one 
of the quadrants through the “publish” protocol. 
The access proxy receives the IO through the isola-
tion switch (IS) and sends it to the DC to verify 



whether the client is in a valid session. After suc-
cessful verification, the AP sends the IO to the PSQ 
server in its quadrant. The PSQ server forwards the 
IO to the other PSQ servers in the other quadrants. 
Each PSQ server then stores the IO in its repository 
(Rep), sends to the client an acknowledgment of the 
receipt of the publication, and sends the IO to the 
guardian. The guardian performs domain-specific 
tests on the IO. If it finds an error in the IO, it sends 
an alert to the correlator. The correlator determines, 
based on the threat level of the alert and the alert 
state of the system, whether the alert is likely to 
represent an attack. If it is, the alert is forwarded to 
the SM. The SMs collectively decide whether they 
should tell the PSQ servers to recall the IO. If there 
are no recalls from the SM, the IO is accepted, and 
subscribing clients are notified that a new IO is 
available. The subscribing clients then query the 
system for the available IO.  

 

 
 

Fig. 3 – Alert/Response Data Flow of a Client 
 

The second data flow of interest is the 
alert/response data flow associated with the intru-
sion detection and tolerance capabilities of the sys-
tem. Alerts are generated on the clients and on 
components in the core, and the data flow is similar 
for both cases. The data flow for client alerts is 
presented in Fig. 3 and described here. When a 
sensor in a client host detects an anomalous condi-
tion/attack, it generates an alert and sends it to the 
LC on the same host. The LC can either make a 
local response, such as restarting a process or re-
placing a corrupted file, or forward the alert to the 
core for a coordinated adaptive response by the 
correlator. The correlator then decides (using corre-
lation with other alerts) if this alert is critical, de-
termines the compromised client(s), and informs 
the SM in its quadrant. The SMs propagate the 
reports within the SM group and reach a consensus 
to take action. Each SM then generates a command 
for the desired response on the client generating the 
alert and sends it to the client’s LC via the DC and 
AP. The LC commands the appropriate local actua-
tor on the client to take action. If the SM group 
determines that a more drastic response is appropri-
ate, the client can be quarantined. Each SM notifies 

the policy server (PS) for the hardware-based fire-
wall system and isolates the compromised client.  

3 VALIDATION APPROACH 

Before we delve into the the details of the valida-
tion, we clarify the nature of high-level survivabil-
ity requirements and formulate a theoretical basis 
for their decomposition into sub-requirements. We 
then provide an outline of the procedure we em-
ployed to validate the IT Pub-Sub with respect to 
particular high-level requirements.  

3.1 Survivability Requirements 

As defined in [1], survivability is the capability of a 
system to fulfill its mission, in a timely manner, in 
the presence of attacks, failures, or accidents. A 
system is survivable if it has the above-stated capa-
bility according to a specified set of survivability 
requirements. The latter are statements that collec-
tively imply what is meant by the system’s “capa-
bility to fulfill its mission in an adverse operational 
environment.” (In what follows, it is assumed that 
“in a timely manner” is accounted for as part of 
“mission fulfillment.”) A survivable system’s op-
erational environment includes both mission-
specific interactions on the part of intended users 
(its use environment) and adverse interactions due 
to attacks and faults (the attack/fault environment).  
The term “capability” is particularly important in 
defining survivability requirements. In some in-
stances, it suffices to identify capability with “cer-
tainty,” i.e., fulfillment occurs with probability 1. 
However, capability often needs to be otherwise 
quantified, and that often involves probabilities. To 
illustrate this, let us suppose X is some service that 
is essential to fulfilling the system’s mission. Then 
a corresponding survivability requirement for the 
system, call it ExR for “Example Requirement,” 
could be the following.  
ExR: Whenever requested, X is successfully deliv-

ered with a probability of at least pX (0 < pX 
< 1.0),  

where “successfully delivered” needs to be further 
elaborated in terms relating to both the system and 
the mission objectives. For example, suppose that X 
involves the transfer of a data object from one sys-
tem user to another. Then, successful delivery (pro-
vision) of this service, among other things, can 
depend on the end-to-end data flow required to 
realize X, timeliness of the data flow, and integrity 
of the received data object, along with other secu-
rity properties such as authentication (the sender is 
an authorized user) and confidentiality (the data 
object is not disclosed to an unauthorized recipient).  



Generally, a system requirement can be viewed as a 
predicate R(s), where the variable s refers to a sys-
tem along with relevant aspects of its operational 
environment. When applied to a specific system S, 
the proposition R = R(S) is then a requirement for 
S, where R is satisfied by S (alternatively, S is 
valid with respect to R) if the truth value of R is 
true. When a requirement R for a particular system 
is being stated, the system is usually understood 
from context, and hence not referred to explicitly in 
the statement of R. (See the definition of ExR above, 
in which we omitted saying “by the system” after 
“successfully delivered.”) This practice will be 
followed throughout the paper.  
With a slight abuse of terminology, we regard a 
requirement as being quantitative if deciding 
whether R is satisfied by the system entails the 
evaluation of at least one quantitative measure. In 
the case of high-level survivability requirements, 
such quantification is likely probabilistic, as illus-
trated in the example given above. This is due 
mainly to uncertainties in the system’s operational 
environment (i.e., use environment and attack/fault 
environment) together with defense mechanisms 
that may behave probabilistically. Evaluation of the 
corresponding measure(s) can be based on a model 
of the system and its operational environment, ex-
perimentation with an actual system (operating in 
an actual or simulated environment), or some com-
bination of the two. In addition to measure evalua-
tion, other techniques need to be brought into play 
to determine whether a quantitative requirement is 
satisfied. If a requirement is non-quantitative, then 
its satisfaction can generally be decided without 
direct invocation of evaluation results for any quan-
titative measure. (Indirectly, such results can pro-
vide evidence that the requirement is indeed non-
quantitative.)  
Generally, a requirement is specified as a constraint 
(typically a bound or equality) on the probabilities 
of one or more events. This includes non-
quantitative requirements, which can be viewed as 
events with probability 1. Moreover, such prob-
abilities may be conditional, meaning that they are 
conditioned on the satisfaction of one or more pre-
conditions. For example, the validation effort might 
initially focus on the survivability of the system, 
assuming it has been successfully bootstrapped. 
That would make it possible to deal with the boot-
strapping process separately, if needed, perhaps 
later on in the validation procedure. In the case of 
ExR, we may define:  
EExR  = X is delivered successfully upon request.  
CExR = The system has been successfully boot-

strapped, which includes starting the appli-
cation that provides the service X.  

