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Abstract— This paper presents a control design based on
the method of virtual constraints and hybrid zero dynamics
to achieve stable running on MABEL, a planar biped with
compliance. In particular, a time-invariant feedback controller
is designed such that the closed-loop system not only respects
the natural compliance of the open-loop system, but also enables
active force control within the compliant hybrid zero dynamics
and results in exponentially stable running gaits. The compliant-
hybrid-zero-dynamics-based controller with active force control
is implemented experimentally and shown to realize stable
running gaits on MABEL at an average speed of1.95 m/s (4.4
mph) and a peak speed of3.06 m/s (6.8 mph). The obtained
gait has flight phases upto39% of the gait, and an estimated
ground clearance of7.5− 10 cm.

I. I NTRODUCTION

Running is an extremely agile motion, typically character-
ized by the presence of a flight phase with the feet off the
ground. Early dynamically stable running robots employed
the natural dynamics of the system through simple intuitive
controllers, proposed by Raibert [13], to achieve life-like
running gaits. Hopping on a planar monopod at speeds
upto 5.9 m/s was demonstrated [6]. The use of Raibert’s
controllers to achieve stable running is typically possible
on robots with favorable natural dynamics and appropriate
morphology.

On bipedal robots that are not specifically designed me-
chanically for running, the ZMP criterion has been employed
to demonstrate running gaits. See results on running on
Sony’s QRIO [9], Honda’s ASIMO, Toyota’s humanoid robot
[17] (with running at a top speed of1.94 m/s), HRP-2LR [5],
HRP-2LT [4], and HUBO [1]. In these robots, some form of
ZMP regulation is used during the stance phase to prevent
the foot from rolling. The obtained running gaits have short
flight times and low ground clearance during flight.

Around the same time, running was excited on RABBIT,
with a significant flight duration and good ground clearance,
through a controller based on the hybrid zero dynamics
framework [8]. However, the running was not sustained. A
few reasons for this technical failure were: (a) the actuators
were forced to behave like a spring, performing negative
work on impact to redirect the COM upwards, requiring
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Fig. 1. (a) Thevirtual compliant legcreated by the drivetrain through a set
of differentials. The coordinate system used for the linkage is also indicated.
Angles are positive in the counter clockwise direction. (b)MABEL’s
drivetrain (same for each leg), all housed in the torso. Two motors and
a spring are connected to the traditional hip and knee jointsvia three
differentials. On the robot, the differentials are realized via cables and
pulleys [3] and not via gears. They are connected such that the actuated
variables are leg angle and leg shape, so that the spring is inseries with
the leg-shape motor. The base of the spring is grounded to the torso and
the other end is connected to theBspring differential via a cable, which
makes the springunilateral. When the spring reaches its rest length, the
pulley hits a hard stop, formed by a very stiff damper. When this happens,
the leg-shape motor is, for all intents and purposes, rigidlyconnected to leg
shape through a gear ratio.

95% of the maximum torque of the motors for the nomial
gait, leaving very little torque for feedback correction; (b)
the controller resulted in bad ground contact forces during
transients [12]. This led to the design of MABEL, a planar
biped, which incorporated compliance in the transmission
for shock absorption and for storing and releasing the impact
energy for the purpose of energy efficiency. The robot weighs
65 kg, has1 m long legs, and is mounted on a boom of
radius2.25 m. Figure 1 briefly illustrates the transmission
of MABEL; for further details on the mechanical design,
see [3].

The remainder of the paper is organized as follows. Sec-
tion II presents a mathematical model for MABEL, Section
III presents the technical details for the control design,
Section IV presents an experimental validation of the running
controller, and Section V presents concluding remarks.

II. MABEL’ S MODEL

A. MABEL’s Unconstrained Dynamics

The configuration spaceQe of the unconstrained dynamics
of MABEL is an open simply-connected subset ofS

7 ×R
2:

five DOF are associated with the links in the robot’s body,
two DOF are associated with the springs in series with the
two leg-shape motors, and two DOF are associated with the



horizontal and vertical position of the robot in the sagittal
plane. A set of coordinates suitable for parametrization of
the robot’s linkage and transmission is,qe := ( qLAst

