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Abstract

The vast majority of work on the efficiency of lattice-based cryptography, including fully homomorphic
encryption (FHE), has relied on cyclotomic number fields and rings. This is because cyclotomics offer a
wide variety of benefits, including good geometrical properties, fast ring arithmetic, and rich homomorphic
operations like vectorized (SIMD) operations on “packed” plaintexts, automorphisms, and ring-switching.
However, selecting a suitable cyclotomic that has the desired number and type of plaintext “slots,” while
also balancing security and efficiency, is a highly constrained problem that often lacks an ideal solution,
resulting in wasted SIMD capacity and lost efficiency.

This work provides a suite of tools for instantiating ring-based lattice cryptography to work over
subfields of cyclotomics, which provide more flexibility and better-fitting parameters for applications. A
particular focus is on realizing FHE with optimal plaintext packing and homomorphic SIMD parallelism for
any plaintext characteristic, along with efficient packed bootstrapping that fully exploits this parallelism.

Toward this end, this (two-part) work makes the following main technical contributions, all of which
are catalyzed by Galois theory:

• For sampling and decoding errors in encryption and decryption (respectively), we construct
geometrically short, structured bases for the number rings of arbitrary subfields of prime-power
cyclotomics (and hence their composites as well).

• For fast ring arithmetic, we define and establish analogous structural properties for Chinese
Remainder Theorem (CRT) bases in abelian number rings, and give specialized fast transforms that
map between CRT bases and any similarly structured bases.

• For packed bootstrapping and homomorphic linear algebra, we give a general framework for
homomorphic evaluation of structured linear transforms in abelian number rings, and show that
CRT transforms can be evaluated using relatively few homomorphic operations.

1 Introduction

Since Gentry’s seminal work [Gen09b, Gen09a] on fully homomorphic encryption (FHE), there has
been enormous progress in its efficiency, security, and utility, both theoretically and in practice. See,
e.g., [SV11, BV11a, BV11b, BGV12, GHS12a, GHS12b, GHS12c, Bra12, GSW13], for some of the key
developments of the first few years.
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The present work is mainly concerned with the efficiency and flexibility of so-called “second generation”
exact FHE schemes, in the style of [BGV12, Bra12, FV12]. This is in contrast to more recent approximate
schemes for complex or real numbers as introduced in [CKKS17], and “third-generation” exact FHE as
introduced in [GSW13]. While approximate FHE has undergone major progress for applications like neural
networks, and third-generation schemes have seen many improvements and powerful applications, second-
generation exact FHE remains the leading approach for bulk algebraic computations on “large” plaintexts over
finite fields or rings, particularly those with a good deal of inherent parallelism. These computations include
important operations like transciphering [Gen09a]: this “upgrades” lightweight symmetric cryptography to
have full homomorphism via homomorphic evaluation of pseudorandom functions, providing enormous time
and bandwidth improvements for clients. (See, e.g., [GHS12c, ARS+15, CPS18, ADE+23, DJL+24] for
various implementations of transciphering for certain symmetric-key primitives.)

1.1 Efficiency of FHE

One main efficiency technique for FHE, introduced in [SV11], is “SIMD packing.” This encrypts a vector of
values from a small plaintext space into a single ciphertext, so that homomorphic addition and multiplication
on ciphertexts induce component-wise (“single instruction, multiple data”) addition and multiplication on the
plaintext vectors. In addition, automorphisms of the underlying ring induce certain permutations or other
algebraic operations on the plaintext vectors, which can unlock major efficiency gains [BGV12, GHS12b].
However, the precise nature and number of plaintext “slots” that can be obtained is a subtle and delicate issue
that we discuss in more detail in Section 1.1.1 below.

Another central FHE technique is Gentry’s idea of bootstrapping, which to date has been necessary for
obtaining FHE schemes that can evaluate arbitrary (unbounded) functions. In addition, “boostrapping as an
optimization” [BGV12] is also useful for more efficiently evaluating functions of sufficient complexity. We
recall that homomorphic operations increase the intrinsic “noise” in ciphertexts, which decryption removes
by a certain kind of decoding; too much noise would result in an incorrect output. Bootstrapping effectively
reduces the noise in a ciphertext, by homomorphically evaluating the decryption function—expressed, for the
ciphertext in question, as a function of the secret key—on an encryption of that key. For appropriate parameters,
this yields a lower-noise encryption of the same message, which supports further useful homomorphic
computation. For the overall efficiency of FHE, it is therefore vital to express the decryption function
as efficiently as possible in terms of the scheme’s intrinsic homomorphic features (e.g., SIMD slots) and
operations (addition, multiplication, automorphisms, etc.).

1.1.1 Cyclotomics and their Limitations

The vast majority of work on efficiency for FHE has used cyclotomic number fields and rings. There are
several reasons for this focus. For security, cyclotomics were the first class of number fields to have a
worst-case hardness theorem for the Ring-LWE problem [LPR10] (though later work gave such a theorem
for all number fields [PRS17]), and they have good geometrical properties that yield favorable parameters.
For functionality and efficiency, they have fast specialized algorithms for the ring operations used in
cryptography [LMPR08, LPR13]; they support SIMD packing and have a full set of automorphisms, i.e.,
they are Galois extensions of the rationals; they support “ring/field-switching” [GHPS12] between related
cyclotomics, etc.

On the other hand, when it comes to SIMD packing, cyclotomics can be cumbersome to use and wasteful.
Typically, an application of FHE will desire plaintext “slots” that are isomorphic to a specific finite ring
or field, e.g., Zq or Fq for a particular integer q. One can search for a cyclotomic that has the desired slot
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type, or at least an extension of it. The degree f of the extension times the number g of slots equals the
dimension of the cyclotomic (ignoring ramification, which can only decrease fg), so degrees f > 1 represent
a suboptimal “slot type” (for packing plaintexts) and “SIMD capacity” (for parallel homomorphic operations).
Unfortunately, f is difficult to control, and f > 1 is inherent for prime characteristics smaller than the
cyclotomic conductor, which is typically in the many thousands. (The effect of a large extension degree f
was mitigated somewhat in [ALJ+22], but via complex homomorphic ‘recoding’ algorithms, and still with
wasted slot space.) In addition, the degree of the cyclotomic should lie in a relatively narrow range, to provide
the desired level of security with reasonable efficiency. Altogether, the designer faces a highly constrained
optimization problem, whose solution may be far from ideal. For instance, for homomorphic evaluation of
the AES function, the most natural plaintext slot type is F28 , but the use of cyclotomics in [GHS12c] induced
a slot type of F224 , representing a threefold loss in SIMD capacity.

Beyond cyclotomics. An interesting approach to circumvent these kinds of difficulties was given in [AH17],
which proposed working in decomposition subfields of cyclotomics. Essentially, the decomposition subfield
for a prime is the largest subfield in which the prime “splits completely”; in term of SIMD slots, the subfield
has exactly the desired slot type with no wasted space (extension degree f = 1), and the optimal number of
such slots (g is the dimension of the subfield), making it ideal for homomorphic SIMD computations.1 It is
straightforward to find the decomposition subfield of any cyclotomic, for any particular prime.

However, many aspects of a complete solution for FHE, and for efficient ring-based cryptography more
generally, based on decomposition subfields were left untreated in [AH17]. As smaller matters, it considered
only prime cyclotomics (not prime-power or more general cyclotomics), and it did not give any specialized
fast algorithms for arithmetic in these subfields (like we have for arbitrary cyclotomics), but instead relied on
generic FFT convolution. More importantly, it did not consider (packed) bootstrapping in these decomposition
subfields, which is a very important tool to go with the optimal SIMD packing provided by these fields.

1.2 Contributions

This two-part work provides a suite of tools for instantiating ring-based cryptography, and FHE in particular,
over a very wide class of subfields of cyclotomics.2 By the Kronecker–Weber theorem, any abelian number
field—i.e., a finite-degree Galois extension of the rationals whose Galois group is abelian—is a subfield of
some cyclotomic, so cyclotomic subfields are indeed a broad class of number fields. A primary achievement
of our work is the realization of FHE and efficient packed bootstrapping algorithms, with optimal plaintext
packing and SIMD parallelism for any plaintext characteristic—avoiding the wasted SIMD capacity of
cyclotomics.

More broadly, our overarching contribution is a mathematical and algorithmic framework for this setting,
with an emphasis on generality, optimization of concrete geometric bounds, and asymptotic algorithmic
efficiency. We believe that these tools will be useful for many other applications in ring-based cryptography,
beyond FHE. (Implementing and optimizing our techniques in practice, and evaluating them for specific
applications of interest, will take substantial additional effort, which we leave to future work.) In summary,
our work’s main technical contributions are:

1In the setting of approximate FHE, an analogous special case of working in the maximal totally real subfield of a cyclotomic, to
get a number of real-valued slots equaling the field degree, was proposed in [KS18].

2Specifically, our treatment covers all number fields that are composites of subfields of prime-power cyclotomics. This mild
restriction ensures that all the number-ring extensions we consider are free modules over their base rings, which is needed for some of
our goals. In general, this free-module structure is not present for arbitrary cyclotomic subfields (see Footnote 5), so some restriction
is necessary.
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1. constructions of short, structured bases for a wide class of abelian number rings and their duals;
2. definitions, constructions, and factorizations of Chinese Remainder Theorem (CRT) bases in arbitrary

towers of abelian number rings, which yield fast ring arithmetic via CRT transforms;
3. a general framework for sparse decompositions of linear transforms in terms of automorphisms, which

yields fast “packed” bootstrapping and related tools for homomorphic linear algebra.

In Sections 3 and 6 we show how all this fits together in the context of homomorphic encryption with packed
bootstrapping, and in Appendix B we revisit homomorphic evaluation of the AES function [GHS12c] and
obtain optimally packed parameterizations with other beneficial features.

A common theme of our technical contributions is their heavy use of Galois theory, and the related theory
of prime splitting in Galois number-field extensions. Working with arbitrary (abelian) Galois extensions not
only provides a high level of generality and flexibility, but also highlights the fundamental aspects of the tools,
independent of implementation details.

Due to the total amount of material and the varying mathematical background needed for each specific
contribution, we have split our work into two parts. The first (present) part is focused mainly on algorithmic
and cryptographic aspects, and covers Items 2 and 3 above. The second part [PP25] covers Item 1 (along with
some associated algorithms), and is technically much heavier, involving several mathematical tools that are
not needed in this first part (and exceeding it in length). In the rest of this introduction, we give an overview
of all these contributions and how they come together for cryptographic applications.

1.2.1 Non-Contributions

We set the context by first explaining what this work does not contribute, because the prior literature already
provides it for our setting of cyclotomic subfields, without any modification. First, for Ring-LWE in arbitrary
number fields there are worst-case hardness theorems for the search [LPR10] and decision [PRS17] variants,
whose quantitative parameters do not depend on the choice of field, only its degree n.3 So, we already have
the same kinds of hardness guarantees for cyclotomic subfields as we have for cyclotomics themselves.4

Second, consistent with the theorems and recommended usage of Ring-LWE (see [LPR10, Section 3.3]),
we work with error (i.e., ciphertext “noise”) that is nearly spherical in the canonical embedding of the number
field into Cn. As noted in prior works, this makes it straightforward to analyze the error growth in ciphertexts,
because both addition and multiplication are coordinate-wise, and we can obtain rather tight bounds using
tools like subgaussianity (see, e.g., [LPR13]). Because the ambient space is merely Cn, all this analysis works
just as well in arbitrary numbers fields as it does in cyclotomics.

However, as explained in [LPR13], the size of the error in the canonical embedding is not the only relevant
quantity for decryption. Under the recommended usage of Ring-LWE and its hardness results, what we really
need is to be able to decode, under the accumulated error, a certain lattice R∨ that is dual to the ring of
integers R of the number field. This task depends on the geometry of R in the canonical embedding, and
hence on the choice of number field. This motivates the first main contribution of our work.

3In fact, even the original search-to-decision reduction for cyclotomics [LPR10] turns out to work verbatim for any Galois number
field, also with no change in the parameters.

4We remark that certain parameterizations of Ring-LWE over certain specially crafted, non-Galois number fields were shown to
be insecure [ELOS15]. However, subsequent work [CIV16, Pei16] showed that the error distributions of these weak parameters have
a very different shape from those covered by the cited hardness theorems, and in fact they are so narrow that they reveal several
errorless LWE equations, making them trivially easy to break. Moreover, it was also shown in [Pei16] that any parameterization
conforming to the hardness theorems, over any number field, is provably immune to the class of attacks from [ELOS15].
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1.2.2 Short, Structured Bases for Abelian Number Rings

A basic requirement for ring-based cryptography over a number ring R is to have a known, relatively “short,”
and preferably structured Z-basis of the ring, i.e., a set of ring elements for which every x ∈ R can be written
uniquely as an integer linear combination of these elements. Equivalently, viewing R as a lattice, one can see
these elements simply as short vectors that form a basis of the lattice. Here “short” is typically measured in
the canonical embedding of the ring, and “structured” is elaborated upon below.

Knowledge of some basis ofR is needed for merely representing and operating on ring elements. Moreover,
a short basis is needed for removing error in decryption, which recovers some “noisy” encoding of the
plaintext, and decodes it using the short basis. Finally, for computational efficiency (see Section 1.2.3 below
for details), it is advantageous to have a structured basis, i.e., one that is the Kronecker (or tensor) product of
relative bases going down a tower of intermediate subrings of small relative degree at each step. For example,
the “powerful” basis (so named in [LPR13]) of an arbitrary cyclotomic is excellent in all these respects: it
consists of optimally short ring elements, and it is the tensor product of relative bases going down a tower of
cyclotomic rings of minimal relative degrees.

Our contribution. In the second part of this work [PP25], we construct two kinds of short, structured, and
efficiently computable bases for a wide class of abelian number rings, namely, any subfield of any power-of-p
cyclotomic for prime p, or the composite of such subfields for distinct primes. The first kind of basis is highly
structured as a tensor product going down a tower (like the powerful basis), and has length within a

√
n factor

of optimal in its number field, where n is the degree of the field. Moreover, its length is within a
√
dn factor

of the best possible in any degree-n number field, where d | (p− 1) measures “how far” the field is from
cyclotomic (formally, d is the relative degree of the smallest extension field that is cyclotomic). The second
kind of a basis has less structure, though still enough to support at least one kind of fast CRT transform, and
both it and its dual are optimally short for their number field. Finally, by tensoring we immediately get short,
structured bases for the composites of any number of prime-power cyclotomic subfields, for distinct primes.

Our constructions build on ideas from, and significantly generalize, the work of [Bre97], which gave
bases (that happen to be short) for the number rings of cyclotomic subfields over the integers Z, or more
generally, relative bases over cyclotomic base rings. However, this is not sufficient for our purposes, because
to obtain the desired structure we need relative bases over non-cyclotomic number rings. Indeed, within any
non-cyclotomic subfield of a prime-power cyclotomic, all of its subfields are non-cyclotomic (except for Q).
Therefore, the main results from [Bre97] do not provide any nontrivially structured Z-bases for our desired
fields, just “monolithic” bases over Z.

We point out that some limitation on the abelian number ring or underlying tower structure is necessary
for constructing relative bases (whether short or not), because some abelian number-ring extensions do not
have a relative basis at all, i.e., they are not free as modules over their base rings.5 Our limitation is a mild
one that supports a natural approach for choosing a suitable ring: select a suitable subfield of the power-of-p
cyclotomics for various distinct primes p, then tensor the results together to get a large enough dimension and
number of slots.6

Our constructions of short, structured bases are technically heavy, but for cryptographic applications, only
5A simple non-free example arises from certain subfields of the 15th cyclotomicL = Q(ζ15). ThenGal(L/Q) ∼= Z∗

15
∼= Z∗

3×Z∗
5 .

Let H := ⟨(1,−1)⟩ ⊆ H ′ := ⟨(−1, 2)⟩ be the (multiplicative) cyclic subgroups generated by (1,−1) and (−1, 2), respectively;
note that (1,−1) = (−1, 2)2. Then letting K′ := LH′

⊆ K := LH respectively be the fixed fields of H ′ and H , the ring of
integers OK turns out to be non-free as a module over OK′ , i.e., it has no OK′ -basis.

6Indeed, to get slots that are isomorphic to a desired prime field Fr , there is even a “best possible” subfield (yielding the most
slots) of the power-of-p cyclotomics for each prime p ̸= r; see Lemma A.1.
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their geometric norms and Kronecker-product structure are relevant. Therefore, we have separated the details
of this contribution into the second part of this work [PP25]. See Section 2.3 for the formal statements of the
constructions, their relevant properties, and some further details.

1.2.3 Fast Ring Arithmetic via Structured CRT Bases and Transforms

In ring-based cryptography over cyclotomics, the Chinese Remainder Theorem (CRT) representation is
an important and widely used feature enabling efficient ring arithmetic modulo certain integers. In this
representation, both addition and multiplication of (quotient-)ring elements respectively correspond to
coordinate-wise addition and multiplication of their CRT-coefficient vectors, which is very fast. In addition,
there are fast algorithms that map between the CRT representation and other bases that are used for various
purposes, like sampling errors and decryption. These CRT transform algorithms are closely related to the
Number Theoretic Transform (NTT), which is a finite-field variant of the Fast Fourier Transform (FFT).
Specialized fast CRT transforms were given for, e.g., power-of-two cyclotomics in [LMPR08], and for arbitrary
cyclotomics in [LPR13].

A second important application of the CRT representation is for efficient bootstrapping of “packed”
ciphertexts—i.e., those that encrypt a large amount of plaintext data—as initially proposed in [GHS12a]. In
one of two main parts of packed bootstrapping, we need to homomorphically evaluate the CRT transform (and
its inverse) efficiently, using the FHE scheme’s “native” homomorphic operations.7 This homomorphically
moves the “noisy decryption coefficients” into the CRT slots for SIMD noise removal, and then back again
(see Section 3.2 for further details). Efficient homomorphic CRT transforms were given in [GHS12a] (and
concretely implemented in [HS15]) based on automorphisms, and in [AP13] (implemented in [CPS18]) based
on ring/field-switching [GHPS12].