ExR = P[EExR|CExR] > pX.  
Each event (including preconditions) may be stated 
as a conjunction of simpler events, both for clarity 
and ease of subsequent requirement decomposition. 
Since events are technically sets in the context of 
probability theory, throughout the paper, “conjunc-
tion between events” describes the corresponding 
set intersection.  

3.2 Requirement Decomposition 

If feasible, it is helpful to logically decompose a 
requirement into (more specific) sub-requirements, 
such that if all of the sub-requirements are satisfied 
by the system, then the original requirement is sat-
isfied. The primary purpose of the decomposition is 
to obtain sub-requirements that can be proved using 
the tools available to the validators for logical ar-
gumentation and probabilistic modeling. Our for-
malism is somewhat similar to the formal composi-
tion and refinement framework developed by 
Abadi-Lamport [16, 17] and Shankar [18]. How-
ever, their logical formulations do not have prob-
abilistic underpinnings capable of dealing with 
quantitative survivability requirements, such as our 
formalism aims to provide. More precisely, a logi-
cal decomposition (LD) of a requirement R is a set 
of two or more requirements (the sub-requirements 
of R) such that their (logical) conjunction implies R. 
Formally, let {R1, R2, … , Rm} denote the set of sub-
requirements of requirement R (m > 2) and let ∧ 
denote conjunction (the logic operator AND). Then,  

(R1 ∧ R2 ∧ … ∧ Rm) ⇒ R, 

i.e., the conjunction of the sub-requirements (logi-
cally) implies R. Accordingly, in order to validate 
the system with respect to R, it suffices to validate 
it with respect to each of the sub-requirements. We 
rule out trivial conjunctions such as R ∧ R and R ∧ 
Taut, where Taut is a tautology (is always true). 
We also rule out degenerate LDs for which the 
conjunction (R1 ∧ R2 ∧ … ∧ Rm) is a contradiction 
(is never true), e.g., the sub-requirements are in-
consistent, since in that case (by the definition of 
logical implication), requirement R would be trivi-
ally satisfied.  
A requirement is decomposable if it admits to an 
LD. An LD of R is typically determined by finding 
some initial LD of R and then iteratively determin-
ing LDs of decomposable sub-requirements. Note 
that conditions of the LD definition are preserved 
by such iterations by the transitivity of ⇒.  
A requirement R is atomic if it is not logically de-
composed. This applies to the original requirement 
(if it is not decomposed) or to any sub-requirement 
that is not further decomposed. It is important to 
note that the LD process is guided by the need to  
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Fig. 4 – A Flowchart Depicting the IVP

obtain manageable sub-requirements, so while a 
requirement may be atomic because it is not de-
composable (does not admit to an LD), in practice, 
a requirement is often atomic because a beneficial 
LD is not evident or because the requirement is 
basic enough to be dealt with effectively without 
further decomposition. If R is decomposed in the 
iterative manner described above, the decomposi-
tion may be visualized as a tree, with R as the root 
node and the atomic sub-requirements as the leaf 
nodes. It follows (due to the preservation of the LD 
condition) that R is satisfied if all of its atomic sub-
requirements (leaf nodes for the tree rooted at R) 
are satisfied.  
Generally, the sub-requirements of an LD of R can 
be either quantitative or non-quantitative (see Sec-
tion 3.1). If R is quantitative, then at least one of its 
sub-requirements must also be quantitative. The 
reason is that logical decomposition cannot elimi-
nate the quantitative aspect(s) of R. Moreover, it is 
possible for an LD of a quantitative requirement to 
contain more than one quantitative sub-requirement. 
Consider the following example. Suppose we have 
a requirement R, defined as  

R: P[E1 ∧ E2] ≥ p (0 < p < 1), 

where E1 and E2 are two events, such that neither of 
them is expected to occur with probability 1. Sup-
pose further that these events are not statistically 
independent. Nevertheless, R can still be logically 
decomposed into two sub-requirements  

R1: P[E1] ≥ p1 (0 < p1 < 1), 

R2: P[E2|E1] ≥ 
1p
p , 

where it follows from elementary probability theory 
that R1 ∧ R2 ⇒ R. The value of p1 can be specified 
by using a probabilistic model of the relevant por-
tion of the system to evaluate P[E1] and letting p1 = 

P[E1], thereby satisfying R1. Another model can 
then be used to evaluate P[E2|E1] so as to determine 
whether R2 is satisfied. Note that (due to the use of 
implication), it is sufficient to do this for one value 
of p1, and that the independence of the events in-
volved is not a prerequisite for decomposition.  

3.3 Outline of the Validation Procedure 

Although it is sometimes possible to obtain a vali-
dation result by applying a single validation tech-
nique (e.g, logical argumentation, if the require-
ment is not quantitative), we find that validation 
with respect to high-level quantitative survivability 
requirements calls for an integrated application of 
several techniques. Indeed, we believe that the 
means of accomplishing this is a distinguishing 
feature of the effort reported herein. We used the 
following integrated validation procedure (IVP) to 
validate the IT Pub-Sub with respect to a quantita-
tive survivability requirement, say R. The quanti-
fied aspects of R are assumed to be probabilistic 
(e.g., probabilities, moments of random variables, 
and so forth). The IVP is summarized in Fig. 4, and 
the steps are:  
1. Formulate a precise statement of R, including 

any assumed preconditions regarding the system 
and/or its operational environment. The purpose 
of this step is to make the goals of the validation 
exercise absolutely clear right at the onset, and 
also to specify exactly the scope of the valida-
tion by explicitly enumerating the preconditions. 
We chose propositional logic in combination 
with a simple probabilistic formulation as the 
specification formalism, since it easily supports 
subsequent decomposition as described in Sec-
tion 3.2.  

2. If R admits to logical decomposition, decom-
pose it iteratively using the method described in 



Section 3.2, thereby determining its correspond-
ing atomic sub-requirements. Otherwise, R is 
the only atomic requirement. This step is in-
tended to break R into manageable sub-
requirements that can be addressed by the tools 
and techniques used for probabilistic modeling 
or logical argumentation. Each decomposition 
of a requirement into sub-requirements is ac-
companied by a proof of the validity of the de-
composition. The proofs would typically use 
propositional logic, and might use some prob-
abilistic reasoning if any of the involved sub-
requirements are quantitative.  

