Biped Simulation Documentation

[bookmark: _GoBack]This code simulates a biped with flat feet. See the figure to the left. There is an example script called “testrun.m” that shows a basic use case.

A simplified diagram of the program flow is shown below. It is necessary to populate the workspace with global variables specified in “pop.m”. guard2
dynamics
	Mfunc
	Cfunc
	Gfunc
ode15s
step
pop
walk(xi, # of steps)

return

WALK2 Walk the robot for "steptotal" number of steps.

INPUT:
+ xi = the input state vector, configuration q and their velocites qdot. Passed to
 step. q = [x, y, heel, ankle, stance knee, hip, swing knee,swing ankle].
+ steptotal = specify the number of steps the walker should take.

OUTPUT:
Note: time is the first column in all of these outputs.
+ fstate: the state after impact on the last step.
+ xout: all the states beginning from time = 0 to the time
 of the last point of contact with the slope.
+ tout: vector of times that match with xout
+ out_extra: struct of extra outputs,
 out_extra.t_impacts %a cell array of n steps. Each cell has a 3x1 array that gives the time when the biped siwtches from: heel->flat,
 flat->toe, toe->swing heel
 out_extra.istate_minus %an array of n (steps) x 16 doubles. It gives the pre-impact state vector BEFORE heel strike
 out_extra.istate_plus %an array of n (steps) x 16 doubles. It gives the post-impact state vector AFTER heel strike
 out_extra.step_lengths %an array of n (steps) doubles. It gives the length of each step.
 out_extra.clearance_heel %an array of n (steps) doubles. It gives the minimum heel clearance of each step.
 out_extra.clearance_toe %an array of n (steps) doubles. It gives the minimum toe clearance of each step.
 out_extra.step_time %an array of n (steps) doubles. It gives the time to complete each step, from heel strike-> next heel strike.

There is a function “animate.m” which creates a visual playback of the biped.

There are also 2 analysis functions, “eigenmap.m” and “gait_sensitivity_norm.m”. The eigenmap analyzes the absolute stability of the walking gait using a Poincare’ section. If the maximum absolute value of the outputs of eigenmap is less than 1, the gait is stable.

The gait sensitivity norm is used to compare robustness/stability of different gaits or control strategies. You should compare 2 different simulations. The simulation with the smaller gait norm is more robust/stable.

guard2: determine when the walker’s swing foot strikes the ground.
guard2heel: determine when the walker switches from heel contact to flat foot.
guard2toe: determine when the walker switches from flat foot to toe off.

For more detailed information on the model, see this paper.

Lv, Ge, and Robert D. Gregg. "Underactuated potential energy shaping with contact constraints: Application to a powered knee-ankle orthosis." IEEE Transactions on Control Systems Technology 26.1 (2018): 181-193.
image1.emf

image2.emf