Our contribution. The mathematical theory underlying CRT representations in cyclotomics holds more
generally for arbitrary abelian (Galois) number-field extensions, and in particular for cyclotomic subfields.
In Section 5 we build on this theory for computational and cryptographic purposes. First, we define the
CRT basis of any abelian extension of number rings (modulo a suitable ideal), and derive some of its key
structural properties. Most importantly, any CRT basis factors as the tensor product of relative CRT bases
going down any tower of intermediate number rings (see Lemma 5.11). In addition, any CRT basis can be
“lifted” or “lowered” to a “parallel” abelian extension, according to the fundamental Galois correspondence
(see Lemma 5.7).

We then use the factorization of CRT bases to give fast CRT-transform algorithms that map between the
CRT basis and any other similarly structured basis (including the short ones described above)—both “in the
clear” for basic ring arithmetic, and homomorphically for packed bootstrapping. The former algorithms work
directly on coordinate vectors (relative to the source and target bases), and immediately yield fast addition
and multiplication in general abelian number rings. But for homomorphic evaluation, native homomorphic
operations on ciphertexts do not support direct manipulation of plaintexts’ coordinate vectors, so a different
approach is needed. Using the general framework described next in Section 1.2.4, we show that CRT
transforms can also be expressed in terms of relatively few automorphisms, which allows them to be efficiently
evaluated homomorphically.

Interestingly, although the tensor-product form of the CRT basis is essential to both kinds of CRT-transform
algorithms, they work in different ways, and each one relies on a different extra feature of the CRT factors.

7The other main part is a nonlinear “rounding” operation that is applied to all of the SIMD slots in parallel. This has known
solutions (e.g., [GHS12a, AP13, CH18, GIKV23]) that are independent of the linear part, so we do not consider it further in this work.
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Most notably, the “in the clear” algorithm is best run “bottom up” (see Section 5.4), whereas a “top down”
evaluation is needed when using automorphisms (see Sections 1.2.4 and 4).

As a related contribution, we give tools for finding cyclotomic subfields that have desired features.
Specifically, for a given “slot type”—e.g., a certain prime-power finite field—these tools give cyclotomic
subfields that have a desired number of CRT slots of exactly that type, with no “wasted capacity.” See
Appendix A for details and Figure 1 for examples.

1.2.4 Homomorphic Structured Transforms via Automorphisms, for Bootstrapping

As mentioned above in Section 1.2.3, [GHS12a] expresses CRT transforms on certain cyclotomics in terms
of relatively few automorphisms. Because ring-based FHE schemes support automorphisms as a native
homomorphic operation, this immediately yields efficient homomorphic evaluation of CRT transforms,
which is one of two main steps in packed bootstrapping. (In the realm of approximate FHE, [CCS19]
did similarly for CRT transforms over the complex numbers, in power-of-two cyclotomics.8) Subsequent
work [HS14, HS15, HS18] improved and generalized these ideas to build a flexible toolkit for homomorphic
evaluation of various linear transforms and related linear-algebraic algorithms, but limited to cyclotomics.

Our contribution. In Section 4 we give analogous tools for expressing “structured” linear transforms in
terms of automorphisms, in arbitrary (finite) Galois extensions, via a simple and general framework. We
build upon the standard fact that in any such extension L/K, any K-linear function can be expressed as
an L-linear combination of the automorphisms. (See Lemma 4.1.) For efficient homomorphic evaluation,
we want this linear combination to be “sparse,” i.e., to use only a small number of automorphisms. (Each
automorphism has a moderate cost to evaluate homomorphically, because it involves a key switch.)

We achieve this goal by a combination of two techniques. First, we focus on structured linear transforms
that map between bases having tensor-product factorizations going down a tower, like our short and CRT
bases. As with the “in the clear” CRT transforms described above, this leads to a corresponding sparse
decomposition of the transform, which maps each factor of one basis to its counterpart in the other, in
sequence (see Equation (4.3)). Sparsely mapping a factor “high” in the tower is immediate, because this
corresponds to a linear function on a low-degree extension. But in general we cannot map “low” factors
sparsely, without changing the higher factors as a side effect. Yet amazingly, when the high factors form a
CRT basis, it turns out that we can preserve them while sparsely mapping the “low” factors! (See Lemmas 4.3
and 5.13.) So overall, we can map between the CRT basis and any other similarly structured basis, using few
automorphisms.

This sparse-decomposition perspective is also useful more broadly, for homomorphic linear algebra and
other algorithms (cf. [HS14, HS18]). Notably, the tensor-product form of the CRT basis enables flexible data
movement among SIMD slots. More specifically, the slots can be seen as arranged in a multidimensional
array (or tensor), whose shape matches the factorization of the Galois group into a product of subgroups; each
subgroup then acts independently and transitively along its own dimension of the array. (See Remark 5.12.)
So, beyond having optimal SIMD packing via a desired slot “type,” one can also design a ring so that the
slots are arranged in a desired “shape,” to support the application’s specific needs. As an illustration of this
flexibility and its tradeoffs, in Appendix B we give two example parameterizations for homomorphic AES
evaluation, whose array of slots has a few moderate dimensions in one case, and several small dimensions in
the other.

8The second part of this work [PP25] gives a fine-grained tensor-product factorization of a CRT-like basis (over R or C) for
the number field’s canonical embedding. Our sparse-transform framework can be slightly adapted to this setting to recover the
homomorphic CRT transform of [CCS19], along with analogous ones for non-power-of-two cyclotomics and cyclotomic subfields.
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1.3 Guide to the Rest of the Paper

For the reader’s convenience, here we summarize the structure, contents, and dependencies for the remainder
of the paper.

• Section 2 gives the mathematical preliminaries, covering the necessary Galois theory in Section 2.1,
the needed algebraic number theory in Section 2.2 (which by now is mostly standard in the lattice
cryptography literature), and the results we need from [PP25] in Section 2.3.

• Section 3 abstracts out (from [BGV12, Bra12, FV12, LPR13, CKKS17]) a general template for ring-
based homomorphic encryption that works over the ring of integers in any number field, highlighting
the computational aspects that need to be addressed. This template can be understood with just the
basics of algebraic number theory from Section 2.2.

• Section 4 lays out a framework for expressing linear functions on arbitrary (finite) Galois extensions—
and Galois number fields in particular—as linear combinations of their automorphisms, which can be
evaluated homomorphically. We also give sufficient conditions that yield sparse decompositions, in
terms of relatively few automorphisms. This framework can be understood with just the background on
Galois theory from Section 2.1.

• Section 5 defines the Chinese Remainder Theorem (CRT) basis of an arbitrary abelian extension of
number rings, modulo a suitable ideal. We factor the CRT basis as the Kronecker product of CRT
bases going down any tower of intermediate number rings, and use this to obtain two kinds of sparse
decompositions of CRT transforms: one that works directly on coefficient vectors “in the clear,” and
(using the framework from Section 4) one in terms of automorphisms. The material in this section
can be understood with the background on algebraic number theory from Section 2.2, especially
Section 2.2.3.

• Section 6 uses our tools to instantiate the homomorphic encryption template from Section 3 computa-
tionally, with fast algorithms. This material relies on the details of the template, and the main results
from Sections 4 and 5.

• Appendix A characterizes the number and type of finite-field slots that can be obtained in abelian
number fields of prime-power conductor and their composites, and provides several numerical examples.
Appendix B gives various choices of abelian number fields that support homomorphic AES evaluation
with no wasted SIMD “capacity,” and compares them to the cyclotomic field used in [GHS12c].

2 Preliminaries

In this work, all rings are implicitly commutative with identity. For a ring R, a function f from an R-module
to an R-module is R-linear if f(a+ b) = f(a) + f(b) and f(r · a) = r · f(a) for all r ∈ R and all a, b.

Vectors and matrices. We denote column vectors by lower-case letters that either have an arrow, like a⃗, or
sometimes are in boldface, like a (so at and a⃗t are row vectors). We use the former for general domains, and
the latter only for vectors with real or complex entries (possibly modulo some integer). The entries ai of a
vector a⃗ are indexed by i ∈ I for some specified finite index set I; similarly, the entries Ai,j of a matrix A are
indexed by (i, j) ∈ I × J for row and column index sets I and J , respectively. Often in this work, an index
set is not of the form {1, . . . , n}, but is some other finite structure. We often apply functions to vectors or
matrices, which means element-wise application of the function.
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For matrices (including vectors as a special case) A and B over a ring, and having respective index sets
I × J and I ′ × J ′, their Kronecker product A⊗B is the matrix having index set (I × I ′)× (J × J ′) whose
entries are (A⊗B)(i,i′),(j,j′) = ai,j · bi′,j′ . A central fact about the Kronecker product is the mixed-product
property, which says that for matrices A,B as above and C,D having respective index sets J ×K,J ′ ×K ′,
we have that (A⊗B) · (C ⊗D) = (AC)⊗ (BD), which has index set (I × I ′)× (K ×K ′).

Group actions. A group action for a group G and a set S, called a G-set, is a function ⋆ : G × S → S,
typically used as an infix operator, that satisfies e⋆s = s where e ∈ G is the identity, and g ⋆ (h⋆s) = (gh)⋆s.
It is free if g ⋆ s = s for some s ∈ S implies that g = e. It is transitive if for any s, s′ ∈ S, there exists some
g ∈ G such that g ⋆ s = s′. Finally, it is regular if it is both free and transitive. When a particular (free and/or
transitive) action is clear by context, we often say that G acts (freely and/or transitively) on S, or that S is
acted upon (freely and/or transitively) by G. For brevity, when G acts freely on S, we say that S is G-normal,
and if G also acts transitively on S, we say that S is G-regular.

2.1 Field and Galois Theory

A field extension L/K is a pair of fields K ⊆ L where the ring operations on K coincide with those of L
when restricted to K. The field L is a vector space over K, and the degree deg(L/K) is defined as the
dimension of this space. All extensions considered in this work are implicitly of finite degree.

For subfields L1, L2 some common field M , their composite field L1L2 (also sometimes known as their
compositum) is the subfield L1L2 = {

∑r
i=1 αiβi : αi ∈ L1, βi ∈ L2, finite r} ⊆ M .

2.1.1 Automorphisms and Galois Extensions

An automorphism of a field extension L/K is a ring isomorphism τ : L → L that fixes K pointwise, i.e.,
τ(a) = a for all a ∈ K. The Galois group Aut(L/K) is the group of all such automorphisms, with function
composition as the group operation. A Galois extension is one for which |Aut(L/K)| = deg(L/K), and its
Galois group is usually denoted Gal(L/K). For concision, a Galois extension whose Galois group is abelian
(or cyclic, etc.), is simply said to be abelian (or cyclic, etc.). In this work we typically work with abelian
Galois groups (even though this is not required for a few select results), so throughout this overview the reader
may wish to focus on that case.

Any Galois group G = Gal(L/K) acts on L in the natural way, via τ ⋆ x = τ(x). Therefore, it also acts
on any subset of L (or collection of such subsets) that is closed under G. This action is not necessarily free,
since τ(x) = x for any τ ∈ G and x ∈ K, but for certain (collections of) subsets of L it may be.

The fundamental theorem of Galois theory says that for any (finite) Galois extension L/K, there
is a bijective correspondence between its intermediate fields, also known as subextensions—i.e., those
fields F satisfying K ⊆ F ⊆ L—and the subgroups of Gal(L/K). Specifically, for any intermediate
field F of L/K, the corresponding subgroup is Gal(L/F ), i.e., the automorphisms of L/K that fix F
pointwise. In the reverse direction, for any subgroup H ⊆ Gal(L/K), the corresponding intermediate field is
LH := {a ∈ L : τ(a) = a ∀τ ∈ H}, the subfield of L that is fixed pointwise by every automorphism in H .

It is easy to see that the above correspondence is inclusion reversing, i.e., for any intermediate fields
F1, F2 of L/K, we have that Gal(L/F1) ⊆ Gal(L/F2) if and only if F1 ⊇ F2. From this it follows that the
intersection and join of (i.e., subgroup generated by) their Galois groups are, respectively,

Gal(L/F1) ∩Gal(L/F2) = Gal(L/(F1F2))

⟨Gal(L/F1),Gal(L/F2)⟩ = Gal(L/(F1 ∩ F2)) .
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In particular, if L = F1F2 and both F1, F2 are Galois over F1 ∩ F2, then the join is the (internal) direct
product: Gal(L/(F1 ∩ F2)) = Gal(L/F1)×Gal(L/F2).

2.1.2 Trace and Duality

For a Galois extension L/K, the trace TrL/K : L → K is merely the sum of the automorphisms:

TrL/K(x) :=
∑

τ∈Gal(L/K)

τ(x) ∈ K .

By definition, this is K-linear, and the output is in K because it is fixed by any element of Gal(L/K).
Let b⃗ be a vector over L of K-linearly independent entries, with index set I . Then a vector b⃗∨ over L, also

with index set I , is dual to b⃗ if

TrL/K(b∨i · bi′) = δi,i′ :=

{
1 if i = i′

0 otherwise.

Clearly this is symmetric, i.e., b⃗ is dual to b⃗∨ as well. Such a b⃗∨ always exists, and is unique if b⃗ is a K-basis
of L, in which case we call b⃗∨ the dual basis of b⃗. When the extension L/K may not be clear from context
(e.g., when working with towers of extensions), we may write b⃗∨L/K in place of b⃗∨, to emphasize that it is
defined using the trace from L to K.

Fixing a K-basis b⃗ of L, any x ∈ L can be written uniquely as x = ⟨⃗b, x⃗⟩ = b⃗t · x⃗ for some coefficient
vector x⃗ over K. The dual basis directly yields this vector, as x⃗ = TrL/K (⃗b∨ · x). This is because by
K-linearity of TrL/K and by definition of b⃗∨, for the coefficient vector x⃗ over K of x = b⃗t · x⃗ ∈ L,

TrL/K (⃗b∨ · x) = TrL/K (⃗b∨ · b⃗t · x⃗) = TrL/K (⃗b∨ · b⃗t) · x⃗ = x⃗ .

In particular, the dual basis lets us transform to basis b⃗ from any K-basis a⃗ of L: we have that a⃗t = b⃗t · T
where T = TrL/K (⃗b∨ · a⃗t) is the change-of-basis matrix from a⃗ to b⃗, so a⃗t · x⃗ = b⃗t · (T x⃗) for any coefficient
vector x⃗ over K.

2.1.3 Towers of Extensions

If M/L and L/K are field extensions, then we often write M/L/K as a tower; recall that L is called an
intermediate field (or subextension) of M/K. The trace map is transitive on any such tower: TrM/K =
TrL/K ◦TrM/L.

Suppose that the entries of a vector b⃗1 over M are L-linearly independent, and the entries of a vector b⃗2
over L are K-linearly independent. Then the entries of the Kronecker product b⃗1 ⊗ b⃗2 (which is a vector
over M ) are K-linearly independent, and (⃗b1 ⊗ b⃗2)

∨M/K = b⃗
∨M/L

1 ⊗ b⃗
∨L/K

2 .

Towers of Galois extensions. If M/K is Galois, then M/L is Galois, but L/K is Galois if and only if the
subgroup Gal(M/L) ⊆ Gal(M/K) is normal. In particular, if M/K is abelian, then both M/L and L/K
are abelian as well. We have the following standard correspondence.

Lemma 2.1. Let M/L/K be a tower where M/K and L/K are Galois. Then Gal(M/K)/Gal(M/L) ∼=
Gal(L/K) via restriction to L.

10



If L1 and L2 are Galois extensions of some base field (all contained in some common field), then both
their composite L1L2 and their intersection L1 ∩ L2 are also Galois over that base field.

Lemma 2.2. Let L1, L2 be Galois extensions of K = L1 ∩ L2, and let M = L1L2. Then Gal(M/L1) ∼=
Gal(L2/K) via restriction to L2. In particular, TrM/L1

restricted to L2 is TrL2/K .

Proof. We have that

Gal(M/L1) ∼= (Gal(M/L1)×Gal(M/L2))/Gal(M/L2) = Gal(M/K)/Gal(M/L2) ∼= Gal(L2/K) ,

where the first isomorphism is the natural homomorphism, and the last one is via restriction to L2, by
Lemma 2.1.

2.2 Algebraic Number Theory

2.2.1 Number Fields

A number field K is a finite-degree field extension of the rationals Q. Concretely, it can always be represented
as K = Q(γ) ∼= Q[x]/f(x), where f(x) is the minimal polynomial over Q of γ, i.e., the unique monic
polynomial over Q of least degree for which f(γ) = 0. As a field extension, K can be Galois (and abelian or
even cyclic), have extensions or subextensions, etc., according to the above conditions.

We endow K with a geometry in the standard way via its canonical embedding σ : K → CEK , which is
the concatenation of its set EK of n = deg(K/Q) ring embeddings σ : K → C. This makes K a complex
inner-product space via the canonical (Hermitian) inner product9

⟨α, β⟩ = ⟨α, β⟩K := ⟨σ(α),σ(β)⟩ =
∑

σ∈EK

σ(α) · σ(β) ,

with the standard Euclidean norm ∥α∥ = ∥α∥K :=
√
⟨α, α⟩ = ∥σ(α)∥; we call this the canonical norm

of K. We also extend this to ∥x⃗∥ = maxi∥xi∥ for any vector x⃗ over K.

2.2.2 Rings of Integers and Ideals

The ring of integers (or number ring) of K, denoted OK , is the ring of all algebraic integers (i.e., roots
of monic polynomials with integer coefficients) in K. The ring of integers is a free Z-module of rank
n = deg(K/Q), and thus has a Z-basis b⃗ consisting of n elements of OK . For a number field extension
L/K, an element of L is in OL if and only if its minimal polynomial over K has coefficients in OK (see,
e.g., [Mat89, Theorem 9.2]).

