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Abstract

The vast majority of work on the efficiency of lattice-based cryptography, including fully homomorphic
encryption (FHE), has relied on cyclotomic number fields and rings. This is because cyclotomics offer a
wide variety of benefits, including good geometrical properties, fast ring arithmetic, and rich homomorphic
operations like vectorized (SIMD) operations on “packed” plaintexts, automorphisms, and ring-switching.
However, selecting a suitable cyclotomic that has the desired number and type of plaintext “slots,” while
also balancing security and efficiency, is a highly constrained problem that often lacks an ideal solution,
resulting in wasted SIMD capacity and lost efficiency.

This work provides a suite of tools for instantiating ring-based lattice cryptography to work over
subfields of cyclotomics, which provide more flexibility and better-fitting parameters for applications. A
particular focus is on realizing FHE with optimal plaintext packing and homomorphic SIMD parallelism for
any plaintext characteristic, along with efficient packed bootstrapping that fully exploits this parallelism.

Toward this end, this (two-part) work makes the following main technical contributions, all of which
are catalyzed by Galois theory:

* For sampling and decoding errors in encryption and decryption (respectively), we construct

geometrically short, structured bases for the number rings of arbitrary subfields of prime-power
cyclotomics (and hence their composites as well).

 For fast ring arithmetic, we define and establish analogous structural properties for Chinese
Remainder Theorem (CRT) bases in abelian number rings, and give specialized fast transforms that
map between CRT bases and any similarly structured bases.

» For packed bootstrapping and homomorphic linear algebra, we give a general framework for
homomorphic evaluation of structured linear transforms in abelian number rings, and show that
CRT transforms can be evaluated using relatively few homomorphic operations.

1 Introduction

Since Gentry’s seminal work [Gen09b, Gen09a] on fully homomorphic encryption (FHE), there has
been enormous progress in its efficiency, security, and utility, both theoretically and in practice. See,
e.g., [SV11,BVlla, BV11b, BGV12, GHS12a, GHS12b, GHS12c, Bral2, GSW13], for some of the key
developments of the first few years.
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The present work is mainly concerned with the efficiency and flexibility of so-called “second generation’
exact FHE schemes, in the style of [BGV 12, Bral2, FV12]. This is in contrast to more recent approximate
schemes for complex or real numbers as introduced in [CKKS17], and “third-generation” exact FHE as
introduced in [GSW13]. While approximate FHE has undergone major progress for applications like neural
networks, and third-generation schemes have seen many improvements and powerful applications, second-
generation exact FHE remains the leading approach for bulk algebraic computations on “large” plaintexts over
finite fields or rings, particularly those with a good deal of inherent parallelism. These computations include
important operations like transciphering [Gen(09a]: this “upgrades” lightweight symmetric cryptography to
have full homomorphism via homomorphic evaluation of pseudorandom functions, providing enormous time
and bandwidth improvements for clients. (See, e.g., [GHS12c, ARS'15, CPS18, ADE*23, DJL"24] for
various implementations of transciphering for certain symmetric-key primitives.)

1.1 Efficiency of FHE

One main efficiency technique for FHE, introduced in [SV11], is “SIMD packing.” This encrypts a vector of
values from a small plaintext space into a single ciphertext, so that homomorphic addition and multiplication
on ciphertexts induce component-wise (“single instruction, multiple data”) addition and multiplication on the
plaintext vectors. In addition, automorphisms of the underlying ring induce certain permutations or other
algebraic operations on the plaintext vectors, which can unlock major efficiency gains [BGV12, GHS12b].
However, the precise nature and number of plaintext “slots” that can be obtained is a subtle and delicate issue
that we discuss in more detail in Section 1.1.1 below.

Another central FHE technique is Gentry’s idea of bootstrapping, which to date has been necessary for
obtaining FHE schemes that can evaluate arbitrary (unbounded) functions. In addition, “boostrapping as an
optimization” [BGV12] is also useful for more efficiently evaluating functions of sufficient complexity. We
recall that homomorphic operations increase the intrinsic “noise” in ciphertexts, which decryption removes
by a certain kind of decoding; too much noise would result in an incorrect output. Bootstrapping effectively
reduces the noise in a ciphertext, by homomorphically evaluating the decryption function—expressed, for the
ciphertext in question, as a function of the secret key—on an encryption of that key. For appropriate parameters,
this yields a lower-noise encryption of the same message, which supports further useful homomorphic
computation. For the overall efficiency of FHE, it is therefore vital to express the decryption function
as efficiently as possible in terms of the scheme’s intrinsic homomorphic features (e.g., SIMD slots) and
operations (addition, multiplication, automorphisms, etc.).

1.1.1 Cyclotomics and their Limitations

The vast majority of work on efficiency for FHE has used cyclofomic number fields and rings. There are
several reasons for this focus. For security, cyclotomics were the first class of number fields to have a
worst-case hardness theorem for the Ring-LWE problem [LPR10] (though later work gave such a theorem
for all number fields [PRS17]), and they have good geometrical properties that yield favorable parameters.
For functionality and efficiency, they have fast specialized algorithms for the ring operations used in
cryptography [LMPROS, LPR13]; they support SIMD packing and have a full set of automorphisms, i.e.,
they are Galois extensions of the rationals; they support “ring/field-switching” [GHPS12] between related
cyclotomics, etc.

On the other hand, when it comes to SIMD packing, cyclotomics can be cumbersome to use and wasteful.
Typically, an application of FHE will desire plaintext “slots” that are isomorphic to a specific finite ring
or field, e.g., Z, or I, for a particular integer g. One can search for a cyclotomic that has the desired slot



type, or at least an extension of it. The degree f of the extension times the number g of slots equals the
dimension of the cyclotomic (ignoring ramification, which can only decrease fg), so degrees f > 1 represent
a suboptimal “slot type” (for packing plaintexts) and “SIMD capacity” (for parallel homomorphic operations).
Unfortunately, f is difficult to control, and f > 1 is inherent for prime characteristics smaller than the
cyclotomic conductor, which is typically in the many thousands. (The effect of a large extension degree f
was mitigated somewhat in [ALJ"22], but via complex homomorphic ‘recoding’ algorithms, and still with
wasted slot space.) In addition, the degree of the cyclotomic should lie in a relatively narrow range, to provide
the desired level of security with reasonable efficiency. Altogether, the designer faces a highly constrained
optimization problem, whose solution may be far from ideal. For instance, for homomorphic evaluation of
the AES function, the most natural plaintext slot type is o5, but the use of cyclotomics in [GHS12c¢] induced
a slot type of Fy24, representing a threefold loss in SIMD capacity.

Beyond cyclotomics. An interesting approach to circumvent these kinds of difficulties was given in [AH17],
which proposed working in decomposition subfields of cyclotomics. Essentially, the decomposition subfield
for a prime is the largest subfield in which the prime “splits completely”; in term of SIMD slots, the subfield
has exactly the desired slot type with no wasted space (extension degree f = 1), and the optimal number of
such slots (g is the dimension of the subfield), making it ideal for homomorphic SIMD computations.' It is
straightforward to find the decomposition subfield of any cyclotomic, for any particular prime.

However, many aspects of a complete solution for FHE, and for efficient ring-based cryptography more
generally, based on decomposition subfields were left untreated in [AH17]. As smaller matters, it considered
only prime cyclotomics (not prime-power or more general cyclotomics), and it did not give any specialized
fast algorithms for arithmetic in these subfields (like we have for arbitrary cyclotomics), but instead relied on
generic FFT convolution. More importantly, it did not consider (packed) bootstrapping in these decomposition
subfields, which is a very important tool to go with the optimal SIMD packing provided by these fields.

1.2 Contributions

This two-part work provides a suite of tools for instantiating ring-based cryptography, and FHE in particular,
over a very wide class of subfields of cyclotomics.” By the Kronecker—Weber theorem, any abelian number
field—i.e., a finite-degree Galois extension of the rationals whose Galois group is abelian—is a subfield of
some cyclotomic, so cyclotomic subfields are indeed a broad class of number fields. A primary achievement
of our work is the realization of FHE and efficient packed bootstrapping algorithms, with optimal plaintext
packing and SIMD parallelism for any plaintext characteristic—avoiding the wasted SIMD capacity of
cyclotomics.

More broadly, our overarching contribution is a mathematical and algorithmic framework for this setting,
with an emphasis on generality, optimization of concrete geometric bounds, and asymptotic algorithmic
efficiency. We believe that these tools will be useful for many other applications in ring-based cryptography,
beyond FHE. (Implementing and optimizing our techniques in practice, and evaluating them for specific
applications of interest, will take substantial additional effort, which we leave to future work.) In summary,
our work’s main technical contributions are:

'In the setting of approximate FHE, an analogous special case of working in the maximal totally real subfield of a cyclotomic, to
get a number of real-valued slots equaling the field degree, was proposed in [KS18].

2Specifically, our treatment covers all number fields that are composites of subfields of prime-power cyclotomics. This mild
restriction ensures that all the number-ring extensions we consider are free modules over their base rings, which is needed for some of
our goals. In general, this free-module structure is not present for arbitrary cyclotomic subfields (see Footnote 5), so some restriction
is necessary.



1. constructions of short, structured bases for a wide class of abelian number rings and their duals;

2. definitions, constructions, and factorizations of Chinese Remainder Theorem (CRT) bases in arbitrary
towers of abelian number rings, which yield fast ring arithmetic via CRT transforms;

3. a general framework for sparse decompositions of linear transforms in terms of automorphisms, which
yields fast “packed” bootstrapping and related tools for homomorphic linear algebra.

In Sections 3 and 6 we show how all this fits together in the context of homomorphic encryption with packed
bootstrapping, and in Appendix B we revisit homomorphic evaluation of the AES function [GHS12c] and
obtain optimally packed parameterizations with other beneficial features.

A common theme of our technical contributions is their heavy use of Galois theory, and the related theory
of prime splitting in Galois number-field extensions. Working with arbitrary (abelian) Galois extensions not
only provides a high level of generality and flexibility, but also highlights the fundamental aspects of the tools,
independent of implementation details.

Due to the total amount of material and the varying mathematical background needed for each specific
contribution, we have split our work into two parts. The first (present) part is focused mainly on algorithmic
and cryptographic aspects, and covers Items 2 and 3 above. The second part [PP25] covers Item 1 (along with
some associated algorithms), and is technically much heavier, involving several mathematical tools that are
not needed in this first part (and exceeding it in length). In the rest of this introduction, we give an overview
of all these contributions and how they come together for cryptographic applications.

1.2.1 Non-Contributions

We set the context by first explaining what this work does not contribute, because the prior literature already
provides it for our setting of cyclotomic subfields, without any modification. First, for Ring-LWE in arbitrary
number fields there are worst-case hardness theorems for the search [LPR10] and decision [PRS17] variants,
whose quantitative parameters do not depend on the choice of field, only its degree n.> So, we already have
the same kinds of hardness guarantees for cyclotomic subfields as we have for cyclotomics themselves.*

Second, consistent with the theorems and recommended usage of Ring-LWE (see [LPR10, Section 3.3]),
we work with error (i.e., ciphertext “noise”) that is nearly spherical in the canonical embedding of the number
field into C™. As noted in prior works, this makes it straightforward to analyze the error growth in ciphertexts,
because both addition and multiplication are coordinate-wise, and we can obtain rather tight bounds using
tools like subgaussianity (see, e.g., [LPR13]). Because the ambient space is merely C™, all this analysis works
just as well in arbitrary numbers fields as it does in cyclotomics.

However, as explained in [LPR13], the size of the error in the canonical embedding is not the only relevant
quantity for decryption. Under the recommended usage of Ring-LWE and its hardness results, what we really
need is to be able to decode, under the accumulated error, a certain lattice R" that is dual to the ring of
integers R of the number field. This task depends on the geometry of R in the canonical embedding, and
hence on the choice of number field. This motivates the first main contribution of our work.

3In fact, even the original search-to-decision reduction for cyclotomics [LPR10] turns out to work verbatim for any Galois number
field, also with no change in the parameters.

*We remark that certain parameterizations of Ring-LWE over certain specially crafted, non-Galois number fields were shown to
be insecure [ELOS15]. However, subsequent work [CIV16, Peil6] showed that the error distributions of these weak parameters have
a very different shape from those covered by the cited hardness theorems, and in fact they are so narrow that they reveal several
errorless LWE equations, making them trivially easy to break. Moreover, it was also shown in [Peil6] that any parameterization
conforming to the hardness theorems, over any number field, is provably immune to the class of attacks from [ELOS15].



1.2.2 Short, Structured Bases for Abelian Number Rings

A basic requirement for ring-based cryptography over a number ring R is to have a known, relatively “short,”
and preferably structured Z-basis of the ring, i.e., a set of ring elements for which every z € R can be written
uniquely as an integer linear combination of these elements. Equivalently, viewing R as a lattice, one can see
these elements simply as short vectors that form a basis of the lattice. Here “short” is typically measured in
the canonical embedding of the ring, and “structured” is elaborated upon below.

Knowledge of some basis of R is needed for merely representing and operating on ring elements. Moreover,
a short basis is needed for removing error in decryption, which recovers some “noisy” encoding of the
plaintext, and decodes it using the short basis. Finally, for computational efficiency (see Section 1.2.3 below
for details), it is advantageous to have a structured basis, i.e., one that is the Kronecker (or tensor) product of
relative bases going down a tower of intermediate subrings of small relative degree at each step. For example,
the “powerful” basis (so named in [LPR13]) of an arbitrary cyclotomic is excellent in all these respects: it
consists of optimally short ring elements, and it is the tensor product of relative bases going down a tower of
cyclotomic rings of minimal relative degrees.

Our contribution. In the second part of this work [PP25], we construct two kinds of short, structured, and
efficiently computable bases for a wide class of abelian number rings, namely, any subfield of any power-of-p
cyclotomic for prime p, or the composite of such subfields for distinct primes. The first kind of basis is highly
structured as a tensor product going down a tower (like the powerful basis), and has length within a y/n factor
of optimal in its number field, where 7 is the degree of the field. Moreover, its length is within a v/dn factor
of the best possible in any degree-n number field, where d | (p — 1) measures “how far” the field is from
cyclotomic (formally, d is the relative degree of the smallest extension field that is cyclotomic). The second
kind of a basis has less structure, though still enough to support at least one kind of fast CRT transform, and
both it and its dual are optimally short for their number field. Finally, by tensoring we immediately get short,
structured bases for the composites of any number of prime-power cyclotomic subfields, for distinct primes.

Our constructions build on ideas from, and significantly generalize, the work of [Bre97], which gave
bases (that happen to be short) for the number rings of cyclotomic subfields over the integers Z, or more
generally, relative bases over cyclotomic base rings. However, this is not sufficient for our purposes, because
to obtain the desired structure we need relative bases over non-cyclotomic number rings. Indeed, within any
non-cyclotomic subfield of a prime-power cyclotomic, all of its subfields are non-cyclotomic (except for Q).
Therefore, the main results from [Bre97] do not provide any nontrivially structured Z-bases for our desired
fields, just “monolithic” bases over Z.

We point out that some limitation on the abelian number ring or underlying tower structure is necessary
for constructing relative bases (whether short or not), because some abelian number-ring extensions do not
have a relative basis at all, i.e., they are not free as modules over their base rings.> Our limitation is a mild
one that supports a natural approach for choosing a suitable ring: select a suitable subfield of the power-of-p
cyclotomics for various distinct primes p, then tensor the results together to get a large enough dimension and
number of slots.®

Our constructions of short, structured bases are technically heavy, but for cryptographic applications, only

3 A simple non-free example arises from certain subfields of the 15th cyclotomic L = Q((15). Then Gal(L/Q) & Zi5 = 75 x Z.
Let H := ((1,—-1)) C H' := {(—1, 2)) be the (multiplicative) cyclic subgroups generated by (1, —1) and (—1, 2), respectively;
note that (1, —1) = (—1,2)2. Then letting K’ := L™ C K := L" respectively be the fixed fields of H' and H, the ring of
integers Ok turns out to be non-free as a module over Ok, i.e., it has no Ok -basis.