The following steps are applied to each atomic sub-
requirement Ra. (Ra = R if R is atomic.)  
3. If Ra is quantitative, proceed as follows; other-

wise, jump to Step 8. In a natural language (or 
some more formal language suited to the task), 
describe properties of the system and its opera-
tional environment that can guide model-based 
evaluation of the probabilistic measure(s) asso-
ciated with Ra. First, the system components 
(and communications among them) relevant to 
Ra are identified. This is followed by a descrip-
tion of the following. Note that all the descrip-
tions are in terms of the components and com-
munications identified, i.e., they are specified at 
the same level of abstraction.  
a)  Information flows:  

i) Service-related data flows: this is a block 
diagram, with the components identified 
above as the blocks, representing the pre-
cise sequence, and the nature, of communi-
cations between the components during 
normal operation.  
ii) Attack-caused intrusion detection and 
recovery flows: this is a block diagram rep-
resenting the precise sequence, and nature, 
of communications involved in passing 
alerts (upon detection of intrusions) and 
subsequent recovery commands.  
iii) Fault-caused error detection and recov-
ery flows: similar to (ii) above, except that 
the alerts are raised upon detection of errors. 

b) Use scenario(s): this is closely related to in-
formation flows. Here, the operational set-
ting of the system is described, and might in-
clude details such as frequencies of various 
events. A description of the quantitative 
measure(s) required to evaluate Ra is also 
provided.  

c) Attack and fault effects: This is a description 
of the possible effects attacks and faults have 
on the behavior of the system components. 
The emphasis is on enumerating the effects 
that can be detrimental to the system’s abil-
ity to satisfy Ra. It usually includes a repre-

sentation of the attacker behavior, in particu-
lar the dynamics of the spread of intrusions 
deeper into the system using already intruded 
components as launching pads. These de-
scriptions can be based on information from 
threat and vulnerability assessment and from 
whiteboarding.  

4. Determine detailed descriptions of submodels 
corresponding to the relevant components iden-
tified in Step 3, along with explicit statements of 
underlying assumptions made for each sub-
model. For each submodel, descriptions elabo-
rate on (1) the participation of the component in 
the various information flows described in 3a, (2) 
the state to be maintained to evaluate the meas-
ure described in 3b, and (3) effects of intrusions 
on the behavior of the component as per 3c. The 
descriptions are at a level of detail that permits 
relatively straightforward construction of corre-
sponding portions of the probabilistic model in 
Step 6. Step 4 also includes identification of the 
input parameters required by the model, and 
choice of reasonable estimates for their values.  

Steps 3 and 4 help the validators make sure they 
clearly understand the system design or implemen-
tation being validated, and document that under-
standing. Since the probabilistic model constructed 
in Step 6 may not be easily understood by persons 
lacking background in probability theory and sto-
chastic modeling, the descriptions prepared in the 
above steps can be reviewed by the design-
ers/implementors of the system to ensure compli-
ance with their views. Similarly, the descriptions 
help convince the accreditors that the models actu-
ally represent the system being validated. The 
above exercise also greatly eases the job of building 
the probabilistic model.  
5. Verify the modeling assumptions of Step 4 and, 

where possible, justify values of the model pa-
rameter values chosen. Since we were validating 
a system design (as opposed to an implementa-
tion), several of the parameter values chosen 
were based on informal justification rather than 
formal proofs or experimentation. The focus in 
such a case is more on exploration of the de-
sign/parameter space and identification of the 
subspace that ensures compliance with the sur-
vivability requirements, thus leading to a more 
survivable system when the chosen design is ac-
tually implemented. The assumptions are also 
checked for consistency with any preconditions 
in Ra. Furthermore, if a node in the requirement 
decomposition tree used independence of the 
underlying events to justify the decomposition, 
the sets of assumptions in the subtrees rooted at 
the children of that node are checked against 



each other for the violation of the independence 
assumption.  

6. Based on the descriptions obtained in Step 4, 
construct a probabilistic model of the system 
and its operational environment that can support 
evaluation of the probability measure(s) associ-
ated with Ra. Several modeling formalisms may 
be used. We have used Stochastic Activity Net-
works (SANs) [19], a generalization of stochas-
tic Petri nets, as the modeling formalism. The 
models were built using the Möbius tool, which 
can either solve them analytically by converting 
them into equivalent continuous time Markov 
chains, or simulate them by executing multiple 
behavioral trajectories until the measures being 
evaluated are determined within desired bounds 
of accuracy.  

7. Based on the model made in Step 6, evaluate the 
probability measure(s) associated with Ra. If the 
values obtained are within bounds prescribed by 
Ra, then Ra is satisfied by the system (the system 
is valid with respect to Ra).  

8. If Ra is not quantitative, prove that it is satisfied 
using logical argumentation.  

Note that Steps 4-5 will usually be iterated. For 
example, an inability to verify some assumption in 
Step 5 may lead to alternative assumption details in 
Step 4 (even though realities of the design and its 
operational environment remain unchanged).  

4 VALIDATION DETAILS 

As mentioned in Section 2, the essential services 
provided by the core to clients are publish, sub-
scribe, and query. Accordingly, IT Pub-Sub surviv-
ability with respect to these services is a dominant 
concern of the validation process. We now describe 
the application of the validation procedure outlined 
above as it was used to validate the system against 
the survivability requirement for the publish service.  

4.1 Step 1: Requirement Specification 

The “capability to process a publish request suc-
cessfully” was chosen as the survivability require-
ment for the publish service. The first step in the 
validation procedure is to formulate a precise 
statement of the requirement. To this end, the terms 
“capability” and “successfully process a publish 
request” need to be defined, together with any pre-
conditions regarding the system and its operational 
environment.  
Let CPUB be the conjunction of the events represent-
ing the preconditions. In our case, CPUB is the con-
junction of the following two events; the first refers 
to the system and the second to the use environment.  

1
PUBC =the publishing client is successfully regis-

tered with the IT Pub-Sub core (authentica-
tion).  

2
PUBC =the publishing client’s mission application 

always passes adequate and accurate infor-
mation to the client.  