A (nonzero) ideal of OK is a (nontrivial) additive subgroup a ⊆ OK that is closed under multiplication
by OK , i.e., OK · a ⊆ a; indeed, this is an equality because 1 ∈ OK . A fractional ideal (of OK) is a set
a ⊆ K such that da is an ideal (of OK) for some d ∈ OK . For convenience, throughout this work we
implicitly restrict all (fractional) ideals to be nonzero, unless stated otherwise.

The product of (fractional) ideals a, b is defined as the set of all finite sums of terms ab for a ∈ a, b ∈ b.
The set of fractional ideals of OK forms a group under multiplication with OK as its identity element; the
multiplicative inverse of a is denoted a−1. Ideals a, b of OK are relatively prime, also called coprime, if
a+ b = OK . Because OK is commutative, the product of any (finite number of) pairwise coprime ideals is
equal to their intersection.

9For convenience and consistency with later definitions, we arbitrarily define the inner product to be linear in its second argument
and conjugate linear in its first argument.
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Chinese Remainder Theorem. The Chinese Remainder Theorem says that for any (finite) collection of
pairwise coprime ideals ai of OK defining a =

∏
i ai, the natural ring homomorphism from the quotient

ring OK/a to the product of quotient rings
∏

i(OK/ai) is in fact an isomorphism. So, there is a unique CRT
vector c⃗ over OK/a, indexed by the i, for which c⃗ = e⃗i (mod ai), where e⃗i is the vector with 1 at index i and 0
elsewhere. By definition, the forward direction of the isomorphism maps x ∈ OK/a to the tuple x⃗ whose
ith entry is xi = x+ ai ∈ OK/ai, and the reverse direction maps such a tuple to ⟨c⃗, x⃗⟩ =

∑
i cixi ∈ OK/a.

(Observe that because ci = 0 (mod ai′) for all i′ ̸= i, and xi ∈ OK/ai, each product cixi ∈ OK/a.)

2.2.3 Prime Ideals and Splitting

In OK , an ideal p is prime if and only if it is maximal, i.e., p ̸= OK and there does not exist any ideal r of OK

such that p ⊊ r ⊊ OK . In this case, the quotient ring OK/p is isomorphic to a finite field, called the residue
field of p. A fundamental theorem is that the ring OK has unique factorization of ideals into prime ideals,
i.e., it is a Dedekind domain. Therefore, a | b (i.e., there exists an ideal c such that ac = b) if and only if
a ⊇ b for ideals a, b. For an extension L/K of number fields, an ideal p′ of OL is said to lie over the ideal
p = p′ ∩ OK of OK . If p′ is prime, then so is p (but not necessarily vice versa).

Now let L/K be an abelian extension. Then any prime ideal p of OK “splits” in OL into equal-exponent
powers of the prime ideals pℓ lying over p in OL, in the following way.10 Let G = Gal(L/K) and

D = DL/K(pℓ) := {τ ∈ G : τ(pℓ) = pℓ}
I = IL/K(pℓ) := {τ ∈ D : τ(a) = a (mod pℓ) ∀ a ∈ OL/pℓ}

respectively be the common decomposition group of all automorphisms that fix some arbitrary pℓ, and the
common inertia group of all those automorphisms that induce the identity map on OL/pℓ.11 Then the pℓ can
be indexed by ℓ ∈ G/D, so there are |G/D| of them, and the Galois group G acts on them by τ(pℓ) = pτ◦ℓ.
Therefore, this action is transitive, and is free if and only if D is the trivial group. The splitting of p in OL is
given by the factorization

pOL =
∏

ℓ∈G/D

peℓ (2.1)

into the product of g = |G/D| distinct factors, where the common exponent e = |I| is called the ramification
index of p in L. Letting Fp

∼= OK/p denote the residue field of p for some prime-power p, each residue field
OL/pℓ ∼= Fpf , where the residue degree f = |D/I| and hence efg = |G| = deg(L/K).

SIMD slots from ideal splitting. In the context of FHE, the factorization from Equation (2.1) and the Chinese
Remainder Theorem together form the foundation for plaintext “SIMD slots.” Letting the plaintext ring be
OL/pOL, it is isomorphic to the product of the g rings OL/p

e
ℓ , in which both addition and multiplication work

component-wise (“single instruction, multiple data”), so these component rings are called slots. Assuming
for now that e = 1, all the slots are isomorphic to the residue field Fpf , which is called their type; recall from
above that fg = deg(L/K), so larger f means smaller g, and vice versa. Often, we want slots that support
arithmetic in Fp

∼= OK/p (e.g., Fp
∼= Zp for K = Q and prime integer p). This is achieved with no “waste”

if f = 1 and thus g = deg(L/K); otherwise, Fp is a strict subfield of the slot type, so some of the extension’s
degree is “wasted” on a larger slot type, and fewer slots.

10The same holds if L/K is merely Galois (but not abelian), but with a somewhat more complicated formalization. It even holds if
L/K is not Galois, except that the exponents of the pℓ may vary.

11The fact that all the pℓ have the same decomposition group and inertia group is implied by the hypothesis that L/K is abelian.
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Ramification, inertness, and splitting. Returning to the mathematical theory, if e = 1 and hence
fg = deg(L/K), then p is said to be unramified in L. In this case, if D is trivial, and hence f = 1 and
g = |G| = deg(L/K), then p is said to split completely in L; at the opposite extreme, if D = G and hence
f = deg(L/K) and g = 1, then p is said to be inert in L. If e > 1, then p is said to ramify in L, and the pℓ
are said to ramify over K. If e = deg(L/K), i.e., I = D = G and hence f = g = 1, then p is said to be
totally ramified in L.

The decomposition and inertia groups allow for decomposing L/K as a tower of extensions L/LI/LD/K
in which (total) ramification, inertness, and (complete) splitting each can be isolated:

• At the top, LI is the smallest intermediate field F of L/K in which the pℓ ∩F are totally ramified in L.
So, (pℓ ∩ LI)OL = peℓ , where e = |I| = deg(L/LI), and p is unramified in LI .

• In the middle intermediate extensionLI/LD, the pℓ∩LD are inert: they split as (pℓ∩LD)OLI = pℓ∩LI ,
with relative residue degree f = |D/I| = deg(LI/LD).

• At the bottom, LD is the largest intermediate field of L/K in which p splits completely: it splits into
the product of the g = |G/D| = deg(LD/K) prime ideals pℓ ∩ LD (which do not split any further
in LI or L, as already noted).

2.2.4 Duality for Ideals and the (Co)different

Let L/K be an extension of number fields. For a fractional ideal b of OL, its dual relative to K, which is
also a fractional ideal of OL, is defined as

b∨L/K := {x ∈ L : TrL/K(x · b) ⊆ OK} .

When the field extension L/K is clear from context, we often drop the subscript and simply write b∨. It is
straightforward to verify from the definition that (b∨)∨ = b, that b∨ is a fractional ideal of OL, and that if b⃗ is
an OK-basis of b, then its dual b⃗∨ (as defined in Section 2.1.2) is an OK-basis of b∨.

(Co)different ideal. The dual ideal CL/K := O∨
L of the ring of integers, called the codifferent of L/K,

trivially contains OL. So, its inverse DL/K := C−1
L/K ⊆ OL is an ideal of OL, which is called the different

ideal of L/K. The codifferent relates the dual and inverse of any fractional ideal, as b∨ = b−1 · O∨
L. When

L/K is Galois, it is immediate that O∨
L is fixed by Gal(L/K), i.e., τ(O∨

L) = O∨
L for all τ ∈ Gal(L/K),

because OL is. In addition, TrL/K(O∨
L) = OK .

Duality over quotients. Here we naturally extend the definition of duality (Section 2.1.2) to work over
quotients of certain ideals. Letting q be an ideal of OK and b be a fractional ideal of OL, and b⃗ be a vector over
the quotient b/qb, we say that a vector b⃗∨ over b∨/qb∨ is dual to b⃗ (and symmetrically) if TrL/K (⃗b∨i · b⃗i′) =
δi,i′ ∈ OK/q. Note that this congruence relation is valid because TrL/K(b∨ · b) = TrL/K(O∨

L) = OK , and
TrL/K is K-linear so the q factor “passes through” it.

This extended notion of duality is consistent with, and inherits the properties of, the standard notion. If a
vector b⃗ is over b and b⃗∨ is over b∨ and is dual to b⃗, then b⃗ mod qb and b⃗∨ mod qb∨ are duals in this new sense.
Also, the material from Section 2.1.2 about using duals to extract coefficients and obtain change-of-basis
matrices adapts straightforwardly to this setting. That is, if b⃗ is an (OK/q)-basis of bq := b/qb and b⃗∨ is
dual to b⃗, then any c ∈ bq can be written as c = b⃗t · TrL/K (⃗b∨ · x), so any vector c⃗ over bq can be written as
c⃗t = b⃗t · T where T = TrL/K (⃗b∨ · c⃗t).
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2.3 Short Structured Bases

In the second part of this work [PP25], we construct (in two related ways) short and structured integral
bases for arbitrary abelian number fields of prime-power conductor, and bound their canonical norms. Then,
moving beyond prime-power conductors, we show that for any two abelian number fields having coprime
conductors, the Kronecker product of any respective integral bases is an integral basis of the composite field,
and the canonical norms of these basis elements are the products of the norms of their multiplicands. These
high-level statements are sufficient for cryptographic applications, and are restated below.

For any positive integer m, the mth cyclotomic field is Q(ζm) where ζm is a primitive mth root unity.
Because the mth and 2mth cyclotomic fields are isomorphic for odd m, we assume without loss of generality
that m ̸= 2 (mod 4). We let m∗ = 2 rad(m) if 4 | m, and m∗ = rad(m) otherwise, where rad(m) is the
product of all the primes that divide m (so m∗ ̸= 2 (mod 4) as well). The Kronecker–Weber theorem states
that a number field K is abelian if and only if it is a subfield of a cyclotomic field. In this case, its conductor
is defined as the smallest positive integer m for which K ⊆ Q(ζm).

Theorem 2.3 ([PP25]). Let L be an abelian number field of prime-power conductor m, let m = mℓ >
mℓ−1 > · · · > m0 = 1 be such that m∗ | m1 and mi−1 | mi for all 1 ≤ i ≤ ℓ, and let Mi = Q(ζmi)
and Li = L ∩Mi.12 There is an efficiently computable Z-basis b⃗ =

⊗ℓ
i=1 b⃗i of OL, where each b⃗i is an

OLi−1-basis of OLi , and ∥⃗b∥2 ≤ deg(M/L)ℓ · deg(L/Q) ≤ deg(M/Q) · deg(L/Q).

The Kronecker-product structure of the bases from Theorem 2.3 directly yields “sparse decompositions”
and corresponding fast algorithms for CRT transforms, both “in the clear” on coefficient vectors (see
Section 5.4) and homomorphically, using automorphisms (see Section 4). The bound on ∥⃗b∥ is within a√
deg(M/Q) factor of the minimum distance of any number ring of the same degree, and within about a√
deg(L/Q) factor of the largest successive minimum of OL. As compared with cyclotomics, this induces a

(typically mild) cost in the noise tolerance in cryptographic applications, which affects the ultimate parameters
(see Sections 3 and 6).

The next result shows that by using a different and slightly weaker structure, which is still sufficient for
fast “in the clear” transforms, we can obtain optimally short integral bases. These make it possible to decode
the rings of integers and their duals from larger error than using the bases from Theorem 2.3.

Theorem 2.4 ([PP25]). Adopt the setup from Theorem 2.3. There is an efficiently computable Z-basis
b⃗ =

⊕ℓ
i=1 b⃗i of OL, where each b⃗i has some additional structure (see [PP25] for details) and

⊕j
i=1 b⃗i is a

Z-basis of OLj . Moreover, if m = m∗, then ∥⃗b∥2 = m∗ − deg(M/L); if m > m∗, then ∥⃗b∥2 = deg(M/Q);
and (for L ̸= Q) in all cases ∥⃗b∨∥2 = (deg(M/L) + 1)/m.

In fact, the bases b⃗ from this construction are optimal in that they, and their duals b⃗∨, attain all the
successive minima of the lattices they generate. Moreover, the norm of b⃗ is within a

√
deg(M/L) ≤

√
φ(m∗)

factor of the minimum distance for any number ring of the same degree, and the norm of the dual basis is less
than 1, which suffices for applications. Lastly, these bases have enough structure to support fast “in the clear”
CRT transforms for ring arithmetic (building on Section 5.4). However, we do not yet know if they have sparse
decompositions in terms of automorphisms, but this is relevant only for homomorphic linear transforms.

Finally, with our short structured integral bases for abelian number fields of any prime-power conductor in
hand, we can use the Kronecker product to get such bases for their composite fields (which can have arbitrary
conductors).

12Note that Mℓ/Mℓ−1/ · · · /M1/M0 is a tower of cyclotomics (with M0 = Q), hence we also have the tower
Lℓ/Lℓ−1/ · · · /L1/L0.
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Lemma 2.5 ([PP25]). Let L = L1L2 for abelian number fields L1 and L2 with coprime conductors. Then
∥x1 · x2∥L = ∥x1∥L1 · ∥x2∥L2 for any xi ∈ Li, and if b⃗1 and b⃗2 are Z-bases of OL1 and OL2 , respectively,
then b⃗1 ⊗ b⃗2 is a Z-basis of OL.

3 Homomorphic Encryption Template

There are several homomorphic encryption schemes based on the Ring-LWE problem over rings in number
fields, where the primary focus in the literature has been on cyclotomic rings. Adapting the presentation
in [LPR13], here we abstract out a general template that works over the ring of integers in any number field,
defining just the parts of the scheme that are relevant to this work. For our purposes, the prior schemes differ
mainly in how they encode plaintexts and perform homomorphic multiplication, so the template applies
equally well to the one of [BGV12], ones following the “scale invariant” methods of [Bra12, FV12], and the
“approximate arithmetic” one of [CKKS17].

Throughout the template, we first describe clusters of related features purely mathematically, without
regard to algorithmic implementation. We then remark how a fast instantiation of those features is enabled by
the new tools given in this work; the details may be found in Section 6.

3.1 Homomorphic Encryption Scheme

A Ring-LWE encryption scheme is defined over the ring of integers R = OK of a number field K/Q, and
is parameterized by a plaintext modulus p and a ciphertext modulus q ≫ p, which are positive integers.13

Recall that C := R∨ ⊇ R is the fractional dual (or “codifferent”) ideal of R, relative to Q. For any positive
integer r (and specifically, r = p and r = q), define the quotient ring Rr := R/rR, the quotient R-module
(and Rr-module) Cr := C/rC, and more generally, Ci

r := Ci/rCi for any power i ≥ 0.

3.1.1 Plaintext Encoding, Ciphertexts, and Decryption

The plaintext ring is Rp, a secret key is an element s ∈ C, and a ciphertext is a pair

c = (c0, c1) ∈ Cq ×Rq for which c(s) := c0 + c1 · s ∈ Cq

is a “noisy encoding,” modulo qC, of the plaintext.14 Essentially, the ciphertext may be seen as an affine linear
polynomial c(S) in a variable S that represents the secret key, though its coefficients come from different
modules.

For concreteness, in this template we use a “least-significant digit” noisy plaintext encoding, à la [BV11a,
BV11b, BGV12], for which p and q must be coprime for security.15 An important part of this encoding is an
R-module isomorphism θ : Cp → Rp for which θ−1(µ) = µ mod pC (using the natural inclusion R ⊆ C),

13More generally, the plaintext “modulus” could be any ideal p of R having a known short Z-basis. This approach was used
in [CLPX18, GV25] with cyclotomic rings to get smaller noise growth (under homomorphic operations) for characteristic-p plaintext
rings, for large p of very special form. This idea works equally well in our setting of general or abelian number fields, and may
even enlarge the class of characteristics p for which this technique can usefully apply. At minimum, our techniques focused on
decomposition subrings allow for avoiding wasted “SIMD capacity” in this approach.

14The use of the dual C = R∨ here is important for both security and error tolerance: the known hardness results for Ring-LWE are
obtained most directly and tightly for the form of the problem involving C and spherically bounded error (see [LPR10, Section 3.3]),
and having a short basis of R enables efficient decoding of C under such error; see Section 6.2 for details.

15An analogous “most-significant digit” encoding can be given for “scale-invariant” schemes à la [Bra12, FV12], along with an
approximate encoding à la [CKKS17].
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and θ(z) = t · z mod pR for some t ∈ D = C−1 satisfying t = 1 (mod pR). Such t exists (and can be
computed efficiently) by the Chinese Remainder Theorem as long as D and pR are coprime, or equivalently, if
no prime divisor of p ramifies in K.16 A noisy encoding of µ ∈ Rp is an error term e ∈ θ−1(µ) = µ+pC that
is “decodably small” relative to qC—i.e., from e mod qC (an element of Cq) we can efficiently recover e ∈ C.
Accordingly, decryption computes c(s) ∈ Cq, decodes it to e ∈ C, and outputs µ = θ(e mod pC) ∈ Rp.

For an instantiation, fast multiplication in Rq, and more generally across the modules Ci
q, is enabled by

the use of a CRT-basis representation and fast CRT transforms, as given in Section 5 (see Remark 5.6 and
Section 6.1 for details). And we can efficiently sample error terms, and get suitable noisy-encoding and
decoding functions, using short, structured bases of C and R (see Section 6.2 for details).

3.1.2 Homomorphic Operations

The scheme supports various homomorphic operations on encrypted plaintexts. We recall the main ones:
addition, multiplication by a public value in Rp, multiplication of two encrypted values, and (as shown
in [GHS12b]) applying an automorphism ofK. In all of the following, let ciphertexts c = (c0, c1), c

′ = (c′0, c
′
1)

respectively encrypt plaintexts µ, µ′ ∈ Rp via noisy encodings e, e′ ∈ C.

