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Abstract—This paper presents an energy-efficient feature ex-
traction accelerator design aimed at visual navigation. The hard-
ware-oriented algorithmic modifications such as a circular-shaped
sampling region and unified description are proposed to minimize
area and energy consumption while maintaining feature extraction
quality. A matched-throughput accelerator employs fully-unrolled
filters and single-stream descriptor enabled by algorithm-archi-
tecture co-optimization, which requires lower clock frequency for
the given throughput requirement and reduces hardware cost of
description processing elements. Due to the large number of FIFO
blocks, a robust low-power FIFO architecture for the ultra-low
voltage (ULV) regime is also proposed. This approach leverages
shift-latch delay elements and balanced-leakage readout tech-
nique to achieve 62% energy savings and 37% delay reduction.
We apply these techniques to a feature extraction accelerator
that can process 30 fps VGA video in real time and is fabricated
in 28 nm LP CMOS technology. The design consumes 2.7 mW
with a clock frequency of 27 MHz at Vaq = 470 mV, providing
3.5x better energy efficiency than previous state-of-the-art while
extracting features from entire image.

Index Terms—Energy efficient DSP, feature extraction, first-in
first-out, near-threshold design, pipeline.

I. INTRODUCTION

N THE LAST decade, computer vision has been widely ap-

plied to many different fields. In medical imaging such as
MRI or CT, images are analyzed using computer vision tech-
niques to realize fully or partially automatic diagnosis [1], [2].
Recent advanced surveillance camera systems not only record
video, but also provide functions including facial recognition
and motion detection [3]. Automobile manufacturers incorpo-
rate various cameras on vehicles and analyze their external envi-
ronment to improve driving safety or achieve self-driving func-
tionality [4]. Although computer vision algorithms typically re-
quire substantial computing power to process multiple frames
per second in real time, conventional applications such as those
mentioned above have rather large power budgets and hence
supporting these computational requirements has been feasible
by using multi-core systems or GPUs that consume tens of watts

[2], [4].
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Recently, mobile battery-powered systems such as cellular
phones, micro-robots and millimeter-sized sensor nodes have
gained significant attention. Due to technology scaling and the
development of new low-power techniques, these application
areas continue to flourish, incorporating more functionality with
time [5], [6]. Computer vision techniques can add significant
value to these classes of systems, providing various useful fea-
tures such as object recognition in phones or navigation and
surveillance in micro-robots. However, the tight power con-
straints of these systems prevent practical implementations of
computer vision algorithms. We therefore seek to significantly
reduce hardware cost and power consumption associated with
such algorithms.

In this paper, we propose a highly energy-efficient feature
extraction accelerator design for visual navigation of micro-au-
tonomous vehicles. The navigation algorithm must process 30
fps VGA video while consuming less than 30 mW power due to
limited power budget of miniaturized system. We first propose
a modified feature extraction algorithm that improves energy
efficiency while maintaining feature extraction quality. We then
apply architectural and circuit techniques including a robust
low-power FIFO for subthreshold operation, further reducing
power consumption. The resulting design achieves 2.7 mW
power consumption at 470 mV supply voltage when extracting
features from 640 x 480 VGA 30 fps video continuously at a
low clock frequency of 27 MHz. The design realizes a 3.5x
energy efficiency improvement over prior work.

II. PROPOSED VISUAL FEATURE EXTRACTION ALGORITHM

A. Visual Feature Extraction

Visual feature extraction is a key step in many computer vi-
sion algorithms. Essentially it extracts useful information from a
visual source such as an image, and this information can be used
in a variety of applications including object recognition and
pose estimation. Fig. 1 shows an example of the widely-used
SIFT (scale-invariant feature transform) algorithm [7]. Feature
extraction is performed on the original image (left), and small
rectangles depict extracted features with different scales and ori-
entations. These are then compared to features already stored
in the database and finally some objects are recognized (right).
Generally feature extraction should provide scale and rotation
invariance for reliable extraction under different circumstances
or viewpoints, as shown in Fig. 2.