These reflect the assumptions about the system’s 
initial state and invariants during operation, which 
are taken as axioms in the subsequent analysis.  
Let EPUB be the desired event, i.e., the successful 
processing of a request to publish. It is the conjunc-
tion of the following events.  

1
PUBE = the data flow of the publish operation is 

correct. 
2
PUBE = the time required for the publish operation 

does not exceed a specified duration tmax 
(timeliness).  

3
PUBE = the published IO that becomes available to 

subscribers has the same essential content 
as that assembled by the publishing client 
(integrity).  

4
PUBE = the published IO is available only to the 

other clients via subscribe or query requests 
(confidentiality).  

Let P[EPUB|CPUB] be the probability of event EPUB, 
given that the preconditions hold, i.e., the quantifi-
cation of “capability.” Let the required capability be 
denoted by pPUB (0 < pPUB < 1), the lower bound on 
P[EPUB|CPUB], where its specified value is typically 
a high probability that depends on the nature of the 
system use scenario.  
The survivability requirement for the IT Pub-Sub 
publish service, denoted by PUB, can then be stated 
as  

PUB: P[EPUB|CPUB] ≥ pPUB. 

PUB is therefore a quantitative requirement (in the 
sense described in Section 3.1), since deciding 
whether it is satisfied by the IT Pub-Sub, entails 
evaluation of the quantitative measure P[EPUB|CPUB]. 
Due to uncertainties in attacks, attack effects (intru-
sions), intrusion effects, and the operation of vari-
ous IT Pub-Sub intrusion tolerance mechanisms, 
validation is trivial in the case pPUB = 1, since we 
know that PUB cannot be satisfied. At the other 
extreme, if the value pPUB = 0 were allowed and so 
specified, then PUB would likewise be non-
quantitative. Again, validation would be trivial, 
since, in this case, PUB would always be satisfied 
(the requirement itself is trivial).  

4.2 Step 2: Logical Decomposition 

PUB can be initially decomposed into the following 
two sub-requirements.  

PUB1: P[EPUB| 2
PUBC ] ≥ pPUB. 



PUB2: P[ 1
PUBC ] = 1. 

To establish that {PUB1, PUB2} is an LD of PUB, 
we need to show that the defining conditions of an 
LD are satisfied, i.e.,  

(PUB1 ∧ PUB2) ⇒ PUB. 

Suppose the hypothesis holds, i.e., both PUB1 and 
PUB2 are true. Generally, if A and B are two events 
such that P[A] = 1 then  

P[A ∧ B] = P[A] + P[B] – P[A ∨ B] 
 = P[B] = P[A]P[B] (1)

where P[A ∨ B] = 1, since the probability of an “or” 
event is at least the probability of either disjunct, 
and can be no greater than 1. From the above iden-
tity, it follows that any event having probability 1 is 
(statistically) independent of an arbitrary event. In 
particular, by PUB2, 1

PUBC  is independent of both 

EPUB and 2
PUBC . Hence,  

P[EPUB| 2
PUBC ] 
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Since P[EPUB| 2
PUBC ] ≥ pPUB (sub-requirement PUB1), 

by the above identity we can conclude that  
P[EPUB| PUBC ] ≥ pPUB, 

which is just the original requirement PUB. Hence, 
the LD condition holds.  

Regarding the four events that define EPUB, a study 
of the design reveals that integrity ( 3

PUBE ) and con-

fidentiality ( 4
PUBE ) can likewise be regarded as 

probability-1 events, given that precondition 2
PUBC  

is satisfied (event 2
PUBC occurs). More precisely, we 

have the following sub-requirements of requirement 
PUB1.  
PUB1,1: PUBPUBPUBPUBPUBPUB pCEEEEP ≥∧∧∧ ]|[ 24321  
PUB1,2: 1]|[ 23 =PUBPUB CEP  
PUB1,3: 1]|[ 24 =PUBPUB CEP  

To insure that {PUB1,1, PUB1,2, PUB1,3} is an LD of 
PUB1, we must again show that the constraint for 
LD holds, i.e.,  

(PUB1,1 ∧ PUB1,2 ∧ PUB1,3) ⇒ PUB1. 

Suppose the above hypothesis holds (PUB1,1, 
PUB1,2, and PUB1,3 are true). Extending observation 
(1) to conditional probabilities, it follows from 

PUB1,2 and PUB1,3 that ]|[ 243
PUBPUBPUB CEEP ∧ = 1. 

Using this fact together with the sub-requirements 
PUB1,2 and PUB1,3,  
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Since
PUBPUBPUBPUBPUBPUB pCEEEEP ≥∧∧∧ ]|[ 24321 by 

PUB1,1, we conclude from the above identity that 
PUB1 is true.  
Each sub-requirement available at this stage is spe-
cific enough to be handled by a validation tech-
nique such as probabilistic modeling or logical 
argumentation. Hence, we stop the decomposition, 
and refer to PUB1,1, PUB1,2, PUB1,3, and PUB2 as 
the atomic sub-requirements of PUB, where the 
first is quantitative and the other three are non-
quantitative.  

4.3 Step 3: High-Level System Description 

For the remaining steps of the validation, we will 
focus on the quantitative atomic requirement 
PUB1,1. With respect to PUB1,1, this step seeks 
high-level descriptions of the IT Pub-Sub data flow 
for the publish operation, the associated alert and 
response data flows, and the attack/intrusion envi-
ronment. The descriptions guide subsequent deter-
mination of the detailed descriptions needed to 
construct a probabilistic model that supports 
evaluation of the probability measure 

]|[ 24321
PUBPUBPUBPUBPUB CEEEEP ∧∧∧ associated with 

PUB1,1.  
 
4.3.1 Data Flows 
Both the publish data flow and the attack/alert data 
flow are represented as block diagrams depicting 
both the relevant components and the sequence of 
operations and nature of the communication be-
tween the components. The diagrams (Fig. 2 and 
Fig. 3) and the associated descriptions have already 
been provided as a part of Section 2 and are not 
repeated here.  
 