Linear operations. To homomorphically add the plaintexts encrypted by c, c′, we simply compute
c+ = (c0 + c′0, c1 + c′1). Observe that

c+(s) = (c0 + c′0) + (c1 + c′1) · s = c(s) + c′(s) = e+ e′ (mod qC) ,

so c+ decrypts to µ+ µ′ = θ(e+ e′ mod pC), as long as the combined error e+ e′ is small enough.
To homomorphically multiply the plaintext encrypted by c by a public value v ∈ Rp, we simply output the

ciphertext c̃ = ṽ · c = (c̃0 = ṽ · c0, c̃1 = ṽ · c1), where ṽ ∈ R is a “small” representative of v. Observe that

c̃(s) = ṽ · c(s) = ṽe (mod qC) ,

so c̃ decrypts to v · µ = θ(ṽe mod pC), as long as the enlarged error ṽe remains small enough.

Multiplication. To homomorphically multiply the two encrypted plaintexts, we first multiply their ciphertexts
as formal polynomials. That is, we compute c×(S) = (c0 + c1S)(c

′
0 + c′1S), which we represent as its triple

of coefficients
c× = (c0c

′
0 , c0c

′
1 + c1c

′
0 , c1c

′
1) ∈ C2

q × Cq ×Rq .

Observe that c×(s) = c(s) ·c′(s) = e ·e′ (mod qC2) is congruent to the product of the two noisy encodings.17

However, note that the resulting ciphertext and noise product involve C2 ⊇ C, which no longer matches
the initial setup. To address this, we multiply the ciphertext by a known small value d ∈ D := C−1 ⊆ R
for which pR is coprime to d · D−1 ⊆ R, and hence to dR as well (because pR and D are coprime by
assumption). Specifically, we let

c̃× = d · c× ∈ Cq ×Rq ×Dq ,

so that c̃×(s) = d · e · e′ (mod qC). Thus, c̃ decrypts to dµµ′ = θ(dee′ mod pC) ∈ Rp, as long as dee′ ∈ C
is small enough relative to qC. The extra factor(s) of d can be tracked and removed upon decryption.

16This coprimality condition can be avoided by generalizing to θ−1(µ) = u · µ mod pC for some u ∈ C such that the ideals
uD ⊆ R and pR are coprime, and using t ∈ D such that tu = 1 (mod pR); see [LPR10, Section 2.3.9] for further details.

17For a most-significant-digit encoding as used in [Bra12, FV12], a slightly different kind of “scale-invariant” ciphertext
multiplication is used, but the outcome is substantially the same.
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Effectively, d is a kind of “expansion factor” associated with maintaining the invariant that products of
noisy encodings remain in C, and remain spherically bounded in their distributions. In any abelian number
field of conductor m, just as in the cyclotomic case we can use d = m̂ ∈ D, where m̂ = m/2 if m is even
and m̂ = m otherwise; moreover, some fields have even smaller choices.

Finally, we convert c̃× back to a linear polynomial in S by applying a “key-switching” operation to the
quadratic coefficient c1c′1 ∈ Rq of c×. This uses a “gadget decomposition” to express the coefficient in terms
of short elements of R, and a “key-switching hint” consisting of a suitable encryption of ds2 ∈ C under s.18

This just additively increases the error size by some fixed amount, and results in a ciphertext whose form
matches the initial setup.

Automorphisms. To homomorphically apply an automorphism τ of K/Q, we first compute the ciphertext
cτ = (τ(c0), τ(c1)), which is in Cq ×Rq because τ(q) = q, τ(R) = R, τ(C) = C. Observe that

cτ (τ(s)) = τ(c0) + τ(c1) · τ(s) = τ(c0 + c1 · s) = τ(e) (mod qC) .

Moreover, since automorphisms preserve the size of the noise (in the canonical embedding) and τ(t) =
1 (mod pR), we see that cτ is an encryption of θ(τ(e) mod pC) = t·τ(e) mod pC = τ(t·e mod pC) = τ(µ),
but under the “conjugate” secret key τ(s) ∈ C. To make cτ a proper encryption under s, we apply key-switching
to the coefficient τ(c1), using a suitable encryption of τ(s) under s.

Instantiation. For an instantiation, both lifting v ∈ Rp to a small representative ṽ ∈ R, and key-switching
with little additional noise, are enabled by having a short basis of R (the details are standard, and exactly as
in [LPR13]). Fast multiplication by ṽ and d, and application of automorphisms on Rq and Cq, are also enabled
by the use of a CRT-basis representation and fast CRT transforms, as given in Section 5 (see Remark 5.6 and
Section 6.1 for details).

3.2 Packed Bootstrapping Framework

Here we recall the relevant details of the efficient “packed” bootstrapping template of [GHS12a], which was
further refined in [AP13]. The main idea is to efficiently express, via the FHE scheme’s native operations,
the decryption of a fixed ciphertext c (which is to be bootstrapped) as a function of the secret key s. The
bootstrapping algorithm homomorphically evaluates this function on an encryption of s, yielding an encryption
of the decryption of c, i.e., an encryption of the same underlying plaintext. For appropriate parameters, the
resulting ciphertext will have significantly smaller noise than c has, allowing further homomorphic operations.

Recall from above that decryption of a ciphertext c works primarily by “decoding” c(s) ∈ R∨
q to R∨

p .
(In the bootstrapping context we ignore the final module isomorphism θ that maps back to Rp, because
we want to continue operating homomorphically on the plaintext.) As detailed in Section 6.2, this is
implemented coordinate-wise relative to a certain Z-basis d⃗ of R∨, which is thus also a Zr-basis of R∨

r for
r = p, q. More specifically, writing c(s) = ⟨d⃗, z⟩ ∈ R∨

q for some coefficient vector z over Zq, decryption
computes ⟨d⃗,Decode(z)⟩ ∈ R∨

p , where Decode : Zq → Zp is a suitable non-linear decoding function, applied
entry-wise to z. For example, for the least-significant-digit noisy encoding used in our template, Decode lifts
its argument to the smallest Z-representative, then reduces modulo p.19

18This assumes the security of a key-dependent encryption; alternatively, one can instead key-switch using encryptions of ds2
and s under an independent key s′.

19For the most-significant-digit encoding, Decode simply “scales down” and rounds, as Decode(z) = ⌊ p
q
· z⌉ ∈ Zp.

17



The bootstrapping template of [GHS12a, AP13] homomorphically does the decoding in parallel across all
the coordinates at once, using the scheme’s intrinsic SIMD operations. To do this, it expresses the decryption
function as three phases, and evaluates them homomorphically on the encrypted secret key:

1. The first phase moves the entries of z into the SIMD “slots.” More precisely, this phase computes
c(s) = ⟨d⃗, z⟩ and maps it to ⟨c⃗, z⟩, where c⃗ is the standard basis of the SIMD slots, i.e., each entry of c⃗
is 1 in a distinct slot and 0 in all the other slots. In other words, this map is the Zq-linear function that
sends each entry of d⃗ to the corresponding entry of c⃗.

2. The second phase applies Decode in parallel across all the slots (i.e., the coordinates of z), yield-
ing ⟨c⃗,Decode(z)⟩. This can be expressed algebraically using additions and multiplications (see,
e.g., [GHS12a, AP13] and several subsequent works), and is outside the scope of this paper.

3. The third phase moves the entries of the slots back to the original basis d⃗, essentially inverting the linear
function from the first phase. In other words, it evaluates the linear function that sends each entry of c⃗
to the corresponding entry of d⃗, resulting in ⟨d⃗,Decode(z)⟩ ∈ R∨

p .

For an instantiation, the basis c⃗ is in fact the CRT basis of R∨
q (see Section 5.1). Using the matching

Kronecker-product structures of both c⃗ and d⃗, and other advantageous properties of c⃗, we can efficiently
homomorphically evaluate the CRT transforms from the first and third phases via homomorphic automorphisms,
following the framework in Section 4 (see Section 6.3 for details).

4 Sparse (Automorphism) Decompositions

In this section we lay out a general framework for expressing linear functions on an arbitrary Galois extension
in terms of its automorphisms. Our ultimate goal is to obtain sparse decompositions for “structured” functions
of interest, like Chinese Remainder Transforms (CRTs). Such a decomposition expresses a function as a linear
combination of relatively few automorphisms, or more generally, as the (sequential) composition of a small
number of such linear combinations. This allows us to efficiently evaluate the function homomorphically,
since applying an automorphism is an efficient “native” operation in homomorphic encryption.20

To get a sparse decomposition for a structured function, we view it as mapping from one structured
(Kronecker-product) vector of elements to another, and map each factor to its counterpart in sequence. The
primary challenge is to ensure that each factor can be mapped sparsely, without affecting the other factors.

4.1 Arbitrary Linear Functions

It is well known (and straightforward to prove) that the automorphisms of any field are linearly independent
over the field. So, for any finite Galois extension L/K, because the automorphisms τ ∈ Gal(L/K) are
K-linear and there are deg(L/K) of them, they form a basis for the space of K-linear functions from L to
itself. In other words, any such function can be expressed as an L-linear combination of automorphisms.
Lemma 4.1 makes this explicit, by giving the L-coefficients for a linear function that maps particular inputs to
desired outputs, using duality (see Section 2.1.2). It also adapts to linear functions on certain quotients of
fractional ideals in number fields.

20By contrast, native homomorphic operations cannot directly manipulate coefficient vectors in most bases of interest, so standard
sparse decompositions and algorithms that operate on coefficient vectors (e.g., the Number-Theoretic Transform) do not translate well
to homomorphic evaluation.
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Lemma 4.1. Let L/K be any finite Galois extension with G = Gal(L/K), and b⃗, c⃗ be over L with the same
index set, such that b⃗ is K-linearly independent with dual b⃗∨. Then f : L → L defined as

f(x) :=
∑
τ∈G

⟨c⃗, τ (⃗b∨)⟩ · τ(x) (4.1)

is a K-linear function for which f (⃗b) = c⃗.
Alternatively, let L/K be a Galois extension of number fields, and let

• r be an ideal of OK that is coprime with the different ideal D = DL/K ⊆ OL, with d ∈ D satisfying
d = 1 (mod r);

• b be a fractional ideal of OL that is fixed by every τ ∈ G (e.g., OL or O∨
L);

• b⃗ and c⃗ be over b/rb, and b⃗∨ be over b∨/rb∨ and dual to b⃗.

Then g : b/rb → b/rb defined as g(x) = d · f(x) is a (OK/r)-linear function for which f (⃗b) = c⃗.

Note that in the second claim, the coefficients d · ⟨c⃗, τ (⃗b∨)⟩ of the automorphisms are in OL/rOL, because
D · b · b∨ = OL (see Section 2.2.4).
Proof. First, the definition in Equation (4.1) is K-linear because every τ ∈ G is, so it suffices to show that
f (⃗bt) = c⃗t. Indeed, by multplicativity of automorphisms and the definitions of trace and duality,

f (⃗bt) =
∑
τ∈G

(c⃗t · τ (⃗b∨)) · τ (⃗bt) = c⃗t ·
∑
τ∈G

τ (⃗b∨ · b⃗t) = c⃗t · TrL/K (⃗b∨ · b⃗t) = c⃗t . (4.2)

For the second claim, Equation (4.2) holds over b · b−1 · b = D−1b modulo D−1rb. So,

g(⃗b) = d · f (⃗b) = d · c⃗ = c⃗ (mod rb)

because d ∈ D, and because d− 1 ∈ r and c⃗ is over b⃗.

4.2 Sparse Decompositions of Structured Linear Functions

Now let M/L/K be a tower of finite extensions, where M/K is abelian and hence so are M/L and L/K.
Let GM/L := Gal(M/L), which is a subgroup of GM/K := Gal(M/K), and GL/K := Gal(L/K).21 In
our setting of interest, deg(L/K) is typically small, but deg(M/L) is potentially large.

Let b⃗M/L and c⃗M/L (respectively, b⃗L/K and c⃗L/K) be vectors over M (resp., L) having the same index
set, where b⃗M/L (resp., b⃗L/K) is linearly independent over L (resp., K), and let b⃗M/K = b⃗M/L ⊗ b⃗L/K and
c⃗M/K = c⃗M/L ⊗ c⃗L/K . Alternatively, when M,L,K are number fields, we can let these vectors be over
suitable quotients as in the second part of Lemma 4.1, with no change to any of the following treatment; this
is actually the setup we will use in applications.

Our goal is to use an M -linear (alternatively, (OM/rOM )-linear) combination of the automorphisms
in GM/K to express a K-linear (alternatively, (OK/r)-linear) function f that satisfies

f (⃗bM/K) = c⃗M/K .

As shown in Lemma 4.1, this can be done generically using up to |GM/K | = dim(M/K) such automorphisms.
However, we seek a sparse decomposition, i.e., one that uses relatively few automorphisms. Here we show that
it is often possible to do so by exploiting the Kronecker-product structure of b⃗M/K and c⃗M/K , and particular
properties of the component factors of c⃗M/K .

21More generally, for all the material in this section it suffices for M/K to be Galois, and for GM/L to be a normal subgroup of
GM/K , in which case L/K is also Galois.
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Decomposing f . First, we express our desired map as the composition of two linear maps, as follows:

b⃗M/L ⊗ b⃗L/K
fL−→ c⃗M/L ⊗ b⃗L/K

fK−−→ c⃗M/L ⊗ c⃗L/K . (4.3)

More precisely,

• fL is any L-linear function for which fL(⃗bM/L) = c⃗M/L, which by L-linearity implies that

fL(⃗bM/L ⊗ b⃗L/K) = fL(⃗bM/L)⊗ b⃗L/K = c⃗M/L ⊗ b⃗L/K ;

• fK is any K-linear function for which fK(c⃗M/L ⊗ b⃗L/K) = c⃗M/L ⊗ c⃗L/K .

Then it is clear that f = fK ◦ fL is K-linear and satisfies f (⃗bM/K) = c⃗M/K , as needed.

Expressing fL. As shown in Lemma 4.1, any L-linear fL for which fL(⃗bM/L) = c⃗M/L can be obtained
as an M -linear combination of up to deg(M/L) automorphisms in GM/L. But if deg(M/L) is large, as is
often the case in our setting, this may not be as sparse as we would like.

Instead, we can proceed inductively, as long as b⃗M/L and c⃗M/L themselves factor as Kronecker products
of appropriate vectors along a tower M/L′/L, where we typically want deg(L′/L) to be small. Then we can
express fL using a decomposition analogous to the one in Equation (4.3).

After inductively “unfolding” all the decompositions, this approach requires a towerKt/Kt−1/ · · · /K1/K0

of suitable extensions, each typically of small relative degree, and decomposes the function f as

b⃗t ⊗ b⃗t−1 ⊗ · · · ⊗ b⃗1
ft−→ c⃗t ⊗ b⃗t−1 ⊗ · · · ⊗ b⃗1

ft−1−−−→

c⃗t ⊗ c⃗t−1 ⊗ · · · ⊗ b⃗1
ft−2−−−→ · · · f1−→ c⃗t ⊗ c⃗t−1 ⊗ · · · ⊗ c⃗1 ,

for appropriate vectors b⃗i, c⃗i. The following is then immediate.

Lemma 4.2. The total number of automorphisms used in the expression of f = f1 ◦ · · · ◦ ft is the sum of the
number of automorphisms used in the expression of each fi.

Expressing fK . Handling fK is more subtle. While a K-linear function on L that maps b⃗L/K to c⃗L/K
can be obtained generically from the (typically few) automorphisms of L/K, our goal and set of available
automorphisms are different: we wish to obtain a K-linear function fK on M that maps c⃗M/L ⊗ b⃗L/K to
c⃗M/L ⊗ c⃗L/K using few of the (typically many) automorphisms of M/K. We will achieve this goal for
specific target vectors c⃗M/L of interest, by showing that relatively few of the automorphisms are needed,
thanks to particular properties of c⃗M/L.

Lemma 4.3. In the expression of fK from Lemma 4.1, the coefficient of τ ∈ GM/K is

⟨c⃗M/L , τ(c⃗∨M/L)⟩ · ⟨c⃗L/K , τ |L(⃗b∨L/K)⟩ . (4.4)

In particular, the coefficient of τ is zero if ⟨c⃗M/L, τ(c⃗
∨
M/L)⟩ = 0.

Proof. By the definition of fK and Lemma 4.1, the coefficient of τ is

⟨c⃗M/L ⊗ c⃗L/K , τ(c⃗∨M/L ⊗ b⃗∨L/K)⟩ .

The claim then follows by the multiplicativity of automorphisms, the mixed-product property, and the fact
that b⃗∨L/K is over L.
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Note that the factors ⟨c⃗L/K , τ |L(⃗b∨L/K)⟩ in Equation (4.4) are exactly the coefficients in the above-
mentioned K-linear function on L that maps b⃗L/K to c⃗L/K , because the restriction of GM/K to L is GL/K .
There are deg(L/K) such factors (each repeated deg(M/L) times as τ ranges over GM/K), which may be
arbitrary for general fK .

In Section 5.3 and Lemma 5.13 we show that for the c⃗M/L component in the Kronecker-product
factorization of a CRT basis, relatively few of the factors ⟨c⃗M/L, τ(c⃗

∨
M/L)⟩ are nonzero, hence the expression

of fK from Lemma 4.1 is indeed sparse. In summary, using the approach from this subsection we can map to
a CRT basis from any similarly structured basis, using relatively few automorphisms overall.

4.3 Working “Bottom Up”

The decomposition used above in Section 4.2 works “top down,” first replacing b⃗M/L with c⃗M/L via some fL
(which may involve replacing some smaller “top” components, inductively), then replacing b⃗L/K with c⃗L/K
via some fK . By Lemma 4.3, this yields a sparse decomposition if the “top” component c⃗M/L of the target
vector has suitable properties. Alternatively, we can work “bottom up,” which is advantageous if the top
component of the map’s source vector yields a sparse decomposition.

