Biped Simulation Documentation









[bookmark: _GoBack]This code simulates a biped with flat feet. See the figure to the left. There is an example script called “testrun.m” that shows a basic use case. 

 















A simplified diagram of the program flow is shown below. It is necessary to populate the workspace with global variables specified in “pop.m”. guard2
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WALK2   Walk the robot for "steptotal" number of steps.

INPUT:
+ xi = the input state vector, configuration q and their velocites qdot. Passed to
      step. q = [x, y, heel, ankle, stance knee, hip, swing knee,swing ankle].
+ steptotal = specify the number of steps the walker should take.

OUTPUT:
Note: time is the first column in all of these outputs. 
+ fstate: the state after impact on the last step. 
+ xout: all the states beginning from time = 0 to the time 
          of the last point of contact with the slope.
+ tout: vector of times that match with xout
+ out_extra:  struct of extra outputs,
    out_extra.t_impacts       %a cell array of n steps. Each cell has a 3x1 array that gives the time when the biped siwtches from: heel->flat, 
 flat->toe, toe->swing heel
    out_extra.istate_minus    %an array of n (steps) x 16 doubles. It gives the pre-impact state vector BEFORE heel strike
    out_extra.istate_plus     %an array of n (steps) x 16 doubles. It gives the post-impact state vector AFTER heel strike
    out_extra.step_lengths    %an array of n (steps) doubles. It gives the length of each step. 
    out_extra.clearance_heel  %an array of n (steps) doubles. It gives the minimum heel clearance of each step.
    out_extra.clearance_toe   %an array of n (steps) doubles. It gives the minimum toe clearance of each step.
    out_extra.step_time       %an array of n (steps) doubles. It gives the time to complete each step, from heel strike-> next heel strike.


There is a function “animate.m” which creates a visual playback of the biped. 

There are also 2 analysis functions, “eigenmap.m” and “gait_sensitivity_norm.m”. The eigenmap analyzes the absolute stability of the walking gait using a Poincare’ section. If the maximum absolute value of the outputs of eigenmap is less than 1, the gait is stable. 

The gait sensitivity norm is used to compare robustness/stability of different gaits or control strategies. You should compare 2 different simulations. The simulation with the smaller gait norm is more robust/stable.

guard2: determine when the walker’s swing foot strikes the ground. 
guard2heel: determine when the walker switches from heel contact to flat foot. 
guard2toe: determine when the walker switches from flat foot to toe off. 

For more detailed information on the model, see this paper. 
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