;
qmLSst

; qBsp
st
; qLAsw

; qmLSsw
; qBsp

sw
; qTor; phhip; pvhip ),

where, as in Figure 1,qTor is the torso angle, andqLAst
,

qmLSst
, andqBsp

st
are the leg angle, leg-shape motor position

and Bspring position respectively for the stance leg. The
swing leg variables,qLAsw

, qmLSsw
and qBsp

sw
are defined

similarly. For each leg,qLS is uniquely determined by a
linear combination ofqmLS and qBsp, reflecting the fact
that the cable differentials place the spring in series with
the motor, with the pulleys introducing a gear ratio. The
coordinatesphhip, p

v
hip are the horizontal and vertical positions

of the hip in the sagittal plane.
The equations of motion are obtained using the method

of Lagrange. In computing the Lagrangian, the total kinetic
energy is taken to be the sum of the kinetic energies of the
transmission, the rigid linkage, and the boom. The potential
energy is computed in a similar manner with the difference
being that the transmission contributes to the potential energy
of the system only through its non-elastic energy (the mass).
This distinction is made since it is more convenient to model
the unilateral spring as an external input to the system. The
resulting model of the robot’s unconstrained dynamics is
determined as

De (qe) q̈e + Ce (qe, q̇e) q̇e +Ge (qe) = Γe, (1)

where,De is the inertia matrix,Ce contains Coriolis and
centrifugal terms,Ge is the gravity vector, andΓe is the
vector of generalized forces acting on the robot, expressed
as,

Γe = Beu+ Eext (qe)Fext+

Bfricτfric (qe, q̇e) +Bspτsp (qe, q̇e) ,
(2)

where the matricesBe, Eext, Bfric, and Bsp are derived
from the principle of virtual work and define how the actuator
torquesu, the external forcesFext at the leg, the joint friction
forces τfric, and the spring torquesτsp enter the model
respectively. The dimension ofu is four, corresponding to
the two brushless DC motors on each leg for actuating leg
shape and leg angle.

B. MABEL’s Constrained Dynamics

The model (1) can be particularized to describe the stance
and flight dynamics by incorporating proper holonomic con-
straints.

1) Dynamics of Stance:For modeling the stance phase,
the stance toe is assumed to act as a passive pivot joint
(no slip, no rebound and no actuation). Hence, the Cartesian
position of the hip,

(

phhip, p
v
hip

)

, is defined by the coordinates
of the stance leg and torso. The springs in the transmission
are appropriately chosen to support the entire weight of the
robot, and hence are stiff. Consequently, it is assumed that
the spring on the swing leg does not deflect, that is,qBsp

sw
≡

0. The stance configuration space,Qs, is therefore a co-
dimension three submanifold ofQe. With these assumptions,
the generalized configuration variables in stance are takenas

qs :=
(

qLAst
; qmLSst

; qBsp
st
; qLAsw

; qmLSsw
; qTor

)

. Defining
the state vectorxs := (qs; q̇s) ∈ TQs, the stance dynamics
can be expressed in standard form as,

ẋs = fs(xs) + gs(xs)u. (3)

2) Dynamics of Flight: In the flight phase, both feet are
off the ground, and the robot follows a ballistic motion
under the influence of gravity. Thus the flight dynamics
can be modeled by the unconstrained dynamics developed
earlier. However an additional assumption can be made
to eliminate the stiffness in integrating the differential
equations representing the flight model. As mentioned, the
springs must be stiff to support the entire weight of the
robot. Further, since neither leg is in contact with the ground
during the flight phase, it can be assumed that the springs on
each leg do not deflect during the flight phase1. Therefore,
qBsp

st
≡ 0, qBsp

sw
≡ 0. Thus, the configuration space of

the flight dynamics is a co-dimension two submanifold
of Qe, i.e., Qf :=

{

qe ∈ Qe | qBsp
st
≡ 0, qBsp

sw
≡ 0

}

.
It follows that the generalized configuration
variables in the flight phase can be taken as
qf :=

(

qLAst
; qmLSst

; qLAsw
; qmLSsw

; qTor; p
h
hip; p

v
hip

)

.