%Indeed, to get slots that are isomorphic to a desired prime field I, there is even a “best possible” subfield (yielding the most
slots) of the power-of-p cyclotomics for each prime p # 7; see Lemma A.1.



their geometric norms and Kronecker-product structure are relevant. Therefore, we have separated the details
of this contribution into the second part of this work [PP25]. See Section 2.3 for the formal statements of the
constructions, their relevant properties, and some further details.

1.2.3 Fast Ring Arithmetic via Structured CRT Bases and Transforms

In ring-based cryptography over cyclotomics, the Chinese Remainder Theorem (CRT) representation is
an important and widely used feature enabling efficient ring arithmetic modulo certain integers. In this
representation, both addition and multiplication of (quotient-)ring elements respectively correspond to
coordinate-wise addition and multiplication of their CRT-coeflicient vectors, which is very fast. In addition,
there are fast algorithms that map between the CRT representation and other bases that are used for various
purposes, like sampling errors and decryption. These CRT transform algorithms are closely related to the
Number Theoretic Transform (NTT), which is a finite-field variant of the Fast Fourier Transform (FFT).
Specialized fast CRT transforms were given for, e.g., power-of-two cyclotomics in [LMPRO0S8], and for arbitrary
cyclotomics in [LPR13].

A second important application of the CRT representation is for efficient bootstrapping of “packed”
ciphertexts—i.e., those that encrypt a large amount of plaintext data—as initially proposed in [GHS12a]. In
one of two main parts of packed bootstrapping, we need to homomorphically evaluate the CRT transform (and
its inverse) efficiently, using the FHE scheme’s “native” homomorphic operations.” This homomorphically
moves the “noisy decryption coefficients” into the CRT slots for SIMD noise removal, and then back again
(see Section 3.2 for further details). Efficient homomorphic CRT transforms were given in [GHS12a] (and
concretely implemented in [HS15]) based on automorphisms, and in [AP13] (implemented in [CPS18]) based
on ring/field-switching [GHPS12].

Our contribution. The mathematical theory underlying CRT representations in cyclotomics holds more
generally for arbitrary abelian (Galois) number-field extensions, and in particular for cyclotomic subfields.
In Section 5 we build on this theory for computational and cryptographic purposes. First, we define the
CRT basis of any abelian extension of number rings (modulo a suitable ideal), and derive some of its key
structural properties. Most importantly, any CRT basis factors as the tensor product of relative CRT bases
going down any tower of intermediate number rings (see Lemma 5.11). In addition, any CRT basis can be
“lifted” or “lowered” to a “parallel” abelian extension, according to the fundamental Galois correspondence
(see Lemma 5.7).

We then use the factorization of CRT bases to give fast CRT-transform algorithms that map between the
CRT basis and any other similarly structured basis (including the short ones described above)—both “in the
clear” for basic ring arithmetic, and homomorphically for packed bootstrapping. The former algorithms work
directly on coordinate vectors (relative to the source and target bases), and immediately yield fast addition
and multiplication in general abelian number rings. But for homomorphic evaluation, native homomorphic
operations on ciphertexts do not support direct manipulation of plaintexts’ coordinate vectors, so a different
approach is needed. Using the general framework described next in Section 1.2.4, we show that CRT
transforms can also be expressed in terms of relatively few automorphisms, which allows them to be efficiently
evaluated homomorphically.

Interestingly, although the tensor-product form of the CRT basis is essential to both kinds of CRT-transform
algorithms, they work in different ways, and each one relies on a different extra feature of the CRT factors.

"The other main part is a nonlinear “rounding” operation that is applied to all of the SIMD slots in parallel. This has known
solutions (e.g., [GHS12a, AP13, CH18, GIKV23]) that are independent of the linear part, so we do not consider it further in this work.



Most notably, the “in the clear” algorithm is best run “bottom up” (see Section 5.4), whereas a “top down”
evaluation is needed when using automorphisms (see Sections 1.2.4 and 4).

As a related contribution, we give tools for finding cyclotomic subfields that have desired features.
Specifically, for a given “slot type”—e.g., a certain prime-power finite field—these tools give cyclotomic
subfields that have a desired number of CRT slots of exactly that type, with no “wasted capacity.” See
Appendix A for details and Figure 1 for examples.

1.2.4 Homomorphic Structured Transforms via Automorphisms, for Bootstrapping

As mentioned above in Section 1.2.3, [GHS12a] expresses CRT transforms on certain cyclotomics in terms
of relatively few automorphisms. Because ring-based FHE schemes support automorphisms as a native
homomorphic operation, this immediately yields efficient homomorphic evaluation of CRT transforms,
which is one of two main steps in packed bootstrapping. (In the realm of approximate FHE, [CCS19]
did similarly for CRT transforms over the complex numbers, in power-of-two cyclotomics.®) Subsequent
work [HS14, HS15, HS18] improved and generalized these ideas to build a flexible toolkit for homomorphic
evaluation of various linear transforms and related linear-algebraic algorithms, but limited to cyclotomics.

Our contribution. In Section 4 we give analogous tools for expressing “structured” linear transforms in
terms of automorphisms, in arbitrary (finite) Galois extensions, via a simple and general framework. We
build upon the standard fact that in any such extension L/K, any K-linear function can be expressed as
an L-linear combination of the automorphisms. (See Lemma 4.1.) For efficient homomorphic evaluation,
we want this linear combination to be “sparse,” i.e., to use only a small number of automorphisms. (Each
automorphism has a moderate cost to evaluate homomorphically, because it involves a key switch.)

We achieve this goal by a combination of two techniques. First, we focus on structured linear transforms
that map between bases having tensor-product factorizations going down a tower, like our short and CRT
bases. As with the “in the clear” CRT transforms described above, this leads to a corresponding sparse
decomposition of the transform, which maps each factor of one basis to its counterpart in the other, in
sequence (see Equation (4.3)). Sparsely mapping a factor “high” in the tower is immediate, because this
corresponds to a linear function on a low-degree extension. But in general we cannot map “low” factors
sparsely, without changing the higher factors as a side effect. Yet amazingly, when the high factors form a
CRT basis, it turns out that we can preserve them while sparsely mapping the “low” factors! (See Lemmas 4.3
and 5.13.) So overall, we can map between the CRT basis and any other similarly structured basis, using few
automorphisms.

This sparse-decomposition perspective is also useful more broadly, for homomorphic linear algebra and
other algorithms (cf. [HS14, HS18]). Notably, the tensor-product form of the CRT basis enables flexible data
movement among SIMD slots. More specifically, the slots can be seen as arranged in a multidimensional
array (or tensor), whose shape matches the factorization of the Galois group into a product of subgroups; each
subgroup then acts independently and transitively along its own dimension of the array. (See Remark 5.12.)
So, beyond having optimal SIMD packing via a desired slot “type,” one can also design a ring so that the
slots are arranged in a desired “shape,” to support the application’s specific needs. As an illustration of this
flexibility and its tradeoffs, in Appendix B we give two example parameterizations for homomorphic AES
evaluation, whose array of slots has a few moderate dimensions in one case, and several small dimensions in
the other.

8The second part of this work [PP25] gives a fine-grained tensor-product factorization of a CRT-like basis (over R or C) for
the number field’s canonical embedding. Our sparse-transform framework can be slightly adapted to this setting to recover the
homomorphic CRT transform of [CCS19], along with analogous ones for non-power-of-two cyclotomics and cyclotomic subfields.



1.3 Guide to the Rest of the Paper

For the reader’s convenience, here we summarize the structure, contents, and dependencies for the remainder
of the paper.

» Section 2 gives the mathematical preliminaries, covering the necessary Galois theory in Section 2.1,
the needed algebraic number theory in Section 2.2 (which by now is mostly standard in the lattice
cryptography literature), and the results we need from [PP25] in Section 2.3.

* Section 3 abstracts out (from [BGV12, Bral2, FV12, LPR13, CKKS17]) a general template for ring-
based homomorphic encryption that works over the ring of integers in any number field, highlighting
the computational aspects that need to be addressed. This template can be understood with just the
basics of algebraic number theory from Section 2.2.

 Section 4 lays out a framework for expressing linear functions on arbitrary (finite) Galois extensions—
and Galois number fields in particular—as linear combinations of their automorphisms, which can be
evaluated homomorphically. We also give sufficient conditions that yield sparse decompositions, in
terms of relatively few automorphisms. This framework can be understood with just the background on
Galois theory from Section 2.1.

* Section 5 defines the Chinese Remainder Theorem (CRT) basis of an arbitrary abelian extension of
number rings, modulo a suitable ideal. We factor the CRT basis as the Kronecker product of CRT
bases going down any tower of intermediate number rings, and use this to obtain two kinds of sparse
decompositions of CRT transforms: one that works directly on coefficient vectors “in the clear,” and
(using the framework from Section 4) one in terms of automorphisms. The material in this section
can be understood with the background on algebraic number theory from Section 2.2, especially
Section 2.2.3.

* Section 6 uses our tools to instantiate the homomorphic encryption template from Section 3 computa-
tionally, with fast algorithms. This material relies on the details of the template, and the main results
from Sections 4 and 5.

* Appendix A characterizes the number and type of finite-field slots that can be obtained in abelian
number fields of prime-power conductor and their composites, and provides several numerical examples.
Appendix B gives various choices of abelian number fields that support homomorphic AES evaluation
with no wasted SIMD “capacity,” and compares them to the cyclotomic field used in [GHS12c].

2 Preliminaries

In this work, all rings are implicitly commutative with identity. For a ring R, a function f from an R-module
to an R-module is R-linear if f(a + b) = f(a) + f(b) and f(r-a) =r - f(a) forall r € R and all a, b.

Vectors and matrices. We denote column vectors by lower-case letters that either have an arrow, like @, or
sometimes are in boldface, like a (so a’ and @* are row vectors). We use the former for general domains, and
the latter only for vectors with real or complex entries (possibly modulo some integer). The entries a; of a
vector @ are indexed by 7 € I for some specified finite index set I; similarly, the entries A; ; of a matrix A are
indexed by (i, j) € I x J for row and column index sets I and J, respectively. Often in this work, an index
set is not of the form {1, ..., n}, but is some other finite structure. We often apply functions to vectors or
matrices, which means element-wise application of the function.



For matrices (including vectors as a special case) A and B over a ring, and having respective index sets
I x Jand I’ x J', their Kronecker product A ® B is the matrix having index set (I x I') x (J x J') whose
entries are (A ® B) ;i1 (j,j) = @i,j - bir j- A central fact about the Kronecker product is the mixed-product
property, which says that for matrices A, B as above and C, D having respective index sets J x K, J' x K,
we have that (A ® B) - (C ® D) = (AC) ® (BD), which has index set (I x I') x (K x K').

Group actions. A group action for a group G and a set 5, called a G-set, is a function x: G X S — S,
typically used as an infix operator, that satisfies ex s = s where e € G is the identity, and gx (h*s) = (gh)xs.
It is free if g x s = s for some s € S implies that g = e. It is transitive if for any s, s’ € S, there exists some
g € G such that g x s = s’. Finally, it is regular if it is both free and transitive. When a particular (free and/or
transitive) action is clear by context, we often say that G acts (freely and/or transitively) on S, or that S is
acted upon (freely and/or transitively) by G. For brevity, when G acts freely on S, we say that S'is G-normal,
and if G also acts transitively on S, we say that S is G-regular.

2.1 Field and Galois Theory

A field extension L/ K is a pair of fields K C L where the ring operations on K coincide with those of L
when restricted to K. The field L is a vector space over K, and the degree deg(L/K) is defined as the
dimension of this space. All extensions considered in this work are implicitly of finite degree.

For subfields L1, Lo some common field M, their composite field L, Ly (also sometimes known as their
compositum) is the subfield L1 Ly = {d>;_; aif3i : a; € L1, 5; € Lo, finite r} C M.

2.1.1 Automorphisms and Galois Extensions

An automorphism of a field extension L/K is a ring isomorphism 7: L — L that fixes K pointwise, i.e.,
7(a) = aforall a € K. The Galois group Aut(L/K) is the group of all such automorphisms, with function
composition as the group operation. A Galois extension is one for which |Aut(L/K)| = deg(L/K), and its
Galois group is usually denoted Gal(L/K). For concision, a Galois extension whose Galois group is abelian
(or cyclic, etc.), is simply said to be abelian (or cyclic, etc.). In this work we typically work with abelian
Galois groups (even though this is not required for a few select results), so throughout this overview the reader
may wish to focus on that case.

Any Galois group G = Gal(L/K) acts on L in the natural way, via 7 x z = 7(x). Therefore, it also acts
on any subset of L (or collection of such subsets) that is closed under G. This action is not necessarily free,
since 7(z) = x forany 7 € G and x € K, but for certain (collections of) subsets of L it may be.

The fundamental theorem of Galois theory says that for any (finite) Galois extension L/K, there
is a bijective correspondence between its intermediate fields, also known as subextensions—i.e., those
fields F satisfying K C F C L—and the subgroups of Gal(L/K). Specifically, for any intermediate
field F' of L/K, the corresponding subgroup is Gal(L/F'), i.e., the automorphisms of L/K that fix F
pointwise. In the reverse direction, for any subgroup H C Gal(L/K), the corresponding intermediate field is
L :={a € L:7(a) = aV¥r € H}, the subfield of L that is fixed pointwise by every automorphism in H.

It is easy to see that the above correspondence is inclusion reversing, i.e., for any intermediate fields
Fy, F; of L/K, we have that Gal(L/F;) C Gal(L/F3) if and only if F; O F,. From this it follows that the
intersection and join of (i.e., subgroup generated by) their Galois groups are, respectively,

Gal(L/F1) N Gal(L/Fy) = Gal(L/(F\F3))
(Gal(L/F}),Gal(L/F)) = Gal(L/(Fy N Fy)) .



In particular, if L = F1F> and both F, F5 are Galois over F1 N Fb, then the join is the (internal) direct
product: Gal(L/(Fy N Fy)) = Gal(L/Fy) x Gal(L/F3).

2.1.2 Trace and Duality

For a Galois extension L/ K, the trace Try, /i ¢ L — K is merely the sum of the automorphisms:

Trp k(z) = Z T(z) € K .

T€Gal(L/K)

By definition, this is K -linear, and the output is in K because it is fixed by any element of Gal(L /K).
Let b be a vector over L of K-linearly independent entries, with index set /. Then a vector bY over L, also
with index set I, is dual to bif

v )1 ifi=

Trnyac(bi - bi) = 0= {0 otherwise.
Clearly this is symmetric, i.e., bis dual to 6" as well. Such a b always exists, and is unique if bis a K-basis
of L, in which case we call b" the dual basis of b. When the extension L /K may not be clear from context
(e.g., when working with towers of extensions), we may write bYL/K in place of b, to emphasize that it is
defined using the trace from L to K.

Fixing a K-basis bof L, any z € L can be written uniquely as z = (I;, ) = b' - 7 for some coefficient
vector & over K. The dual basis directly yields this vector, as & = Trp, K(gv - x). This is because by

K-linearity of Try, /5 and by definition of l;v, for the coefficient vector Z over K of z = bt - 7 € L,
Trp (B @) = Trg e (B -5 - 3) = Tep e (B - 0Y) - # = 7.

In particular, the dual basis lets us transform to basis b from any K basis @ of L: we have that @ = bt - T
where T' = Try,, x (b - @) is the change-of-basis matrix from @ to b, so @ - # = b' - (T'¥) for any coefficient
vector Z over K.

2.1.3 Towers of Extensions

If M/L and L/K are field extensions, then we often write M/L/K as a tower; recall that L is called an
intermediate field (or subextension) of M/K. The trace map is transitive on any such tower: Try; /i =
Trr i oTrar-

Suppose that the entries of a vector by over M are L-linearly independent, and the entries of a vector by
over L are K-linearly independent. Then the entries of the Kronecker product b ® 52 (which is a vector
over M) are K -linearly independent, and (51 ® gg)vM /K = va/ I® va/ K

Towers of Galois extensions. If M /K is Galois, then M/ L is Galois, but L/ K is Galois if and only if the
subgroup Gal(M /L) C Gal(M/K) is normal. In particular, if M /K is abelian, then both M /L and L/ K
are abelian as well. We have the following standard correspondence.

