PROOF OF MAIN RESULT

The goal is to find a Lyapunov function V on S for the
Poincaré map P# defined (locally) on the section S associated
with the periodic orbit &. L.e., we seek a Lyapunov function
for the discrete-time system (Xgi1,2x+1) = P (x,2¢) with
fixed point (0,z*). (Here x* = 0 because & = 1p(0%).) Since
Oy is a periodic orbit transverse to SNZ, we can view SNZ
as the Poincaré section and consider the associated restricted
Poincaré map p : SNZ — SNZ with p(z*) = z*; without
loss of generality, and for notational simplicity, assume that
7 = 0. Before proving Theorem 1, we first state and prove
a lemma establishing a bound of the Poincaré map in terms
of the restricted Poincaré map and a bound on the time-to-
impact function 7;(x,z) in terms of 7, (z). In the following,
Bg(r) denotes an open ball of radius 6 > 0 centered on the
point r, and P (x,z) is the z-component of P?(x,z).

Lemma 1: Let Oz be a periodic orbit of the hybrid zero
dynamics €|z transverse to SNZ and assume there exists a
RES-CLF Vg for the continuous dynamics (29) of 7€ . Then
there exist finite constants Ly, and Ay (both independent of
€) such that for all 0 < € < 1 and for all Lipschitz continuous
ue(x,2) € Ke(x,z) there exists a 0 > 0 such that for all (x,z) €
Bs(0,0)NS,

177 (x:2) = Tp ()| < Ly |x]],
1P£ (x,2) = p ()| < Aulx]|-

(44)
(45)

Proof: In the first step of the proof, we construct
an auxiliary time-to-impact function 7p that is Lipschitz
continuous and independent of € and then relate it to 7.

Recall that h(x,z) is the guard. Let y; € R™ and y, € R™
be constant vectors and let ¢7(A(0,z0)) be the solution of
z=¢q(0,z) with z(0) = Az(0,z0). Define

T, M2,2) = inf{t > 0: h(u1, ¢ (A(0,2)) + p2) = 0},

wherein it follows that 73(0,0,z) = Tp(z). By construction,
Tp is independent of € and (by the same argument used
for TF(x,z)) is Lipschitz continuous. Hence, in the norm

([ (o1, 2, 2) || = [ | 4 [ 2 | - [z
T (1, p2,2) — Tp (2)| < Lp ([|pa ||+l p2l)

where Lp is the (local) Lipschitz constant.

Let € > 0 be fixed and select a Lipschitz continuous
feedback ue € K. We note that 7} (x,z) is continuous (since
it is Lipschitz) and therefore there exists § > 0 such that for
all (x,z) € B§(0,0)NS

0.9T* < Tf(x,z) < 1.1T%,

(46)

(47)

where T* = T,(0) is the period of the orbit &7. Let
(x1(1),z1(2)) satisfy 21(¢) = q(x1(2),z1(r)) with x1(0) =
Ax(x,z) and z1(0) = Az(x,z), and similarly, let z,(r) satisfy
2(t) = q(0,22(r)) with 22(0) = Az(0,2).

Defining

= x1(0)]=7e )

W=z (f)|,:Tf(x,z) —22 (48)

(t) |z:T,€ (x:2)*

results in

T, p2,2) = Tf (x,2) (49)

because 7Ff and T are locally unique solutions where the
guard vanishes (follows from Implicit Function Theorem).
We will establish (44) by bounding u; and p; and substitut-
ing into (46) by virtue of (49), as follows.

Using the fact that V¢ is rapidly exponentially stabilizing,
we have the bound from (35) given by
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Note that Ax(0,z) = 0 and therefore ||x;(0)|| = ||Ax(x,z) —
Ax(0,2)|| < Lay ||x||. Then making use of (47), we have

(50)
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The next step is to bound ||u2 I using a Gronwall-Bellman
argument. We first note that

21(t) —z2(t) = 21(0) — 22(0) +/(:q(x1 (7),21(7)) —q(0,22(7))d7
and thus

ll21(1) = 22(0)[| < La, [l +/0qu (e (D) +[z1(7) =22 (7)) d7

2 [
<Lyl + Rl ]
t
+ /0 Ly (21 (%) — 22(0)])) dt

where (50) has been substituted, integrated, and bounded.
Hence, by the Gronwall-Bellman inequality,

2 Jc
a2 = (Lo, 4 2/ 2Lyt ) Il 1)

1.1L,T*

and therefore ||| < Cje x||, where Cj is the term
in parentheses in (51). The proof of (44) is then completed
by substituting the bounds for ||| and ||, || into (46) and
grouping terms.