Defining the state vectorxf := (qf ; q̇f) ∈ TQf , the flight
dynamics can be expressed in standard form as,

ẋf = ff(xf) + gf(xf)u. (4)

C. MABEL’s Transitions

1) Stance to Flight Transition Map:Physically, the robot
takes off when the normal component of the ground reaction
force acting on the stance toe,FN

toest
, becomes zero. The

ground reaction force at the stance toe can be computed
as a function of the acceleration of the COM and thus
depends on the inputsu ∈ U of the system described by
(3). Mathematically, the transition occurs when the solution
of (3) intersects the co-dimension one switching manifold

Ss→f :=
{

xs ∈ TQs × U | FN
toest

= 0
}

. (5)

On transition from the stance to flight phase, the stance
leg comes off the ground and takeoff occurs. During the
stance phase, the spring on the stance leg is compressed.
When the stance leg comes off the ground, the spring rapidly
decompresses and impacts the hard stop. The stance to
flight transition map,∆s→f : Ss→f → TQf accounts for
this. Further details are omitted for the sake of brevity and
interested readers are referred to [15].

2) Flight to Stance Transition Map:The robot physically
transitions from flight phase to stance phase when the swing
toe contacts the ground surface. The impact is modeled
here as an inelastic contact between two rigid bodies. It
is assumed that there is no rebound or slip at impact.
Mathematically, the transition occurs when the solution of
(4) intersects the co-dimension one switching manifold

Sf→s :=
{

xf ∈ TQf | p
v
toesw

= 0
}

. (6)

1The pre-tension in the cables between the spring and the pulleyBspring

(see Figure 1b) has been set as close to zero as possible to ensure the spring
is not pre-loaded.
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Fig. 2. Feedback diagram illustrating the running controller structure.
Continuous lines represent signals in continuous time; dashed lines represent
signals in discrete time. The controllersΓα

p and Γ
αc

p create a compliant
actuated hybrid zero dynamics. The controllerΓβ ensures that the periodic
orbit on the resulting zero dynamics manifold is locally exponentially stable.
The controllerΓγ increases the robustness to perturbations in the knee angle
at impact and to imperfections in the ground contact model.

In addition to modeling the impact of the leg with the
ground, and the associated discontinuity in the generalized
velocities of the robot [2], the transition map accounts for
the assumption that the spring on the new swing leg remains
at its rest length, and for the relabeling of the robot’s
coordinates so that only one stance model is necessary.
In particular, the transition map∆f→s : Sf→s → TQs

consists of three subphases executed in the following order:
(a) standard rigid impact model [2]; (b) adjustment of spring
velocity in the new swing leg; and (c) coordinate relabeling.

D. Hybrid model of Running

The hybrid model of running is based on the dynamics
developed in Section II-B and the transition maps presented
in Section II-C, and is given by

Σs :

{

ẋs = fs (xs) + gs (xs)u, (x−

s , u
−) /∈ Ss→f

x+
f = ∆s→f

(

x−

s , u
−
)

, (x−

s , u
−) ∈ Ss→f

(7)

Σf :

{

ẋf = ff (xf) + gf (xf)u, x−

f /∈ Sf→s

x+
s = ∆f→s

(

x−

f

)

, x−

f ∈ Sf→s.

III. C ONTROL DESIGN FORRUNNING

This section presents a controller design for inducing
stable running motions on MABEL. The controller will
create an actuated compliant HZD enabling active force
control within the HZD.

Virtual constraints for the stance phase of running are
chosen in a manner similar to that of walking [16] such that
the open-loop compliance of the system is preserved as a
dominant characteristic of the closed-loop system. However,
by implementing one less virtual constraint in the stance
phase than the maximum possible, an actuator is left free and
will result in the zero dynamics being actuated. Through this
actuator, active force control will be introduced as a means
of varying the effective compliance of the system.

A. Virtual Constraint Design and Active Force Control

Virtual constraints [18] are holonomic constraints that
are parametrized by a monotonic function of the state and

imposed through feedback control, with the purpose being
to restrict the dynamics to evolve on lower-dimensional
surfaces embedded in the state spaces of the stance and flight
dynamics. This lower-dimensional hybrid system governs the
existence and the stability of periodic solutions correspond-
ing to running motions. The virtual constraints for running
can be described by a choice of outputs,

yp = Hp
0 qp − hp

d (θp(xp), αp, α
p
c , β, γ) , (8)

where p ∈ P = s, f , and hp
d is the desired evolution of

the virtual constraints which is parametrized by Bézier poly-
nomials with coefficientsαp. The other B́ezier polynomial
coefficients,αp

c , β, and γ are zero for the nominal gait
and are updated in an event-based manner. In particular,αp

c

parametrize correction polynomials that are used to create
hybrid invariance, whileβ and γ are used by outer-loop
event-based controllers to make step-to-step updates to the
virtual constraints as will be seen in Section III-C.