4.3.2 Attack Model 
The attack model makes several important distinc-
tions concerning where attacks occur (location of 
both the source and target of an attack) and how 
resulting intrusions affect both system and attacker 
behavior. In particular, the model accounts for the 
fact that once a vulnerability has been discovered in 



a target, the attack can quickly propagate to other 
instances of that target, provided that they are ac-
cessible (via network connectivity) from the attack 
source. If an intruded target (e.g., a host) is com-
promised, then it is possible for the host to serve as 
a source of further attacks.  
Terminology In order to describe the attack model 
more precisely, we make the following distinctions. 
An entity of the system is one of the following:  
• A host: A computing resource with an operating 

system and network interface cards.  
• A component: A process that realizes an IT Pub-

Sub function, e.g., an access proxy. Note that 
several components typically reside in a single 
host (for example, the survivability delegate, the 
sensors, the actuator, and the local controller re-
side in the client).  

• A process domain (PD): An entity that imple-
ments a component, e.g., the sensor process do-
main implements the sensor component, and the 
AP IO (AP_IO) process domain implements the 
AP that deals with forwarding IOs.  

• An application: The application level of the 
process domain.  

An intrusion is a possible outcome of an attack. It 
occurs if the attack finds a vulnerability in its target 
and thereby alters the target’s behavior (the effect 
or symptom of the intrusion); otherwise, it is pre-
vented. In other words, an intrusion occurs if an 
attack has some effect on the target. The effect can 
range from something very benign (e.g., when the 
intrusion is “masked” or “blocked”) to the com-
promise of the target such that it can be used as a 
platform for launching further attacks. An intrusion 
is prevented if the attack can find no vulnerabilities 
in its target, thereby obviating any effect. In par-
ticular, if an attack is unable to access its target, 
then the attack cannot find a vulnerability, even if 
one exists.  
An intrusion is tolerated (possibly in the presence 
of other tolerated intrusions) if its effect does not 
lead to unsuccessful processing of a publish request; 
otherwise, it causes a failure.  
A new vulnerability, found at time t, is a vulnerabil-
ity that is present in at least one component of the 
architecture, and that was not known by the attacker 
until time t during the mission. When discovered, 
such a vulnerability can be used any number of 
times (until the end of the mission) against the vul-
nerable components that the attacker can reach.  
A successful attack is repeated if that attack (same 
source, same type) is made on a similar target hav-
ing the same vulnerability, in which case it suc-
ceeds very quickly.  
A successful attack is propagated if the intruded 
target is compromised such that the target becomes 
a source of further attacks. If this source can access 

a similar target with the same vulnerability, the 
original attack can be repeated (see above). The 
source can also launch a new attack that attempts to 
find a new vulnerability in another target.  
The simulation model considers attacks that are 
“successful” in the sense that an intrusion occurs 
and, moreover, is neither masked nor blocked. 
However, if such an intrusion is tolerated (the third 
case noted above), the attack does not succeed in 
the more usual sense of causing a failure.  
Attack Propagation Two basic assumptions under-
lie the construction of the attack model. First, we 
assumed that the attacker would discover new vul-
nerabilities slowly. Define MTTD to be the mean 
time to discovery of a new vulnerability. Second, it 
was assumed that the attacker would exploit newly 
discovered vulnerabilities quickly. Once an entity is 
intruded following the discovery of a vulnerability, 
the attack can be repeated (see the preceding termi-
nology). Define MTTE to be the mean time between 
successive exploitations of a known vulnerability. 
The typical value of MTTE in our analysis was 5 
minutes. It is important to note, however, that re-
peated attacks require targets with the same vulner-
ability, typically entities that are instances of the 
original target. Accordingly, design diversity can be 
used to reduce the possibility of repeated attacks. 
For example, a successful OS-level attack from the 
outside, compromising a client running under OS1, 
can propagate to hosts connected to the client 
(namely, the access proxy in the core). If the access 
proxy’s OS is also OS1, the attack can be repeated, 
with success (intrusion) coming quickly. On the 
other hand, if the access proxy is running under a 
different operating system, then the OS diversity 
will likely preclude a repeated attack. It is possible 
that a given vulnerability exists in more than one 
OS. We account for that possibility using a prob-
ability of a common-mode vulnerability. If a vul-
nerability is determined to be common-mode, it will 
exist in all OSes used by the IT Pub-Sub.  
Types of Attacks Three different types of attacks 
were represented in the attack model.  
• Infrastructure-level attacks exploit a vulnerabil-

ity found either in the operating system running 
on a given host (for instance, a flaw in the 
TCP/IP stack), or in a service running on that 
host, not related to the IT Pub-Sub (for example, 
a flaw in sshd). The attack’s source and target 
must be directly connected and communicate 
with each other, typically with standard network 
protocols. If a vulnerability of that type is dis-
covered, it can be limited to one of the four op-
erating systems, or affect all operating systems 
used in the system.  

• Data-level attacks exploit a vulnerability in an 
IT Pub-Sub application on the targeted compo-



nent. The attack’s source and target are applica-
tions on different hosts. The attack uses the con-
tent of the application data to intrude into the 
target. For example, the client sends a corrupted 
IO to a PSQ server, resulting in a crash or a cor-
ruption of that host.  

• Attacks across process domains allow the at-
tacker to intrude into a different process domain 
of the same host by exploiting low-level vulner-
abilities in the operating system. The source and 
targets are process domains running on the same 
machine.  

 
Successful infrastructure-level attacks are attacks in 
depth; the intruder quickly progresses deeply into 
one quadrant, because only one vulnerability needs 
to be discovered to compromise the common oper-
ating system in the entire quadrant. However, 
unless the vulnerability found corresponds to a 
common mode failure, the attacker cannot intrude 
into any other quadrant, because the other quadrants 
are based on hosts with different operating systems. 
Data-level attacks provide attacks in breadth; if a 
vulnerability is found in the access proxy applica-
tion, then the publishing client can exploit it di-
rectly on the four access proxies. Those attacks are 
consequently much more dangerous. Great effort 
should be put into reducing the number of data 
vulnerabilities, and preventing attackers from ex-
ploiting them.  
The first attack on the IT Pub-Sub must be an infra-
structure-level attack, since both of the other types 
require control of a machine within the system. For 
example, attacks across process domains assume a 
compromised process domain for the source of the 
attack. Data-level attacks require control of a com-
ponent that is capable of generating IT Pub-Sub 
protocol packets, signed with signatures from host-
specific private keys.  
Fig. 5 provides an example of attack propagation. 
At time t0 = 85 minutes, an infrastructure-level 
vulnerability (ILV) is found on the main process 
domain of OS1. After a short time, the attacker 
exploits that vulnerability on the publishing client 
(time t1). From the client, he launches the same 
attack on the AP of quadrant 1 at time t2. He con-
tinues in the same way until he has compromised 
all the components of quadrant 1 (since they’re all 
running the same OS). At time t8 = 230 minutes, a 
data-level vulnerability (DLV) on the PSQ server is 
found. The attacker uses that vulnerability to com-
promise the three remaining PSQ servers; he can 
attack either from the publishing client (times t9 and 
t11), or from the PSQ server in the first quadrant 
(time t10), since he has control of all those entities.  