As a primary example, consider the inverse function f−1 that maps c⃗ to b⃗ (which exists assuming c⃗ is
linearly independent over K, or alternatively, OK/r). We express f−1 = f−1

L ◦ f−1
K as follows:

c⃗M/L ⊗ c⃗L/K
f−1
K−−→ c⃗M/L ⊗ b⃗L/K

f−1
L−−→ b⃗M/L ⊗ b⃗L/K .

As with fL above, the function f−1
L can be decomposed in an analogous bottom-up way. And analogously to

Lemma 4.3, in the expression of f−1
K , the coefficient of τ ∈ GM/K has the same multiplicand ⟨c⃗M/L, τ(c⃗

∨
M/L)⟩

as it does in the expression for fK (but the other multiplicand is typically different). So, if relatively few of
these multiplicands are nonzero, we get a sparse decomposition for both f and f−1.

5 Chinese Remainder Theorem Bases and Transforms

In Section 5.1 we define the Chinese Remainder Theorem (CRT) basis of an arbitrary abelian (Galois) extension
of number rings modulo a suitable ideal, and show how it yields fast multiplication in the quotient ring (and
related quotient modules).22 In Section 5.2 we show that CRT bases admit a natural Kronecker-product
factorization into smaller CRT bases, going down any tower of intermediate number rings. We then exploit
this structure to give two kinds of “sparse decompositions” of CRT transforms, and associated fast algorithms,
that map between CRT bases and any similarly structured bases:

• “in the clear” transforms and algorithms (Section 5.4) that work directly on coefficient vectors, and
• ones expressed in terms of relatively few automorphisms (Section 5.3) via the framework of Section 4,

which yield efficient homomorphic evaluations of CRT transforms suitable for packed bootstrapping.

5.1 CRT Basis

Let L/K be a finite abelian (Galois) extension of number fields with GL/K := Gal(L/K). Let r be
a prime ideal in OK , and assume without loss of generality that the common decomposition group

22The abelian assumption is mostly for convenience; we mainly use it to ensure that all conjugate prime ideals have the same
decomposition group. Alternatively, we can use the weaker assumption that all the relevant decomposition groups are normal
subgroups.
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DL/K := DL/K(rℓ) of the prime—and hence pairwise coprime—ideals rℓ lying over r in L is trivial.23

Then recall from Section 2.2.3 that the rℓ are indexed by ℓ ∈ GL/K , which acts regularly (i.e., freely and
transitively) on them, and that r splits completely in OL, as rOL =

∏
ℓ∈GL/K

rℓ.
For our purposes it is convenient to generalize the above setup to possibly non-prime (proper) ideals, as

follows.

Definition 5.1 (Generalized complete splitting). We say that a proper ideal r of OK splits completely in OL

if rOL =
∏

ℓ∈GL/K
rℓ for some pairwise coprime ideals rℓ of OL that are conjugates, i.e., GL/K acts

transitively upon them. Without loss of generality, we index them so that ℓ′(rℓ) = rℓ′◦ℓ for all ℓ, ℓ′ ∈ GL/K .

Note that GL/K also acts freely, and hence regularly, on the rℓ by their pairwise coprimality, and hence
distinctness (this is where we use the fact that r is proper, hence so are the rℓ). In addition, the indexing of all
the rℓ is determined by the index of any one of them, by transitivity.

Remark 5.2. A necessary and sufficient condition for complete splitting is that each prime ideal factor of r
(in OK) splits completely in OL. In brief, sufficiency is simply by multiplying corresponding factors of the
complete splittings, and necessity is because a nontrivial decomposition group for some prime ideal factor
of r implies a failure of pairwise coprimality. A consequence of these observations is that each rℓ is prime if
and only if r is prime.

Suppose that proper ideal r of OK splits completely in OL, with factorization as in Definition 5.1. By the
Chinese Remainder Theorem (see Section 2.2.2), the natural homomorphism induces a ring isomorphism

OL/rOL
∼=

∏
ℓ∈GL/K

(OL/rℓ) .

That is, each element x ∈ OL/rOL can be uniquely represented as a tuple, indexed by GL/K , whose ℓth
entry is x mod rℓ, i.e., the coset x+ rℓ ∈ OL/rℓ. Addition and multiplication in OL/rOL then correspond
to component-wise addition and multiplication (respectively) of these tuples.

Recall from Section 2.2.2 that any instance of a CRT isomorphism (i.e., any collection of pairwise coprime
ideals) yields a natural CRT vector of elements modulo the product of those ideals. In the case of complete
splitting we call this a CRT basis, as justified by Lemma 5.5 below.

Definition 5.3 (CRT Basis). Let r be a proper ideal of OK that splits completely in OL, as rOL =∏
ℓ∈GL/K

rℓ. Then the associated mod-r CRT basis of OL/OK is simply the CRT vector c⃗ over OL/rOL,
indexed by GL/K , for these rℓ. Namely, cℓ = δℓ,ℓ′ (mod rℓ′) for all ℓ, ℓ′ ∈ GL/K , or more compactly,
c⃗ = e⃗ℓ (mod rℓ) (where e⃗ℓ is the indicator vector whose ℓth entry is 1 and the rest are 0).

Notice that c⃗ is uniquely defined up to the indexing of the ideals rℓ, which is determined by the indexing
of any one of them. However, the choice of the ideals rℓ themselves is not unique unless r is prime, so the
CRT basis is associated with a particular splitting, which will always be clear from context. Also, since GL/K

acts regularly on the rℓ via τ(rℓ) = rτ◦ℓ, the same goes for the cℓ.

Remark 5.4 (Self-duality of the CRT basis). Observe that c2ℓ = cℓ and cℓ · cℓ′ = 0 for ℓ ̸= ℓ′ (where recall
that both equalities are modulo rOL). So, the CRT basis c⃗ is essentially self-dual modulo r (see Section 2.2.4).

23If DL/K is non-trivial, then L can be replaced by the decomposition subfield L̃ = LDL/K of the rℓ. Then r splits completely
in OL̃, or equivalently, the decomposition group of the primes lying over r in OL̃ is trivial.
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More specifically, c⃗∨ = c⃗ mod rO∨
L, which can be seen as a vector over O∨

L/rO∨
L by the inclusion OL ⊆ O∨

L.
This is because TrL/K(cℓ · c∨ℓ′) for ℓ ̸= ℓ′ is

TrL/K(rO∨
L) = rTrL/K(O∨

L) = rOK = 0 (mod r) ,

and for ℓ = ℓ′ is
TrL/K(cℓ + rO∨

L) =
∑

j∈GL/K

cj + rTrL/K(O∨
L) = 1 (mod r)

by the definition andK-linearity ofTrL/K , the Chinese Remainder Theorem, and becauseGL/K acts regularly
on the cℓ.

The following justifies the name “CRT basis.”

Lemma 5.5. The mod-r CRT basis c⃗ is an (OK/r)-basis of OL/rOL. That is, x ∈ OL/rOL if and only if it
can be expressed uniquely as x = ⟨c⃗, x⃗⟩ = c⃗t · x⃗ for some vector x⃗ indexed by GL/K over OK/r.

Proof. The claim follows mainly from the (fairly standard) fact that for all ℓ ∈ GL/K , the natural ring
homomorphism from OK/r to OL/rℓ is an isomorphism, where the rℓ are as defined in Definition 5.1; recall
that GL/K acts regularly on them. First, the homomorphism is injective: because any z ∈ OK/r is fixed
by GL/K , its CRT representation must satisfy z + rℓ′ = (ℓ′ ◦ ℓ−1)(z + rℓ) for any ℓ, ℓ′ ∈ GL/K . So, if
z, z′ ∈ OK/r are congruent modulo rℓ, then they are congruent modulo every rℓ′ , and hence are equal by
the CRT isomorphism. Similarly, the homomorphism is surjective: given any zℓ ∈ OL/rℓ, we construct
the z ∈ OL/rOL whose CRT representation has ℓ′th entry zℓ′ = (ℓ′ ◦ ℓ−1)(zℓ) ∈ OL/rℓ′ . By construction,
z = zℓ (mod rℓ). Moreover, we have that z ∈ OK/r because it is fixed by GL/K : for any τ, ℓ′ ∈ GL/K , the
CRT representation of τ(z) has ℓ′th entry

τ(z) + rℓ′ = τ(z + rτ−1◦ℓ′) = τ(zτ−1◦ℓ′) = τ
(
(τ−1 ◦ ℓ′ ◦ ℓ−1)(zℓ)

)
= (ℓ′ ◦ ℓ−1)(zℓ) = zℓ′ ,

so (the CRT representations of) τ(z) and z are equal, as claimed.
Now recall that any element x ∈ OL/rOL can be represented uniquely as x =

∑
ℓ∈GL/K

cℓ · xℓ, where
(xℓ ∈ OL/rℓ)ℓ∈GL/K

is the CRT representation of x. The final claim follows by applying the inverses of the
above natural ring isomorphisms to the xℓ (respectively), to obtain the unique coefficient vector x⃗ over OK/r
for which x = ⟨c⃗, x⃗⟩.

Remark 5.6 (Fast computation in the CRT basis). By Lemma 5.5, the CRT basis enables fast addition and
multiplication in OL/rOL via the corresponding operations in OK/r. Specifically, if x = ⟨c⃗, x⃗⟩, y = ⟨c⃗, y⃗⟩
for coefficient vectors x⃗, y⃗ over OK/r, then by the properties of the CRT basis we have that x+ y = ⟨c⃗, x⃗+ y⃗⟩
and x · y = ⟨c⃗, x⃗ ⊙ y⃗⟩, where ⊙ denotes the component-wise (Hadamard) product. It also enables fast
evaluation of automorphisms: because any τ ∈ GL/K permutes c⃗ (since GL/K acts regularly on it) via
τ(cℓ) = cτ◦ℓ, we have that τ(c⃗) = Pτ · c⃗ for the permutation matrix Pτ whose entries (ℓ, τ ◦ ℓ) are 1
for all ℓ ∈ GL/K (and the rest are zero). Since τ fixes x⃗ (because it fixes K pointwise), we have that
τ(x) = ⟨τ(c⃗), x⃗⟩ = ⟨c⃗, P t

τ · x⃗⟩.

Here we show that under the setup of Lemma 2.2, the CRT bases for corresponding extensions coincide,
which is useful both conceptually and computationally. In other words, the CRT basis of an extension “lifts”
to any corresponding “higher, parallel” extension (see also Remark 5.12 for additional consequences).
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Lemma 5.7. Let L1, L2 be abelian number fields with M = L1L2 and K = L1 ∩L2, let r be a proper ideal
of OK that splits completely in OL1 as rOL1 =

∏
ℓ∈Gal(L1/K) rℓ, and let c⃗ be the corresponding mod-r CRT

basis of OL1/OK . Then:

• rOL2 splits completely in OM , as rOM =
∏

m∈Gal(M/L2)
rm where rm = rℓOM for the restriction

ℓ = m|L1 , and

• the corresponding mod-rOL2 CRT basis of OM/OL2 is c⃗+ rOM , reindexed according to the restrict-
to-L1 isomorphism from Gal(M/L2) to Gal(L1/K) (see Lemma 2.2).

Proof. Let GL1/K := Gal(L1/K) and GM/L2
:= Gal(M/L2). We first show the claimed complete splitting

in OM . Indeed, the rm are pairwise coprime (in OM ) because the rℓ are (in OL1); we have that∏
m∈GM/L2

rm =
∏

ℓ∈GL1/K

rℓOM = rOL1OM = rOL2OM ;

and for any m′ ∈ GM/L2
with restriction ℓ′ ∈ GL1/K ,

m′(rm) = m′(rℓOM ) = ℓ′(rℓ) · OM = rℓ′◦ℓ · OM = rm′◦m .

Finally, since c⃗ = e⃗ℓ (mod rℓ) for all ℓ ∈ GL1/K , we have that c⃗+ rOM = e⃗m (mod rm) for all m ∈ GM/L2

under the stated reindexing, as needed.

5.2 Factorization of CRT Bases

In this section we show that for a tower of extensions, the CRT basis factors as the Kronecker product of CRT
bases for each step of the tower.

For the rest of this section, let M/L/K be a tower of number fields where M/K is abelian and hence
so are M/L and L/K, and define GM/K := Gal(M/K), GM/L := Gal(M/L), and GL/K := Gal(L/K).
By Lemma 2.1, restricting GM/K to L induces an isomorphism ρ : GM/K/GM/L → GL/K . This yields the
following bijective correspondence.

Definition 5.8. Fix a transversal T ⊆ GM/K of GM/K/GM/L, and define the following bijective mapping
between GM/K and GM/L×GL/K : any (m, ℓ) ∈ GM/L×GL/K corresponds to ϕ(m, ℓ) := m◦ t ∈ GM/K ,
where t ∈ T ∩ ρ−1(ℓ) is the (unique) representative element of T that restricts to ℓ.

Lemma 5.9. We have that m′ ◦ ϕ(m, ℓ) = ϕ(m′ ◦m, ℓ) for any m′ ∈ GM/L and (m, ℓ) ∈ GM/L ×GL/K .

Proof. This follows immediately from m′ ◦ ϕ(m, ℓ) = (m′ ◦m) ◦ t, where t is the representative of ℓ in T .

We stress that in general, the correspondence from Definition 5.8 is not a group isomorphism between
GM/K and GM/L ×GL/K as a product group. Instead, one can verify that it is an isomorphism under the
group law

(m, ℓ) ⋄ (m′, ℓ′) = (c ◦m ◦m′, ℓ ◦ ℓ′) (5.1)

for the “carry” element c = t ◦ t′ ◦ t̃−1 ∈ GM/L, where t, t′, t̃ ∈ T are the unique representatives for
ℓ, ℓ′, (ℓ ◦ ℓ′) ∈ GL/K , respectively. Observe that c depends only on ℓ, ℓ′ (not m or m′), and that it is an
element of GM/L because c|L = ℓ ◦ ℓ′ ◦ (ℓ ◦ ℓ′)−1 is identity.

Our next lemma shows that, analogously to the situation for completely splitting prime ideals, generalized
complete splitting for M/K implies the same for both M/L and L/K.
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Lemma 5.10. Let r be a proper ideal of OK that splits completely in OM , as

rOM =
∏

τ∈GM/K

rτ =
∏

m∈GM/L

ℓ∈GL/K

rm,ℓ (5.2)

where rm,ℓ := rτ for the corresponding τ = ϕ(m, ℓ) from Definition 5.8. Then:

• rOL splits completely in OM , as rOM =
∏

m∈GM/K
rm where rm :=

∏
ℓ∈GL/K

rm,ℓ,

• r splits completely in OL, as rOL =
∏

ℓ∈GL/K
rℓ where rℓ := OL ∩

∏
m∈GM/L

rm,ℓ, and

• each rℓ splits completely in OM , as rℓOM =
∏

m∈GM/L
rm,ℓ.

Furthermore, rm + rℓOM = rm,ℓ for every m ∈ GM/L and ℓ ∈ GL/K .

Proof. First, we show the complete spliting of rOL in OM . By hypothesis and definition of rm, we have the
factorization rOM =

∏
m∈GM/L

rm, and the rm for m ∈ GM/L are pairwise coprime because the rm,ℓ are.
Lastly, the rm are conjugates under GM/L (with respect to the given indexing): for any m,m′ ∈ GM/L, by
Lemma 5.9 and the fact that the rm,ℓ are conjugates under GM/K (with respect to the given indexing),

m′(rm) = m′
( ∏
ℓ∈GL/K

rm,ℓ

)
=

∏
ℓ∈GL/K

rm′◦m,ℓ = rm′◦m .

For the remaining claims it is helpful to use norms of ideals. Because M/L is Galois, its ideal-norm
function can be defined as NM/L(a) := OL ∩

∏
m∈GM/L

m(a) for any ideal of OM , which satisfies
NM/L(a) · OM =

∏
m∈GM/L

m(a), and similarly for the other extensions. These functions are transitive
down the tower: NM/K = NL/K ◦NM/L.

Now we show the complete splitting of each rℓ in OM . By hypothesis, the rm,ℓ for m ∈ GM/L are
pairwise coprime, and are conjugates under GM/L (with respect to the given indexing) by Lemma 5.9. So by
definition, rℓ = NM/L(rm,ℓ) for any m ∈ GM/L, and hence rℓOM =

∏
m∈GM/L

rm,ℓ, as needed.
For the complete splitting of r in OL, first observe that the rℓOM for ℓ ∈ GL/K are pairwise coprime

because the rm,ℓ are, hence the rℓ are as well. (Formally, (rℓ + rℓ′)OM = rℓOM + rℓ′OM = OM for distinct
ℓ, ℓ′, and intersecting both sides with OL yields the claim.) Next, the rℓ are conjugates under GL/K (with
respect to the given indexing): for any ℓ, ℓ′ ∈ GL/K , taking any τ ′ ∈ GM/K that restricts to ℓ′, by the fact that
the rm,ℓ are conjugates under GM/K (with respect to the given indexing) and the group law in Equation (5.1),

ℓ′(rℓ) = OL ∩ τ ′
( ∏
m∈GM/L

rm,ℓ

)
= OL ∩

∏
m̃∈GM/L

rm̃,ℓ′◦ℓ = rℓ′◦ℓ .

Finally, because r = NM/K(rm,ℓ) (seen by intersecting both sides of Equation (5.2) with OK) and
rℓ = NM/L(rm,ℓ) for any m ∈ GM/L and ℓ ∈ GL/K , by the transitivity of the ideal norm we have the needed
factorization

rOL = NM/K(rm,ℓ) · OL = NL/K(rℓ) · OL =
∏

ℓ∈GL/K

rℓ .