Lemma 2.1. Let M/L/K be a tower where M /K and L /K are Galois. Then Gal(M/K)/ Gal(M/L) =
Gal(L/K) via restriction to L.
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If L1 and L+ are Galois extensions of some base field (all contained in some common field), then both
their composite L Lo and their intersection L1 N Lo are also Galois over that base field.

Lemma 2.2. Let Ly, Ly be Galois extensions of K = Ly N Lo, and let M = Ly Ls. Then Gal(M /L) =
Gal(La/K) via restriction to La. In particular, Tryyp, restricted to Ly is Try, /.

Proof. We have that
Gal(M /L) = (Gal(M/Ly) x Gal(M/Ls))/ Gal(M/Ls) = Gal(M/K)/ Gal(M /L) = Gal(Ly/K) ,

where the first isomorphism is the natural homomorphism, and the last one is via restriction to Lo, by
Lemma 2.1. O

2.2 Algebraic Number Theory
2.2.1 Number Fields

A number field K is a finite-degree field extension of the rationals Q. Concretely, it can always be represented
as K = Q(y) = Q[z]/f(x), where f(x) is the minimal polynomial over Q of ~, i.e., the unique monic
polynomial over Q of least degree for which f(+) = 0. As a field extension, K can be Galois (and abelian or
even cyclic), have extensions or subextensions, etc., according to the above conditions.

We endow K with a geometry in the standard way via its canonical embedding o: K — CFX, which is
the concatenation of its set Ex of n = deg(K/Q) ring embeddings o: K — C. This makes K a complex
inner-product space via the canonical (Hermitian) inner product’

(@, ) = (. B) = (a(a),a(B)) = Y ola)-a(f),

o€l

with the standard Euclidean norm ||| = |la||x := v/ (o, @) = ||o(«)
of K. We also extend this to ||Z|| = max;||z;|| for any vector Z over K.

; we call this the canonical norm

2.2.2 Rings of Integers and Ideals

The ring of integers (or number ring) of K, denoted O, is the ring of all algebraic integers (i.e., roots
of monic polynomials with integer coefficients) in /. The ring of integers is a free Z-module of rank
n = deg(K/Q), and thus has a Z-basis b consisting of n elements of Ok. For a number field extension
L/K, an element of L is in Op if and only if its minimal polynomial over K has coefficients in O (see,
e.g., [Mat89, Theorem 9.2]).

A (nonzero) ideal of Ok is a (nontrivial) additive subgroup a C O that is closed under multiplication
by Ok, i.e., Or - a C a; indeed, this is an equality because 1 € Of. A fractional ideal (of O) is a set
a C K such that da is an ideal (of Of) for some d € Ok. For convenience, throughout this work we
implicitly restrict all (fractional) ideals to be nonzero, unless stated otherwise.

The product of (fractional) ideals a, b is defined as the set of all finite sums of terms ab fora € a,b € b.
The set of fractional ideals of O forms a group under multiplication with O as its identity element; the
multiplicative inverse of a is denoted a~!. Ideals a, b of O are relatively prime, also called coprime, if
a+ b = Og. Because O is commutative, the product of any (finite number of) pairwise coprime ideals is
equal to their intersection.

“For convenience and consistency with later definitions, we arbitrarily define the inner product to be linear in its second argument
and conjugate linear in its first argument.
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Chinese Remainder Theorem. The Chinese Remainder Theorem says that for any (finite) collection of
pairwise coprime ideals a; of Ok defining a = [, a;, the natural ring homomorphism from the quotient
ring Ok /a to the product of quotient rings [ [, (O /a;) is in fact an isomorphism. So, there is a unique CRT
vector ¢ over O /a, indexed by the 7, for which & = €; (mod a;), where € is the vector with 1 at index ¢ and 0
elsewhere. By definition, the forward direction of the isomorphism maps x € O /a to the tuple & whose
ithentry is z; = « + a; € Ok /a;, and the reverse direction maps such a tuple to (¢, Z) = > . c;z; € O /a.
(Observe that because ¢; = 0 (mod a;) for all ¢/ # 4, and z; € O /a;, each product ¢;z; € Ok /a.)

2.2.3 Prime Ideals and Splitting

In Ok, an ideal p is prime if and only if it is maximal, i.e., p # O and there does not exist any ideal v of O
such that p C v € Of. In this case, the quotient ring O /p is isomorphic to a finite field, called the residue
field of p. A fundamental theorem is that the ring O has unique factorization of ideals into prime ideals,
i.e., it is a Dedekind domain. Therefore, a | b (i.e., there exists an ideal ¢ such that ac = b) if and only if
a D b for ideals a, b. For an extension L/K of number fields, an ideal p’ of O, is said to lie over the ideal
p=p' N Ok of Og. If p’ is prime, then so is p (but not necessarily vice versa).

Now let L/ K be an abelian extension. Then any prime ideal p of O “splits” in Oy, into equal-exponent
powers of the prime ideals p, lying over p in Oy, in the following way.'? Let G = Gal(L/K) and

D =Drk(pe) :=={17 € G:7(pe) = pc}
I=1pk(pe):={7€D:7(a) =a(mod py) Vaec Or/pi}

respectively be the common decomposition group of all automorphisms that fix some arbitrary p,, and the
common inertia group of all those automorphisms that induce the identity map on Op, /p,.!" Then the p, can
be indexed by ¢ € G/ D, so there are |G/ D| of them, and the Galois group G acts on them by 7(p) = pros.
Therefore, this action is transitive, and is free if and only if D is the trivial group. The splitting of p in Oy, is
given by the factorization
poL = [ » @1
teG/D

into the product of g = |G/ D)| distinct factors, where the common exponent e = |I| is called the ramification
index of p in L. Letting F;, = O /p denote the residue field of p for some prime-power p, each residue field
Or/pe = F,s, where the residue degree f = |D/I| and hence efg = |G| = deg(L/K).

SIMD slots from ideal splitting. In the context of FHE, the factorization from Equation (2.1) and the Chinese
Remainder Theorem together form the foundation for plaintext “SIMD slots.” Letting the plaintext ring be
Or/pOp, itis isomorphic to the product of the g rings O, /p¢, in which both addition and multiplication work
component-wise (“single instruction, multiple data”), so these component rings are called slots. Assuming
for now that e = 1, all the slots are isomorphic to the residue field F,,;, which is called their zype; recall from
above that fg = deg(L/K), so larger f means smaller g, and vice versa. Often, we want slots that support
arithmetic in IF,, = Ok /p (e.g., F, = Z,, for K = Q and prime integer p). This is achieved with no “waste”
if f = 1 and thus g = deg(L/K); otherwise, I}, is a strict subfield of the slot type, so some of the extension’s
degree is “wasted” on a larger slot type, and fewer slots.

'%The same holds if L /K is merely Galois (but not abelian), but with a somewhat more complicated formalization. It even holds if
L/K is not Galois, except that the exponents of the p, may vary.
""The fact that all the p, have the same decomposition group and inertia group is implied by the hypothesis that L/ K is abelian.
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Ramification, inertness, and splitting. Returning to the mathematical theory, if ¢ = 1 and hence
fg = deg(L/K), then p is said to be unramified in L. In this case, if D is trivial, and hence f = 1 and
g = |G| = deg(L/K), then p is said to split completely in L; at the opposite extreme, if D = G and hence
f=deg(L/K) and g = 1, then p is said to be inert in L. If e > 1, then p is said to ramify in L, and the p,
are said to ramify over K. If e = deg(L/K), i.e., ] = D = G and hence f = g = 1, then p is said to be
totally ramified in L.

The decomposition and inertia groups allow for decomposing L /K as a tower of extensions L/L! /LP | K
in which (total) ramification, inertness, and (complete) splitting each can be isolated:

* Atthe top, L/ is the smallest intermediate field F of L/ K in which the p, N F are totally ramified in L.
So, (pe N LT)OL, = p¢, where e = |I| = deg(L/L’), and p is unramified in L.

* In the middle intermediate extension L /LP, the p,N L? are inert: they splitas (p,NLP)Or = p,NL7,
with relative residue degree f = |D/I| = deg(L'/LP).

* At the bottom, L” is the largest intermediate field of L/K in which p splits completely: it splits into
the product of the g = |G/D| = deg(L” /K) prime ideals p, N L? (which do not split any further
in L' or L, as already noted).

2.2.4 Duality for Ideals and the (Co)different

Let L /K be an extension of number fields. For a fractional ideal b of Oy, its dual relative to K, which is
also a fractional ideal of Oy, is defined as

bVr/k :={x € L: Trr/k(z-b) C Ok} .

When the field extension L/K is clear from context, we often drop the subscript and simply write bY. It is
straightforward to verify from the definition that (b)Y = b, that b" is a fractional ideal of Oy, and that if b is
an Og-basis of b, then its dual b¥ (as defined in Section 2.1.2) is an O -basis of b".

(Co)different ideal. The dual ideal €, /5 := Oy of the ring of integers, called the codifferent of L/ K,
trivially contains Or,. So, its inverse D, /x 1= (’:Z/l . € O is anideal of Op, which is called the different

ideal of L/ K. The codifferent relates the dual and inverse of any fractional ideal, as b = b~! - OY. When
L/K is Galois, it is immediate that O} is fixed by Gal(L/K), i.e., 7(O)) = Of forall 7 € Gal(L/K),
because Oy, is. In addition, TrL/K((’)X) = Ok.

Duality over quotients. Here we naturally extend the definition of duality (Section 2.1.2) to work over
quotients of certain ideals. Letting q be an ideal of Ok and b be a fractional ideal of Oy, and b be a vector over
the quotient b/qb, we say that a vector b over bY /qb" is dual to b (and symmetrically) if Tr;, / x(BY - by) =
di,# € Ok /q. Note that this congruence relation is valid because Try /(6" - b) = Try /i (OF) = Ok, and
Try i is K-linear so the q factor “passes through” it.

This extended notion of duality is consistent with, and inherits the properties of, the standard notion. If a
vector b is over b and b is over bY and is dual to b, then b mod qb and 6 mod qb" are duals in this new sense.
Also, the material from Section 2.1.2 about using duals to extract coefficients and obtain change-of-basis
matrices adapts straightforwardly to this setting. That is, if b is an (O /q)-basis of by := b/qb and bV is
dual to b, then any c € by can be written as ¢ = bt Tr L/ K(l_)\/ - x), s0 any vector ¢ over by can be written as

& =0T where T = TrL/K(l_;V - ah).
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2.3 Short Structured Bases

In the second part of this work [PP25], we construct (in two related ways) short and structured integral
bases for arbitrary abelian number fields of prime-power conductor, and bound their canonical norms. Then,
moving beyond prime-power conductors, we show that for any two abelian number fields having coprime
conductors, the Kronecker product of any respective integral bases is an integral basis of the composite field,
and the canonical norms of these basis elements are the products of the norms of their multiplicands. These
high-level statements are sufficient for cryptographic applications, and are restated below.

For any positive integer m, the mth cyclotomic field is Q((,,) where (,, is a primitive mth root unity.
Because the mth and 2mth cyclotomic fields are isomorphic for odd m, we assume without loss of generality
that m # 2 (mod 4). We let m* = 2rad(m) if 4 | m, and m* = rad(m) otherwise, where rad(m) is the
product of all the primes that divide m (so m* # 2 (mod 4) as well). The Kronecker—Weber theorem states
that a number field K is abelian if and only if it is a subfield of a cyclotomic field. In this case, its conductor
is defined as the smallest positive integer m for which K C Q((,).

Theorem 2.3 ([PP25]). Let L be an abelian number field of prime-power conductor m, let m = my >
my_1 > -+ > mo = 1 be such that m* | my and m;_; | mlfor all1 < i< £, and let M; = Q(le)
and L; = L N M;."? There is an efficiently computable Z-basis b= ®é b; of O, where each b; is an
Oy, ,-basis of Op,, and ||b||? < deg(M/L)" - deg(L/Q) < deg(M/Q) - deg(L/Q).

The Kronecker-product structure of the bases from Theorem 2.3 directly yields “sparse decompositions”
and corresponding fast algorithms for CRT transforms, both “in the clear” on coeflicient vectors (see
Section 5.4) and homomorphically, using automorphisms (see Section 4). The bound on ||b]| is within a
\/deg(M/Q) factor of the minimum distance of any number ring of the same degree, and within about a
\/deg(L/Q) factor of the largest successive minimum of Oy,. As compared with cyclotomics, this induces a
(typically mild) cost in the noise tolerance in cryptographic applications, which affects the ultimate parameters
(see Sections 3 and 6).

The next result shows that by using a different and slightly weaker structure, which is still sufficient for
fast “in the clear” transforms, we can obtain optimally short integral bases. These make it possible to decode
the rings of integers and their duals from larger error than using the bases from Theorem 2.3.

Theorem 2.4 ([PP25]). Adopt the setup from Theorem 2.3. There is an efficiently computable 7Z-basis
b= @le I;Z of Or, where each E; has some additional structure (see [PP25] for details) and @gzl l_); isa
Z-basis of Or,;. Moreover, if m = m”, then 6|2 = m* — deg(M/L); if m > m*, then ||b]|? = deg(M/Q);
and (for L # Q) in all cases ||b¥||? = (deg(M/L) + 1)/m.

In fact, the bases b from this construction are optimal in that they, and their duals 5V, attain all the
successive minima of the lattices they generate. Moreover, the norm of b is within a Vdeg(M/L) < \/o(m
factor of the minimum distance for any number ring of the same degree, and the norm of the dual basis is less
than 1, which suffices for applications. Lastly, these bases have enough structure to support fast “in the clear’
CRT transforms for ring arithmetic (building on Section 5.4). However, we do not yet know if they have sparse
decompositions in terms of automorphisms, but this is relevant only for homomorphic linear transforms.

Finally, with our short structured integral bases for abelian number fields of any prime-power conductor in
hand, we can use the Kronecker product to get such bases for their composite fields (which can have arbitrary
conductors).

’

2Note that M¢/My—1/---/Mi/My is a tower of cyclotomics (with My = @), hence we also have the tower
Le/Lo_1/ - /L1/Lo.
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Lemma 2.5 ([PP25]). Let L = L1 Lo for abelian number fields L1 and Lo with coprime conductors. Then
lz1 - z2l|l = ||z1l|z, - |x2l|L, for any x; € L;, and if by and by are Z-bases of Or,, and O, respectively,
then by ® bs is a Z-basis of Oy,

3 Homomorphic Encryption Template

There are several homomorphic encryption schemes based on the Ring-LWE problem over rings in number
fields, where the primary focus in the literature has been on cyclotomic rings. Adapting the presentation
in [LPR13], here we abstract out a general template that works over the ring of integers in any number field,
defining just the parts of the scheme that are relevant to this work. For our purposes, the prior schemes differ
mainly in how they encode plaintexts and perform homomorphic multiplication, so the template applies
equally well to the one of [BGV12], ones following the “scale invariant” methods of [Bral2, FV12], and the
“approximate arithmetic” one of [CKKS17].

Throughout the template, we first describe clusters of related features purely mathematically, without
regard to algorithmic implementation. We then remark how a fast instantiation of those features is enabled by
the new tools given in this work; the details may be found in Section 6.

3.1 Homomorphic Encryption Scheme

A Ring-LWE encryption scheme is defined over the ring of integers R = Ok of a number field K/Q, and
is parameterized by a plaintext modulus p and a ciphertext modulus ¢ > p, which are positive integers.'?
Recall that € := RY D R is the fractional dual (or “codifferent”) ideal of R, relative to Q. For any positive
integer r (and specifically, » = p and r = q), define the quotient ring R, := R/r R, the quotient R-module
(and R,-module) €, := ¢/r¢, and more generally, €% := €' /r& for any power i > 0.

3.1.1 Plaintext Encoding, Ciphertexts, and Decryption

The plaintext ring is R, a secret key is an element s € &, and a ciphertext is a pair
c=(co,c1) € € x Ry forwhich ¢(s) :=cy+c1-5€,

is a “noisy encoding,” modulo ¢, of the plaintext.'* Essentially, the ciphertext may be seen as an affine linear
polynomial ¢(S) in a variable S that represents the secret key, though its coefficients come from different
modules.