 

Fig. 5 – Example of Attack Propagation 

Intrusion Effects When any of the three types of 
attacks described above is successfully exploited, 
the resulting intrusion can have one of the follow-
ing effects.  
• Crash of the intruded entity: For the operating 

systems that handle process domains (secure 
OSes), a crash of a given process domain will 
not lead to the crash of other process domains. 
On a traditional OS (without process domains), 
a crash of a given process will crash the whole 
machine (and thus all the processes running on 
it).  

• Compromise of the intruded entity: The intruded 
entity can corrupt or drop data packets, or can 
be a source of further attacks. When a process 
domain becomes compromised on a secure op-
erating system, the other process domains are 
unaffected. However, for traditional operating 
systems, compromise of one process also com-
promises the other processes on the machine.  

• Denial of service: The intruded entity can re-
duce processing speeds and increase latencies.  

 
Attack Responses The model includes three 
mechanisms for responding to a detected intrusion 
that is not blocked:  
• Type 1: Rapid response. The first and fastest 

mechanism is a local and rapid response, based 
on an automatic decision made by the LC. Ex-
amples of rapid response include file restoration, 
termination of illegal processes, and restarting 
of critical processes. On average, this operation 
takes one minute.  

• Type 2: Secure reboot. This operation is carried 
out in two phases: automatically shutting down 
the host and then manually restarting it. The 
shutdown is performed by the SM through DC 
and LC. Restarting has to be done manually by 
the operator sitting at the console. The reason is 
that the client application will also need to be 
restarted, which will require the user to perform 
some action, such as providing a password or 
swiping a smart card. Moreover, the shutdown 
will give the client operator the opportunity to 
introduce diversity, perhaps by removing some 
services or changing the firewall policies.  



• Type 3: Permanent isolation. The decision to 
isolate is taken by the SM through the PS. The 
decision is made by the SM in the core; there-
fore, this operation requires more time, on aver-
age 7 minutes.  

4.4 Step 4: Detailed Descriptions 

This step elaborates the Step 3 descriptions to an 
extent that permits relatively straightforward con-
struction of corresponding components of the prob-
abilistic model. It also explicitly enumerates all the 
assumptions the probabilistic model makes that are 
verified, and, if found to be correct, justified, using 
logical arguments. For the purpose of illustration, 
we will limit our attention to the AP component, 
along with certain details concerning the use and 
attack models.  
If the AP is not compromised, it forwards desig-
nated traffic from the Quadrant Isolation Switch to 
core quadrant components and vice versa. The AP, 
like several other components in IT Pub-Sub, has 
process domains, which are similar to sandboxed 
virtual machines running on the same host. The AP 
handles different types of traffic, and each type, 
including IOs sent from publishing clients to the 
core, is handled by a different process domain. If an 
IO is sent by a publishing client to the AP (the cli-
ent sends the IO to a randomly chosen quadrant), 
the token accompanying the IO is sent to the quad-
rant’s DC to assist in the determination of whether 
the publishing client is in a session. If the DC’s 
response is positive, the IO is forwarded to the PSQ 
server.  
In addition, the AP forwards sensor alerts from 
client-side sensors to the correlator, heartbeats from 
client components to the DC, acknowledgments 
from PSQ servers to clients, notifications from PSQ 
servers to subscribing clients, commands from the 
DC to clients’ LCs, and commands from ADF pol-
icy servers to clients’ ADF NICs.  
The following assumptions are identified in the 
model for the AP component:  
AP1: Only well-formed traffic is forwarded by a 
correct AP.  
AP2: An AP can change the traffic through it, but 
cannot re-sign the content.  
AP3: An AP cannot access the contents of an IO if 
application-level end-to-end encryption is being 
used.  
AP4: If the AP is compromised, it can launch ILA 
to the following components: client, PSQ, DC, 
correlator, and PS.  
AP5: If the AP is compromised, it can launch DLA 
to the following components: PSQ, guardian, DC, 
and the publish-subscribe middleware components, 

as well as the IDS components on the clients, corre-
lator, and SM. 
The time-to-discovery (TTD) and time-to-exploit 
(TTE) are assumed to be exponentially distributed. 
Accordingly, the values assigned to MTTD and 
MTTE (see the description of the attack model 
above for definition) parameters of the attack model 
will be such that MTTE « MTTD. This reflects the 
fact that the TTD of a new vulnerability is typically 
much longer than its subsequent TTE.  
Once an intrusion has occurred, it has one of the 
three possible effects described in Step 3 (crash, 
compromise, or DoS), which we assume will occur 
with probabilities (parameters of the attack model) 
pcr, pco, and pdos, respectively. When a process do-
main on an AP is compromised, data that flows 
through it can be altered as follows. If any alert and 
command traffic passes through, it is dropped 
(blocked). If the process domain handles IOs, it will 
corrupt an IO if it has access to the client’s key 
(since the process domains can change the signature 
of the IO according to the corrupted content); oth-
erwise, it will drop the IO. It can also act as a 
source for further attacks (both ILA and DLA) on 
other entities. Compromised sensors are not able to 
detect intrusions. When an alert is generated by the 
IDS, the recovery options are as follows. On the 
first alert, the affected process domain is restarted. 
On the next three, the entire AP is rebooted. On the 
fifth alert, the AP is quarantined (using the ADF 
NICs).  

4.5 Step 5: Justification of the Assumptions 

The goal in this step is to justify the model assump-
tions made in Step 4. We used logical argumenta-
tion in this step. Other techniques, such as formal 
methods and experimentation, were also utilized for 
some of the assumptions. In the complete descrip-
tion of the model in Step 4, a total of 31 assump-
tions were justified using logical argument and 
experimental results. These arguments use very 
low-level system details, and, in the interest of 
space, we do not list them here. Interested readers 
can refer to [20] for details.  

