
PROOF OF MAIN RESULT

The goal is to find a Lyapunov function V on S for the
Poincaré map Pε defined (locally) on the section S associated
with the periodic orbit O . I.e., we seek a Lyapunov function
for the discrete-time system (xk+1,zk+1) = Pε(xk,zk) with
fixed point (0,z∗). (Here x∗ = 0 because O = ι0(OZ).) Since
OZ is a periodic orbit transverse to S∩Z, we can view S∩Z
as the Poincaré section and consider the associated restricted
Poincaré map ρ : S∩ Z → S∩ Z with ρ(z∗) = z∗; without
loss of generality, and for notational simplicity, assume that
z∗ = 0. Before proving Theorem 1, we first state and prove
a lemma establishing a bound of the Poincaré map in terms
of the restricted Poincaré map and a bound on the time-to-
impact function T ε

I (x,z) in terms of Tρ(z). In the following,
Bδ (r) denotes an open ball of radius δ > 0 centered on the
point r, and Pε

z (x,z) is the z-component of Pε(x,z).

Lemma 1: Let OZ be a periodic orbit of the hybrid zero
dynamics H |Z transverse to S∩Z and assume there exists a
RES-CLF Vε for the continuous dynamics (29) of H C . Then
there exist finite constants LTI and A1 (both independent of
ε) such that for all 0< ε < 1 and for all Lipschitz continuous
uε(x,z)∈Kε(x,z) there exists a δ > 0 such that for all (x,z)∈
Bδ (0,0)∩S,

‖T ε
I (x,z)−Tρ(z)‖ ≤ LTI‖x‖, (44)
‖Pε

z (x,z)−ρ(z)‖ ≤ A1‖x‖. (45)

Proof: In the first step of the proof, we construct
an auxiliary time-to-impact function TB that is Lipschitz
continuous and independent of ε and then relate it to T ε

I .
Recall that h(x,z) is the guard. Let µ1 ∈Rnx and µ2 ∈Rnz

be constant vectors and let φ
z
t (∆(0,z0)) be the solution of

ż = q(0,z) with z(0) = ∆Z(0,z0). Define

TB(µ1,µ2,z) = inf{t ≥ 0 : h(µ1,φ
z
t (∆(0,z))+µ2) = 0},

wherein it follows that TB(0,0,z) = Tρ(z). By construction,
TB is independent of ε and (by the same argument used
for T ε

I (x,z)) is Lipschitz continuous. Hence, in the norm
‖(µ1,µ2,z)‖ := ‖µ1‖+‖µ2‖+‖z‖,

|TB(µ1,µ2,z)−Tρ(z)| ≤ LB (‖µ1‖+‖µ2‖) , (46)

where LB is the (local) Lipschitz constant.
Let ε > 0 be fixed and select a Lipschitz continuous

feedback uε ∈ Kε . We note that T ε
I (x,z) is continuous (since

it is Lipschitz) and therefore there exists δ > 0 such that for
all (x,z) ∈ Bδ (0,0)∩S

0.9T ∗ ≤ T ε
I (x,z)≤ 1.1T ∗, (47)

where T ∗ = Tρ(0) is the period of the orbit OZ . Let
(x1(t),z1(t)) satisfy ż1(t) = q(x1(t),z1(t)) with x1(0) =
∆X (x,z) and z1(0) = ∆Z(x,z), and similarly, let z2(t) satisfy
ż2(t) = q(0,z2(t)) with z2(0) = ∆Z(0,z).

Defining

µ1 = x1(t)|t=T ε
I (x,z)

µ2 = z1(t)|t=T ε
I (x,z)− z2(t)|t=T ε

I (x,z) , (48)

results in
TB(µ1,µ2,z) = T ε

I (x,z) (49)

because T ε
I and TB are locally unique solutions where the

guard vanishes (follows from Implicit Function Theorem).
We will establish (44) by bounding µ1 and µ2 and substitut-
ing into (46) by virtue of (49), as follows.