For the last claim, by the pairwise coprimality of the rm,ℓ and the complete splitting of rℓ in OM ,

rm + rℓOM =
∏

ℓ′∈GL/K

rm,ℓ′ +
∏

m′∈GM/L

rm′,ℓ = rm,ℓ .
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The above results lead to a factorization of the mod-r CRT basis of OM/OK as the Kronecker product of
the corresponding CRT bases of OM/OL and OL/OK , as shown next in Lemma 5.11. We remark that [AP13]
gave a similar factorization for the CRT bases of cyclotomic rings (but not more general abelian number
rings). However, the factorization from [AP13] allows for a lot of arbitrariness in the definition of the “higher”
component c⃗M/L (namely, the rm,ℓ may be indexed arbitrarily and independently for each ℓ), whereas our
factorization is uniquely defined by the choice of transversal T of GM/K/GM/L (as in Definition 5.8). The
present formulation turns out to be critical for expressing CRT transforms using relatively few automorphisms,
as shown below in Section 5.3.

Lemma 5.11. Adopt the setup and notation of Lemma 5.10. The mod-r CRT basis c⃗M/K of OM/OK factors,
under the reindexing from Definition 5.8, as

c⃗M/K = c⃗M/L ⊗ c⃗L/K ,

where c⃗L/K is the mod-r CRT basis of OL/OK , and c⃗M/L is the mod-rOL CRT basis of OM/OL.

Proof. Let c⃗′ = c⃗M/L and c⃗ = c⃗L/K . Note that by Definition 5.3, for all m ∈ GM/L and ℓ ∈ GL/K we
have that c⃗ = e⃗ℓ (mod rm,ℓ) because the same relation holds modulo rℓ ⊆

∏
m∈GM/L

rm,ℓ ⊆ rm,ℓ, and
c⃗′ = e⃗m (mod rm,ℓ) because the same relation holds modulo rm. So, c⃗′ ⊗ c⃗ = e⃗m ⊗ e⃗ℓ = e⃗(m,ℓ) (mod rm,ℓ).
Applying the reindexing from Definition 5.8, we have that c⃗′ ⊗ c⃗ = e⃗τ (mod rτ ) for all τ ∈ GM/K , and the
claim follows.

Remark 5.12. Adopting the setup and notation of Lemma 5.7, the result of Lemma 5.11 also implies that

c⃗M/K = c⃗M/L1
⊗ c⃗M/L2

= c⃗L2/K ⊗ c⃗L1/K (mod rOM )

(with appropriate reindexing in each case). Each kind of factorization can be convenient for certain purposes,
e.g., computing CRT bases more efficiently by working in smaller-dimensional fields, or analyzing the effect
of automorphisms on the CRT basis.

Notably, the former factorization, together with the direct-product factorization of the Galois group
GM/K = GM/L1

×GM/L2
, allows us to view the CRT “slots” as arranged in a two-dimensional array, where

GM/Li
acts regularly along the ith dimension (and has no effect on the other dimension). Naturally, even

finer-grained factorizations, arising from composites of abelian number fields having a common pairwise
intersection field, correspond to even higher-dimensional arrays, i.e., tensors. This allows us to design a field
that induces a desired tensor shape, and to permute its contents in structured ways, e.g., for homomorphic
linear algebra and other algorithms [HS14, HS18].

5.3 Sparsity of Automorphism Coefficients

For the mod-rOL CRT basis c⃗ = c⃗M/L of OM/OL, consider the linear function fK from the second step
of the “top-down” structured transform in Section 4.2. Recalling that c⃗∨ = c⃗ mod rO∨

M , here we analyze
the factor ⟨c⃗, τ(c⃗∨)⟩ = ⟨c⃗, τ(c⃗)⟩ mod rO∨

M that appears in the coefficient of τ ∈ GM/K in Equation (4.4)
from Lemma 4.3, when expressing fK as a linear combination of automorphisms. Specifically, we identify a
necessary condition on τ for when this factor is nonzero, which implies that fK can be expressed sparsely in
terms of automorphisms. Note that it suffices to analyze the term ⟨c⃗, τ(c⃗)⟩ without the reduction modulo
rO∨

M , because the reduced term (which is what we ultimately care about) is nonzero only if the non-reduced
term is nonzero, since rOM ⊆ rO∨

M .
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Lemma 5.13. Adopt the reindexing of Definition 5.8 and the notation of Lemma 5.10, and let c⃗ be the
mod-rOL CRT basis of OM/OL. Then ⟨c⃗, τ(c⃗)⟩ is nonzero (modulo rOM ) only if τ = t′ ◦ t−1 for some
t, t′ ∈ T .

Proof. Since ⟨c⃗, τ(c⃗)⟩ ̸= 0 (mod rOM ) and the modulus factors as the product of the pairwise coprime rm,
it follows that ⟨c⃗, τ(c⃗)⟩ ̸= 0 (mod rm) for some m ∈ GM/L. Because c⃗ = e⃗m (mod rm) by definition,
it must be that τ(cm) ̸= 0 (mod rm). So, by definition of rm, τ(cm) ̸= 0 (mod rt′◦m) for some t′ ∈ T .
Because cm ̸= 0 (mod rt◦m)—or equivalently, τ(cm) ̸= 0 (mod rτ◦t◦m)—only if t ∈ T , it must hold that
τ ◦ t ◦m = t′ ◦m for some t ∈ T . This implies that τ = t′ ◦ t−1, as claimed.

Number of nonzero coefficients. We now use Lemma 5.13 to concretely bound the number of automorphisms
that suffice for evaluating each linear function fK from Section 4.2, in several settings of interest. By Lemma 4.2,
the total number of automorphisms to homomorphically evaluate a complete CRT transform is just the sum of
these over each step of the relevant tower. The following material shows that a worst-case bound on this total
is O(d2 log n), and O(d log n) is frequently achievable, where d is an upper bound on the degree of each step
and n is the degree (over Q) of the number field at the top of the tower.

Recall from Section 4.2 that in this context (and in contrast to Section 5.4 below), deg(L/K) is typically
taken to be small, but deg(M/L) can be large (because we consider “top down” transforms to the CRT basis).
Since |T | = |GM/K/GM/L| = deg(L/K), there are at most |T |2 = deg(L/K)2 values of τ = t′ ◦ t−1

for which ⟨c⃗, τ(c⃗)⟩ is nonzero. Moreover, in many cases of interest, the number of distinct t′ ◦ t−1 can be
significantly smaller than |T |2.

1. The most favorable case is when we have a direct product GM/K = GM/L × GM/L′ , which by
the Galois correspondence holds if and only if M = LL′ and L ∩ L′ = K (as in the setup of
Lemma 2.2). We can then let T be the subgroup GM/L′ , so the number of distinct t′ ◦ t−1 is only
|T | = deg(M/L′) = deg(L/K).
In particular, this case applies when the degrees of M/L and L/K are coprime (by the fundamental
theorem of finite abelian groups), such as when M has odd prime-power conductor and the conductor
of L is that prime.

2. Even if T is not a subgroup, there can be many duplicates among the t′ ◦ t−1. As a common
case, if GM/K/GM/L

∼= GL/K
∼= Z/dZ is cyclic of small order d = deg(L/K), we can let T

correspond to {0, 1, . . . , d − 1} ⊂ Z, in which case every t′ ◦ t−1 corresponds to an element of
{−d+ 1, . . . , d− 1} ⊂ Z, which has cardinality 2|T | − 1.
In particular, this case applies if L has odd prime-power conductor, because Gal(L/Q) is cyclic;
if L is a power-of-two cyclotomic with K ⊇ Q(ζ4) (or L = Q(ζ4),K = Q, though this even falls
under the previous item); or if L is totally real with power-of-two conductor. These cases significantly
generalize [CCS19], which obtained the same sparsity solely for towers of power-of-two cyclotomics,
with a complex-CRT basis corresponding to the canonical embedding (not modulo an ideal), in the
context of approximate FHE [CKKS17].

3. Finally, and analogously to Lemma 5.7, we can generically “lift” or “lower” a transversal of one
quotient of Galois groups to corresponding “parallel” one. Specifically, let F/E be an extension of
abelian number fields for which M ∩KF = K, and hence L ∩KE = K. Then by Lemma 2.2, we
may lift the elements of any transversal T of GM/K/GM/L from GM/K to GMF/KF ⊆ GMF/KE .
This mapping is an isomorphism, so it preserves the number of distinct t′ ◦ t−1. Furthermore,
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it induces a homomorphism GM/K 7→ GMF/KE/GMF/LE with kernel GM/L, and thus also an
injective homomorphism from GM/K/GM/L to GMF/KE/GMF/LE . Now by Lemmas 2.1 and 2.2,
GMF/KE/GMF/LE

∼= GLE/KE
∼= GL/K

∼= GM/K/GM/L, so the previous injective homomorphism
is actually an isomorphism, and therefore the original isomorphism GM/K 7→ GMF/KF maps any
transversal of GM/K/GM/L to one of GMF/KE/GMF/LE .
In particular, this case applies when the conductors of M and F are coprime. So, one can proceed
modularly by separately considering various M whose conductors are powers of distinct primes, finding
suitable transversals for the steps of their towers, and then finally “lifting” them to the Galois group of
the composite field to get transversals for all the corresponding steps of the composite tower.

5.4 Fast “In the Clear” CRT Transforms

Here we give sparse decompositions of the linear CRT transforms between CRT bases and any similarly
structured bases, which operate “in the clear”—i.e., directly on coordinate vectors (as opposed to homo-
morphically via automorphisms, in Section 5.3). These directly yield fast, highly parallel algorithms for
converting between coordinate vectors relative to these bases. They generalize the prior Number Theoretic
Transform (NTT) and Chinese Remainder Transform (CRT), which go between the CRT and power/“powerful”
bases of cyclotomics, to fast transforms that go between CRT bases and any similarly structured basis of any
abelian number field (equivalently, any subfield of a cyclotomic).

In the present context, a sparse decomposition for a change-of-basis transform is a factorization of its
associated matrix into a product of a small number of sparse matrices. In our decompositions, each sparse
matrix is of the form Il ⊗ T ⊗ Ir, where T is some small-dimensional (but typically dense) square matrix,
and Il, Ir are identity matrices of certain dimensions (all of which vary from one sparse matrix to another).
Multiplying such a sparse matrix with an input vector can be done efficiently (and with high parallelism)
simply by multiplying T with each “strided block” of the input. So, the entire transform can be evaluated by
multiplying by all the factors of the sparse decomposition in sequence.

Sparse decomposition of CRT transforms. In this context (and in contrast to Section 5.3) we typically
want deg(M/L) to be small, but deg(L/K) can be large (because we give “bottom up” transforms to the
CRT basis). Let r be a proper ideal of OK that splits completely in OM , let c⃗M/K be the corresponding
mod-r CRT basis of OM/OK , and let c⃗M/K = c⃗M/L ⊗ c⃗L/K be its factorization from Lemma 5.11.

Similarly, let b⃗M/K = b⃗M/L ⊗ b⃗L/K be any structured (OK/r)-basis of OM/rOM , where b⃗M/L is an
(OL/rOL)-basis of OM/rOM , and b⃗L/K is an (OK/r)-basis of OL/rOL. In particular, this holds if b⃗M/L is
an OL-basis of OM that has been reduced modulo rOL, and similarly for b⃗L/K . As a primary example, the
short integral bases from Theorem 2.3 have this Kronecker-product structure.

We give a sparse decomposition for the (OK/r)-linear transform that maps b⃗M/K to c⃗M/K . (A sparse
decomposition for the “dual” transform on O∨

M/rO∨
M has an analogous decomposition.) In brief, it proceeds

in a “bottom-up” fashion, as the composition of two stages of sparse transforms:

b⃗M/K = b⃗M/L ⊗ b⃗L/K
I⊗TL/K−−−−−→ b⃗M/L ⊗ c⃗L/K

T ′
M/L−−−→ c⃗M/L ⊗ c⃗L/K = c⃗M/K .

The formalization is as follows.
Theorem 5.14. Let TM/K be the b⃗M/K-to-⃗cM/K (change of basis) matrix over OK/r, satisfying b⃗tM/K =

c⃗tM/K · TM/K . It has the “bottom-up” sparse decomposition

TM/K = T ′
M/L · (IM/L ⊗ TL/K) ,
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where IM/L is the deg(M/L)-dimensional identity matrix, TL/K is the b⃗L/K-to-⃗cL/K matrix over OK/r, and

T ′
M/L = TrL/K(TM/L ⊗ diag(c⃗∨L/K)) ,

where TM/L is the b⃗M/L-to-⃗cM/L matrix over OL/rOL.

We give the (fairly routine) proof below, after discussing the implications. Observe that IM/L ⊗ TL/K

is block diagonal, and hence (at least somewhat) sparse: it simply applies TL/K to each of the deg(M/L)
blocks of deg(L/K) coordinates in the input vector. However, recall that TL/K may have large dimension
deg(L/K). Yet if L/K has an intermediate field and b⃗L/K factors correspondingly, then TL/K can be
sparsely decomposed in the same way, inductively. In addition, T ′

M/L is also sparse, since it is a block matrix
of (typically small) dimension deg(M/L), with diagonal blocks of dimension deg(L/K).

Overall, after sparsely decomposing TL/K inductively, this approach uses a tower Kt/ · · · /K1/K0 of
abelian number fields, each typically of small relative degree, and decomposes the CRT transform as the
following composition of sparse-transform stages:

b⃗t ⊗ · · · ⊗ b⃗2 ⊗ b⃗1 → b⃗t ⊗ · · · ⊗ b⃗2 ⊗ c⃗1 → b⃗t ⊗ · · · ⊗ c⃗2 ⊗ c⃗1 → · · · → c⃗t ⊗ c⃗t−1 ⊗ · · · ⊗ c⃗1 .

The inverse transform, which maps c⃗M/K to b⃗M/K , works simply by inverting the stages in reverse (“top-down”)
order, and has essentially the same complexity.

Complexity. In the unfolded decomposition, the ith stage can be implemented via multiplication by a
structured matrix over OK0/r—specifically, the Kronecker product of an identity matrix and one with diagonal
blocks—having at most n · deg(Ki/Ki−1) nonzero entries, where n = deg(Kt/K0) is the dimension of the
input vector. Therefore, the overall complexity of the full transform is n ·

∑t
i=1 deg(Ki/Ki−1) multiplications

and additions in OK0/r. For example, if each deg(Ki/Ki−1) is bounded by a constant, then t = O(logn)
and the overall complexity is O(n log n). In addition, each stage of the transform is parallelizable in the
natural way, due to the sparse structure of its matrix.

Proof of Theorem 5.14. For the first stage, by the mixed-product property, I ⊗ TL/K is the change-of-basis
matrix from b⃗M/L ⊗ b⃗L/K to b⃗M/L ⊗ c⃗L/K . Concretely, by the material in Section 2.2.4,

TL/K = TrL/K(c⃗∨L/K · b⃗tL/K) (over OK/r).

For the second stage, T ′
M/L is the change-of-basis matrix over OK/r from b⃗M/L ⊗ c⃗L/K to c⃗M/L ⊗ c⃗L/K ,

which we derive as follows. By hypothesis and Section 2.2.4, b⃗tM/L = c⃗tM/L · TM/L where

TM/L = TrM/L(c⃗
∨
M/L · b⃗tM/L) (over OL/rOL).

Since the entries of TM/L during this stage already are represented in the CRT basis c⃗L/K , they each expand
into a diagonal matrix over OK/r.24 Formally, by Section 2.2.4, transitivity of TrM/K = TrL/K ◦TrM/L,
L-linearity of TrM/L, and self-duality of the CRT basis (Remark 5.4), the full change-of-basis matrix is

T ′
M/L = TrM/K

(
(c⃗∨M/L · b⃗tM/L)⊗ (c⃗∨L/K · c⃗tL/K)

)
= TrL/K

(
TM/L ⊗ diag(c⃗∨L/K)

)
.

24This is why we decompose the transform in a bottom-up fashion, mapping the “lower” component b⃗L/K to the CRT-basis
component c⃗L/K first, so that the (OL/rOL)-linear second stage can be implemented in a sparse way.
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6 Putting Everything Together

Here we show how to combine our results in the service of Ring-LWE cryptography and homomorphic
encryption. These solutions adapt and generalize existing approaches for Ring-LWE cryptography [LPR10,
LPR13] and packed bootstrapping [GHS12a, AP13], originally designed for cyclotomics, to the abelian
number fields (cyclotomic subfields) considered in this work.

Recall that Section 3 gave a generic mathematical template for Ring-LWE-based homomorphic encryption
and packed bootstrapping over arbitrary number rings. Using the results of the preceding sections, here we
fill in the details of how the template can be instantiated computationally, in any ring of integers R = OK

of an abelian number field K for which we can construct short, structured bases of R and R∨ (e.g., by the
results from [PP25] recalled in Section 2.3):

• in Section 6.1 we describe fast operations on the ring and (powers of) its dual ideal, based on the CRT
basis and fast transforms between it and other structured bases;

• in Section 6.2 we show how a short basis for the ring R is used for noisy encoding of plaintexts in
encryption, decoding in decryption, and “gadget decomposition” in key-switching;

• in Section 6.3 we instantiate homomorphic CRT transforms via automorphisms, which are central to
packed bootstrapping.

6.1 Fast Ring and Dual Operations

We first show how the basic operations in (and between)Rq andR∨
q can be performed efficiently, assuming that q

(formally, the ideal qZ) splits completely inR, using the mod-q CRT basis c⃗ ofR/Z (see Section 5). Recall from
Remark 5.6 that the CRT basis yields fast addition and multiplication in Rq via the corresponding component-
wise operations in Zq, along with fast evaluation of automorphisms on Rq because any τ ∈ Gal(K/Q) simply
permutes c⃗.