SURF (Speeded-Up Robust Features) is a well-known
variation of the SIFT algorithm. The authors of [8] claim it
achieves identical or even superior extraction quality while
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Fig. 2. Two key constraints of feature extraction algorithms: (a) rotation and
(b) scale invariance.

reducing computational cost significantly, making it attractive
for low-power applications. SURF consists of two distinct
stages: detection and description. In the detection stage, an
input image is first processed with multiple filters at different
scales. Filter responses calculated simultaneously at different
scales provide the scale invariance property. The algorithm then
searches for interest points (local maxima) in 3-D scale-loca-
tion pyramids. Although local maxima points can be extracted
using simple digital comparators, the actual maxima point can
reside somewhere between adjacent pixels and matrix-based
equations are used to interpolate the maxima point in 3-D
space. The description stage is responsible for describing each
interest point and generating a corresponding final feature
vector. For rotation invariance, the orientation of each interest
point must be determined first. The description stage collects
filter responses around it and searches for an angle which has
largest filter responses using rotating sampling window as
depicted in Fig. 3(a). After choosing orientation, a rectangular
sampling region is rotated by that angle and filter responses
are again collected in that region (Fig. 3(b)). This guarantees
that collected responses around each interest point remain un-
changed in images rotated by any angle. The sampling region
is divided into small rectangles and a summation of sampling
responses in each sub-region constitutes each dimension of
the feature vector. Finally, this vector is normalized such that
vectors extracted from different scale images have identical
magnitude.

B. Proposed Hardware-Oriented Feature Extraction
Algorithm

We apply the SURF algorithm to our design target, a MAV
(micro air vehicle) with visual navigation shown in Fig. 4, where
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Fig. 3. Original feature vector generation process consisting of (a) orientation
assignment and (b) feature vector generation [8].

feature extraction is a key function and a dominant power con-
sumer. The MAV is designed to fly and navigate in indoor en-
vironments using various sensors to recognize obstacles and a
camera for location search. Fig. 5 provides an overview of the
visual navigation system [9]. First, an on-board camera captures
30 fps VGA video, which is fed into the proposed feature ex-
traction accelerator. The feature extraction accelerator then ex-
tracts 64-dimensional SURF features that are compared to loca-
tion database storing features from previously visited locations.
If any match is found, it can be concluded that the test vehicle
has returned to a location visited before and a loop closure is
declared. Finally, this loop closure information is used in an al-
gorithm called SLAM (Simultaneous Localization and Mapping
[10]). SLAM continuously monitors the environment to deter-
mine current location and generate a map. Physical sensors such
as gyroscopes, accelerometers, and lasers provide primary infor-
mation on vehicle movements, but small errors accumulate over
time and cause localization to fail at some point. Loop closure
information from previous steps is used in this SLAM algorithm
to compensate for these errors. In this class of system, feature
extraction is one of the most computationally expensive steps,
and our work therefore focuses on the design of a corresponding
accelerator.

Since MAV's can move rapidly, they must perform both accu-
rate and fast feature extraction. In addition, location monitoring
should be done continuously, however a direct implementation
on an X86 embedded processor consumes more than 1 W while
processing only a few fps (frame per second) VGA video. Re-
lated work on custom-designed hardware for similar applica-
tions also report >50 mW power consumption [11]-[14] for
processing partial images based on ROIs (Regions of Interest).
However, this system has a tight power budget of ~30 mW for
digital processing due to a minimum required operation time
without recharging. This power budget includes feature extrac-
tion as well as other functions such as feature mapping and nav-
igation and arises based on the allocation of the vast majority of
power consumption to actuation assuming a 3 W-hr 15 g Li-ion
battery in a 100 g flier with 1 hour battery life.

One widely used technique to reduce power consumption in
image processing is the extraction of ROIs. A low-cost pre-pro-
cessing stage is inserted before the actual feature extraction step
to search for small regions believed to have meaningful infor-
mation or targeted objects. An input image is divided into many
smaller tiles and only a subset of these is chosen for further pro-
cessing. Although this can significantly reduce power consump-
tion, the performance of the pre-processing algorithm dictates
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Fig. 4. A target application of MAV with visual navigation.
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Fig. 5. An overview of the visual navigation algorithm flow.

the overall quality of feature extraction. ROI detection should
also be trained in advance on the database containing specific
classes of objects desired to be detected. However, to enable vi-
sual navigation in unknown environments, it is impossible to
rely on specific objects to determine its current location. There-
fore, our target application compares each captured image on a
scenery basis (not individual objects), necessitating feature ex-
traction from the entire frame.