Using the fact that Vε is rapidly exponentially stabilizing,
we have the bound from (35) given by

‖x1(t)‖ ≤
√

c2

c1

1
ε

e−
c3
2ε

t‖x1(0)‖. (50)

Note that ∆X (0,z) = 0 and therefore ‖x1(0)‖ = ‖∆X (x,z)−
∆X (0,z)‖ ≤ L∆X ‖x‖. Then making use of (47), we have

‖µ1‖= ‖x1(t)‖t=T ε
I (x,z)

≤
√

c2

c1

1
ε

e−
c3
2ε

0.9T ∗L∆X ‖x‖

≤ 2e−1

0.9T ∗c3

√
c2

c1
L∆X ‖x‖.

The next step is to bound ‖µ2‖ using a Gronwall-Bellman
argument. We first note that

z1(t)− z2(t) = z1(0)− z2(0)+
∫ t

0
q(x1(τ),z1(τ))−q(0,z2(τ))dτ

and thus

‖z1(t)− z2(t)‖ ≤ L∆Z‖x‖+
∫ t

0
Lq (‖x1(τ)‖+‖z1(τ)− z2(τ)‖)dτ

≤ L∆Z‖x‖+
2
c3

√
c2

c1
LqL∆X ‖x‖

+
∫ t

0
Lq (‖z1(τ)− z2(τ)‖)dτ,

where (50) has been substituted, integrated, and bounded.
Hence, by the Gronwall-Bellman inequality,

‖z1(t)− z2(t)‖ ≤
(

L∆Z +
2
c3

√
c2

c1
LqL∆X

)
‖x‖eLqt , (51)

and therefore ‖µ2‖ ≤ C1e1.1LqT ∗‖x‖, where C1 is the term
in parentheses in (51). The proof of (44) is then completed
by substituting the bounds for ‖µ1‖ and ‖µ2‖ into (46) and
grouping terms.

To establish (45), we first define

C2 = max
.9T ∗≤t≤1.1T ∗

‖q(0,z2(t))‖.

It then follows from (44), (47) and (51) that

‖Pε
z (x,z)−ρ(z)‖

≤ ‖z1(0)− z2(0)‖

+
∫ T ε

I (x,z)

0
‖q(x1(τ),z1(τ))−q(0,z2(τ))‖dτ

+

∣∣∣∣∫ Tρ (z)

T ε
I (x,z)

‖q(0,z2(τ))‖dτ

∣∣∣∣
≤

(
C1e1.1LqT ∗ +C2LTI

)
‖x‖,

which establishes (45).



We now have the necessary framework in which to prove
Theorem 1.

Proof: [of Theorem 1] The results of Lemma 1 and
the exponential stability of OZ imply that there exists a
δ > 0 such that ρ : Bδ (0)∩ (S∩Z)→ Bδ (0)∩ (S∩Z)→ is
well-defined for all z ∈ Bδ (0)∩ (S∩Z) and zk+1 = ρ(zk) is
(locally) exponentially stable, i.e., ‖zk‖ ≤Nαk‖z0‖ for some
N > 0, 0 < α < 1 and all k ≥ 0. Therefore, by the converse
Lyapunov theorem for discrete-time systems, there exists a
Lyapunov function Vρ , defined on Bδ (0)∩ (S∩Z) for some
δ > 0 (possibly smaller than the previously defined δ ), and
positive constants r1,r2,r3,r4 satisfying

r1‖z‖2 ≤Vρ(z)≤ r2‖z‖2,

Vρ(ρ(z))−Vρ(z)≤−r3‖z‖2, (52)
|Vρ(z)−Vρ(z′)| ≤ r4‖z− z′‖(‖z‖+‖z′‖).

For the RES-CLF Vε , denote its restriction to the switching
surface S by Vε,X =Vε |S. With these two Lyapunov functions
(motivated by the construction from [16] for singularly per-
turbed systems) we define the following candidate Lyapunov
function

V̄ε(x,z) =Vρ(z)+σVε,X (x)

defined on Bδ (0,0) ⊂ S, where σ > 0 is any constant such
that σ > σ > 0. (We will define σ explicitly later.) By (32)
and (52), it is clear that

min{σc1,r1}‖(x,z)‖2 ≤ V̄ε(x,z)≤max{σ c2

ε2 ,r2}‖(x,z)‖2.