These same algorithms also work equally well across the fractional “codifferent” ideal C := R∨ ⊇ R and
its powers, modulo their scalings by q. Define the quotient Ck

q := Ck/qCk, and c⃗(k) := c⃗ mod qCk to be the
vector over Ck

q obtained by natural inclusion and reduction modulo qCk ⊇ qR. We call this the CRT basis
of Ck

q (it is indeed a Zq-basis).
Suppose that x = ⟨c⃗(k),x⟩ ∈ Ck

q and y = ⟨c⃗(k′),y⟩ ∈ Ck′
q for some non-negative integers k, k′ and

vectors x,y over Zq. Then they can be efficiently added and multiplied as follows:

x+ y = ⟨c⃗(k),x+ y⟩ ∈ Ck
q if k = k′, and

x · y = ⟨c⃗(k+k′),x⊙ y⟩ ∈ Ck+k′
q ,

where ⊙ denotes the component-wise (Hadamard) product. The latter follows from the fact that because c⃗ is
over Rq and R ⊆ C,

c
(k)
i · c(k

′)
j = (ci + qCk) · (cj + qCk′) ⊆ ci · cj + qCk+k′ = δi,j · c(k+k′)

i ,

where δi,j is taken to be in Rq. Similarly, automorphisms on Ck
q can be evaluated in the same way as for Rq in

the CRT basis: any τ ∈ Gal(K/Q) permutes c⃗(k) just as it does c⃗, by definition of c⃗(k).
Other operations like noisy encoding, key-switching, and decryption rely on representing elements with

respect to other short bases (see Section 6.2 below). Using the fast linear transforms given in Section 5.4, we
can efficiently convert between the CRT basis c⃗ (or more generally, c⃗(k)) and any similarly structured basis
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arising from the tower of subrings. In particular, this includes the short, structured integral basis b⃗ of R (or its
dual basis b⃗∨ of C) given by Theorem 2.3 and Lemma 2.5 (reduced modulo qR and qC, respectively). Similar
remarks apply for the optimally short, structured basis of R∨ constructed in Theorem 2.4, though in general
that basis is not quite as structured—it is not simply a Kronecker product of relative bases going down the
tower—so more work is needed to get fast transforms; we refer to [PP25] for the details.

6.2 Encoding, Decoding, and Decomposition

Here we give more details for the (least-significant-digit) noisy encoding and decoding as used in the
homomorphic encryption template of Section 3.1, using a short basis of R.25 We also briefly describe how
such a basis is used for “gadget decomposition” in key-switching. We first recall the standard noisy encoding
and decoding for integers, then extend them to R∨ using suitable Z-bases.

A noisy encoding of µ ∈ Zp is a “small” e ∈ µ + pZ, i.e., an integer e ∈ Z such that e = µ (mod p)
and |e| < q/2. Note that the magnitude of a typical encoding is proportional to p. In cryptographic
applications, encodings are typically reduced modulo some q > p. To reverse this, the decoding function
Decode : Zq → Zp lifts the argument to its smallest (in magnitude) integer representative e and outputs
µ = e mod p.

We can extend the above to R∨
p in a coordinate-wise fashion relative to a suitable basis of R∨, as follows.

Recall from Section 3.1.1 that a noisy encoding of µ ∈ R∨
p is a short e ∈ µ + pR∨, i.e., e ∈ R∨ and

e = µ (mod pR∨). Letting e⃗ (for “encoding basis”) be a suitably short Z-basis of R∨ and expressing
µ = ⟨e⃗,µ⟩ for a coordinate vector µ over Zp, we can generate such an encoding as e = ⟨e⃗, e⟩ ∈ R∨, where the
vector e over Z is a coordinate-wise noisy encoding of µ. (See below for some alternative, more sophisticated
methods.) In applications, encodings of R∨

p are typically reduced modulo qR∨.
Similarly, let b⃗ be a suitably short Z-basis of R; then its dual basis d⃗ = b⃗∨ (for “decoding basis”)

is a Z-basis of R∨, and hence is also a Zr-basis of R∨
r for any positive integer r. (We stress that d⃗

and e⃗ need not be the same basis.) The decoding function Decode : R∨
q → R∨

p is defined analogously, as
coordinate-wise integer decoding relative to d⃗. That is, on input z ∈ R∨

q , we express z = ⟨d⃗, z⟩ and output
Decode(z) := ⟨d⃗,Decode(z)⟩ ∈ R∨

p .

Lemma 6.1. Let e ∈ R∨ be a noisy encoding of µ ∈ R∨
p . If ∥e∥ < q/(2∥⃗b∥) where ∥⃗b∥ = maxi∥bi∥, then

Decode(e mod qR∨) = µ. Alternatively, if e is subgaussian with parameter r ≤ q/(2∥⃗b∥
√
ln(2n/δ)) where

n = deg(K/Q) and δ > 0, then Decode(e mod qR∨) = µ except with probability at most δ.

Proof. By hypothesis and definition of Decode, it suffices to show that |ei| < q/2 for every entry ei of the
coordinate vector e overZ, where e = ⟨d⃗, e⟩. Recall from Sections 2.1.2 and 2.2.1 that ei = Tr(bi ·e) = ⟨bi, e⟩.
So, for the first claim, |ei| ≤ ∥bi∥ · ∥e∥ < q/2 by Cauchy-Schwarz, where ⟨·, ·⟩ and ∥·∥ are respectively the
standard inner product and Euclidean norm in the canonical embedding of K. For the second claim, each ei
is subgaussian with parameter r∥bi∥, and hence |ei| < r∥bi∥

√
ln(2n/δ) except with probability at most δ/n.

The claim follows by the union bound over the n coordinates of e.

Finally, we briefly mention how a short Z-basis of R can be used for “gadget decomposition” in
key-switching (and other applications). In brief, this operation decomposes an element c ∈ Rq as short
“digits” ci ∈ R with respect to some small integer base g ≥ 2, as c =

∑
i ci · gi (mod qR). This can be done

25Note that encoding and decoding themselves do not need the basis to have any Kronecker-product structure, but such structure is
used to convert quickly to this basis from another structured one.
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coefficient-wise with respect to the short basis of R, expressing each Zq-coefficient of c in base g using digits
in [−g/2, g/2), say. Because the basis of R is short, so are the resulting ci. (All this adapts beyond powers
of g to other kinds of “gadgets” as well, like CRT gadgets.)

Other noisy encoders/error samplers. Recall from above that to generate a noisy encoding for µ ∈ R∨
p ,

we need to sample a short error e ∈ µ+ pR∨. For security, the distribution should have sufficiently large
width in the canonical embedding of K, and to best control noise growth under homomorphic operations, it
should have a nearly “spherical” (i.e., isotropic) shape. (And to conform with worst-case hardness theorems,
the distribution should be Gaussian.) Unfortunately, the above coordinate-wise noisy encoding can produce a
fairly “skewed” non-spherical distribution, depending on the geometry of the encoding basis e⃗.

There are at least two alternative distributions that satisfy the above criteria: a true discrete Gaussian, and
a rounded-off Gaussian. The former can be efficiently sampled using the generic algorithm from [GPV08]
with a short basis e⃗ of R∨. Moreover, we are optimistic that for bases e⃗ with a Kronecker-product structure,
the more efficient techniques for cyclotomics from [DP16] should adapt to our more general setting of abelian
number fields; we leave this to future work.

The latter kind of distribution can be sampled by drawing from a continuous spherical Gaussian in the
canonical embedding, then rounding it off to the desired coset by representing it relative to a short basis e⃗ of
R∨. To support this, the companion paper [PP25] (see Theorem 2.4) constructs an optimally short, structured
basis e⃗ of R∨ and an associated fast CRT-like transform between e⃗ and a known structured orthonormal
R-basis of the canonical embedding of K.26 To sample an error, we first sample from a spherical Gaussian
in the canonical embedding using the orthonormal basis, then apply the fast transform to represent it (with
correlated real coordinates) in the basis e⃗ of R∨. Finally, we round the coordinates (deterministically or
randomly) to get an element in µ+ pR∨; because e⃗ is optimally short, this increases the norm (or covariance)
of the sample by relatively very little.

6.3 Fast Homomorphic CRT Transforms

Here we consider the number field K to be the “top” of some tower K(ℓ)/K(ℓ−1)/ · · · /K(0) of abelian number
fields, where K = K(ℓ) and K(0) = Q. This tower induces a tower of ring extensions R(ℓ)/R(ℓ−1)/ · · · /R(0)

where R(i) = OK(i) , and in particular R = R(ℓ) and Z = R(0). Suppose that qZ splits completely in R, and
let c⃗ = c⃗ℓ ⊗ c⃗ℓ−1 ⊗ · · · ⊗ c⃗1 be the Kronecker-product factorization of the mod-q CRT basis c⃗ going down
the tower (see Lemma 5.11), i.e., c⃗i is the mod-qR(i−1) CRT basis of R(i)/R(i−1). Similarly, suppose that
b⃗ = b⃗ℓ ⊗ b⃗ℓ−1 ⊗ · · · ⊗ b⃗1 is a factorization of a Z-basis b⃗ of R going down the tower, i.e., b⃗i is an R(i−1)-basis
of R(i). In particular, recall from Section 2.3 that Theorem 2.3 and Lemma 2.5 gives such (short) factored
bases for a broad family of towers of abelian number fields.

Section 4 shows how to express the linear CRT transforms that map between the structured bases b⃗
and c⃗ using linear combinations of the automorphisms of the extensions K(i)/K(i−1). By expressing the
transforms in this way, they can be computed homomorphically on the plaintext using the operations recalled
in Section 3.1.2, namely, linear operations and automorphisms. Moreover, Section 5.3 (and in particular
Lemma 5.13) shows that for the CRT basis c⃗, this representation of the structured linear transforms is sparse,
i.e., it can be expressed in terms of relatively few automorphisms. Together, this directly yields efficient
algorithms for the homomorphic evaluation of CRT transforms.

26This structured orthonormal R-basis is analogous, with a similar Kronecker-product structure, to the mod-q CRT basis from
Section 5, and the fast transform works similarly to the one given in Section 5.4, but over R.
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Recall from Section 3.2 that homomorphic CRT transforms make up the first and third steps of the packed
bootstrapping template. However, recall that the plaintext is best encoded in R∨

q (not Rq), so we actually want
to homomorphically evaluate the “dual” CRT transforms, which map between b⃗∨ = b⃗∨ℓ ⊗ b⃗∨ℓ−1 ⊗ · · · ⊗ b⃗∨1
and c⃗∨ = c⃗∨ℓ ⊗ c⃗∨ℓ−1 ⊗ · · · ⊗ c⃗∨1 , both of which are Zq-bases of R∨

q . Fortunately, the framework of Section 4
works just as well in this setting, simply by swapping b⃗ and c⃗ with their respective duals b⃗∨ and c⃗∨. Note that
this replaces the factors ⟨c⃗M/L, τ(c⃗

∨
M/L)⟩ appearing in Equation (4.4) with ⟨c⃗∨M/L, τ(c⃗M/L)⟩. Fortunately,

⟨c⃗∨M/L, τ(c⃗M/L)⟩ = ⟨c⃗M/L, τ(c⃗M/L)⟩ mod qO∨
M by the same reasoning given at the start of Section 5.3, so

Lemma 5.13 yields the same level of sparsity for this setting.
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A Slot Type and Number in Abelian Number Fields

In this section we characterize how primes split in abelian number fields of prime-power conductor and their
composites. These tools can be used to identify abelian number fields that have a desired type and number of
“SIMD slots.” Figure 1 provides several numerical examples.
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A.1 Cyclotomic Fields

An important family of abelian number fields is the cyclotomic fields. For a positive integer m called the
conductor, the mth cyclotomic field M = Q(ζm) is obtained by adjoining a primitive mth root of unity ζm to
the rationals. Its degree over Q is φ(m), the totient of m. Its automorphisms τi are defined by τi(ζm) = ζim
for each i ∈ Z∗

m, the multiplicative group of integers modulo m. Therefore, its Galois group Gal(M/Q) is
isomorphic to Z∗

m, so it is an abelian extension. It is a standard fact (see, e.g., [Con, Theorem 2.3]) that Z∗
pk

is
cyclic for odd prime p and k ≥ 1, and Z2k

∼= {±1} × {i : i = 1 (mod 5)} ∼= ⟨−1⟩ × ⟨5⟩ for k ≥ 2.
For a prime integer r that is coprime with m, the common decomposition group of the prime ideals r lying

over r in OM is ⟨τr⟩ ⊆ Gal(M/Q), the cyclic subgroup generated by τr, which is isomorphic to ⟨r⟩ ⊆ Z∗
m.

The inertia group is trivial, i.e., r is unramified in M .

A.2 Slot Structure

The following lemma shows that there is a maximum number of “slots” of a given prime characteristic r
that can be obtained in power-of-p cyclotomics (and, by implication, their subfields), and tells us where that
maximum is obtained. See Figure 1 for some numerical examples.

Lemma A.1. Let p, r be distinct prime integers, p̃ = 4 if p = 2 and p̃ = p otherwise, d be the multiplicative
order of r modulo p̃, and k be the greatest integer such that pk divides rd−1 (so p̃ | pk). In the pℓth cyclotomic
ring for pℓ ≥ p̃, the prime r splits as the product of g prime ideals each having residue field Frf , where
f = d · pmax(0,ℓ−k) and fg = φ(pℓ). In particular, g = φ(pk)/d for all ℓ ≥ k.

Proof. By prime splitting in abelian extensions (see Section 2.2.3), and because the decomposition and inertia
groups of the prime ideals lying over r in the pℓth cyclotomic respectively correspond to ⟨r⟩ ⊆ Z∗

m and the
trivial group, it suffices to show that f is the multiplicative order of r modulo pℓ. We proceed by cases. For
ℓ ≤ k, this order is d, by definition of d and k, and because p̃ | pℓ. For ℓ > k, by definition of k, we have that
r∗ = rd mod pℓ is an element of the order-pℓ−k subgroup S = {i : i = 1 (mod pk)} ⊆ Z∗

pℓ
, which is cyclic

(because it is a subgroup of a cyclic group, either Z∗
pℓ

if p is odd or {i : i = 1 (mod 5)} ∼= ⟨5⟩). Moreover,
r∗ is not an element of the maximal proper subgroup {i : i = 1 (mod pk+1)} ⊆ S, so it has order pℓ−k.

For an abelian number-field extension L/K and an unramified prime ideal of OK , the next lemma relates
its number of prime factors in OL and their common residue degree (as described in Section 2.2.3) to those in
any subextension of L/K. As corollary, by specializing to K = Q and combining with Lemma A.1, for a
prime characteristic r we can obtain a residue field of Frf ′ from a subfield of a power-of-p cyclotomic for
prime p ̸= r if and only if f ′ | dpi for some integer i ≥ 0, where d is as defined in Lemma A.1.

Lemma A.2. Let:

• L/K be an abelian extension of number fields;

• r be a prime ideal of OK that does not ramify in L, having residue field OK/r ∼= Fr for some
prime-power r;

• D be the order-f decomposition group of the g = deg(L/K)/f prime OL-ideals lying over r (which
each have residue field Frf ); and

• H be a subgroup of Gal(L/K).
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Then r splits in LH as the product of g′ = g · |H ∩D|/|H| prime ideals each having residue field Frf ′ , where
f ′ = f/|H ∩D|. In particular, H ⊆ D if and only if f ′ = f/|H| and g′ = g, and H ∩D is trivial if and
only if f ′ = f and g′ = g/|H|.

Proof. We have that
D/(H ∩D) ∼= Gal(LH∩D/LD) ∼= Gal(LH/LHD) ,

where the first isomorphism is by restriction to LH∩D, and the second is by further restriction to LH and
Lemma 2.2, because LH∩D = LHLD and LHD = LH ∩ LD by the Galois correspondence. Next, we
claim that Gal(LH/LHD) = D′, the decomposition subgroup of the prime ideals lying over r in LH . This
is because by maximality, LHD = LH ∩ LD is the largest subfield of LH in which r splits completely,
hence LHD is indeed the fixed field of D′ in LH . It therefore follows that r splits in LH as the product
of g′ prime ideals each having residue field Frf ′ , where f ′ = |D′| = |D/(H ∩ D)| = f/|H ∩ D|, and
g′ = deg(LH/K)/f ′ = fg/(f ′|H|) = g · |H ∩D|/|H|.

Remark A.3. We discuss several useful implications of Lemma A.2. First note that any intermediate field LH

of L/K (for a subgroup H ⊆ Gal(L/K)) can be reached by applying the two particular cases from
Lemma A.2 in sequence. First, go to LH′ for H ′ = H ∩D ⊆ D, which reduces just residue degree from f
to f ′ = f/|H ′|. Then, go from LH′ to LH using the restriction of H to LH′ (which is a subgroup of
Gal(LH′

/K) isomorphic to H/H ′), which preserves the residue degree and hence reduces just the number
of prime ideal factors from g to g′ = g/|H/H ′| = g · |H ′|/|H|.

Moreover, for any f ′ | f and for g′ = g there exists a subgroup H ⊆ D yielding these parameters, namely,
any order-(f/f ′) subgroup of D. Such a subgroup exists because D is finite and abelian, and thus is a
“converse of Lagrange’s Theorem” group. Moreover, if D is cyclic—in particular, when L is a cyclotomic and
K = Q—then there is a unique such H . Finally, if Gal(L/K) is cyclic—e.g., when L is an odd prime-power
cyclotomic—then every distinct subgroup H yields a distinct product f ′g′ = deg(L/K)/|H| and hence
distinct pair (f ′, g′), because distinct subgroups have distinct orders.

Unfortunately, for a desired f ′ | f it is not always possible to obtain an arbitrary divisor g′ of g. For
example, letting L/K = Q(ζ17)/Q and r = 2Z, we have that f = 8 and g = 2. However, the only subgroup
of Z∗

17 having trivial intersection with the decomposition group D = ⟨2⟩ is the trivial subgroup itself, and so
there is no subfield in which f ′ = f = 8 and g′ = 1.