To achieve low power while performing full-frame feature
extraction, we optimize the original SURF algorithm with the
goal of an energy-efficient hardware implementation without
using an ROI-based approach. For the detector, first we use a
single-octave scale space (Fig. 6(a)). In original SURF, the de-
tection stage first builds scale pyramids to detect interest points
in different scales [8]. Basically the filter size can be continu-
ously increased until it reaches the entire image size for detec-
tion across all possible scales. However, to reduce computation
we define a new pyramid after 4 filter size increases. In the new
pyramid, both interest point search step and filter size increase
are doubled for coarse searches in a larger scale. Since the target
resolution is 640 x 480, only a small portion of features are ex-
tracted from larger objects or patterns and therefore reside in the
second or higher scale pyramids. We choose the first (smallest)
octave among them to extract dominant smaller features. Simu-
lation results show significant amount of feature loss in this case,
so we need to have (at least a part of) the 2nd octave to compen-
sate for the loss. However, we need to add at least 3 new filters

Loop Closure Detection

since the smallest and largest filters of each octave are only used
for comparisons and do not have interest points. Instead, we ex-
tend the 1st octave and employ an additional filter (size 33) that
lies between 1st and 2nd octaves to compensate for lost features.
The resulting algorithm extracts more than 94% of originally
extracted features while reducing filter power consumption by
38% compared to the original SURF algorithm with 5 octaves.
After local maxima detection, the exact original location of the
maxima is typically calculated using matrix-based arithmetic
operations. Instead, we employ a fast localization technique for
interpolation as described in Fig. 6(b).

In the description stage, a large and variable number of
interest points marked by the detector must be processed. Pre-
viously a multi-core architecture has been proposed to deal with
the variable throughput of this step [11]-[13]. As discussed in
the previous section, for each interest point two separate filter
response sampling steps are required for orientation assign-
ment and actual description, respectively. In other words, the
complete filter responses around each interest point should be
transferred to a description core responsible for describing that
point. These responses also have to be stored temporarily in
data memory within each core for later steps. This necessitates
a large buffer in each description core, which incurs a large
area and power overhead.

We therefore propose a circular-shaped sampling region that
unifies orientation assignment and description into one step as
shown in Fig. 7. The authors in [15] compare polar grid sam-
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Fig. 6. Proposed (a) single-octave scale space; and (b) fast localization tech-
niques for detector optimization.
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Fig. 7. Proposed circular-shaped sampling region approach.

plings and a rectangular grid, shedding light on the possibility
of using a rotation invariant sampling region. However, to avoid
two separate sampling methods and use all available sampling
points within a circle, the proposed sampling region is still based
on the original rectangular grid. Instead, it is divided into 32
subsections and a vector representing an interest point is gen-
erated based on the summation of filter responses in each sub-
section. Since the number of points in even- and odd-numbered
subsections are different, the kth angle is composed of filter re-
sponses gathered in both kth and (k + 1)th subsections such
that all angles have the same number of sampling points. The
interest point orientation can be easily determined by the sub-
section with the largest summation value.

Since the shape and coverage of a circular-shaped sampling
region do not change when rotated by the assigned orientation,
filter responses do not need to be re-collected for actual de-
scription. Furthermore, by restricting orientation angles to dis-
crete values represented by each subsection, final feature vec-
tors can be generated by simply re-ordering vector dimensions.
Although this technique provides only discrete step rotation,
the use of 32 subsections translates to a small rotation step of
only 11.25° while providing the same feature dimensions as the
original SURF algorithm. Due to the unified description, each
description processing element does not have to store entire
filter responses and instead just accumulates them into 32-di-
mensional vectors in real time, reducing memory requirements
in each processing element by 89% and element area by 80%.
This technique also enables other hardware design simplifica-
tions that are discussed in detail in the Section III.
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Since our target application uses scenery-based matching, we
tested the algorithm with actual videos captured by a robotic
test vehicle [9] rather than conventional object-oriented test-
benches. The modified SURF was tested on a database con-
sisting of 100 frames extracted from these videos. Fig. 8 demon-
strates the measured feature extraction quality metric, which is
important in visual navigation and is defined by the ratio of
the number of correctly matched features to the number of all
matched features between original and re-scaled or rotated im-
ages. Fig. 8(a) and (b) confirm that the scale and rotation in-
variance performance of the proposed and original SURF algo-
rithms are very similar. We observed that the proposed algo-
rithm provides 30% fewer valid feature match count on average
due to its use of limited filter scales. This is deemed an accept-
able tradeoff for the targeted navigation application, for which
feature match ratio was deemed more critical. To enable a larger
scale invariance range for other applications, more Gaussian fil-
ters can be added to detect and describe larger features or the
input image can be subsampled and processed through the ac-
celerator repeatedly.