For concreteness, in this template we use a “least-significant digit” noisy plaintext encoding, a la [BV11a,
BV11b, BGV12], for which p and ¢ must be coprime for security.!> An important part of this encoding is an
R-module isomorphism 6: €, — R, for which 6~1(1) =  mod p¢€ (using the natural inclusion R C @),

*More generally, the plaintext “modulus” could be any ideal p of R having a known short Z-basis. This approach was used
in [CLPX18, GV25] with cyclotomic rings to get smaller noise growth (under homomorphic operations) for characteristic-p plaintext
rings, for large p of very special form. This idea works equally well in our setting of general or abelian number fields, and may
even enlarge the class of characteristics p for which this technique can usefully apply. At minimum, our techniques focused on
decomposition subrings allow for avoiding wasted “SIMD capacity” in this approach.

"“The use of the dual € = R here is important for both security and error tolerance: the known hardness results for Ring-LWE are
obtained most directly and tightly for the form of the problem involving € and spherically bounded error (see [LPR10, Section 3.3]),
and having a short basis of R enables efficient decoding of € under such error; see Section 6.2 for details.

15An analogous “most-significant digit” encoding can be given for “scale-invariant” schemes 2 la [Bral2, FV12], along with an
approximate encoding a la [CKKS17].
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and 0(z) = t - z mod pR for some t € ® = ¢! satisfying t = 1 (mod pR). Such ¢ exists (and can be
computed efficiently) by the Chinese Remainder Theorem as long as © and pR are coprime, or equivalently, if
no prime divisor of p ramifies in K.'® A noisy encoding of 1 € R, is an error term e € 6~ (u) = p+ p€ that
is “decodably small” relative to g€—i.e., from e mod ¢€ (an element of €,) we can efficiently recover e € €.
Accordingly, decryption computes ¢(s) € €,, decodes it to e € €, and outputs ;1 = 6(e mod p&) € R,,.

For an instantiation, fast multiplication in I2;, and more generally across the modules @, is enabled by
the use of a CRT-basis representation and fast CRT transforms, as given in Section 5 (see Remark 5.6 and
Section 6.1 for details). And we can efficiently sample error terms, and get suitable noisy-encoding and
decoding functions, using short, structured bases of € and R (see Section 6.2 for details).

3.1.2 Homomorphic Operations

The scheme supports various homomorphic operations on encrypted plaintexts. We recall the main ones:
addition, multiplication by a public value in R, multiplication of two encrypted values, and (as shown
in [GHS12b]) applying an automorphism of K. In all of the following, let ciphertexts ¢ = (cg, ¢1), ¢ = (¢, )
respectively encrypt plaintexts y, i’ € R, via noisy encodings e, ¢’ € €.

Linear operations. To homomorphically add the plaintexts encrypted by c, ¢/, we simply compute
ct+ = (co + ¢, 1 + ;). Observe that

ci(s)=(co+cp)+(c1+c)) -s=c(s)+(s) =e+e (modq€),

so ¢y decrypts to i + ¢/ = (e + ¢’ mod p€), as long as the combined error e + ¢’ is small enough.
To homomorphically multiply the plaintext encrypted by ¢ by a public value v € R,,, we simply output the
ciphertext ¢ =0 - ¢ = (égp = V- ¢y, ¢1 = U - ¢1), where © € R is a “small” representative of v. Observe that

é(s) =v-c(s) =ve (mod ¢C),

so ¢ decrypts to v - u = 6(ve mod p€), as long as the enlarged error ve remains small enough.

Multiplication. To homomorphically multiply the two encrypted plaintexts, we first multiply their ciphertexts
as formal polynomials. That is, we compute ¢y (S) = (co + ¢1.5)(cf, + ¢}.S), which we represent as its triple
of coefficients

cx = (cocy, coc) + c1cy, ci1cy) € CZ X €y X Ry .

Observe that cx (s) = ¢(s)-c/(s) = e- ¢’ (mod q€?) is congruent to the product of the two noisy encodings.!”
However, note that the resulting ciphertext and noise product involve ¢ O €, which no longer matches
the initial setup. To address this, we multiply the ciphertext by a known small value d € ® := ¢! C R
for which pR is coprime to d - ®~! C R, and hence to dR as well (because pR and D are coprime by
assumption). Specifically, we let
Cx =d-cx €€y X Ry x Dy,

so that ¢x (s) = d - e - € (mod ¢€). Thus, ¢ decrypts to dup’ = 0(dee’ mod p€) € Ry, as long as dee’ € €
is small enough relative to ¢€. The extra factor(s) of d can be tracked and removed upon decryption.

'5This coprimality condition can be avoided by generalizing to 6" (1) = u - 4 mod p€ for some u € ¢ such that the ideals
u® C R and pR are coprime, and using ¢ € D such that tu = 1 (mod pR); see [LPR10, Section 2.3.9] for further details.

For a most-significant-digit encoding as used in [Bral2, FV12], a slightly different kind of “scale-invariant” ciphertext
multiplication is used, but the outcome is substantially the same.
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Effectively, d is a kind of “expansion factor” associated with maintaining the invariant that products of
noisy encodings remain in €, and remain spherically bounded in their distributions. In any abelian number
field of conductor m, just as in the cyclotomic case we can use d = 7 € ©, where 1 = m/2 if m is even
and ' = m otherwise; moreover, some fields have even smaller choices.

Finally, we convert ¢x back to a linear polynomial in .S by applying a “key-switching” operation to the
quadratic coefficient ¢1¢} € Ry of c,. This uses a “gadget decomposition” to express the coeflicient in terms
of short elements of R, and a “key-switching hint” consisting of a suitable encryption of ds?> € ¢ under s.'8
This just additively increases the error size by some fixed amount, and results in a ciphertext whose form
matches the initial setup.

Automorphisms. To homomorphically apply an automorphism 7 of K /Q, we first compute the ciphertext
¢r = (1(co), 7(c1)), which is in €, x R, because 7(q) = ¢, 7(R) = R, 7(€) = €. Observe that

cr(1(8)) = 7(co) + 7(c1) - 7(s) =7(co+ ¢1 - s) =7(e) (mod ¢€) .

Moreover, since automorphisms preserve the size of the noise (in the canonical embedding) and 7(¢) =
1 (mod pR), we see that ¢, is an encryption of (7 (e) mod p€) = ¢-7(e) mod p&€ = 7(t-e mod p€) = 7(u),
but under the “conjugate” secret key 7(s) € €. To make ¢, a proper encryption under s, we apply key-switching
to the coefficient 7(c; ), using a suitable encryption of 7(s) under s.

Instantiation. For an instantiation, both lifting v € I, to a small representative © € Iz, and key-switching
with little additional noise, are enabled by having a short basis of R (the details are standard, and exactly as
in [LPR13]). Fast multiplication by © and d, and application of automorphisms on 2, and &, are also enabled
by the use of a CRT-basis representation and fast CRT transforms, as given in Section 5 (see Remark 5.6 and
Section 6.1 for details).

3.2 Packed Bootstrapping Framework

Here we recall the relevant details of the efficient “packed” bootstrapping template of [GHS12a], which was
further refined in [AP13]. The main idea is to efficiently express, via the FHE scheme’s native operations,
the decryption of a fixed ciphertext ¢ (which is to be bootstrapped) as a function of the secret key s. The
bootstrapping algorithm homomorphically evaluates this function on an encryption of s, yielding an encryption
of the decryption of ¢, i.e., an encryption of the same underlying plaintext. For appropriate parameters, the
resulting ciphertext will have significantly smaller noise than c has, allowing further homomorphic operations.

Recall from above that decryption of a ciphertext ¢ works primarily by “decoding” ¢(s) € Rg to Rz .
(In the bootstrapping context we ignore the final module isomorphism ¢ that maps back to 12, because
we want to continue operating homomorphically on the plaintext.) As detailed in Section 6.2, this is
implemented coordinate-wise relative to a certain Z-basis d of RY, which is thus also a Z,-basis of R, for
r = p, q. More specifically, writing c(s) = (J; z) € R/ for some coeficient vector z over Z,, decryption
computes <J: Decode(z)) € R;)/ , where Decode: Z, — Zj, is a suitable non-linear decoding function, applied
entry-wise to z. For example, for the least-significant-digit noisy encoding used in our template, Decode lifts
its argument to the smallest Z-representative, then reduces modulo p.'”

18This assumes the security of a key-dependent encryption; alternatively, one can instead key-switch using encryptions of ds?
and s under an independent key s’.
"For the most-significant-digit encoding, Decode simply “scales down” and rounds, as Decode(z) = Lg 2| € Lp.
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The bootstrapping template of [GHS12a, AP13] homomorphically does the decoding in parallel across all
the coordinates at once, using the scheme’s intrinsic SIMD operations. To do this, it expresses the decryption
function as three phases, and evaluates them homomorphically on the encrypted secret key:

1. The first phase moves the entries of z into the SIMD “slots.” More precisely, this phase computes
¢(s) = (d, z) and maps it to (, z), where is the standard basis of the SIMD slots, i.e., each entry of &
is 1 in a distinct slot and O in all the other slots. In other words, this map is the Z,-linear function that
sends each entry of d to the corresponding entry of C.

2. The second phase applies Decode in parallel across all the slots (i.e., the coordinates of z), yield-
ing (¢, Decode(z)). This can be expressed algebraically using additions and multiplications (see,
e.g., [GHS12a, AP13] and several subsequent works), and is outside the scope of this paper.

3. The third phase moves the entries of the slots back to the original basis d, essentially inverting the linear
function from the first phase. In other words, it evaluates the linear function that sends each entry of ¢
to the corresponding entry of d, resulting in (d, Decode(z)) € R).

For an instantiation, the basis C'is in fact the CRT basis of R(\Z/ (see Section 5.1). Using the matching

Kronecker-product structures of both ¢ and d, and other advantageous properties of ¢, we can efficiently
homomorphically evaluate the CRT transforms from the first and third phases via homomorphic automorphisms,
following the framework in Section 4 (see Section 6.3 for details).

4 Sparse (Automorphism) Decompositions

In this section we lay out a general framework for expressing linear functions on an arbitrary Galois extension
in terms of its automorphisms. Our ultimate goal is to obtain sparse decompositions for “structured” functions
of interest, like Chinese Remainder Transforms (CRTs). Such a decomposition expresses a function as a linear
combination of relatively few automorphisms, or more generally, as the (sequential) composition of a small
number of such linear combinations. This allows us to efficiently evaluate the function homomorphically,
since applying an automorphism is an efficient “native” operation in homomorphic encryption.?’

To get a sparse decomposition for a structured function, we view it as mapping from one structured
(Kronecker-product) vector of elements to another, and map each factor to its counterpart in sequence. The
primary challenge is to ensure that each factor can be mapped sparsely, without affecting the other factors.

4.1 Arbitrary Linear Functions

It is well known (and straightforward to prove) that the automorphisms of any field are linearly independent
over the field. So, for any finite Galois extension L/K, because the automorphisms 7 € Gal(L/K) are
K-linear and there are deg(L/K) of them, they form a basis for the space of K -linear functions from L to
itself. In other words, any such function can be expressed as an L-linear combination of automorphisms.
Lemma 4.1 makes this explicit, by giving the L-coefficients for a linear function that maps particular inputs to
desired outputs, using duality (see Section 2.1.2). It also adapts to linear functions on certain quotients of
fractional ideals in number fields.

2By contrast, native homomorphic operations cannot directly manipulate coefficient vectors in most bases of interest, so standard
sparse decompositions and algorithms that operate on coefficient vectors (e.g., the Number-Theoretic Transform) do not translate well
to homomorphic evaluation.
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Lemma 4.1. Let L/ K be any finite Galois extension with G = Gal(L/K), and b, @ be over L with the same
index set, such that b is K-linearly independent with dual b¥. Then f: L — L defined as

fla) = (Er(E") - () @.1)
TG

is a K-linear function for which f(g) =c
Alternatively, let L] K be a Galois extension of number fields, and let

* tbe anideal of O that is coprime with the different ideal © = Dy, /i C Oy, with d € D satisfying

d =1 (mod t);

* b be a fractional ideal of Oy, that is fixed by every T € G (e.g., Or, or O});

« band &be over b/tb, and b” be over b¥ /tb" and dual to b.
Then g: b/tb — b/tb defined as g(z) = d - f(x) is a (O /v)-linear function for which f(b) = ¢

Note that in the second claim, the coefficients d - (Z, 7(b¥)) of the automorphisms are in Oy /tOy, because
D-b-bY = Oy (see Section 2.2.4).

Proof. First, the definition in Equation (4.1) is K -linear because every 7 € G is, so it suffices to show that
f(b") = . Indeed, by multplicativity of automorphisms and the definitions of trace and duality,

FOY =D (7)) () =" > (b b)) =¢  Trp (b b =2 4.2)

TEG TEG
For the second claim, Equation (4.2) holds over b - b~ - b = ®~!b modulo ®'tb. So,

g(b)=d- f(b) =d-&= (mod tb)

because d € ©, and because d — 1 € v and ¢ is over b. O

4.2 Sparse Decompositions of Structured Linear Functions

Now let M /L /K be a tower of finite extensions, where M /K is abelian and hence so are M /L and L/ K.
Let G/, := Gal(M/L), which is a subgroup of G /i := Gal(M/K), and G /i = Gal(L/K).?' In
our setting of interest, deg(L/K) is typically small, but deg(}M /L) is potentially large.

Leth M/L and G/, (respectlvely, b 1k and 7 ) be vectors over M (resp., L) havmg the same index

set, where b M/ L (resp., b /K) 1s linearly independent over L (resp., K), and let b M/K = = M/L @ b /K and
Cu/Kk = Cumyr © Cry k- Alternatively, when M, L, K are number fields, we can let these vectors be over
suitable quotients as in the second part of Lemma 4.1, with no change to any of the following treatment; this
is actually the setup we will use in applications.

Our goal is to use an M-linear (alternatively, (Oys/tOjy)-linear) combination of the automorphisms
in G 7/ to express a K-linear (alternatively, (O /t)-linear) function f that satisfies

fomr) = ey -
As shown in Lemma 4.1, this can be done generically using up to |Gy, x| = dim(M/ K) such automorphisms.
However, we seek a sparse decomposition, i.e., one that uses relatively few automorphisms. Here we show that
it is often possible to do so by exploiting the Kronecker-product structure of bys/ i and ¢y ¢, and particular
properties of the component factors of ¢/ k-

*'More generally, for all the material in this section it suffices for M /K to be Galois, and for G s /L to be a normal subgroup of
G v/ i, in which case L/K is also Galois.
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Decomposing f. First, we express our desired map as the composition of two linear maps, as follows:

7 7 fr, & 7 Tk & o
bM/L®bL/K—L>CM/L®bL/K—K>CM/L®CL/K. (43)
More precisely,

* fr is any L-linear function for which fL(I; M/L) = Cnyr» Which by L-linearity implies that
fL(gM/L ® gL/K) = fL(gM/L) ® EL/K = Cy/L ® 5L/K ;

* fKk is any K-linear function for which fx (Cpr/r, ® 5L/K) = CuyL @ Cr/K-

Then it is clear that f = fx o fr, is K-linear and satisfies f(I;M/K) = Cum/ K> as needed.

Expressing f;r. As shown in Lemma 4.1, any L-linear f;, for which f L(l; M/1) = €umy/1 can be obtained
as an M-linear combination of up to deg() /L) automorphisms in G p7/r,. Butif deg(M/L) is large, as is
often the case in our setting, this may not be as sparse as we would like.

Instead, we can proceed inductively, as long as by /7, and ¢/, themselves factor as Kronecker products
of appropriate vectors along a tower M /L’ /L, where we typically want deg(L’/L) to be small. Then we can
express fr, using a decomposition analogous to the one in Equation (4.3).

After inductively “unfolding” all the decompositions, this approach requires atower K;/K;_1/ - -+ / K1/ K
of suitable extensions, each typically of small relative degree, and decomposes the function f as

P 7 = fe S P o fi-1
b Rb1 @ Qb =GO 1 Q- Qb —
GRG0 oIS haea 008,
for appropriate vectors 1_7;-, ¢;. The following is then immediate.

Lemma 4.2. The total number of automorphisms used in the expression of f = f1 0 --- o fy is the sum of the
number of automorphisms used in the expression of each f;.

