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Zero-Knowledge Proofs [GoldwasserMicaliRackoff’85]

I A protocol allowing an unbounded Prover P to convince a skeptical,
bounded Verifier V that some x ∈ L.

I The (honest) verifier learns nothing more than the truth of statement:
∃ efficient simulator S such that ∀x ∈ L:

ViewV [P (x)↔ V (x)] ≈ S(x).

I Statistical ZK (SZK): “≈” means statistically indistinguishable.

I Honest-verifier SZK ≡ general SZK [GSV’98].

I SZK proofs are powerful: secure against unbounded malicious P ∗, V ∗.
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Noninteractive SZK [GoldreichSahaiVadhan’99]

I Consists of only one message from P to V .

I Both P and V have access to a uniformly random string.

SZK versus NISZK

F Both SZK and NISZK have complete problems [SV’97, GSV’99]

F SZK is closed under complement [SV’97], but NISZK is not known to be.

F NISZK is closed under complement ⇐⇒ NISZK = SKZ [GSV’99]
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Lattices
I An n-dimensional lattice L ⊂ Rn is a discrete additive subgroup,

generated by a (non-unique) basis B = {b1, . . . ,bn}:

L =

n∑
i=1

(Z · bi)

O

b1

b2

I Represent coset x + L ∈ (Rn/L) by unique x̄ ∈ (x + L) ∩ P(B).

I Minimum distance: length of shortest nonzero lattice vector

λ1(L) = min
0 6=v∈L

‖v‖.

I Covering radius: maximum distance from the lattice

µ(L) = max
x∈Rn

dist(x,L).
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The Smoothing Parameter [MicciancioRegev’04]

I ηε(L) = minimal Gaussian ‘blur’ that ‘smooths out’ L
(up to error ε: think 2−n ≤ ε ≤ 1/2)

Applications

I Worst-case to average-case reductions [MR’04,Regev’05]

I Constructions of cryptographic primitives [GPV’08,. . . ]

I Algorithms for SVP and CVP [ADRS’15,ADS’15]
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The Smoothing Parameter Problem [ChungDadushLiuPeikert’13]

Definition: γ-GapSPPε

I Given a lattice L, is

ηε(L) ≤ 1 OR ηε(L) > γ ?

I Equivalent to ‘classical’ problems like GapSVP, up to ≈
√
n factors.

We’re interested in non-trivial factors, where equivalence doesn’t help.

GapSPP is Central

I Replacing ‘classic’ problems w/GapSPP in proof systems [GG’98] and
worst-case to average-case reductions [MR’04,R’05] subsumes the
original results, and yields seemingly stronger ones.

I GapSPP ∈ SZK ⊆ AM ∩ coAM [CDLP’13], but
classic problems ∈ NISZK, coNP [AR’04,PV’08].

Motivating Question

Are there noninteractive proof systems for GapSPP?
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Our Results
I Noninteractive (NISZK/coNP) proof systems for GapSPP, improving

prior ‘trivial’ factors by ≈
√
n.

I Bonus: improved SZK proof system for GapCRP (covering radius).

Prior γ Our γ Efficient-Prover γ

γ-GapSPPε ∈ NISZK
√
n log(1/ε) log(n)

√
log(1/ε)

√
n log3(n) log(1/ε)

γ-GapSPPε ∈ coNP
√
n/ log(1/ε) log(n) ——–

γ-GapCRP ∈ SZK ω(n
√

log n) O(
√
n) ω(n

√
log n)

Two NISZK Proofs for GapSPP

1 A ‘direct’ proof (with efficient prover) for negligible ε.

2 A reduction to EntropyApproximation ∈ NISZK for any ε < 1/2.
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Direct Proof of GapSPP ∈ NISZK
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Discrete Gaussians over Lattices

I Sample x ∈ Rn from continuous Gaussian of width ≥ η(L).

I Coset c = x + L is uniform∗ over Rn/L [MR’04].

I Given coset c, conditional distribution of x is discrete Gaussian Dc+L.

I Dc+L has Gaussian-like properties, e.g., sharp concentration bounds.
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Noninteractive Proof System [PeikertVaikuntanathan’08]

I Random String: uniform cosets ci ← Rn/L for i = 1, . . . ,m.

I Prover: sample ei ∼ Dci+L for each i.

I Verifier: accept iff each ei ∈ ci + L and σ1(
∑

eie
T
i ) ≤ 3m.

I Simulator: first sample ei from continuous Gaussian as proof, then
output cosets ci = ei + L as random string.
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∑

eie
T
i ) ≤ 3m.

I Simulator: first sample ei from continuous Gaussian as proof, then
output cosets ci = ei + L as random string.

Completeness X
I Suppose η(L) ≤ 1: implied by λ1(L∗) >

√
n.

I Then σ1(
∑

eie
T
i ) ≤ 3m, by matrix concentration bounds on Dci+L.
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Zero Knowledge X
I Suppose η(L) ≤ 1.

I Then cosets ci = ei + L are uniform∗ in Rn/L,
and ei ∼ Dci+L conditioned on ci.
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I Verifier: accept iff each ei ∈ ci + L and σ1(
∑

eie
T
i ) ≤ 3m.

I Simulator: first sample ei from continuous Gaussian as proof, then
output cosets ci = ei + L as random string.

Soundness

I If λ1(L∗) ≤ 1/10, only 2−Ω(n)-fraction of {ci} have valid proof {ei}.

Intuition: projecting L and sufficiently small ei onto span(v∗) yields

≥ 10

Unlikely that all the random ci project to ‘good’ region.
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Soundness via Sparse Projections

Reverse Minkowski Theorem [RegevStephens-Davidowitz’17]

I Intuition: a lattice is not smooth ⇔ it has a ‘sparse’ lattice projection.

I More precisely: if η(L) > C log n then there is a rank-k projection π
such that det(π(L)) ≥ 6k, for some k.

Soundness

3m ≥ s1

(∑
eie

T
i

)
≥ s1

(∑
π(ei)π(ei)

T
)
≥ 1

k

∑
‖π(ei)‖2.

I So vol(legal {π(ei)}) ≤ 5km.

I But vol(possible {π(ci)}) ≥ 6km � 5km ≥ vol(legal {π(ei)}), so
most {ci} have no valid proof {ei}.

I Conclusion: ≈ log n gap in η(L) between completeness, soundness.
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Indirect Proof: GapSPP ≤ EntropyApproximation

I The previous proof system required ε = negl for SZK.
What about ‘large’ ε?

I η(L) ≤ 1⇒ continuous Gaussian mod L is ε-uniform.

This distribution has high entropy.

I η(L)� 1⇒ continuous Gaussian mod L is concentrated on a
low-volume subset of Rn/L.

This distribution has low entropy.

I Yields a Karp reduction γ-GapSPPε ≤ EntropyApproximation,
with γ = O(log(n)

√
log(1/ε)) for any ε ∈ (0, 1/2).
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Open Problems

1 NP proof system for GapSPP with o(
√
n) approximation factors?

2 (NI)SZK proof system for GapCRP with o(
√
n) factors?

3 [CDLP’13] gave SZK proof systems for GapSPP with constant factors.

Can we get rid of the log n factor in NISZK for GapSPP?

4 NIZK for NP from lattice/LWE assumptions?

[PV’08] gives an approach, but with a major barrier: NI proof for
SVP/BDD/LWE.

5 (NI)SZK-completeness of GapSPP for some factors?

Thanks!
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