4.6 Step 6: Construction of the Probabilistic 
Model 

Based on detailed descriptions of the type illus-
trated in Step 4, a probabilistic model was con-
structed using Möbius [21] that supports evaluation 
of the probability measure P[ 1

PUBE  ∧ 2
PUBE  | 3

PUBE  

∧ 4
PUBE ∧ 2

PUBC ]. We used stochastic activity net-
works (SANs) [19] as the formalism. Behaviorally, 
a model constructed with SANs represents (meas-



ure-relevant) behavior of the IT Pub-Sub platform 
in the presence of publish demands and random 
attack-caused intrusions. Structurally, the atomic 
SAN submodels represent various components of 
the design and its use/attack environment; descrip-
tions of them were documented during Step 4. The 
overall model is constructed by using replicate and 
join operations to compose the atomic submodels.  

 
Fig. 6 – Composed Model of the IT Pub-Sub 

Graphically, a composed model can be viewed as a 
tree, in which the atomic SAN submodels corre-
spond to leaf vertices of the tree, and joins or repli-
cates correspond to internal vertices. A Join vertex 
combines two or more different SAN submodels, 
each of which can itself be a composed model (rep-
resented by a subtree). A Rep (or Replicate) node 
generates multiple copies of its submodel (again, 
each submodel can itself be a composed model). 
Different submodels in a composed SAN interact 
through shared state variables.  
As depicted in Fig. 6, the system is viewed (for the 
purpose of validating the requirement PUB1,1) as 
two clients (Join PubClient and SubClient) commu-
nicating with the core (Rep Core) through the net-
work (submodel Path). The clients have four proc-
ess domains, represented by four submodels under 
the Join (IT Pub-Sub publish functionality, the sen-
sors, the actuator, and the local controller). The 
fifth submodel under each of these Joins is the at-
tack model. The two remaining submodels (meas-
ures and attack_discovery) assist model-based for-
mulation of the measures evaluated.  
The core is a replication of four quadrants (sub-
model Quad). As shown in Fig. 7, each quadrant is 
a Join of several submodels (Access Proxy, PSQ, 
DC, Guardian, Correlator, PS, and SM), represent-
ing all of the core components. As presented in 
Fig. 1, the access proxy, PSQ server, downstream 
controller, and guardian have IDS components; 
therefore, their respective Joins have IDS submod-
els (for instance, AP_Se, AP_Ac, and AP_LC).  
For each node represented in the composed models 
of Fig. 6 and Fig. 7, an atomic SAN model is built. 
Atomic SANs encode the state variables represent-
ing the components they are modeling, and provide 
transitions with specified delay distributions that 

can change the state. They provide the ability to 
include complex enabling functions for the transi-
tions, and complex completion functions to ma-
nipulate the state upon completion of transitions. 
Each atomic SAN basically implements the descrip-
tion for the corresponding component in Step 4. A 
detailed description of all the atomic SANs con-
structed is provided in [22].  

 
Fig. 7 – Composed Model of the IT Pub-Sub Core 

Quadrant 

The point to note is that the entire model construc-
tion is driven by the measure we intend to evaluate. 
In particular, the SANs have state variables main-
taining a count of the number of publish attempts 
by the clients, and the number of those attempts for 
which the events 1

PUBE ∧ 2
PUBE  occur. Furthermore, 

the construction of the model always assumes 
3
PUBE , 4

PUBE , and PUBC  are given, and thus does 
not include any state for keeping track of those 
events.  

4.7 Step 7: Evaluation for Validation Against 
Requirement 

Based on the model of step 6, this step evaluates the 
probability measure  

p1,1 = P[ 1
PUBE ∧ 2

PUBE | 3
PUBE ∧ 4

PUBE ∧ 2
PUBC ] 

associated with the atomic quantitative requirement 
PUB1,1. If p1,1 > pPUB (the required lower bound), 
then PUB1,1 is satisfied by the system (the system is 
valid with respect to PUB1,1).  
The IT Pub-Sub system is envisaged to be used for 
short (of the order of a day or two) durations. Let-
ting dM denote the duration (in hours) of a use sce-
nario, p1,1 is formulated as the fraction of publica-
tion requests during dM that are processed success-
fully, i.e., the fraction for which the event 

1
PUBE ∧ 2

PUBE , given 3
PUBE , 4

PUBE , and 2
PUBC , oc-

curs. For three different choices of dM, Fig. 8(a) 
displays the values of p1,1 as a function of the 
MTTD of a new vulnerability (in minutes). Those 
vulnerabilities are assumed to be exploited very 
quickly, i.e., MTTE = 2 minutes. The publishing 
client publishes a new IO every 5 minutes.
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Fig. 8 – Variation of Measures with Change in MTTD

In particular, if (1) new vulnerabilities are discov-
ered at an average rate of no more than once per 
day (MTTD > 1440 minutes), which is a fairly ag-
gressive assumption, (2) the value of pPUB used is 
0.95, and (3) the mission duration is 12 hours, then 
the IT Pub-Sub is valid with respect to PUB1,1.  
In addition to measures associated directly with 
quantitative survivability requirements, the model 
constructed in Step 5 is sufficiently detailed to sup-
port evaluation of a variety of other survivability-
related measures. For example, to understand how 
the number of successful attacks (those that cause 
intrusions) relates to a value of p1,1, the measure 

n = the total number of intrusions during dM 

can likewise be evaluated as a function of MTTD.  
Comparing Fig. 8(a) with Fig. 8(b), we see how the 
probability p1,1 of successfully processing a publish 
request during dM varies inversely with the total 
number n of successful intrusions experienced dur-
ing a mission of the same duration.  

4.8 Step 8: Satisfaction of Non-quantitative 
Atomic Requirements 

Validation with respect to the non-quantitative 
atomic requirements PUB1,2, PUB1,3, and PUB2 is 
accomplished using logical argumentation. Given 
that validity has been established with regard to the 
quantitative atomic requirement PUB1,1 in Step 7 
above, the system is then valid with respect to the 
original requirement PUB. The argumentation used 
is similar to that used for validation of assumptions, 
and in the interest of space we do not provide the 
details here. Details are presented in [20].  