Expressing fx. Handling fx is more subtle. While a K-linear function on L that maps EL /K O Cr K
can be obtained generically from the (typically few) automorphisms of L /K, our goal and set of available
automorphisms are different: we wish to obtain a K-linear function fx on M that maps ¢j;/7, ® b L/K tO
cym/r ® Cr/k using few of the (typically many) automorphisms of M /K. We will achieve this goal for
specific target vectors Cyy/, of interest, by showing that relatively few of the automorphisms are needed,
thanks to particular properties of ¢y,

Lemma 4.3. In the expression of fr from Lemma 4.1, the coefficient of T € Gy is

(@vyrs T(@hn)) - (Cryi s T|L(5\L//K)> : (4.4)
In particular, the coefficient of T is zero if (Cay/1., T(%/L» =0.
Proof. By the definition of fx and Lemma 4.1, the coefficient of 7 is

(@niyr @ i > T(Ey @Y ) -

The claim then follows by the multiplicativity of automorphisms, the mixed-product property, and the fact
that bz/K is over L. O
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Note that the factors (c7, /., 7| L(EX / 5 )) in Equation (4.4) are exactly the coefficients in the above-

mentioned K -linear function on L that maps b /K 10 Cr /[, because the restriction of G/ to Lis G k.
There are deg(L/K) such factors (each repeated deg(M /L) times as 7 ranges over G 7/ ), which may be
arbitrary for general fr.

In Section 5.3 and Lemma 5.13 we show that for the ¢j;,;, component in the Kronecker-product
factorization of a CRT basis, relatively few of the factors (€y//1,, 7(€), / 1)) are nonzero, hence the expression
of fx from Lemma 4.1 is indeed sparse. In summary, using the approach from this subsection we can map fo
a CRT basis from any similarly structured basis, using relatively few automorphisms overall.

4.3 Working “Bottom Up”

The decomposition used above in Section 4.2 works “top down,” first replacing b M1 With €y, via some fr,

(which may involve replacing some smaller “top” components, inductively), then replacing b /K With €/
via some fx. By Lemma 4.3, this yields a sparse decomposition if the “top” component ¢, of the target
vector has suitable properties. Alternatively, we can work “bottom up,” which is advantageous if the top
component of the map’s source vector yields a sparse decomposition.

As a primary example, consider the inverse function f~! that maps ¢ to b (which exists assuming ¢ 'is
linearly independent over K, or alternatively, O /t). We express f~! = f . Lof ;(1 as follows:

. I - e -
Evyr @ Cryre —— Enyp @by —— by @ bryk -

As with f;, above, the function f; ! can be decomposed in an analogous bottom-up way. And analogously to
Lemma 4.3, in the expression of f I_(l, the coefficient of 7 € Gy, has the same multiplicand (€1, 7(), / )
as it does in the expression for fx (but the other multiplicand is typically different). So, if relatively few of
these multiplicands are nonzero, we get a sparse decomposition for both f and f~.

5 Chinese Remainder Theorem Bases and Transforms

In Section 5.1 we define the Chinese Remainder Theorem (CRT) basis of an arbitrary abelian (Galois) extension
of number rings modulo a suitable ideal, and show how it yields fast multiplication in the quotient ring (and
related quotient modules).”?> In Section 5.2 we show that CRT bases admit a natural Kronecker-product
factorization into smaller CRT bases, going down any tower of intermediate number rings. We then exploit
this structure to give two kinds of “sparse decompositions” of CRT transforms, and associated fast algorithms,
that map between CRT bases and any similarly structured bases:

* “in the clear” transforms and algorithms (Section 5.4) that work directly on coefficient vectors, and

* ones expressed in terms of relatively few automorphisms (Section 5.3) via the framework of Section 4,
which yield efficient homomorphic evaluations of CRT transforms suitable for packed bootstrapping.

5.1 CRT Basis

Let L/K be a finite abelian (Galois) extension of number fields with G /i := Gal(L/K). Let v be
a prime ideal in Ok, and assume without loss of generality that the common decomposition group

22The abelian assumption is mostly for convenience; we mainly use it to ensure that all conjugate prime ideals have the same
decomposition group. Alternatively, we can use the weaker assumption that all the relevant decomposition groups are normal
subgroups.
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Dpk = Dk (t) of the prime—and hence pairwise coprime—ideals t; lying over v in L is trivial. >

Then recall from Section 2.2.3 that the v, are indexed by £ € G, k, which acts regularly (i.e., freely and
transitively) on them, and that ¢ splits completely in O, as tOp, = HZGGL/K ty.

For our purposes it is convenient to generalize the above setup to possibly non-prime (proper) ideals, as
follows.

Definition 5.1 (Generalized complete splitting). We say that a proper ideal v of O splits completely in Oy,
if 1O = HEEGL/K vy for some pairwise coprime ideals v, of Oy, that are conjugates, i.e., G i acts

transitively upon them. Without loss of generality, we index them so that £'(vs) = veo, forall £, ¢' € G k-

Note that G,/ i also acts freely, and hence regularly, on the ty by their pairwise coprimality, and hence
distinctness (this is where we use the fact that v is proper, hence so are the v,). In addition, the indexing of all
the vy is determined by the index of any one of them, by transitivity.

Remark 5.2. A necessary and sufficient condition for complete splitting is that each prime ideal factor of ¢
(in Og) splits completely in O, In brief, sufficiency is simply by multiplying corresponding factors of the
complete splittings, and necessity is because a nontrivial decomposition group for some prime ideal factor
of v implies a failure of pairwise coprimality. A consequence of these observations is that each ty is prime if
and only if ¢ is prime.

Suppose that proper ideal v of O splits completely in O, with factorization as in Definition 5.1. By the
Chinese Remainder Theorem (see Section 2.2.2), the natural homomorphism induces a ring isomorphism

Or/t0r = [ (O/w).
EGGL/K

That is, each element x € Of,/tOy, can be uniquely represented as a tuple, indexed by G, /i, whose /th
entry is = mod ty, i.e., the coset = + v, € O /ty. Addition and multiplication in Of, /tO, then correspond
to component-wise addition and multiplication (respectively) of these tuples.

Recall from Section 2.2.2 that any instance of a CRT isomorphism (i.e., any collection of pairwise coprime
ideals) yields a natural CRT vector of elements modulo the product of those ideals. In the case of complete
splitting we call this a CRT basis, as justified by Lemma 5.5 below.

Definition 5.3 (CRT Basis). Let v be a proper ideal of O that splits completely in Oy, as tOf =
II 1eGy i Bt Then the associated mod-t CRT basis of O /O is simply the CRT vector ¢ over O /tOp,
indexed by Gk, for these t;. Namely, ¢y = dp ¢ (mod tp) for all £,¢ € Gy, /K> Or more compactly,
¢ = €y (mod ty) (wWhere €y is the indicator vector whose /th entry is 1 and the rest are 0).

Notice that ¢ is uniquely defined up to the indexing of the ideals v, which is determined by the indexing
of any one of them. However, the choice of the ideals t, themselves is not unique unless t is prime, so the
CRT basis is associated with a particular splitting, which will always be clear from context. Also, since G, /x
acts regularly on the v, via 7(ty) = t,op, the same goes for the c;.

Remark 5.4 (Self-duality of the CRT basis). Observe that c% = c¢pand ¢y - ¢y = 0 for £ # £ (where recall
that both equalities are modulo tQr,). So, the CRT basis Cis essentially self-dual modulo t (see Section 2.2.4).

BIf Dy, /K is non-trivial, then L can be replaced by the decomposition subfield L = LPr/x of the v;. Then t splits completely
in Oj, or equivalently, the decomposition group of the primes lying over v in Oj is trivial.
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More specifically, ¢V = ¢ mod tQ}, which can be seen as a vector over O} /tOY by the inclusion Oy, C OY.
This is because Try, /(¢ - ¢jr) for £ # £ is

Try/k(tO]) = ¢ Try /i (OF) = tOg = 0 (mod v)

and for ¢ = ¢’ is
TrL/K(CZ + tOX) = Z Cj +tTI'L/K(OX) =1 (HlOd t)
JEGL /K

by the definition and K -linearity of Try, /g, the Chinese Remainder Theorem, and because G’z ¢ acts regularly
on the cy.

The following justifies the name “CRT basis.”

Lemma 5.5. The mod-v CRT basis € is an (O /¢)-basis of Or,/tOr. That is, x € Or,/tOy if and only if it

can be expressed uniquely as v = (¢, %) = ¢ - T for some vector T indexed by G K over Ok [t

Proof. The claim follows mainly from the (fairly standard) fact that for all £ € G, /g, the natural ring
homomorphism from O /t to Of,/t, is an isomorphism, where the v, are as defined in Definition 5.1; recall
that Gz /¢ acts regularly on them. First, the homomorphism is injective: because any z € Ok /¢ is fixed
by Gk its CRT representation must satisfy z + o = (£' o =Y (z + ) for any £, 0’ € Gr/k- So, if
z, 7 € Ok /v are congruent modulo vy, then they are congruent modulo every t;/, and hence are equal by
the CRT isomorphism. Similarly, the homomorphism is surjective: given any z, € Or,/t,, we construct
the z € O, /tOy, whose CRT representation has ¢'th entry zp = (¢ 0 £71)(2;) € Or,/vy. By construction,
z = z; (mod t;). Moreover, we have that z € Ok /¢ because it is fixed by G/ i: forany 7, ¢’ € G/, the
CRT representation of 7(z) has ¢'th entry

7(2) + 0 = Tz + trtor) = T(zr100) = T((77 0 £ 0 7 (20)) = (€0 67 (20) = 201

so (the CRT representations of) 7(z) and z are equal, as claimed.

Now recall that any element = € O /tOy, can be represented uniquely as = = » Guy OO0 where
(z¢ € OL/%0)eei, )y 1s the CRT representation of x. The final claim follows by applying the inverses of the
above natural ring isomorphisms to the x4 (respectively), to obtain the unique coefficient vector & over O /¢
for which = = (¢, ). O

Remark 5.6 (Fast computation in the CRT basis). By Lemma 5.5, the CRT basis enables fast addition and
multiplication in Oy, /vy, via the corresponding operations in O /v. Specifically, if x = (¢, Z),y = (¢, ¥)
for coefficient vectors &, i over O /t, then by the properties of the CRT basis we have that x +y = (¢, Z+ %)
and z -y = (¢, ® ), where ® denotes the component-wise (Hadamard) product. It also enables fast
evaluation of automorphisms: because any 7 € G,k permutes ¢ (since G,/ acts regularly on it) via
T(c¢) = ¢rop, We have that 7(¢) = P; - € for the permutation matrix P, whose entries (¢, 7 o {) are 1
forall £ € G, /i (and the rest are zero). Since 7 fixes Z (because it fixes K pointwise), we have that

() = (7(0), %) = (¢, Py - &)
Here we show that under the setup of Lemma 2.2, the CRT bases for corresponding extensions coincide,

which is useful both conceptually and computationally. In other words, the CRT basis of an extension “lifts”
to any corresponding “higher, parallel” extension (see also Remark 5.12 for additional consequences).
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Lemma 5.7. Let L1, Lo be abelian number fields with Ml = Ly Ly and K = Ly N Lo, let v be a proper ideal
of Ok that splits completely in Or, as tOr, =[] eGal(L1 /K) tO and let C be the corresponding mod-v CRT
basis of Or,, /Ok. Then:

» tOr, splits completely in Oy, as Oy = HmEGal(M/LQ) t,, where v, = t,O) for the restriction
¢=m|r,, and

* the corresponding mod-vOr,, CRT basis of Op;/Or, is ¢ + tOyy, reindexed according to the restrict-
to-Ly isomorphism from Gal(M /Ls) to Gal(L1/K) (see Lemma 2.2).

Proof. LetGy, /i := Gal(L1/K)and Gyy/p, := Gal(M/Lg). We first show the claimed complete splitting
in Q). Indeed, the t,, are pairwise coprime (in O);) because the t; are (in Or,); we have that

H Tt = H ‘CgOM:‘COLloM:‘COLQOM 5

mEGIVI/LQ EEGLl/K
and for any m’ € G/, with restriction ¢’ € G, /.,
m(tm) = m'(teOn) = ' (ve) - Onr = toor - Ont = tmiom -

Finally, since ¢ = € (mod v) forall £ € G, /, we have that ¢+ tOps = €, (mod t,) forallm € Gy,
under the stated reindexing, as needed. O

5.2 Factorization of CRT Bases

In this section we show that for a tower of extensions, the CRT basis factors as the Kronecker product of CRT
bases for each step of the tower.

For the rest of this section, let M/ /L /K be a tower of number fields where M /K is abelian and hence
soare M/L and L/K, and define G/ := Gal(M/K), Gy, := Gal(M/L), and G, /g := Gal(L/K).
By Lemma 2.1, restricting G 7/ to L induces an isomorphism p: G/ /Gar/r, — Gp k- This yields the
following bijective correspondence.

Definition 5.8. Fix a transversal 7' C Gy of Gk /G pr/1.» and define the following bijective mapping
between G/ and Gy/p X Gpyc: any (m, £) € Gy, X Gk corresponds to ¢(m, £) := mot € Gk,
where t € T' N p~1(¥) is the (unique) representative element of 7' that restricts to /.

Lemma 5.9. We have that m' o ¢(m,£) = ¢(m' om, ) for any m’ € G/ and (m,€) € Gy, x G k.
Proof. This follows immediately from m’ o ¢(m, £) = (m’ om) o ¢, where ¢ is the representative of ¢ in 7".[J

We stress that in general, the correspondence from Definition 5.8 is not a group isomorphism between
Guyi and Gy, X G as a product group. Instead, one can verify that it is an isomorphism under the
group law

(m, ) o (m/ €)= (comom/ Lol) (5.1)

for the “carry” element ¢ = tot' ot ! € G M/L» Where ¢, t',t € T are the unique representatives for
(0, (Lol') € Gk, respectively. Observe that ¢ depends only on ¢, ¢ (not m or m/), and that it is an
element of G/, because c|, = £ o £’ o (€ o £')~! is identity.

Our next lemma shows that, analogously to the situation for completely splitting prime ideals, generalized
complete splitting for M /K implies the same for both M /L and L/ K.
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Lemma 5.10. Let v be a proper ideal of O that splits completely in Oy, as

Oy = H v = H T (5.2)

TEG]V[/K mEGM/L
EEGL/K

where t,, ; = t, for the corresponding T = ¢(m, {) from Definition 5.8. Then:

» tOy, splits completely in Oy, as tOpp = HmGGM/K t,, where t,, 1= HfGGL/K Tt

o v splits completely in Oy, as tOf, = HZGGL/K vy where vy := Op N[] 0, and

meG/L

* each vy splits completely in Oy, as ¢Opr = HmEGM/L T b

Furthermore, tp, + tyOn = t g for everym € Gy and U € G k.

Proof. First, we show the complete spliting of tOp, in Oy;. By hypothesis and definition of t,,, we have the
factorization tQy; = HmeGM/L tm, and the v, for m € G/, are pairwise coprime because the t, ¢ are.
Lastly, the v, are conjugates under G/, (with respect to the given indexing): for any m, m' e Gy /1> by

Lemma 5.9 and the fact that the v,,, ¢ are conjugates under Gy, (with respect to the given indexing),

/ /
m (tm) =m ( H tmy£> = H TU'm’om,l = tm/om -

ZEGL/K ZGGL/K

For the remaining claims it is helpful to use norms of ideals. Because M /L is Galois, its ideal-norm
function can be defined as Ny p(a) := O N HmEGM/L m(a) for any ideal of Oy, which satisfies
Nag/p(a) - On = HmEGM/L m(a), and similarly for the other extensions. These functions are transitive
down the tower: Njr/x = Np /g oNpy/r.

Now we show the complete splitting of each ty in Ops. By hypothesis, the v, ¢ for m € Gyyyp, are
pairwise coprime, and are conjugates under G/, (with respect to the given indexing) by Lemma 5.9. So by
definition, v, = Ny /1 (tm ) for any m € Gy, and hence v, Oy = HmeGM/L trm, ¢, as needed.