For the stance phase,Hs
0 is based on the walking controller

introduced in [16], but with the stance leg-shape motor
variable omitted. A virtual constraint on the the torso position
provides a desired profile for the torso, and two virtual
constraints on the swing leg angle and the swing leg-shape
motor describe the evolution of the swing leg. With the
choice of these three virtual constraints, the stance zero
dynamics is both compliant and actuated, see [15]. The
stance virtual constraints are parametrized as a function of
θs, shown in Figure 1a.

The stance leg-shape motor is the actuator that moves
into the zero dynamics. Due to the transmission in MABEL,
this actuator is in series with the spring. By imposing a
torque of the formumLSst

= −kvc(qmLSst
− qmLSvc

) on
this actuator, a virtual compliant element with stiffnesskvc
and rest positionqmLSvc

is created and placed in series with
the physical compliance. This active force control strategy
enables changing the effective compliance of the stance leg
dynamically. However, to keep the controller simple, the
virtual-compliance parameters are modified only once during
the stance phase. The stance phase is artificially divided
into stance-compression (sc) and stance-decompression (sd)
subphases, and the parameters for the virtual compliance are
updated only at this transition.

For the flight phase,H f
0 is chosen as follows. On the stance

leg2, the leg angle and leg-shape motor variables are chosen,
and on the swing leg, the absolute leg angle and leg-shape
motor variables are chosen. The absolute leg angle on the
swing leg enables directly specifying the touchdown angle
through a virtual constraint. The flight virtual constraints are
parametrized as a function ofθf , which is chosen as the
horizontal position of the hip, as in RABBIT [8].

The choice of the desired evolution of the virtual con-
straints,hp

d for the stance and flight phases, and the choice
of the virtual compliance for the stance-compression and
stance-decompression subphases are left as free parameters
to be found by optimization.

2The stance leg in the flight phase refers to the leg that was on the ground
prior to the flight phase.



150

160

170

180

190

200

210

 

 

0

10

20

30

 

 

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

de
g

de
g

de
g

de
g

Time (s)

qLA

qLS
Stance

Stance

Swing

Swing

qBsp

qTor

Fig. 3. Evolution of the virtual constraints and configuration variables for a
nominal fixed point (periodic running gait) at a speed of1.34 m/s and step
length0.7055 m. The squares illustrate the location of transition between
stance to flight phase.

B. Fixed Point for Running

A periodic running gait is designed by selecting the
free parameters in the virtual constraints and the virtual
compliance through constrained numerical optimization of
the nominal model (see [18, Ch. 6]). A nominal fixed point
representing running at1.34 m/s was obtained with a step
time of 525 ms, with69% spent in stance and31% in flight.
Figures 3-4 illustrate various variables for the nominal fixed
point. In all of these figures, the squares on the plots indicate
the location of the transition from stance to flight phase.

Figure 3 illustrates the nominal evolution of the virtual
constraints and configuration variables for the stance and
flight phases for one step of running. The circle in the spring
plot indicates the location of stance-compression to stance-
decompression transition. During the stance-compression
phase, the spring compresses, reaches its peak value of
almost 36◦, and starts to decompress. On transition to the
stance-decompression phase, a change in the virtual com-
pliance parameters causes the motor to inject energy into
the system, causing the spring to rapidly compress to a
peak of47◦. At lift-off, when the vertical component of the
ground force goes to zero, the spring has decompressed to
approximately25◦. On transition to flight, the spring is reset
to its rest position by an instantaneous change in the leg-
shape motor position. During the flight phase, the stance leg
shape initially unfolds due to the large velocity of push-off
during the final part of the stance phase as the spring rapidly
decompresses.