III. ENERGY-EFFICIENT HARDWARE ARCHITECTURE

A. Accelerator Architecture

Voltage scaling is a widely used and effective power-saving
technique [16]-[18], but it incurs large performance penalties
that are unacceptable in high throughput systems. Feature
extraction algorithms are generally computationally expensive
and SIFT/SUREF algorithms require throughput on the order of
GOPS or higher. In addition, the number of features in each
frame varies widely and hence peak performance requirements
can be much higher than typical performance. Therefore, a
feature extraction accelerator must be designed carefully to
effectively incorporate aggressive voltage scaling while also
meeting high performance requirements.

Fig. 9 shows the overall architecture of the proposed accel-
erator design. To deal with the low clock frequencies associ-
ated with deep voltage scaling, the accelerator is uniquely de-
signed to take only one pixel of input image per cycle at the low
speed of 27 MHz. In addition, the entire accelerator operates
at the same clock frequency, resulting in a matched-throughput
system. A 640 x 480 8-bit grayscale input image is divided into
11 subsections, as shown in Fig. 10, and they are processed suc-
cessively. Subsections are partially overlapped to allow the ac-
celerator to extract features from the entire area including bor-
ders between subsections.

Each subsection has 640 x 124 pixels. In each cycle, only
one pixel of the input image is fed into the proposed accel-
erator. The input image flow is first integrated in 2-D and
Gaussian box filters with different scales are applied. Filter
responses form a 3-D scale-location space and a local maxima
detector searches for the interest points in this space. Finally,
an interpolator determines the exact location of maxima using
the proposed simplified maxima detection technique. While the
detector is searching for interest points, the input image must
be delayed temporarily. Therefore, we delay the input image
using a 7067-entry FIFO at the input stage of descriptor shown
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in Fig. 9. Since the largest radius of sampling regions in the
detector and descriptor are 16 and 40 pixels, respectively, the
buffer must store 56 lines while the detector searches for local
maxima. Additional margins from pipeline and control signals
translate to a 7067-entry FIFO. Then it is integrated in 2-D
in the same way as in the detection stage. Although the input
image is integrated identically in the detector and descriptor,
the use of separate integrators actually reduces silicon area by
minimizing FIFO size. Since the original 8-bit input image
becomes 18-bit after integration due to larger dynamic range,
FIFO area is reduced by 95,000 ;zm? (56%) while overhead
from the additional integrator is only 9,700 zm?.

The integrated image goes through Haar wavelet filters in dif-
ferent scales, which provides the necessary filter responses for
feature description. While the interest point information from
the detector is passed to descriptor processing elements in real
time, one of the idle processing elements is assigned to each in-
terest point. Each processing element captures the Haar wavelet
filter responses around each point and generates feature vec-
tors. The proposed design uses 40 processing elements in total,
and they are power-gated when not in use. The number of pro-
cessing elements is chosen to provide more than 2x margin
compared to the maximum number of features being extracted
simultaneously at one location in actual test images. Finally, a
post processor reorders, normalizes, and rotates generated fea-
ture vectors and produces the final output. Additional hardware
techniques are applied to further optimize each component, and
these will be described in the following sections.

[19] presents an early effort to adopt a similar dataflow
and architecture. However, it is not fully matched-throughput
system and remains partially based on the use of reconfigurable
cores, which requires > 3 x faster clock frequency for the same
video throughput (increasing power). In addition, a large buffer
memory of 2.8 Mb (compared to 56 kb FIFO for delaying the
image in the proposed design) is required before the descriptor
due to multi-stage description, and peak performance is limited
to 890 interest points per frame.
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B. Parallelized Filters and Arithmetic Blocks

Two different types of filters are used in the detector and
descriptor, but their operation is very similar and is based on
simple arithmetic operations on the integrated image. Both
Gaussian box filters and Haar wavelet filters are based on the
summation of an image, which can be easily achieved by 2-D
integrated image and simple arithmetic operations such as
addition and subtraction as shown in Fig. 11. In conventional
multi-core architectures, this can be calculated using a single
arithmetic unit and processing one (or a few using a SIMD ar-
chitecture) set of data in each cycle. However, the entire image
must be stored in a large memory and power overhead is in-
curred in accessing this large memory every cycle. In addition,
multiple operations are required to obtain filter responses at one
point and, therefore, the system must operate at a much higher
clock frequency, limiting aggressive voltage scaling. Although
each summation over a rectangular region requires only 4 data
read and 3 arithmetic operations, the current approaches still
consume significant power when applied over an entire frame.