For the complete splitting of v in Op, first observe that the v,O)y for £ € Gk are pairwise coprime
because the t,, ¢ are, hence the t, are as well. (Formally, (v, + t¢)On = v,Op + vp Oy = Oy for distinet
¢, ¢, and intersecting both sides with Oy, yields the claim.) Next, the v, are conjugates under G,/ (With
respect to the given indexing): for any ¢, ¢’ € Gk, taking any e Gy /K that restricts to ¢, by the fact that
the vy, ¢ are conjugates under G'j7/ i (With respect to the given indexing) and the group law in Equation (5.1),

!(t) =0LN T’( H tm,g) =0LN H U lol = Tof -

T)’LEGIW/L mEG]VI/L

Finally, because v = N M/ K (tm,) (seen by intersecting both sides of Equation (5.2) with Ok) and
vy =Npyp (ty,e) forany m € Gy s and £ € G ¢, by the transitivity of the ideal norm we have the needed
factorization

tOr = Ny (tmye) - O = Ny (ve) - O = H T .
KEGL/K

For the last claim, by the pairwise coprimality of the t,, » and the complete splitting of v, in Oy,

Uy + thM = H T, 0 + H T/t =m0 -
K/EGL/K mIEGM/L D
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The above results lead to a factorization of the mod-t CRT basis of Oy, /Ok as the Kronecker product of
the corresponding CRT bases of Oy, /O, and O, /O, as shown next in Lemma 5.11. We remark that [AP13]
gave a similar factorization for the CRT bases of cyclotomic rings (but not more general abelian number
rings). However, the factorization from [AP13] allows for a lot of arbitrariness in the definition of the “higher”
component ¢y /y, (namely, the v, , may be indexed arbitrarily and independently for each £), whereas our
factorization is uniquely defined by the choice of transversal T" of G 7/ /G v /1, (as in Definition 5.8). The
present formulation turns out to be critical for expressing CRT transforms using relatively few automorphisms,
as shown below in Section 5.3.

Lemma 5.11. Adopt the setup and notation of Lemma 5.10. The mod-t CRT basis Cy;/x of On /O factors,
under the reindexing from Definition 5.8, as

Mk = vy @ Crx
where Cp i is the mod-t CRT basis of O1,/ Ok, and ¢y, is the mod-vOp, CRT basis of On /Oy

Proof. Let & = Cyyr, and ¢ = Cp/i. Note that by Definition 5.3, for all m € G/ and £ € G/ we

have that ¢ = €, (mod t,, ) because the same relation holds modulo t, C HmeGM/L tme C Ty, and

d = ép (mod t,,¢) because the same relation holds modulo t,,. So, & ® ¢ = é€,, ® €y = €(m,e) (mod tp, ¢).
Applying the reindexing from Definition 5.8, we have that & ® ¢ = €, (mod t,) forall T € G, /K> and the
claim follows. ]

Remark 5.12. Adopting the setup and notation of Lemma 5.7, the result of Lemma 5.11 also implies that

CM/K = CMyL, @ Cr/Ly = Cry/k @ €y (mod tOyy)

(with appropriate reindexing in each case). Each kind of factorization can be convenient for certain purposes,
e.g., computing CRT bases more efficiently by working in smaller-dimensional fields, or analyzing the effect
of automorphisms on the CRT basis.

Notably, the former factorization, together with the direct-product factorization of the Galois group
Gr/x = Guyr, X G/, allows us to view the CRT “slots” as arranged in a two-dimensional array, where
G 1, acts regularly along the ith dimension (and has no effect on the other dimension). Naturally, even
finer-grained factorizations, arising from composites of abelian number fields having a common pairwise
intersection field, correspond to even higher-dimensional arrays, i.e., tensors. This allows us to design a field
that induces a desired tensor shape, and to permute its contents in structured ways, e.g., for homomorphic
linear algebra and other algorithms [HS14, HS18].

5.3 Sparsity of Automorphism Coefficients

For the mod-tOj, CRT basis ¢ = ¢y /L of O /Oy, consider the linear function fx from the second step
of the “top-down” structured transform in Section 4.2. Recalling that ¢V = &mod tO}/,, here we analyze
the factor (¢, 7(¢")) = (¢, 7(¢)) mod vOy, that appears in the coefficient of 7 € G5/ in Equation (4.4)
from Lemma 4.3, when expressing fx as a linear combination of automorphisms. Specifically, we identify a
necessary condition on 7 for when this factor is nonzero, which implies that fx can be expressed sparsely in
terms of automorphisms. Note that it suffices to analyze the term (¢, 7(¢)) without the reduction modulo
tOY, because the reduced term (which is what we ultimately care about) is nonzero only if the non-reduced
term is nonzero, since tOjy; C tOL.
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Lemma 5.13. Adopt the reindexing of Definition 5.8 and the notation of Lemma 5.10, and let C be the
mod-tQp, CRT basis of Oy /Or. Then (G, 7(€)) is nonzero (modulo tOyy) only if T = t' o t~! for some
t,t' eT.

Proof. Since (¢, 7(¢)) # 0 (mod tO)y) and the modulus factors as the product of the pairwise coprime t,,,
it follows that (¢, 7(¢)) # 0 (mod t,) for some m € Gj/r. Because ¢ = €y, (mod v,,) by definition,
it must be that 7(c,,) # 0 (mod t,,). So, by definition of t,,,, 7(¢;,) # 0 (mod tyoy,) for some t' € T.
Because ¢, # 0 (mod to,, )—or equivalently, 7(¢,,) # 0 (mod trotom )—only if ¢ € T, it must hold that
Totom =t om for some t € T. This implies that 7 = ¢’ o t~1, as claimed. O

Number of nonzero coefficients. We now use Lemma 5.13 to concretely bound the number of automorphisms
that suffice for evaluating each linear function fx from Section 4.2, in several settings of interest. By Lemma 4.2,
the total number of automorphisms to homomorphically evaluate a complete CRT transform is just the sum of
these over each step of the relevant tower. The following material shows that a worst-case bound on this total
is O(d?logn), and O(dlogn) is frequently achievable, where d is an upper bound on the degree of each step
and n is the degree (over Q) of the number field at the top of the tower.

Recall from Section 4.2 that in this context (and in contrast to Section 5.4 below), deg(L/K) is typically
taken to be small, but deg(M /L) can be large (because we consider “top down” transforms to the CRT basis).
Since |T'| = |Gpryk/Guyrl = deg(L/K), there are at most |T']* = deg(L/K)? values of 7 = t' ot~
for which (¢, 7(¢)) is nonzero. Moreover, in many cases of interest, the number of distinct ¢ o =1 can be
significantly smaller than |T'|2.

1. The most favorable case is when we have a direct product Gy g = Gy X Gy, which by
the Galois correspondence holds if and only if M = LL' and L N L' = K (as in the setup of
Lemma 2.2). We can then let 7' be the subgroup G/, so the number of distinct t' ot~ is only
|T| = deg(M/L") = deg(L/K).

In particular, this case applies when the degrees of M /L and L/K are coprime (by the fundamental
theorem of finite abelian groups), such as when M has odd prime-power conductor and the conductor
of L is that prime.

2. Even if T is not a subgroup, there can be many duplicates among the ¢’ o t~!. As a common
case, if Gy /Gy = Gryx = Z/dZ is cyclic of small order d = deg(L/K), we can let T
correspond to {0,1,...,d — 1} C Z, in which case every ' o t~! corresponds to an element of
{=d+1,...,d— 1} C Z, which has cardinality 2|T"| — 1.

In particular, this case applies if L has odd prime-power conductor, because Gal(L/Q) is cyclic;
if L is a power-of-two cyclotomic with K 2 Q((y) (or L = Q({4), K = Q, though this even falls
under the previous item); or if L is totally real with power-of-two conductor. These cases significantly
generalize [CCS19], which obtained the same sparsity solely for towers of power-of-two cyclotomics,
with a complex-CRT basis corresponding to the canonical embedding (not modulo an ideal), in the
context of approximate FHE [CKKS17].

3. Finally, and analogously to Lemma 5.7, we can generically “lift” or “lower” a transversal of one
quotient of Galois groups to corresponding “parallel” one. Specifically, let F'/ E be an extension of
abelian number fields for which M N KF' = K, and hence L N KE = K. Then by Lemma 2.2, we
may lift the elements of any transversal 7" of GM/K/GM/L from Gy i t0 Gyryrr © Gur/kE-
This mapping is an isomorphism, so it preserves the number of distinct #' o t~'. Furthermore,
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it induces a homomorphism Gy g = Guyp/xke/Gur/ne With kernel G/, and thus also an
injective homomorphism from G ;/x /G g/ 10 Garpyicp/G ey L. Now by Lemmas 2.1 and 2.2,
Grr/ke/Gur/iie = Gre/ke = Gk = Gy /Gy, so the previous injective homomorphism
is actually an isomorphism, and therefore the original isomorphism Gk — Garp/xF maps any
transversal of G'r/ i /G y/r to one of Grrp/kp/Grr/LE-

In particular, this case applies when the conductors of M and F are coprime. So, one can proceed
modularly by separately considering various M whose conductors are powers of distinct primes, finding
suitable transversals for the steps of their towers, and then finally “lifting” them to the Galois group of
the composite field to get transversals for all the corresponding steps of the composite tower.

5.4 Fast “In the Clear” CRT Transforms

Here we give sparse decompositions of the linear CRT transforms between CRT bases and any similarly
structured bases, which operate “in the clear”—i.e., directly on coordinate vectors (as opposed to homo-
morphically via automorphisms, in Section 5.3). These directly yield fast, highly parallel algorithms for
converting between coordinate vectors relative to these bases. They generalize the prior Number Theoretic
Transform (NTT) and Chinese Remainder Transform (CRT), which go between the CRT and power/* powerful”
bases of cyclotomics, to fast transforms that go between CRT bases and any similarly structured basis of any
abelian number field (equivalently, any subfield of a cyclotomic).

In the present context, a sparse decomposition for a change-of-basis transform is a factorization of its
associated matrix into a product of a small number of sparse matrices. In our decompositions, each sparse
matrix is of the form I; ® T'® I, where T' is some small-dimensional (but typically dense) square matrix,
and [, I, are identity matrices of certain dimensions (all of which vary from one sparse matrix to another).
Multiplying such a sparse matrix with an input vector can be done efficiently (and with high parallelism)
simply by multiplying 7" with each “strided block” of the input. So, the entire transform can be evaluated by
multiplying by all the factors of the sparse decomposition in sequence.

Sparse decomposition of CRT transforms. In this context (and in contrast to Section 5.3) we typically
want deg(M /L) to be small, but deg(L/K) can be large (because we give “bottom up” transforms to the
CRT basis). Let v be a proper ideal of O that splits completely in Oy, let ¢y x be the corresponding
mod-t CRT basis of (QM/OK, and let ¢/ = Cpr/1 @ Cp k¢ be its factorization from Lemma 5.11.

Similarly, let bM/K = bM/L ® bL/K be any structured (O /t)-basis of Oy /tOy, where bM/L is an
(O /tOp)-basis of Oy /tO)y, and bL/K is an (O /v)-basis of O, /tOy. In particular, this holds if bM/L is

an Op-basis of Oy, that has been reduced modulo vy, and similarly for b /K- As a primary example, the
short integral bases from Theorem 2.3 have this Kronecker-product structure.

We give a sparse decomposition for the (O /t)-linear transform that maps b M/K 1O Crp k- (A sparse
decomposition for the “dual” transform on Oy, /tOY, has an analogous decomposition.) In brief, it proceeds
in a “bottom-up” fashion, as the composition of two stages of sparse transforms:

- . - 1Tk - 5 TII\/I/L o = -

by = by @bk —— by @ €y —— Cuyr © €Ly = Cuyic -
The formalization is as follows.
Theorem 5.14. Let Ty i be the 5M/K't0'5M/K (change of basis) matrix over O /¢, satisfying E%J/K =
EtM /K T k- 1t has the “bottom-up” sparse decomposition

Tk = T]’WL (I ® T k) s
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where Iy )y, is the deg(M / L)-dimensional identity matrix, Tt is the I;L/K—IO—E’L/K matrix over Ok /¢, and
T]/\/I/L = Trp k(T ® diag(‘?ﬁ/K)) ,
where Tyy/1, is the 5M/L-IO-E'M/L matrix over Or, [tOy.

We give the (fairly routine) proof below, after discussing the implications. Observe that Ip;/;, @ T,/
is block diagonal, and hence (at least somewhat) sparse: it simply applies 77, /x to each of the deg(M/L)
blocks of deg(L/K) coordinates in the input vector. However, recall that 77,/ ;- may have large dimension
deg(L/K). Yet if L/K has an intermediate field and b 1/ factors correspondingly, then 77,/ can be
sparsely decomposed in the same way, inductively. In addition, 77, /L is also sparse, since it is a block matrix
of (typically small) dimension deg(M /L), with diagonal blocks of dimension deg(L/K).

Overall, after sparsely decomposing 77,/ inductively, this approach uses a tower K;/--- /K1 /Ko of
abelian number fields, each typically of small relative degree, and decomposes the CRT transform as the
following composition of sparse-transform stages:

bhi® Qb @b = b @ R 2@ RBHRE = D EREG LR RE .

The inverse transform, which maps ¢/ to b M/ 1> works simply by inverting the stages in reverse (“top-down”)
order, and has essentially the same complexity.

Complexity. In the unfolded decomposition, the ¢th stage can be implemented via multiplication by a
structured matrix over O, /t—specifically, the Kronecker product of an identity matrix and one with diagonal
blocks—having at most n - deg(K;/K;_1) nonzero entries, where n = deg(K;/Kj) is the dimension of the
input vector. Therefore, the overall complexity of the full transformisn->"'_, deg(K;/K;_1) multiplications
and additions in O, /t. For example, if each deg(K;/K;_1) is bounded by a constant, then ¢t = O(logn)
and the overall complexity is O(nlogn). In addition, each stage of the transform is parallelizable in the
natural way, due to the sparse structure of its matrix.

Proof of Theorem 5.14. For the first stage, by the mixed-product property, I ® 17,k is the change-of-basis
matrix from bys/r, ® by /x t0 by @ €. Concretely, by the material in Section 2.2.4,
Toji = Ty (@i - bp i) (over O /o).
For the second stage, T’} , /L is the change-of-basis matrix over O /t from b M/L @ CLK 10 Cryr @ Cr ks
which we derive as follows. By hypothesis and Section 2.2.4, 5’}\4 L= &y /1 - Taajz where
Tayr = Traryn(Chyyr, - EQJ/L) (over Op /tOp).

Since the entries of 7,7, during this stage already are represented in the CRT basis ¢,k they each expand
into a diagonal matrix over O /t.>* Formally, by Section 2.2.4, transitivity of Tr, ik =Trp g oTrap,
L-linearity of Try;,,, and self-duality of the CRT basis (Remark 5.4), the full change-of-basis matrix is

Thrsn = Tear e (S - b)) ® (k- Cryi)) = Trryic (Tagyr © diag(€y ) - O

2*This is why we decompose the transform in a bottom-up fashion, mapping the “lower” component b L,k to the CRT-basis
component ¢z, first, so that the (Or /tOp )-linear second stage can be implemented in a sparse way.
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6 Putting Everything Together

Here we show how to combine our results in the service of Ring-LWE cryptography and homomorphic
encryption. These solutions adapt and generalize existing approaches for Ring-LWE cryptography [LPR10,
LPR13] and packed bootstrapping [GHS12a, AP13], originally designed for cyclotomics, to the abelian
number fields (cyclotomic subfields) considered in this work.

Recall that Section 3 gave a generic mathematical template for Ring-LWE-based homomorphic encryption
and packed bootstrapping over arbitrary number rings. Using the results of the preceding sections, here we
fill in the details of how the template can be instantiated computationally, in any ring of integers R = Ok
of an abelian number field K for which we can construct short, structured bases of R and R (e.g., by the
results from [PP25] recalled in Section 2.3):

* in Section 6.1 we describe fast operations on the ring and (powers of) its dual ideal, based on the CRT
basis and fast transforms between it and other structured bases;

* in Section 6.2 we show how a short basis for the ring R is used for noisy encoding of plaintexts in
encryption, decoding in decryption, and “gadget decomposition” in key-switching;

* in Section 6.3 we instantiate homomorphic CRT transforms via automorphisms, which are central to
packed bootstrapping.