Figure 4 illustrates the actuator torques used to realize the
gait. The stance and swing leg-angle torque and the swing
leg-shape torque are small compared to the peak torque ca-
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Fig. 4. Actuator torques corresponding to the nominal fixed point. The
squares illustrate the location of transition between stance to flight phase.
The circle on theumLSst plot illustrates the location of thesc to sd
event transition. Note that the torques are discontinuous at stance to flight
transitions. Also note the additional discontinuity forumLSst at thesc to
sd event transition due to the instantaneous change in the offset for the
virtual compliance at this transition.

pacities of the actuators: 30Nm. The stance leg-shape torque
is large, initially to support the weight of the robot as the
stance knee bends and subsequently to provide sufficient en-
ergy injection in the stance-decompression phase to achieve
lift-off. The stance leg-shape motor torque is discontinuous
at the stance-compression to stance-decompression transition
due to an instantaneous change in the parameters for the
virtual compliance. All torques are discontinuous on the
stance to flight transition due to the impact of the spring
with the hard-stop.

C. Closed-loop Design and Stability Analysis

The periodic running motion in the previous section was
found by studying the restricted hybrid dynamics of the
system. We now need to design a controller that creates the
lower-dimensional surfaces and makes them invariant and
attractive. In the following, we introduce control action on
three levels with an inner-loop and two outer-loops. On the
first level, a continuous-time controller is presented thatin
addition to rendering the zero dynamics invariant also makes
it attractive. The hybrid invariance is still achieved through
the correction polynomials on a event to event level [7]. On
the second level, an outer-loop event-based discrete linear
controller is introduced to exponentially stabilize the periodic
orbit representing the running gait. Finally on the third level,
an additional outer-loop event-based nonlinear controller is
introduced to increase the robustness to perturbations in the
knee angle at impact and to imperfections in the ground
contact model; see Figure 2.

The classic input-output linearizing controller [18, Ch. 5]
is used asΓα

p to render the zero dynamics both invariant and
attractive. The correction polynomials create hybrid invari-
ance and are updated step-to-step byΓαc

p . The stability of
the fixed point under the above controller can be studied by
the method of Poincaré. We consider the stance-compression
to stance-decompression switching surface,Ssc→sd, as a
Poincaŕe section, and define the Poincaré mapP : Ssc→sd →
Ssc→sd. Using this Poincaŕe map, we can numerically calcu-
late the eigenvalues of its linearization about the fixed point.
Numerical analysis shows that the obtained running gait has



a dominant eigenvalue of1.1928 and is unstable. Thus, an
additional controller needs to be designed to stabilize the
running fixed point.

An outer-loop discrete event-based linear controller can be
designed to stabilize the discrete linear system representing
the linearized Poincaré map, as was done for Thumper in
[11]. We identify certain parameters that can be varied step-
to-step, and which could possibly affect stability of the fixed
point. We choose the following parameters to be varied step-
to-step: the stiffness and rest position parameters for the
virtual compliance for the stance-compression and stance-
decompression subphases, the touchdown angle, the torso
offset and finally a parameter to change the flight duration.
The linearized Poincaré map is obtained numerically and
discrete LQR is used to find a feedback,Γβ , that stabilizes
the fixed point of the Poincaré map. On carrying out this
procedure, we obtain a dominant eigenvalue of0.8383, which
shows that the fixed point is locally exponentially stabilized
with this controller.

Next, prior to experimental validation, we study the ro-
bustness of the controller to perturbations. Perturbations in
torso angle at impact are studied since tracking errors for the
heavy torso (40 kg) could potentially influence the dynamics
of running significantly. This controller can reject an error
in torso of up to 6◦ in both directions, which is fairly
good robustness to perturbations in torso angle. However,
the controller is unable to reject an error in the form of the
stance leg shape being bent by an additional5◦. Thus, there
is a need for a controller that can improve the robustness
to perturbations in the knee angle at impact. This will be
crucial for experimental validation.

The outer-loopΓγ controller is a heuristic nonlinear con-
troller based on insight into simple models. For instance,
on landing on a bent knee, the virtual compliance can be
stiffened to prevent the stance leg from collapsing, thereby
improving robustness to perturbations in the impact value
of the stance leg shape. This outer-most controller is highly
dependent on the morphology of the system and exists only
to improve the robustness to perturbations in an experimental
setting. The stability of the fixed point under the action of
Γγ can once again be studied by the method of Poincaré by
sampling the closed-loop hybrid system with the outer-loop
Γβ controller on a suitable Poincaré Section. Performing this
numerically, a dominant eigenvalue of0.6072 is obtained
ensuring that the closed-loop system is stable.

