New (and Old) Proof Systems

Navid Alamati

for Lattice Problems
Chris Peikert| Noah Stephens-Davidowitz

PKC 2018

13



Zero-Knowled ge Proofs [GoldwasserMicaliRackoff’85]

P> A protocol allowing an unbounded Prover P to convince a skeptical,
bounded Verifier V' that some x € L.

/13



Zero-Knowled ge Proofs [GoldwasserMicaliRackoff’85]

P> A protocol allowing an unbounded Prover P to convince a skeptical,
bounded Verifier V' that some x € L.

» The (honest) verifier learns nothing more than the truth of statement:
3 efficient simulator S such that Vz € L:

Viewy [P(x) <> V(z)] = S(x).



Zero-Knowled ge Proofs [GoldwasserMicaliRackoff’85]

P> A protocol allowing an unbounded Prover P to convince a skeptical,
bounded Verifier V' that some x € L.

» The (honest) verifier learns nothing more than the truth of statement:
3 efficient simulator .S such that Vz € L:

Viewy [P(x) <> V(z)] = S(x).

> Statistical ZK (SZK): "~" means statistically indistinguishable.



Zero-Knowled ge Proofs [GoldwasserMicaliRackoff’85]

P> A protocol allowing an unbounded Prover P to convince a skeptical,
bounded Verifier V' that some x € L.

» The (honest) verifier learns nothing more than the truth of statement:
3 efficient simulator .S such that Vz € L:

Viewy [P(x) <> V(z)] = S(x).

> Statistical ZK (SZK): “~" means statistically indistinguishable.

» Honest-verifier SZK = general SZK [GSV'9g].



Zero-Knowled ge Proofs [GoldwasserMicaliRackoff’85]

P> A protocol allowing an unbounded Prover P to convince a skeptical,
bounded Verifier V' that some x € L.

» The (honest) verifier learns nothing more than the truth of statement:

3 efficient simulator S such that Vo € L:

Viewy [P(x) <> V(z)] = S(x).

> Statistical ZK (SZK): “~" means statistically indistinguishable.

» Honest-verifier SZK = general SZK [GSV'9g].

> SZK proofs are powerful: secure against unbounded malicious P*, V*.
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Noninteractive SZK [GoldreichSahaiVadhan'99]

» Consists of only one message from P to V.

» Both P and V have access to a uniformly random string.

*

Both SZK and NISZK have complete problems [SV'97, GSV'99]

*

SZK is closed under complement [SV'97], but NISZK is not known to be.
NISZK is closed under complement <= NISZK = SKZ [GSV'99]

*
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» Represent coset x + £ € (R"/L) by unique x € (x + £) N P(B).
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Lattices

» An n-dimensional lattice £ C R” is a discrete additive subgroup,
generated by a (non-unique) basis B = {by,...,b,}:

v

L=> (Z-by)

» Represent coset x + £ € (R"/L) by unique x € (x + £) N P(B).

» Minimum distance: length of shortest nonzero lattice vector

ML) = min [[vi].

» Covering radius: maximum distance from the lattice

u(l) = max dist(x, £).
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The Smoothing Parameter [MicciancioRegev'04]

» 1-(L) = minimal Gaussian ‘blur’ that ‘smooths out’ £
(up to error e: think 27" <& <1/2)

Applications

> Worst-case to average-case reductions [MR'04,Regev’05]
» Constructions of cryptographic primitives [GPV'08,...]
» Algorithms for SVP and CVP [ADRS'15,ADS'15]
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The Smoothing Parameter Problem [ChungDadushLiuPeikert'13]

Definition: y-GapSPP.
» Given a lattice £, is

ne(£) <1 OR  n(L)>v 7

» Equivalent to ‘classical’ problems like GapSVP, up to ~ /n factors.

We're interested in non-trivial factors, where equivalence doesn't help.
v

GapSPP is Central

» Replacing ‘classic’ problems w/GapSPP in proof systems [GG'98] and
worst-case to average-case reductions [MR'04,R'05] subsumes the
original results, and yields seemingly stronger ones.

> GapSPP € SZK C AM N coAM [CDLP’13], but
classic problems € NISZK, coNP [AR'04,PV'08].

A,

Motivating Question
Are there noninteractive proof systems for GapSPP?
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Our Results

» Noninteractive (NISZK/coNP) proof systems for GapSPP, improving
prior ‘trivial’ factors by ~ /n.

» Bonus: improved SZK proof system for GapCRP (covering radius).

Prior v Our ~ Efficient-Prover

~-GapSPP. € NISZK nlog(l/e) log(n)\/log(1/e) \/nlog )log(1/¢)

~v-GapSPP. € coNP n/log(1/e) log(n) —_—
~v-GapCRP € SZK w(n+/logn) O(y/n) w(n+/logn)

Two NISZK Proofs for GapSPP

@ A ‘direct’ proof (with efficient prover) for negligible €.

@® A reduction to ENTROPYAPPROXIMATION € NISZK for any ¢ < 1/2.
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Direct Proof of GapSPP € NISZK
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Discrete Gaussians over Lattices
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> Sample x € R" from continuous Gaussian of width > n(L).
» Coset ¢ = x + L is uniform* over R™/L [MR'04].
» Given coset ¢, conditional distribution of x is discrete Gaussian D¢ .

» D¢ has Gaussian-like properties, e.g., sharp concentration bounds.