6.1 Fast Ring and Dual Operations

We first show how the basic operations in (and between) 17, and Rg can be performed efficiently, assuming that ¢
(formally, the ideal ¢Z) splits completely in R, using the mod-q CRT basis ¢of R/Z (see Section 5). Recall from
Remark 5.6 that the CRT basis yields fast addition and multiplication in R, via the corresponding component-
wise operations in Z,, along with fast evaluation of automorphisms on R, because any 7 € Gal(K/Q) simply
permutes C.

These same algorithms also work equally well across the fractional “codifferent” ideal € := RY O R and
its powers, modulo their scalings by ¢g. Define the quotient Qf’; .= ¢*/qe*, and &*) .= @mod ¢€”* to be the
vector over C’; obtained by natural inclusion and reduction modulo ¢¢* D ¢gR. We call this the CRT basis
of €F (it is indeed a Z-basis).

Suppose that z = (&%) x) € Chandy = (@) y) e @';' for some non-negative integers k, &’ and
vectors X,y over Z4. Then they can be efficiently added and multiplied as follows:

z+y= (P x+y)eck ifk=~, and
oy = (@) xoy) e e,

where © denotes the component-wise (Hadamard) product. The latter follows from the fact that because ¢'is
over g and R C €,
k K / / k+k
cE ) -cg. ) = (ci +q€*) - (c; + qe¥) C¢; - ¢ + gk TF :51-,]'-01(- )

where §; ; is taken to be in R,;. Similarly, automorphisms on 62 can be evaluated in the same way as for R, in
the CRT basis: any 7 € Gal(K/Q) permutes &%) just as it does &, by definition of &*).

Other operations like noisy encoding, key-switching, and decryption rely on representing elements with
respect to other short bases (see Section 6.2 below). Using the fast linear transforms given in Section 5.4, we
can efficiently convert between the CRT basis & (or more generally, &*)) and any similarly structured basis
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arising from the tower of subrings. In particular, this includes the short, structured integral basis bof R (orits
dual basis b of ¢) given by Theorem 2.3 and Lemma 2.5 (reduced modulo ¢ R and ¢, respectively). Similar
remarks apply for the optimally short, structured basis of R" constructed in Theorem 2.4, though in general
that basis is not quite as structured—it is not simply a Kronecker product of relative bases going down the
tower—so more work is needed to get fast transforms; we refer to [PP25] for the details.

6.2 Encoding, Decoding, and Decomposition

Here we give more details for the (least-significant-digit) noisy encoding and decoding as used in the
homomorphic encryption template of Section 3.1, using a short basis of R.>> We also briefly describe how
such a basis is used for “gadget decomposition” in key-switching. We first recall the standard noisy encoding
and decoding for integers, then extend them to R" using suitable Z-bases.

A noisy encoding of yi € Zy, is a “small” e € p + pZ, i.e., an integer e € Z such that e = p (mod p)
and |e| < ¢/2. Note that the magnitude of a typical encoding is proportional to p. In cryptographic
applications, encodings are typically reduced modulo some ¢ > p. To reverse this, the decoding function
Decode: Z, — Z, lifts the argument to its smallest (in magnitude) integer representative e and outputs
© = e mod p.

We can extend the above to RIY in a coordinate-wise fashion relative to a suitable basis of R, as follows.
Recall from Section 3.1.1 that a noisy encoding of u € R;,/ is a short e € u + pRY, ie., e € RV and
e = p (mod pRY). Letting € (for “encoding basis”) be a suitably short Z-basis of RV and expressing
w = (€, p) for a coordinate vector p over Z,,, we can generate such an encoding as e = (€, e) € R", where the
vector e over Z is a coordinate-wise noisy encoding of . (See below for some alternative, more sophisticated
methods.) In applications, encodings of R;)/ are typically reduced modulo gRY.

Similarly, let bbea suitably short Z-basis of R; then its dual basis d= b (for “decoding basis”)
is a Z-basis of RY, and hence is also a Z,-basis of R for any positive integer r. (We stress that d
and € need not be the same basis.) The decoding function Decode: RZ — R;j/ is defined analogously, as
coordinate-wise integer decoding relative to d. That is, on input z € R, we express z = (cf, z) and output

Decode(z) := (d, Decode(z)) € Ry.

Lemma 6.1. Let e € RY be a noisy encoding of i € Ry. If |le]| < q/(2||b||) where ||b]| = max;||b; |, then

Decode(e mod qRY) = p. Alternatively, if e is subgaussian with parameter r < q/(2||b||/In(2n/3)) where
n = deg(K/Q) and § > 0, then Decode(e mod qR") = u except with probability at most §.

Proof. By hypothesis and definition of Decode, it suffices to show that |e;| < ¢/2 for every entry e; of the
coordinate vector e over Z, where e = (d, e). Recall from Sections 2.1.2and 2.2.1 that e; = Tr(b;-¢) = (b;, €).
So, for the first claim, |e;| < ||b;]| - |le|l < g/2 by Cauchy-Schwarz, where (-, -) and ||-|| are respectively the
standard inner product and Euclidean norm in the canonical embedding of K. For the second claim, each e;
is subgaussian with parameter 7||b; ||, and hence |e;| < 7|b;||1/In(2n/J) except with probability at most J/n.
The claim follows by the union bound over the n coordinates of e. O

Finally, we briefly mention how a short Z-basis of R can be used for “gadget decomposition” in
key-switching (and other applications). In brief, this operation decomposes an element ¢ € R, as short
“digits” ¢; € R with respect to some small integer base g > 2,as ¢ =) . ¢; - ¢* (mod ¢R). This can be done

ZNote that encoding and decoding themselves do not need the basis to have any Kronecker-product structure, but such structure is
used to convert quickly to this basis from another structured one.
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coeflicient-wise with respect to the short basis of 2, expressing each Z,-coefficient of ¢ in base g using digits
n[—g/2,g/2), say. Because the basis of R is short, so are the resulting ¢;. (All this adapts beyond powers
of g to other kinds of “gadgets” as well, like CRT gadgets.)

Other noisy encoders/error samplers. Recall from above that to generate a noisy encoding for y € R,
we need to sample a short error e € 1 + pRY. For security, the distribution should have sufficiently large
width in the canonical embedding of K, and to best control noise growth under homomorphic operations, it
should have a nearly “spherical” (i.e., isotropic) shape. (And to conform with worst-case hardness theorems,
the distribution should be Gaussian.) Unfortunately, the above coordinate-wise noisy encoding can produce a
fairly “skewed” non-spherical distribution, depending on the geometry of the encoding basis €.

There are at least two alternative distributions that satisfy the above criteria: a true discrete Gaussian, and
a rounded-off Gaussian. The former can be efficiently sampled using the generic algorithm from [GPV08]
with a short basis € of RY. Moreover, we are optimistic that for bases € with a Kronecker-product structure,
the more efficient techniques for cyclotomics from [DP16] should adapt to our more general setting of abelian
number fields; we leave this to future work.

The latter kind of distribution can be sampled by drawing from a continuous spherical Gaussian in the
canonical embedding, then rounding it off to the desired coset by representing it relative to a short basis € of
RY. To support this, the companion paper [PP25] (see Theorem 2.4) constructs an optimally short, structured
basis € of RY and an associated fast CRT-like transform between € and a known structured orthonormal
R-basis of the canonical embedding of K.2° To sample an error, we first sample from a spherical Gaussian
in the canonical embedding using the orthonormal basis, then apply the fast transform to represent it (with
correlated real coordinates) in the basis € of RY. Finally, we round the coordinates (deterministically or
randomly) to get an element in z + pRY; because € is optimally short, this increases the norm (or covariance)
of the sample by relatively very little.

6.3 Fast Homomorphic CRT Transforms

Here we consider the number ﬁeld K to be the “top” of some tower K () /(=1 /... /(0 of abelian number
fields, where K = K () and K(©) = Q. This tower induces a tower of ring extensions R() /R~ /... /R(0)
where R = O K (i), and in partlcular R=RYandZ = RO, Suppose that ¢Z splits completely in R, and
let¢= ¢ ®cr_1 ® - ® €1 be the Kronecker-product factorization of the mod-q CRT basis & going down
the tower (see Lemma ! 5.11), i.e., & is the mod-gR(~") CRT basis of R() / RG-1) Slmllarly, suppose that
b= bg ® bg 10 ® b1 is a factorization of a Z-basis b of R going down the tower, i.e., b is an R0~ -basis
of R¥. In partlcular, recall from Section 2.3 that Theorem 2.3 and Lemma 2.5 gives such (short) factored
bases for a broad family of towers of abelian number fields.

Section 4 shows how to express the linear CRT transforms that map between the structured bases b
and ¢ using linear combinations of the automorphisms of the extensions K (*) /K (i=1)| By expressing the
transforms in this way, they can be computed homomorphically on the plaintext using the operations recalled
in Section 3.1.2, namely, linear operations and automorphisms. Moreover, Section 5.3 (and in particular
Lemma 5.13) shows that for the CRT basis ¢, this representation of the structured linear transforms is sparse,
i.e., it can be expressed in terms of relatively few automorphisms. Together, this directly yields efficient
algorithms for the homomorphic evaluation of CRT transforms.

*This structured orthonormal R-basis is analogous, with a similar Kronecker-product structure, to the mod-q CRT basis from
Section 5, and the fast transform works similarly to the one given in Section 5.4, but over R.
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Recall from Section 3.2 that homomorphic CRT transforms make up the first and third steps of the packed
bootstrapping template. However, recall that the plaintext is best encoded in R(\]/ (not 124), so we actually want

to homomorphically evaluate the “dual” CRT transforms, which map between b = I;}/ ® 5}_1 ®- - @by
and¢” =¢/ ® ¢/ ; ® - ® ¢, both of which are Zg-bases of R(\I/. Fortunately, the framework of Section 4

works just as well in this setting, simply by swapping b and € with their respective duals b¥ and ¢'. Note that
this replaces the factors (Gyz/r, 7(Cy, / 1)) appearing in Equation (4.4) with (¢}, /L 7(Chy1))- Fortunately,

<5}\//[/L, 7(Enmy/r)) = (Criyr, T(Earyr)) mod qOj; by the same reasoning given at the start of Section 5.3, so
Lemma 5.13 yields the same level of sparsity for this setting.
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A Slot Type and Number in Abelian Number Fields

In this section we characterize how primes split in abelian number fields of prime-power conductor and their
composites. These tools can be used to identify abelian number fields that have a desired type and number of
“SIMD slots.” Figure 1 provides several numerical examples.
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A.1 Cyclotomic Fields

An important family of abelian number fields is the cyclotomic fields. For a positive integer m called the
conductor, the mth cyclotomic field M = Q((,,) is obtained by adjoining a primitive mth root of unity (,, to
the rationals. Its degree over Q is ¢(m), the totient of m. Its automorphisms 7; are defined by 7;((n) = (¢,
for each ¢ € Z}, the multiplicative group of integers modulo m. Therefore, its Galois group Gal(M/Q) is
isomorphic to Zy,, so it is an abelian extension. It is a standard fact (see, e.g., [Con, Theorem 2.3]) that Z;k is
cyclic for odd prime pand k£ > 1, and Zgr = {£1} x {i: i =1 (mod 5)} = (—1) x (5) for k > 2.

For a prime integer 7 that is coprime with m, the common decomposition group of the prime ideals t lying
over  in Oy is (1) C Gal(M/Q), the cyclic subgroup generated by 7., which is isomorphic to (r) C Z7,.
The inertia group is trivial, i.e., 7 is unramified in M.

A.2 Slot Structure

The following lemma shows that there is a maximum number of “slots” of a given prime characteristic r
that can be obtained in power-of-p cyclotomics (and, by implication, their subfields), and tells us where that
maximum is obtained. See Figure 1 for some numerical examples.

Lemma A.1. Let p, r be distinct prime integers, p = 4 if p = 2 and p = p otherwise, d be the multiplicative
order of r modulo p, and k be the greatest integer such that p* divides r® —1 (so p | p*). In the plth cyclotomic
ring for p* > p, the prime 1 splits as the product of g prime ideals each having residue field F, s, where
f=d-p™xOL=hk) and fg = p(p®). In particular, g = p(p*)/d for all £ > k.

Proof. By prime splitting in abelian extensions (see Section 2.2.3), and because the decomposition and inertia
groups of the prime ideals lying over r in the p‘th cyclotomic respectively correspond to (r) C Z* and the
trivial group, it suffices to show that f is the multiplicative order of » modulo p. We proceed by cases. For
¢ < k, this order is d, by definition of d and k, and because p | pz . For ¢ > k, by definition of k, we have that
r* = r¢ mod p’ is an element of the order-p’~* subgroup S = {i : i = 1 (mod p*)} C Z,, which is cyclic
(because it is a subgroup of a cyclic group, either Z;Z ifpisoddor {i:i=1 (mod 5)} = (5)). Moreover,
7* is not an element of the maximal proper subgroup {i : i = 1 (mod pFt1)} C S, so it has order p*~*. O

For an abelian number-field extension L/ K and an unramified prime ideal of O, the next lemma relates
its number of prime factors in Oy, and their common residue degree (as described in Section 2.2.3) to those in
any subextension of L/K. As corollary, by specializing to K = Q and combining with Lemma A.1, for a
prime characteristic 7 we can obtain a residue field of I, ;» from a subfield of a power-of-p cyclotomic for
prime p # 7 if and only if f’ | dp’ for some integer i > 0, where d is as defined in Lemma A.1.

Lemma A.2. Let:

* L/K be an abelian extension of number fields;

* t be a prime ideal of Ok that does not ramify in L, having residue field Ok /v = F, for some
prime-power

* D be the order-f decomposition group of the g = deg(L/K)/ f prime Op-ideals lying over t (which
each have residue field F,;); and

* H be a subgroup of Gal(L/K).
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Then t splits in L as the product of g = g - |H N D|/|H| prime ideals each having residue field IF, s, where
f'= f/|H N D|. In particular, H C D ifand only if f' = f/|H| and ¢’ = g, and H N D is trivial if and
only if f' = f and ¢' = g/|H].

Proof. We have that
D/(H N D) = Gal(LA™P /LP) = Gal(L7 /L7P) |

where the first isomorphism is by restriction to LZ™P and the second is by further restriction to L¥ and
Lemma 2.2, because L7"P = LHLP and LHP = LY N LP by the Galois correspondence. Next, we
claim that Gal(L¥ /L#P) = D', the decomposition subgroup of the prime ideals lying over v in L. This
is because by maximality, L#” = LH N L is the largest subfield of L in which v splits completely,
hence LP is indeed the fixed field of D’ in L. It therefore follows that ¢ splits in L as the product
of ¢ prime ideals each having residue field F,;/, where f' = |D’| = |D/(H N D)| = f/|H N D|, and
g = deg(L"/K)/ " = fg/(f'|H|) =g |H 0 DI|/|H|. O

Remark A.3. We discuss several useful implications of Lemma A.2. First note that any intermediate field L7
of L/K (for a subgroup H C Gal(L/K)) can be reached by applying the two particular cases from
Lemma A.2 in sequence. First, go to L "for H = HN D C D, which reduces just residue degree from f
to f/ = f/|H'|. Then, go from L¥ to L* using the restriction of H to L' (which is a subgroup of
Gal(LH* / /K) isomorphic to H/H'), which preserves the residue degree and hence reduces just the number
of prime ideal factors from g to ¢’ = g/|H/H'| = g - |H'|/|H]|.

Moreover, for any f' | f and for ¢’ = g there exists a subgroup H C D yielding these parameters, namely,
any order-(f/f") subgroup of D. Such a subgroup exists because D is finite and abelian, and thus is a
“converse of Lagrange’s Theorem” group. Moreover, if D is cyclic—in particular, when L is a cyclotomic and
K = Q—then there is a unique such H. Finally, if Gal(L/K) is cyclic—e.g., when L is an odd prime-power
cyclotomic—then every distinct subgroup H yields a distinct product f'g’ = deg(L/K)/|H| and hence
distinct pair (f’, ¢’), because distinct subgroups have distinct orders.