4.9 Other Evaluation Results: Exploring De-
sign Choices 

In addition to validating the system against the 
high-level survivability requirements, we also used 
the probabilistic model developed as a part of the 
IVP application to study design trade-offs and ex-
plore the behavior of the system in different operat-
ing configurations and attack environments. Such 
studies are possible because each component of the 
system model contains a set of input parameters 
that define aspects of the component’s functionality, 
such as the rate of data publishes or the type of 
operating system used on a host. These are in addi-
tion to parameters that define the characteristics of 
the attackers on the system, such as the time be-
tween vulnerability discoveries (MTTD) and the 
time to exploit known vulnerabilities (MTTE).  
We present results for two of the studies performed: 
effect of the degree of operating system diversity 
among the four quadrants in the core and effect of 
the autonomous distributed firewall (ADF NIC) 
policies.  
 
4.9.1 Effect of Diversity 
In this experiment, we studied two different OS 
configurations in the following way:  
• 4 OS: the access proxy, downstream controller, 

PSQ servers, and system manager in a given 
quadrant run the same operating system. Each 
quadrant uses a different OS. The policy server 
is available in only one operating system. There-
fore, there is no possible variation for this com-
ponent. This case corresponds to the default 
configuration of the system.  

• 1 OS: all the components in the core (apart from 
the policy servers) run the same operating sys-
tem.  



Also, to make a fair comparison between the two 
options, all OSes are secure.  
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Fig. 9 – p1,1 versus MTTD: 4 OS vs 1 OS 

The graph presented in Fig. 9 is based on an as-
sumption of a less aggressive attacker than we con-
sidered in the baseline case; here, the attacker can 
only execute infrastructure attacks and attacks 
across process domains. The figure illustrates the 
difference between the two options mentioned 
above. It shows p1,1 versus the vulnerability discov-
ery rate. Diversity significantly increases the per-
formance of the design: for MTTD = 200 minutes, 
p1,1 is about 0.97 for the 4-OS case, versus 0.90 for 
1 OS, i.e., a 70% improvement of the unavailability 
(0.10 versus 0.03). The gap between the two curves 
is noticeable at all rates.  
A similar experiment was done for all types of at-
tack, including the data-level attacks. In that case, 
the two curves were closer. Data-level attacks are 
the most dangerous type of attack, as they can take 
out the same component in every quad. For exam-
ple, a compromised client could launch a data-level 
attack against the four PSQ servers, which could 
result in the crash (or compromise) of all four. If 
that happened, no further PSQ requests would be 
handled, and the core would be considered down. 
For the results presented here, we assumed that the 
data-level vulnerabilities could be considerably 
reduced not only by the effort put into the imple-
mentation of, for example, the PSQ, but also by the 
semantic checks done on the access proxy for any 
incoming traffic to the core.  
 
4.9.2 ADF NIC Policies 
ADF NICs are local firewalls on each component, 
administered by the policy servers in the core. The 
third experiment compares three ADF NIC policies, 
assuming that only infrastructure-level attacks and 
attacks across process domains are allowed. The 

first policy is to allow all communications between 
any two processes of any two components. The 
second is a per-component policy, allowing only 
certain components to communicate with each other 
(for instance, the AP can talk to the PSQ server in 
its quad, but the client cannot communicate directly 
with any PSQ server). Finally, the third one is a 
per-process-domain policy, restricting communica-
tions between specific processes. 
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Fig. 10 – p1,1 versus MTTD: ADF Policy Study 

Fig. 10 presents the results reflecting the three con-
figurations. The graphs reveal that the per-process-
domain policy is by far the best of all three: when 
MTTD = 100 minutes, p1,1 = 84.4% for the no-
restriction policy, versus 90.0% for the per-
component, and 98.5% for the per-process-domain 
one, which corresponds to a 90% improvement of 
the unavailability (from 15.6% down to 1.5%).  
The per-process-domain restriction can also be 
interpreted as having a ruleset that describes which 
ports from which machines can communicate with 
which ports of the other machines. It is a very suc-
cessful way to increase the survivability of the sys-
tem, and therefore should be implemented. How-
ever, it comes with a price, as it limits the develop-
ers by forcing them to allocate fixed port numbers, 
and also might limit the usability of the machines 
for purposes other than the PSQ functionalities.  

5 CONCLUSION 

The complexity of emerging survivable systems, 
especially those that make use of multiple security 
approaches and technologies, calls for an integrated 
approach to survivability validation. We have pre-
sented the validation of a survivable publish-
subscribe system using a top-down approach that 
begins with a precise formulation of a specific sur-
vivability requirement, and then systematically 
decomposes the problem into manageable tasks. As 



a part of the procedure, stochastic models of the 
system and of the attacker were presented. We con-
ducted model-based experiments that evaluated the 
survivability of the system when stressed by vari-
ous types of attacks by measuring the probability of 
success for the transactions between the clients and 
the core. The results show that if the average time 
between discoveries of new vulnerabilities is longer 
than one day, more than 95% of the publishes are 
processed correctly. The system model was used to 
study design trade-offs, one of which was that OS 
diversity in the design significantly improved the 
performance. Another design trade-off became 
apparent when we compared three ADF NIC poli-
cies: a per-process-domain policy leads to the high-
est availability, but constrains developers.  
We described a sophisticated attacker behavior 
model that has wide applicability when using prob-
abilistic modeling techniques for evaluating large 
networked information systems.  
The integrated validation procedure (IVP) used in 
this work provided a collaborative environment in 
which a team of individuals with varied areas of 
expertise was able to work efficiently and optimally 
to produce an assurance argument that was con-
vincing to the accreditors of the above effort. The 
IVP gave the designers of the system several in-
sights into the relative merits of different protection 
trade-offs by comparing various algorithms, fea-
tures, or infrastructures. The IVP also brought out 
hidden assumptions and residual requirements that 
forced the designers to consider issues that they 
might otherwise have overlooked. We hope the 
outlined procedure can be used by other security 
researchers and practitioners to validate similar 
survivable systems with respect to high-level quan-
titative survivability requirements.  
The work described in this paper is an instance of 
an evolving validation methodology. In the future, 
we plan to use the IVP to validate other intrusion-
tolerant systems to ascertain and further refine its 
generic applicability, using an even wider array of 
evaluation techniques as the building blocks of the 
assurance argument. We also intend to explore 
avenues for further automation, such as in the de-
composition of requirements, identification of ap-
propriate assumptions, and presentation of the 
completed argument.  
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