To mitigate this, we apply a fully unrolled and parallelized ar-
chitecture to Gaussian box filters and Haar wavelet filters. First,
the input image is delayed by differing numbers of cycles using
different size FIFOs. As the input image continues to be pro-
cessed, images with varying delays appear at the FIFO outputs
and they are used for filter response calculation at this point.
Once all FIFOs are completely filled with data, three arithmetic
operations can be performed simultaneously using a 3x lower
clock frequency. In the final design, due to deeply parallelized
filter architectures one pixel of the input image is fed into the
accelerator at a fixed speed; this allows all processing including
detection and description to be done at the same low clock fre-
quency. Therefore, this architecture allows for a single clock do-
main of 27 MHz over the entire accelerator and provides greater
headroom for voltage scaling compared with an X86 single core
implementation that requires 1 GHz clock frequency for a few
fps throughput. In addition, each cycle data is generated by rel-
atively small FIFOs instead of a large memory, which reduces
energy consumed in data readout as well. Different size filters
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has roughly 160 arithmetic blocks in parallel, providing a large
degree of parallelization.

C. Single Stream Descriptor

Interest points extracted by the detector are continuously
passed to the descriptor with each point assigned to an idle
processing element (PE). Based on responses of Haar wavelet
filters, the set of PEs must simultaneously process a large
number of interest points depending on the input image. There-
fore, the descriptor must offer high peak performance while
maintaining low power consumption. This is handled through
the use of many PEs, however this incurs high hardware cost,
particularly for data memory used to temporarily store filter re-
sponses around an interest point. A conventional design uses a
multi-core architecture as shown in Fig. 13(a). An independent
controller manages filter responses stored in a large central data
memory, and the entire sampling region around an interest point
should be passed to a PE once the controller makes a PE assign-
ment. When the number of interest points is high, significant
data is transferred through a shared data bus, which requires a
high-speed data bus operating at a high clock frequency [13].
Furthermore, overlapping regions sent to multiple PEs incur
further overhead. After each PE receives sampling responses
and stores them in local memory, it calculates feature vectors
through orientation assignment and the actual description step.

However, the proposed circular-shaped sampling region dis-
cussed in Section II-B unifies these two steps while removing
the need for storing responses in local memory. Based on this
algorithm-architecture co-optimization, we propose the single
stream descriptor described in Fig. 13(b). In this architecture,

filter responses continuously flow through a shared data channel
at a fixed low speed such that all processing elements see the
same data stream. Filter responses leave the filter bank and reach
all of processing elements in the same cycle. At a low operating
voltage, wire delay is negligible compared to logic delay and
filter responses are simply repeated using inverters. Since in-
terest points are assigned in advance, PEs can easily identify
the proper filter responses and capture data from the channel
at the appropriate time interval. Since entire filter responses
are transferred through a shared data channel (regardless of the
number of interest points), this channel can be realized with a
matched-throughput low speed data bus. This point removes the
need for bus synchronizer and makes it possible to run the bus in
the same low voltage domain, which removes overheads from
an additional voltage regulator. In addition, this removes redun-
dant data transmission for overlapped sampling regions, elimi-
nating unnecessary switching.

IV. LATCH-BASED LOW-POWER AND ROBUST FIFO DESIGN

The proposed accelerator architecture requires a large number
of storage elements (FIFOs) across all sub-blocks. In particular,
the 7067-entry FIFO at the input stage of the descriptor can con-
sume appreciable leakage and switching power, and both the
Gaussian box filters and Haar wavelet filters have many smaller
FIFO blocks. It is therefore critical to choose a low-power FIFO
block that also offers robust behavior at near- or sub-threshold
regime to facilitate aggressive voltage scaling. This last require-
ment is challenging as there are several known problems in
low-voltage memory design.