Noting that ‖(x,z)‖2 = ‖x‖2+‖z‖2+2‖x‖‖z‖ ≥ ‖x‖2+‖z‖2,
we therefore need to establish that

V̄ε(Pε(x,z))−V̄ε(x,z)≤−κ(‖x‖2 +‖z‖2), (53)

for some κ > 0. Since Pε(x,z)∈ S⊂ X×Z, denote the X and
Z components of Pε by Pε

x (x,z) and Pε
z (x,z), respectively.

With this notation,

V̄ε

(
Pε(x,z)

)
−V̄ε(x,z) =Vρ

(
Pε

z (x,z)
)
−Vρ(z)

+σ
(
Vε,X (Pε

x (x,z))−Vε,X (x)
)
. (54)

We begin by noting that, because Vε is a RES-CLF and
u(x,z) ∈ Kε(x,z), and since Pε

x (x,z) =
(
φ ε

T ε
I (x,z)(∆(x,z))

)
x, it

follows that

Vε,X (Pε
x (x,z)) ≤ c2

ε2 e−
c3
ε

T ε
I (x,z)‖∆X (x,z)‖2

≤ c2

ε2 L2
∆X

e−
c3
ε

T ε
I (x,z)‖x‖2, (55)

where the last inequality follows from the fact that ∆X (0,z)=
0 and therefore

‖∆X (x,z)‖2 = ‖∆X (x,z)−∆X (0,z)‖2 ≤ L2
∆X
‖x‖2,

with L∆X the Lipschitz constant for ∆X . Defining β1(ε) =
c2
ε2 L2

∆X
e−

c3
ε
.9T ∗ (with T ∗ defined as in the proof of Lemma

1), we have established that

σ
(
Vε,X (Pε

x (x,z))−Vε,X (x)
)
≤ σ(β1(ε)− c1)‖x‖2, (56)

where, clearly, β1(0+) := limε↘0 β1(ε) = 0.

As a result of Lemma 1 and the assumption that the origin
is an exponentially stable equilibrium for zk+1 = ρ(zk), we
have the following inequalities:

‖Pε
z (x,z)−ρ(z)‖ ≤ A1‖x‖,
‖Pε

z (x,z)‖= ‖Pε
z (x,z)−ρ(z)+ρ(z)−ρ(0)‖ ≤ A1‖x‖+Lρ‖z‖,

‖ρ(z)‖ ≤ Nα‖z‖,

where Lρ is the Lipschitz constant for ρ . Thus, using (52),

Vρ(Pε
z (x,z))−Vρ(ρ(z))≤ r4A2

1‖x‖2 + r4A1(Lρ +Nα)‖x‖‖z‖.

Setting β2 = r4A2
1 and β3 = r4A1(Lρ +Nα) for notational

simplicity, it follows that

Vρ(Pε
z (x,z))−Vρ(z)

= Vρ(Pε
z (x,z))−Vρ(ρ(z))+Vρ(ρ(z))−Vρ(z)

≤ β2‖x‖2 +β3‖x‖‖z‖− r3‖z‖2. (57)

Therefore, combining (54), (56), and (57), we have

V̄ε(Pε(x,z))−V̄ε(x,z) ≤ (β2 +σ(β1(ε)− c1))‖x‖2

+β3‖x‖‖z‖− r3‖z‖2

= −
[
‖z‖ ‖x‖

]
Λ(ε)

[
‖z‖
‖x‖

]
,

with

Λ(ε) =

[
r3 − 1

2 β3
− 1

2 β3 σ(c1−β1(ε))−β2

]
.

Therefore, the goal is to find σ > 0 such that for ε > 0 suffi-
ciently small, Λ(ε) is positive definite or, more specifically,
det(Λ(ε))> 0. With this in mind, consider

lim
ε↘0

det(Λ(ε)) =−
β 2

3
4
−β2r3 +σc1r3.

Therefore, pick

σ >
β 2

3 +4β2r3

4c1r3
=: σ ,

wherein by the continuity of Λ(ε) with respect to ε , there
exists an ε > 0 such that for all 0 < ε < ε , det(Λ(ε)) >
0. Therefore (53) is satisfied with κ = λmax(Λ(ε)), the
largest eigenvalue of Λ(ε), and we have established the local
exponential stability of O .