Unfortunately, for a desired f’ | f it is not always possible to obtain an arbitrary divisor ¢’ of g. For
example, letting L/ K = Q((17)/Q and v = 2Z, we have that f = 8 and g = 2. However, the only subgroup
of Z;, having trivial intersection with the decomposition group D = (2) is the trivial subgroup itself, and so
there is no subfield in which f/ = f =8 and ¢’ = 1.

Finally, the next lemma makes it simple to construct an abelian number field having many slots of the
desired type: simply take the composite of abelian number fields having coprime conductors (e.g., powers of
distinct primes) and slot types whose composite is the desired slot type. The composite of F,x and F, .. is
F icm(x,e), SO we want to use abelian number fields whose residue degrees for the primes lying over r have
the desired least common multiple. Also recall that Theorem 2.3 gives us short, structured bases for abelian
number fields constructed in this way.

For subrings 51, Sy of some ring R, their composite ring is defined (just like the definition of composite
field) as the subring S152 = {>_;_; if; : a; € S1,6; € So, finite r} C R. Note that by Lemma 2.5, the
hypothesis Or,, 1., = Or, O, in the following lemma is satisfied when L; and Lo are abelian number fields
with coprime conductors, which is the primary way in which we use the result.

Lemma A.4. Let Ly, Ly be number fields with composite field M = Lj L such that Oy = Or,Or,, let vy
be a prime ideal in Oy, and let v; :== Op, Nty fori € {1,2}. Then Onr /ey = ¢1(Or, /tr,)92(OL, /tL,),
where the natural map ¢;: Op,/tr, = O/t is a field embedding.
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Proof. First, the natural map ¢; is clearly a field homomorphism. Furthermore, it is injective, since
¢i(x +vp,) = vy for some x; € Op, if and only if x € O, Ntyr = vr,. So, Opr/tyr contains
each ¢;(Or,/rr,), and thus contains their composite as well. Finally, for the reverse inclusion, since
Own = Or,0L,, any € Oy can be written as a finite sum x = ), o;5; for some o; € Or,,, 5; € Op,, 50

T+ty = Zazﬂi +ry = Zcbl(az’ +rtr,)P2(Bi +tr,) + s,

3 K3

hence Oy /t) is contained in the composite of the fields ¢;(Op, /tr,), as needed. O

Summary. The above lemmas directly yield a procedure for constructing abelian number fields with any
desired characteristic-r (finite field) slot type. First, Lemma A.1 characterizes what slot types F,.; and number
of slots can be obtained in power-of-p cyclotomics, for any prime p # r. However, the obtainable residue
degrees f are often larger than desired. Next, Lemma A.2 and Remark A.3 show how to obtain any slot
type of residue degree f’ | f, i.e., any subfield F,, of the cyclotomic’s residue field IF,.;, by using a suitable
cyclotomic subfield (namely, the fixed subfield of a subgroup of appropriate order of the decomposition
group). Finally, Lemma A.4 shows how to obtain more slots by compositing such power-of-p cyclotomic
subfields for distinct primes p. The resulting slot type is the composite of the slot types for the component
cyclotomic subfields, so these should each have a slot type that is a subfield of the ultimate desired slot type.
Another consequence of this is that the number of slots obtained in this way is super-multiplicative.

A.3 Numerical Examples

Figure 1 gives some selected examples of parameters that can be obtained from Lemma A.1, which can be
reduced and refined using Lemma A.2.

For the class of example where r = p* - ¢ + 1, notice that given r and p, we can confirm the given values
of d and k using the definitions in Lemma A.1. Indeed, d = 1since r = 1 (mod p), and p* is the largest power
of p that divides ' — 1 = p¥.m since p { m. Similarly for = p¥-m — 1, we have that 7! = —1 (mod ), so
7?2 =1 (mod p), and p” is the largest power of p that divides 72 — 1 = p?*-m2 —2p¥.m = p*-m- (p¥-m—2),
since pt mand p{ (p¥ - m — 2).

Now consider the examples where » = 2. The case p = 17 represents the least p where Lemmas A.1
and A.2 yield an abelian number field where the prime-ideal factors of r have residue field Fos; there are
two such factors. The values p = 31, p = 73, and p = 127 are the least p where ¢ is at least 4, 8, and 16,
respectively. So, r splits into at least 8, 16, and 32 prime-ideal factors having common residue field Fos in a
suitable subfield of the mth cyclotomic for m = 17 - 31, m = 17 - 73, and m = 17 - 127, respectively. By
contrast, the values p = 241, p = 257, and p = 5153 are the least prime p where g is at least 8, 16, and 32
(respectively) for a residue field of Fys.

Also for r = 2, it is also worth comparing what can be obtained in cyclotomic subfields, versus in
cyclotomics only. In any cyclotomic in which 2 does not ramify, every prime ideal lying over 2 has residue
degree f > 1, i.e., it is not possible to obtain [F5 as a residue field, only proper extensions of it. By contrast, in
cyclotomic subfields—specifically, (subfields of) the decomposition subfield of the primes lying above 2—we
can obtain a number of Fa-slots matching the degree of the subfield. For example, we get two Fa-slots in the
decomposition subfield of Q((17); six in the decomposition subfield of Q((3;); eight in the decomposition
subfield of Q((73), etc.

The examples for r = 3, r = 5, and r = 7 give the p < 256 that yield the largest g for the given r.
The examples where = 263, = 443 (respectively, r = 79193) represent the r € [28, 29] (respectively,
r € [216,217]) that yield the largest g for the given p.
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r P d k g = #slots
r=pc+1 any 1 >log,(p) = ¢(p")
r=pfc—1 #2 2 any = o(p*)/2
2 17 8 1 2=16-17°/8
2 31 5 1 6 =30-31%/5
2 739 1 8§=172-73°
2 127 7 1 18 =126 - 127°/7
2 241 24 1 10 = 240 - 241°/24
2 257 16 1 16 = 256 - 257°/16
2 5153 112 1 46 =5152-5153°/112
3 11 5 2 22=10-11'/5
5 71 5 1 14=70-71%/5
7 191 10 1 19 =190 -191°/10
263 73 2 14=6-7/3
443 5 4 4 125=4-53/4
79193 5 4 6 3125=4-55/4

Figure 1: Some examples of the maximum number of slots that can be obtained for a prime modulus r # p
in a power-of-p cyclotomic (sub)field. The values d, k, ¢ are as in Lemma A.1, i.e., modulus 7 in the p*th
cyclotomic yields g slots of type F¢, and higher powers of p do not yield any additional slots. In the first two
generic examples, p and k may be arbitrary (subject to the minor listed restrictions), and 7 has the given form
(for integer ¢) where p { r.

B Example Instantiations for Homomorphic AES Evaluation

In this section, we expand upon the example application of homomorphic AES evaluation, and describe some
new instantiations using the tools from this work. For this application, the most natural plaintext “SIMD
slot” type is the finite field Fys, because the AES function works with vectors over this field. However,
because [GHS12c¢] used cyclotomic rings, it was induced to use [Fy24 as its slot type, which is “wasteful” by a
factor of three. More specifically, [GHS12c] uses the cyclotomic field Q(Cass79) = Q((7)Q((17)Q(C241),
which has dimension ¢(28679) = 6 - 16 - 240 = 23040, but only 23040/24 = 960 Fy24-slots, enough for 60
AES blocks.

B.1 Example Instantiation 1

Using the tools from this paper, we can see that one good choice of field is
1) ~(7) ~(3
L=cfoles,

where ngd) is the unique subfield of Q((,) such that deg(Q(¢,)/ C]gd)) = d, for odd prime pand d | (p — 1).
By Lemmas A.1 and A.2,

. Cg) has 2 Fys-slots, . Cg; has 18 [Fy-slots, and . éi)l has 10 Fos-slots.

In summary, L has:
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8018

Figure 2: A diagram representing the structure of the various abelian number fields in our first example

instantiation, where J = C’g). Each edge represents a field extension of the given dimension, with solid and
dashed edges respectively representing complete splitting and total inertness for the prime ideals lying over 2.
For any pair of depicted distinct field extensions L; /K and Ly/K over a common base field K, we have
that L1 N Lo = K. So by Remark 5.12, for any prime ideal t of O lying over 2, the mod-t CRT basis of
OL, L,/ Ok is the Kronecker product of the mod-t CRT bases of Or,, /O and Or,,/Ok.

* dimension 16 - 18 - 80 = 23040 over Q (cf. 23040 in [GHS12c¢]), and
* 23040/8 = 2880 Fys-slots (cf. 960 Fy24-slots) by Lemma A.4, enough for 180 AES blocks (cf. 60).

B.1.1 Tensor of CRT Slots

First, note that J = Cg) has two [Fys-slots. Specifically, by the facts recalled at the start of Appendix A, the

prime 2 € Z splits completely over the quadratic extension Cg) /Q, and the two prime ideals lying over 2 are
3)

totally inert in the extension .J/ CS). Furthermore, by Lemma A4, J, J Cg; and J Cé 1, all have Fos-slots,
and so the two prime ideals lying over 2 in J split completely in the extensions .J C’g% /J and J Céi)l /J. See
Figure 2 for a diagram of these extensions and how they relate.

Observe that the composite of J C'g)7 and J C’;Z)l is L, and their intersections is J. Therefore, by
Remark 5.12, letting vt = 207, the mod-t CRT basis of O, /O is the Kronecker product of the mod-t CRT
bases of O ey /Oy and O 1) /O, so the mod-t CRT basis of O, /O has an order-two tensor structure
over O /20, where the automorphisms of these extensions permute along the corresponding dimension.

Next, we obtain a Zs-basis of O ;/20; as the Kronecker product of the mod-2 CRT basis of O o® /Z and

any O _s)-basis of Oy, such as cfl7 = (C{7)i7:0. Finally, we obtain a Za-basis of Oy, /20y, as the Kronecker

(8)
Ciz
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product of the mod-t CRT basis of O, /O with our Zy-basis of O;/20 ;. Such a Kronecker product basis

may be used to represent an element of Oy, /20y, as an order-3 tensor over Zz, where the O o® -basis of O
corresponds to a Zy-basis of the [Fos-slot.

A key observation of this tensor view is that the automorphisms of .J, C’g;, and C’éi)l act independently
on their respective dimensions of the tensor. Indeed, for the latter two components they simply permute the

tensor, acting regularly. Furthermore, for both of the prime ideals t lying over 2 in O o®)> the automorphisms
17

of Gal(J/ C’S)) induce (Frobenius) automorphisms of O /tQ ;. Therefore, we have efficient homomorphic
evaluation of arbitrary automorphisms of [F9s in a SIMD fashion across all the slots via, the lifting of the

corresponding automorphisms of Gal(J/Cfg)) to Gal(L/CS)) C Gal(L/Q).

B.1.2 Short, Structured Basis

Using Theorem 2.3, we can efficiently compute short, structured integral bases of CS), Cg)7 and Céi)l. Let

-

bp,q be the integral basis of C,(ﬁl ) obtained from this theorem. Because these m are prime, upper bounds on

the canonical norms of these bases (in their respective number fields) are Hl;dez <d- deg(Cfg ) /Q).
Additionally, p17 = (§f7)z‘7:0 is a power (909 -basis of O, because O; = Z[(17] and Z C ch) C Oy.
Thus, pi7 ® 51778 is a structured Z-basis of O; with canonical norm bounded by |[[pi7 ® 617,8H2 =
deg(J/ C’g)) : ||517,8 |2 < 8-deg(J/Q), where the equality holds because pi7 consists of roots of unity. Then
by Lemma 2.5, . . .

(P17 ® bi7,8) ® big7,7 @ baa1 3

is a Z-basis of O, with norm upper bounded by
V8-7-3-/deg(L/Q) ~ 12.96148 - \/deg(L/Q) .

For comparison, recall that any nonzero element of O for any number field K has norm at least /deg(K/Q),
so this integral basis of L has norm within a factor of 13 of optimal for any number field of the same degree.

B.2 Example Instantiation 2

We can also use our tools to find an abelian number field of similar dimension to that of the previous example,
while keeping all the prime divisors of the conductor small. This yields a much finer-grained (higher-order)
tensor of CRT slots, which supports cheaper and richer homomorphic linear algebra. One example of such a
fieldis (1) (1) ~(3) ~(5) ~(3) ~(1) ~(9) ~(5)
1) ~(1) ~(3) ~(5) ~(3) ~(1) ~(9) ~(5
L=C37C5 0 Oy Oy O Oy sy

where ngd) is the unique subfield of Q((,) such that deg(@(cp)/CIgd)) = d, for odd prime pand d | (p — 1).
By Lemmas A.1 and A.2,

. él) has 1 [Fy2-slot, . Cﬁ)) has 1 Fy2-slot, . Cg) has 1 Fo2-slot, and
. E(,l) has 1 Fys-slot, . CS) has 1 Fys-slot, . C?E?) has 6 [F9-slots.
. Cég) has 2 [F,-slots, . Cg) has 2 Fys-slots,

In summary, L has:
e dimension2-4-2-2-4-16-2-6 = 24576 over Q (cf. 23040 in [GHS12c¢]), and
* 24576/8 = 3072 Fys-slots (cf. 960 Fqy24-slots) by Lemma A.4, enough for 192 AES blocks (cf. 60).
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Figure 3: A diagram representing the structure of the various abelian number fields in our example construction,
where J = Cg). Each edge represents a field extension, with solid and dashed edges respectively representing
complete splitting and total inertness for the prime ideals lying over 2. For any pair of depicted distinct field
extensions L1 /K and Ly /K over a common base field K, we have that L; N Ly = K. So by Remark 5.12,
for any prime ideal v of O lying over 2, the mod-t CRT basis of Or, 1,/ Ok is the Kronecker product of the
mod-t CRT bases of Or, /O and Op,, /Ok.

B.2.1 Tensor of CRT Slots

We construct a Zy-basis of O /20y in a similar fashion as in Appendix B.1.1, but with a richer tensor
structure. Just as before, recall that J = Cﬁ) has two Fqs-slots, and we get a Zy-basis of O;/20 as the
Kronecker product of d17 and the mod-2 CRT basis of O o® /Z. Then by Lemma A.4, J and JK for

17

K e{ogh. o .of off. o, o). o))

all have Fqs-slots, so the two prime ideals lying over 2 in J split completely in the extension JK/J. See
Figure 3 for a diagram of these extensions and how they relate.

Next observe that the composite of all the fields JK is L, and their pairwise intersections all are J. So
by Remark 5.12, letting v = 20, the mod-t CRT basis of O, /O is the Kronecker product of the mod-t
CRT bases of O /O for each K. This results in an order-7 tensor structure over O;/20 ;, where the
automorphisms of each extension JJ K /.J permutes along the corresponding dimension of the tensor.

Next, we construct a Zy-basis of O, /20 as the Kronecker product of the mod-t CRT basis of O, /O
with the previously described Zs-basis of O . Such a Kronecker product basis may be used to represent an
element of Or, /20, as an order-8 tensor over Zsy, where the O c® -basis of O corresponds to a Zs-basis of

the Fys-slot.
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Similarly to Appendix B.1.1, the automorphisms of C(l), CEEI), C(g), CS), J, C’ig), and C’S) act

independently on their respective dimensions of the tensor, and we have efficient homomorphic evaluation of
arbitrary (Frobenius) automorphisms of Fos in a SIMD fashion.

B.2.2 Short, Structured Basis
Using Theorem 2.3, we can efficiently compute short, structured integral bases of C. (1), Cél), C(g), Cﬁ)) ,

Cfg), CS), Cg), and Cé?). Let I_)‘m,d be the integral basis of C,(ﬁl) obtained from this theorem. Because
these m are prime, upper bounds on the canonical norms of these bases (in their respective number fields) are

[Bmall® < d- deg(Ci /Q). )
Just as in Appendix B.1.2, we get that pi7 ® by7 g is a structured Z-basis of O ; with norm bounded by
717 @ bi7g||> < 8 - deg(J/Q). So, by Lemma 2.5,

b31 ®bs1 ®brz®b11s®bi33® (FR birg) @ biog @ b3y s
is a Z-basis of Oy, with canonical norm upper bounded by
V1-1-3-5-3-8-9-5-+/deg(L/Q) ~ 127.27922 - \/deg(L/Q) .

So, this integral basis of L has norm within a factor of 128 of optimal for any number field of the same degree.
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