Noninteractive Proof System [peikertVaikuntanathan'08]

» Random String: uniform cosets ¢; < R"/L for i =1,...,m.

10/13



Noninteractive Proof System [peikertVaikuntanathan'08]
» Random String: uniform cosets ¢; < R"/L for i =1,...,m.

» Prover: sample e; ~ D, for each i.

10/13



Noninteractive Proof System [peikertVaikuntanathan'08]
» Random String: uniform cosets ¢; < R"/L for i =1,...,m.
» Prover: sample e; ~ D, for each i.

> Verifier: accept iff each e; € ¢; + £ and 01(>_ e;el) < 3m.

10/13



Noninteractive Proof System [peikertVaikuntanathan'08]
» Random String: uniform cosets ¢; < R"/L for i =1,...,m.
» Prover: sample e; ~ D, for each i.
> Verifier: accept iff each e; € ¢; + £ and 01(>_ e;e] ) < 3m.

» Simulator: first sample e; from continuous Gaussian as proof, then
output cosets ¢; = e; + £ as random string.

10/13



Noninteractive Proof System [peikertVaikuntanathan'08]
» Random String: uniform cosets ¢; < R"/L for i =1,...,m.
» Prover: sample e; ~ D, for each i.
> Verifier: accept iff each e; € c; + £ and o1(>_ e;el) < 3m.

» Simulator: first sample e; from continuous Gaussian as proof, then
output cosets ¢; = e; + £ as random string.

v

Completeness v

» Suppose (L) < 1: implied by A\ (L*) > /n.

» Then 01> ez-eZT) < 3m, by matrix concentration bounds on D, 4. )
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Noninteractive Proof System [peikertVaikuntanathan'08]
» Random String: uniform cosets ¢; < R"/L for i =1,...,m.
» Prover: sample e; ~ D, for each i.
> Verifier: accept iff each e; € c; + £ and o1(>_ e;el) < 3m.

» Simulator: first sample e; from continuous Gaussian as proof, then
output cosets ¢; = e; + £ as random string.

v

Zero Knowledge v/

» Suppose (L) < 1.

» Then cosets ¢; = e; + L are uniform* in R" /L,
and e; ~ D¢, 4, conditioned on c;.
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Noninteractive Proof System [peikertVaikuntanathan'08]
» Random String: uniform cosets ¢; < R"/L for i =1,...,m.
» Prover: sample e; ~ D, for each i.
> Verifier: accept iff each e; € c; + £ and o1(>_ e;el) < 3m.

» Simulator: first sample e; from continuous Gaussian as proof, then
output cosets ¢; = e; + £ as random string.

v

Soundness

> If A\ (L") < 1/10, only 272 _fraction of {c;} have valid proof {e;}.

Intuition: projecting £ and sufficiently small e; onto span(v*) yields

[ | [ | [ | [ |

T 4 T T A T T . T T 1 T T ® T

Unlikely that all the random c; project to ‘good’ region.
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Noninteractive Proof System [peikertVaikuntanathan'08]
» Random String: uniform cosets ¢; < R"/L for i =1,...,m.
» Prover: sample e; ~ D, for each i.
> Verifier: accept iff each e; € c; + £ and o1(>_ e;el) < 3m.

» Simulator: first sample e; from continuous Gaussian as proof, then
output cosets ¢; = e; + £ as random string.

v

Conclusion

Completeness, simulation (for n < 1 <= A} > \/n)
& soundness (for A7 < 1/10)

Y
this is a NISZK for O(y/n)-coGapSVP.

» Can the same proof system work for GapSPP? J
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Soundness via Sparse Projections

Reverse Minkowski Theorem [RegevStephens-Davidowitz'17]

P Intuition: a lattice is not smooth < it has a ‘sparse’ lattice projection.

> More precisely: if (L) > C'logn then there is a rank-k projection 7
such that det(7(L)) > 6%, for some k.

v

3m > s (Z eief) > 51 (Z Tr(ei)Tr(ei)T> > %Zﬂﬂ(ez)ﬂz

> So vol(legal {n(e;)}) < 5™,

» But vol(possible {7(c;)}) > 6F™ > 5¥™ > vol(legal {7 (e;)}), so
most {c;} have no valid proof {e;}.

» Conclusion: ~ logn gap in (L) between completeness, soundness.

v
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Indirect Proof: GapSPP < ENTROPYAPPROXIMATION

» The previous proof system required € = negl for SZK.
What about ‘large’ €7

» n(L) <1 = continuous Gaussian mod L is e-uniform.

This distribution has high entropy.

» n(L) > 1 = continuous Gaussian mod L is concentrated on a
low-volume subset of R™/L.

This distribution has low entropy.

» Yields a Karp reduction y-GapSPP. < ENTROPYAPPROXIMATION,
with v = O(log(n)+/log(1/¢)) for any € € (0,1/2).

12 /13
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Open Problems
@ NP proof system for GapSPP with o(y/n) approximation factors?
® (NI)SZK proof system for GapCRP with o(y/n) factors?

© [CDLP'13] gave SZK proof systems for GapSPP with constant factors.
Can we get rid of the logn factor in NISZK for GapSPP?

O NIZK for NP from lattice/LWE assumptions?
[PV'08] gives an approach, but with a major barrier: NI proof for
SVP/BDD/LWE.

O (NI)SZK-completeness of GapSPP for some factors?

Thanks!
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