IV. EXPERIMENTAL VALIDATION OF THE RUNNING

CONTROLLER

The running controller of Section III created stable running
motions. This section documents experimental implementa-
tion of this controller on MABEL.

Before proceeding to experimental deployment, the pro-
posed controller is tried on a detailed model developed
in [10]. The detailed model accounts for stretchy cables,
compliant ground, and a more realistic model of the boom.
This is a high-DOF model and cannot be used for control
design since an optimization process on this model is not

Fig. 5. A typical running step for MABEL. Snapshots are at intervals of
100 ms. The snapshots progress temporally from left to right and from top
to bottom. A video of the running experiment is available on YouTube [14].

computationally tractable. Cable stretch in MABEL’s trans-
mission is an important characteristic of the experimental
system not captured by the model of Section II.On running
motions, there is severe cable stretch in the leg shape
transmission, accounting for nearly75% of motion in the
stance knee at peak cable stretch on certain agressive take-
offs. The model of Section II-A assumed no cable stretch
and the running controller needs to be modified to account
for this discrepancy.

The cable stretch was identified in [10] and appears as
an additional compliant element in series with the physical
compliance. Since the running controller uses active force
control in the stance phase for creating a virtual compliant
element in series with the physical compliance, three sources
of compliance (physical springs, cable stretch, virtual com-
pliance) occur in series. Thus, the virtual compliance can be
modified in a way such that the effective compliance, after
taking the cable stretch into account, has the stiffness that
was initially designed for in the absence of cable stretch.

With this modification, the running controller induced
stable running at an average speed of1.95 m/s, and a peak
speed of3.06 m/s. Running speed is measured with respect to
the center point of the hip between the two legs. A video of
the experiment is available on YouTube [14].113 running
steps were obtained and the experiment terminated when
the power to the robot was cut off. At2 m/s, the average
stance and flight times of233 ms and126 ms are obtained,
respectively, corresponding to a flight phase that is35% of
the gait. At 3 m/s, the average stance and flight times of
195 ms and123 ms are obtained respectively, corresponding
to a flight phase that is39% of the gait. An estimated
ground clearance of7.5−10 cm is obtained. Figure 5 depicts
snapshots at100 ms intervals of a typical running step.
Figures 6 and 7 depict the joint angles and motor torques



150

160

170

180

190

200

 

 

0

10

20

30

40

50

 

 

0

10

20

30

40

 

 

48.6 48.8 49 49.2 49.4 49.6 49.8 50 50.2
−15

−10

−5

0

de
g

de
g

de
g

de
g

Time (s)

qLA

qLS

Stance

Stance

Stance

Swing

Swing

Swing

qBsp

qTor

Fig. 6. Experimental plots of joint angles of the stance and swing legs for
4 consecutive steps of running. The circles in the spring plotindicate the
location of stance-compression to stance-decompression transitions.

−10

0

10

 

 

48.6 48.8 49 49.2 49.4 49.6 49.8 50 50.2

−20

0

20

 

 

N
N

Time (s)

umLA

umLS

Stance

Stance

Swing

Swing
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for the stance and swing legs for4 consecutive steps of
the running experiment. The circles in the spring and motor
torque plots indicate the location of stance-compression to
stance-decompression transitions.

V. CONCLUSION

A control design based on virtual constraints and the
framework of hybrid zero dynamics has been presented to
create a compliant and actuated hybrid zero dynamics. An
active force control strategy has been implemented within
the compliant hybrid zero dynamics. Discrete-event-based
control has been employed to create hybrid invariance,
exponentially stabilize the periodic gait, and increase the
robustness to perturbations in the knee angle at impact and
to imperfections in the ground contact model. The resulting

controller has been successfully validated in experimentson
MABEL achieving running at an average speed of1.95 m/s,
and a peak speed of3.06 m/s.

ACKNOWLEDGMENT

A. Ramezani assisted with the experiments. Jonathan
Hurst designed MABEL. B. Morris, I. Poulakakis, J. Konscol
and G. Buche provided a wide range of contributions to this
project.

REFERENCES

[1] B.-K. Cho, S.-S. Park, and J. ho Oh, “Controllers for running in the
humanoid robot, HUBO,” inIEEE-RAS International Conference on
Humanoid Robots, Paris, France, December 2009, pp. 385–390.
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