Finally, the next lemma makes it simple to construct an abelian number field having many slots of the
desired type: simply take the composite of abelian number fields having coprime conductors (e.g., powers of
distinct primes) and slot types whose composite is the desired slot type. The composite of Frk and Frℓ is
Frlcm(k,ℓ) , so we want to use abelian number fields whose residue degrees for the primes lying over r have
the desired least common multiple. Also recall that Theorem 2.3 gives us short, structured bases for abelian
number fields constructed in this way.

For subrings S1, S2 of some ring R, their composite ring is defined (just like the definition of composite
field) as the subring S1S2 = {

∑r
i=1 αiβi : αi ∈ S1, βi ∈ S2, finite r} ⊆ R. Note that by Lemma 2.5, the

hypothesis OL1L2 = OL1OL2 in the following lemma is satisfied when L1 and L2 are abelian number fields
with coprime conductors, which is the primary way in which we use the result.

Lemma A.4. Let L1, L2 be number fields with composite field M = L1L2 such that OM = OL1OL2 , let rM
be a prime ideal in OM , and let ri := OLi ∩ rM for i ∈ {1, 2}. Then OM/rM = ϕ1(OL1/rL1)ϕ2(OL2/rL2),
where the natural map ϕi : OLi/rLi → OM/rM is a field embedding.
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Proof. First, the natural map ϕi is clearly a field homomorphism. Furthermore, it is injective, since
ϕi(x + rLi) = rM for some xi ∈ OLi if and only if x ∈ OLi ∩ rM = rLi . So, OM/rM contains
each ϕi(OLi/rLi), and thus contains their composite as well. Finally, for the reverse inclusion, since
OM = OL1OL2 , any x ∈ OM can be written as a finite sum x =

∑
i αiβi for some αi ∈ OL1 , βi ∈ OL2 , so

x+ rM =
∑
i

αiβi + rM =
∑
i

ϕ1(αi + rL1)ϕ2(βi + rL2) + rM ,

hence OM/rM is contained in the composite of the fields ϕi(OLi/rLi), as needed.

Summary. The above lemmas directly yield a procedure for constructing abelian number fields with any
desired characteristic-r (finite field) slot type. First, Lemma A.1 characterizes what slot types Frf and number
of slots can be obtained in power-of-p cyclotomics, for any prime p ̸= r. However, the obtainable residue
degrees f are often larger than desired. Next, Lemma A.2 and Remark A.3 show how to obtain any slot
type of residue degree f ′ | f , i.e., any subfield Frf ′ of the cyclotomic’s residue field Frf , by using a suitable
cyclotomic subfield (namely, the fixed subfield of a subgroup of appropriate order of the decomposition
group). Finally, Lemma A.4 shows how to obtain more slots by compositing such power-of-p cyclotomic
subfields for distinct primes p. The resulting slot type is the composite of the slot types for the component
cyclotomic subfields, so these should each have a slot type that is a subfield of the ultimate desired slot type.
Another consequence of this is that the number of slots obtained in this way is super-multiplicative.

A.3 Numerical Examples

Figure 1 gives some selected examples of parameters that can be obtained from Lemma A.1, which can be
reduced and refined using Lemma A.2.

For the class of example where r = pk · c+ 1, notice that given r and p, we can confirm the given values
of d and k using the definitions in Lemma A.1. Indeed, d = 1 since r = 1 (mod p̃), and pk is the largest power
of p that divides r1−1 = pk ·m since p ∤ m. Similarly for r = pk ·m−1, we have that r1 = −1 (mod p̃), so
r2 = 1 (mod p̃), and pk is the largest power of p that divides r2−1 = p2k ·m2−2pk ·m = pk ·m·(pk ·m−2),
since p ∤ m and p ∤ (pk ·m− 2).

Now consider the examples where r = 2. The case p = 17 represents the least p where Lemmas A.1
and A.2 yield an abelian number field where the prime-ideal factors of r have residue field F28 ; there are
two such factors. The values p = 31, p = 73, and p = 127 are the least p where g is at least 4, 8, and 16,
respectively. So, r splits into at least 8, 16, and 32 prime-ideal factors having common residue field F28 in a
suitable subfield of the mth cyclotomic for m = 17 · 31, m = 17 · 73, and m = 17 · 127, respectively. By
contrast, the values p = 241, p = 257, and p = 5153 are the least prime p where g is at least 8, 16, and 32
(respectively) for a residue field of F28 .

Also for r = 2, it is also worth comparing what can be obtained in cyclotomic subfields, versus in
cyclotomics only. In any cyclotomic in which 2 does not ramify, every prime ideal lying over 2 has residue
degree f > 1, i.e., it is not possible to obtain F2 as a residue field, only proper extensions of it. By contrast, in
cyclotomic subfields—specifically, (subfields of) the decomposition subfield of the primes lying above 2—we
can obtain a number of F2-slots matching the degree of the subfield. For example, we get two F2-slots in the
decomposition subfield of Q(ζ17); six in the decomposition subfield of Q(ζ31); eight in the decomposition
subfield of Q(ζ73), etc.

The examples for r = 3, r = 5, and r = 7 give the p ≤ 256 that yield the largest g for the given r.
The examples where r = 263, r = 443 (respectively, r = 79193) represent the r ∈ [28, 29] (respectively,
r ∈ [216, 217]) that yield the largest g for the given p.
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r p d k g = # slots

r = pk · c+ 1 any 1 ≥ logp(p̃) = φ(pk)

r = pk · c− 1 ̸= 2 2 any = φ(pk)/2

2 17 8 1 2 = 16 · 170/8
2 31 5 1 6 = 30 · 310/5
2 73 9 1 8 = 72 · 730
2 127 7 1 18 = 126 · 1270/7
2 241 24 1 10 = 240 · 2410/24
2 257 16 1 16 = 256 · 2570/16
2 5153 112 1 46 = 5152 ·51530/112
3 11 5 2 22 = 10 · 111/5
5 71 5 1 14 = 70 · 710/5
7 191 10 1 19 = 190 · 1910/10

263 7 3 2 14 = 6 · 71/3
443 5 4 4 125 = 4 · 53/4

79193 5 4 6 3125 = 4 · 55/4

Figure 1: Some examples of the maximum number of slots that can be obtained for a prime modulus r ̸= p
in a power-of-p cyclotomic (sub)field. The values d, k, g are as in Lemma A.1, i.e., modulus r in the pkth
cyclotomic yields g slots of type Fd

r , and higher powers of p do not yield any additional slots. In the first two
generic examples, p and k may be arbitrary (subject to the minor listed restrictions), and r has the given form
(for integer c) where p ∤ r.

B Example Instantiations for Homomorphic AES Evaluation

In this section, we expand upon the example application of homomorphic AES evaluation, and describe some
new instantiations using the tools from this work. For this application, the most natural plaintext “SIMD
slot” type is the finite field F28 , because the AES function works with vectors over this field. However,
because [GHS12c] used cyclotomic rings, it was induced to use F224 as its slot type, which is “wasteful” by a
factor of three. More specifically, [GHS12c] uses the cyclotomic field Q(ζ28679) = Q(ζ7)Q(ζ17)Q(ζ241),
which has dimension φ(28679) = 6 · 16 · 240 = 23040, but only 23040/24 = 960 F224-slots, enough for 60
AES blocks.

B.1 Example Instantiation 1

Using the tools from this paper, we can see that one good choice of field is

L = C
(1)
17 C

(7)
127C

(3)
241 ,

where C(d)
p is the unique subfield of Q(ζp) such that deg(Q(ζp)/C

(d)
p ) = d, for odd prime p and d | (p− 1).

By Lemmas A.1 and A.2,

• C
(1)
17 has 2 F28-slots, • C

(7)
127 has 18 F2-slots, and • C

(3)
241 has 10 F28-slots.

In summary, L has:
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L

JC
(7)
127 JC

(3)
241

J

C
(8)
17

Q

80 18

18 80

8

2

Figure 2: A diagram representing the structure of the various abelian number fields in our first example
instantiation, where J = C

(1)
17 . Each edge represents a field extension of the given dimension, with solid and

dashed edges respectively representing complete splitting and total inertness for the prime ideals lying over 2.
For any pair of depicted distinct field extensions L1/K and L2/K over a common base field K, we have
that L1 ∩ L2 = K. So by Remark 5.12, for any prime ideal r of OK lying over 2, the mod-r CRT basis of
OL1L2/OK is the Kronecker product of the mod-r CRT bases of OL1/OK and OL2/OK .

• dimension 16 · 18 · 80 = 23040 over Q (cf. 23040 in [GHS12c]), and
• 23040/8 = 2880 F28-slots (cf. 960 F224-slots) by Lemma A.4, enough for 180 AES blocks (cf. 60).

B.1.1 Tensor of CRT Slots

First, note that J = C
(1)
17 has two F28-slots. Specifically, by the facts recalled at the start of Appendix A, the

prime 2 ∈ Z splits completely over the quadratic extension C
(8)
17 /Q, and the two prime ideals lying over 2 are

totally inert in the extension J/C
(8)
17 . Furthermore, by Lemma A.4, J , JC(7)

127, and JC
(3)
241 all have F28-slots,

and so the two prime ideals lying over 2 in J split completely in the extensions JC(7)
127/J and JC

(3)
241/J . See

Figure 2 for a diagram of these extensions and how they relate.
Observe that the composite of JC

(7)
127 and JC

(3)
241 is L, and their intersections is J . Therefore, by

Remark 5.12, letting r = 2OJ , the mod-r CRT basis of OL/OJ is the Kronecker product of the mod-r CRT
bases of O

JC
(7)
127

/OJ and O
JC

(3)
241

/OJ , so the mod-r CRT basis of OL/OJ has an order-two tensor structure
over OJ/2OJ , where the automorphisms of these extensions permute along the corresponding dimension.

Next, we obtain a Z2-basis of OJ/2OJ as the Kronecker product of the mod-2 CRT basis of O
C

(8)
17

/Z and

any O
C

(8)
17

-basis of OJ , such as d⃗17 = (ζi17)
7
i=0. Finally, we obtain a Z2-basis of OL/2OL as the Kronecker
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product of the mod-r CRT basis of OL/OJ with our Z2-basis of OJ/2OJ . Such a Kronecker product basis
may be used to represent an element of OL/2OL as an order-3 tensor over Z2, where the O

C
(8)
17

-basis of OJ

corresponds to a Z2-basis of the F28-slot.
A key observation of this tensor view is that the automorphisms of J , C(7)

127, and C
(3)
241 act independently

on their respective dimensions of the tensor. Indeed, for the latter two components they simply permute the
tensor, acting regularly. Furthermore, for both of the prime ideals r lying over 2 in O

C
(8)
17

, the automorphisms

of Gal(J/C
(8)
17 ) induce (Frobenius) automorphisms of OJ/rOJ . Therefore, we have efficient homomorphic

evaluation of arbitrary automorphisms of F28 in a SIMD fashion across all the slots via, the lifting of the
corresponding automorphisms of Gal(J/C

(8)
17 ) to Gal(L/C

(8)
17 ) ⊆ Gal(L/Q).

B.1.2 Short, Structured Basis

Using Theorem 2.3, we can efficiently compute short, structured integral bases of C(8)
17 , C(7)

127, and C
(3)
241. Let

b⃗m,d be the integral basis of C(d)
m obtained from this theorem. Because these m are prime, upper bounds on

the canonical norms of these bases (in their respective number fields) are ∥⃗bm,d∥2 ≤ d · deg(C(d)
m /Q).

Additionally, p⃗17 = (ζi17)
7
i=0 is a power O

C
(8)
17

-basis of OJ , because OJ = Z[ζ17] and Z ⊆ O
C

(8)
17

⊆ OJ .

Thus, p⃗17 ⊗ b⃗17,8 is a structured Z-basis of OJ with canonical norm bounded by ∥p⃗17 ⊗ b⃗17,8∥2 =

deg(J/C
(8)
17 ) · ∥⃗b17,8∥2 ≤ 8 ·deg(J/Q), where the equality holds because p⃗17 consists of roots of unity. Then

by Lemma 2.5,
(p⃗17 ⊗ b⃗17,8)⊗ b⃗127,7 ⊗ b⃗241,3

is a Z-basis of OL with norm upper bounded by
√
8 · 7 · 3 ·

√
deg(L/Q) ≈ 12.96148 ·

√
deg(L/Q) .

For comparison, recall that any nonzero element ofOK for any number fieldK has norm at least
√
deg(K/Q),

so this integral basis of L has norm within a factor of 13 of optimal for any number field of the same degree.

B.2 Example Instantiation 2

We can also use our tools to find an abelian number field of similar dimension to that of the previous example,
while keeping all the prime divisors of the conductor small. This yields a much finer-grained (higher-order)
tensor of CRT slots, which supports cheaper and richer homomorphic linear algebra. One example of such a
field is

L = C
(1)
3 C

(1)
5 C

(3)
7 C

(5)
11 C

(3)
13 C

(1)
17 C

(9)
19 C

(5)
31 ,

where C(d)
p is the unique subfield of Q(ζp) such that deg(Q(ζp)/C

(d)
p ) = d, for odd prime p and d | (p− 1).

By Lemmas A.1 and A.2,

• C
(1)
3 has 1 F22-slot,

• C
(1)
5 has 1 F24-slot,

• C
(3)
7 has 2 F2-slots,

• C
(5)
11 has 1 F22-slot,

• C
(3)
13 has 1 F24-slot,

• C
(1)
17 has 2 F28-slots,

• C
(9)
19 has 1 F22-slot, and

• C
(5)
31 has 6 F2-slots.

In summary, L has:
• dimension 2 · 4 · 2 · 2 · 4 · 16 · 2 · 6 = 24576 over Q (cf. 23040 in [GHS12c]), and
• 24576/8 = 3072 F28-slots (cf. 960 F224-slots) by Lemma A.4, enough for 192 AES blocks (cf. 60).
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JC
(1)
3 JC

(1)
5 JC

(3)
7 JC

(5)
11 JC

(3)
13 JC

(9)
19 JC

(5)
31

L

J

C
(8)
17

Q

Figure 3: A diagram representing the structure of the various abelian number fields in our example construction,
where J = C

(1)
17 . Each edge represents a field extension, with solid and dashed edges respectively representing

complete splitting and total inertness for the prime ideals lying over 2. For any pair of depicted distinct field
extensions L1/K and L2/K over a common base field K, we have that L1 ∩ L2 = K. So by Remark 5.12,
for any prime ideal r of OK lying over 2, the mod-r CRT basis of OL1L2/OK is the Kronecker product of the
mod-r CRT bases of OL1/OK and OL2/OK .

B.2.1 Tensor of CRT Slots

We construct a Z2-basis of OL/2OL in a similar fashion as in Appendix B.1.1, but with a richer tensor
structure. Just as before, recall that J = C

(1)
17 has two F28-slots, and we get a Z2-basis of OJ/2OJ as the

Kronecker product of d⃗17 and the mod-2 CRT basis of O
C

(8)
17

/Z. Then by Lemma A.4, J and JK for

K ∈ {C(1)
3 , C

(1)
5 , C

(3)
7 , C

(5)
11 , C

(3)
13 , C

(9)
19 , C

(5)
31 }

all have F28-slots, so the two prime ideals lying over 2 in J split completely in the extension JK/J . See
Figure 3 for a diagram of these extensions and how they relate.

Next observe that the composite of all the fields JK is L, and their pairwise intersections all are J . So
by Remark 5.12, letting r = 2OJ , the mod-r CRT basis of OL/OJ is the Kronecker product of the mod-r
CRT bases of OJK/OJ for each K. This results in an order-7 tensor structure over OJ/2OJ , where the
automorphisms of each extension JK/J permutes along the corresponding dimension of the tensor.

Next, we construct a Z2-basis of OL/2OL as the Kronecker product of the mod-r CRT basis of OL/OJ

with the previously described Z2-basis of OJ . Such a Kronecker product basis may be used to represent an
element of OL/2OL as an order-8 tensor over Z2, where the O

C
(8)
17

-basis of OJ corresponds to a Z2-basis of
the F28-slot.
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Similarly to Appendix B.1.1, the automorphisms of C
(1)
3 , C(1)

5 , C(3)
7 , C(5)

11 , J , C(9)
19 , and C

(5)
31 act

independently on their respective dimensions of the tensor, and we have efficient homomorphic evaluation of
arbitrary (Frobenius) automorphisms of F28 in a SIMD fashion.

B.2.2 Short, Structured Basis

Using Theorem 2.3, we can efficiently compute short, structured integral bases of C(1)
3 , C(1)

5 , C(3)
7 , C(5)

11 ,
C

(3)
13 , C(8)

17 , C(9)
19 , and C

(5)
31 . Let b⃗m,d be the integral basis of C(d)

m obtained from this theorem. Because
these m are prime, upper bounds on the canonical norms of these bases (in their respective number fields) are
∥⃗bm,d∥2 ≤ d · deg(C(d)

m /Q).
Just as in Appendix B.1.2, we get that p⃗17 ⊗ b⃗17,8 is a structured Z-basis of OJ with norm bounded by

∥p⃗17 ⊗ b⃗17,8∥2 ≤ 8 · deg(J/Q). So, by Lemma 2.5,

b⃗3,1 ⊗ b⃗5,1 ⊗ b⃗7,3 ⊗ b⃗11,5 ⊗ b⃗13,3 ⊗ (p⃗⊗ b⃗17,8)⊗ b⃗19,9 ⊗ b⃗31,5

is a Z-basis of OL with canonical norm upper bounded by
√
1 · 1 · 3 · 5 · 3 · 8 · 9 · 5 ·

√
deg(L/Q) ≈ 127.27922 ·

√
deg(L/Q) .

So, this integral basis of L has norm within a factor of 128 of optimal for any number field of the same degree.
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