To establish (45), we first define

G = 0
2= pmax [g(0,5(0).

It then follows from (44), (47) and (51) that

P
< z1(0) = z2(0)]

N /TS” g(61(1),21 (1)) — 4(0,22(7)) |l d
+ / 19(0,22(7))[|d7
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which establishes (45). |
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We now have the necessary framework in which to prove
Theorem 1.

Proof: [of Theorem 1] The results of Lemma 1 and
the exponential stability of & imply that there exists a
6 > 0 such that p : Bs(0)N(SNZ) — Bs(0)N(SNZ) — is
well-defined for all z € B5(0)N(SNZ) and z;1 = p(zx) is
(locally) exponentially stable, i.e., ||z¢|| < Nak||zo|| for some
N>0,0<a<1 and all k> 0. Therefore, by the converse
Lyapunov theorem for discrete-time systems, there exists a
Lyapunov function V), defined on B5(0) N (SNZ) for some
6 > 0 (possibly smaller than the previously defined &), and
positive constants ry, 7, 13,14 satisfying

rillzll? < Vp(2) < rall2],
Vo(p(2)) = Vp(2) < =3z,
Vo (@) = Vo ()] < rallz=ZlI(llzll + 1IZ'])-

For the RES-CLF Vg, denote its restriction to the switching
surface S by Ve x = Ve|s. With these two Lyapunov functions
(motivated by the construction from [16] for singularly per-
turbed systems) we define the following candidate Lyapunov
function

(52)

Ve(x,2) = Vp(z) + 0 Ve x (x)

defined on Bs(0,0) C S, where ¢ > 0 is any constant such
that 6 > ¢ > 0. (We will define & explicitly later.) By (32)
and (52), it is clear that

. — (&)
min{cey, r }(x,2)|* < Ve(x,2) < max{Gprz}ll(x,Z)Hz-

Noting that || (x,2)[[* = [lx||* +[|z[|* +2[|x]|[|z]| = [lx]]* + |z,
we therefore need to establish that
Ve (PF(x,2)) = Ve (x,2) < —k(|lx]|* + |l2l|*),
for some k > 0. Since P%(x,z) € S C X X Z, denote the X and
Z components of P by Pf(x,z) and P?(x,z), respectively.
With this notation,
Ve (PS(X,Z)) - VE(X,Z) = VP (PZS(X,Z)) - VP (Z)
+ 0 (Vex (P{(x,2) = Vex(x). (54)
We begin by noting that, because V; is a RES-CLF and
u(x,z) € Ke(x,z), and since P¢(x,z) = (d);f(x.z) (A(x,2))) . it
follows that

Vex (P (x,2))

(53)
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where the last inequality follows from the fact that Ax (0,z) =
0 and therefore

1A% (x,2) 1> = [|Ax (x,2) — Ax (0,2)[|* < L, |lx]|?,

with La, the Lipschitz constant for Ax. Defining Bi(€) =

;%Lixe’%'”* (with T* defined as in the proof of Lemma
1), we have established that

0 (Vex (P (x,2) = Vex (x)) < o(Bi(€) — 1) x|,
where, clearly, B;(0") := limgw o Bi1(€) =0.

(56)

As a result of Lemma 1 and the assumption that the origin
is an exponentially stable equilibrium for z;1 = p(z), we
have the following inequalities:

1P£ (x,2) = p(2) | < Aullx]),
1P (x,2) | = [|1PF (x,2) = p(2) + p(2) = p(O) ]| < Aullx]| + Lo 2],
P2l <Noiz],
where L, is the Lipschitz constant for p. Thus, using (52),
Vo (P£(x,2) = Vp(p(2)) < raAT|Ix]1* + radi (Lp +Not)||x]]|2]|
Setting 3, = r4A% and f3 = r4A1(Ly +Na) for notational
simplicity, it follows that
Vo (PE(x,2)) = Vp(2)
= Vp(P(x,2) = Vo (p(2)) +Vp(p(2)) = Vp(2)
< Bollxll -+ Bsllxllllzll = 3zl (57)
Therefore, combining (54), (56), and (57), we have
Ve(P*(,2) = Ve(x,2) < (B2+0(Bi(e) =)+l
+Bs 2]l = szl
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Therefore, the goal is to find ¢ > 0 such that for € > 0 suffi-
ciently small, A(€) is positive definite or, more specifically,

det(A(g)) > 0. With this in mind, consider
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wherein by the continuity of A(g) with respect to €, there
exists an € > 0 such that for all 0 < & < €, det(A(g)) >
0. Therefore (53) is satisfied with Kk = Amax(A(€)), the
largest eigenvalue of A(g), and we have established the local
exponential stability of &. ]



