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P(Go, Gy, ) V(Go, Gh)

(Go = n(G)

H = p(Co) &
b0l (“Prove H=Gy")
o=por’

?
check H = o(G))

® Complete: if Gy = G4, then P convinces V.

® Sound: if Gy # G, cheating P* convinces V' with prob < 1/2.
Soundness error can be reduced exponentially by (parallel) repetition.

© Zero Knowledge: can simulate (honest) V's view when G = G1. 5
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P(G,cycle C) V(G)
{eij < Com(hi )}, Com(p)

H = p(G)
b« {0,1}

b=0:openall h;,p

check H = p(G)
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» With common random /reference string, NP C NIZK assuming:

* quadratic residuosity /trapdoor permutations [BDMP'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . ..

> Open [PV'08]: a ‘post-quantum’ foundation like lattices/LWE [Regev'05]

Our Main Theorem
» NP C NIZK assuming LWE /worst-case lattice problems are hard.

4/15




Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

5/15



Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P Vv
o
_—
g« {0,1}™
%

~
_

5/15



Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

g« {0,1}™" af=H(a)]y

~
_

5/15



Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

B« {0,1}™ a[f=H(a)]y

~
_

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate a, 3, ; then ‘program’ H so that H(«) = f.

5/15



Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

g« {0,1}™" af=H(a)]y

~
_

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate a, 3, ; then ‘program’ H so that H(«) = f.

Key Challenge: Soundness
@ Are there o,y with § = H(«) that fool V7

5/15



Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

g« {0,1}™" af=H(a)]y

~
_

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate a, 3, ; then ‘program’ H so that H(«) = f.

Key Challenge: Soundness
@ Are there o,y with § = H(«) that fool V7

® Can a cheating P* find such values, given H? (Proof vs. argument.)
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Relation R = {(«, ) : 3 v that fools V'}.

Theorem [HL'18,CCH+'19]

> NP C NIZK assuming a Cl hash family for all bounded circuits:
Re = {(a,C(a))}, |C] < S = poly.

P Proof idea: for HamCycle™ protocol [FLS'90], each potential « has
<1 'bad challenge’ 5 € {0,1}"™ allowing V to be fooled.

Bad g is efficiently computable, using trapdoor for commitments in a.
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Our Main Construction

» A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)
P As in [CCH+'19], our construction has two ‘intractability modes':
@ Computational: given H < #, hard to find a s.t. H(a) = C(«).

Yields statistically ZK argument in random-string model.

@® Statistical: over H < H¢o ~ H, such « do not exist w/h.p.

Yields computationally ZK proof in reference-string model.
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Overview of Our Construction

@ A Cl hash family for all NC! (log-depth) circuits from LWE/SIS

(for small poly approx factors)

® A Cl ‘bootstrapping’ theorem, from (leveled) FHE decryption circuits
in NC!, to arbitrary bounded circuits, 3 la [Gentry'09,GGH+'13].

(Such FHE can be based on LWE w/ small poly factors [BV’'14].)

» For NIZK we do not actually need bootstrapping, because the ‘bad
challenge’ functions can be implemented in NC! [CCH+'19,Lombardi].
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for uniform A’ € Zgnil)xm and ‘short’ (Gaussian) s,e € Z™.

» \Worst-case lattice problems reduce to average-case SIS/LWE. l

9/15




SIS and LWE [Ajtai’96,. .. ,Regev'05,...]

» Fix integer modulus ¢ = poly(n) and dimensions n,m > 2n[logq].

SIS: given uniform A € Zg‘xm, find ‘short’ nonzero z € Z™ s.t.
A z|=10]€Zy,.

LWE: distinguish uniform A from
A/
StA/ + et
for uniform A’ € Zgnil)xm and ‘short’ (Gaussian) s,e € Z™.
> Linear G: {0,1}" — Zy and nonlinear G~ : Zy — {0,1}"™ s.t.

G(G™(u)) = u for all u € Zj.
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» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.
([CCH4+"19] uses FHE ciphertexts, also includes ‘circular’ gl;)
Evaluation: on input o € {0,1}¢,

@ Homomorphically compute commitment D(«).
([CCH+"19] does the same, but with ciphertexts.)
® Homomorphically evaluate linear G: {0,1}™ — Zj to
get ‘inert commitment’ ¢, = G(D(a)) € Z7.
([CCH+'19] evaluates Dec,y, to get an FHE ciphertext.)
® Output G~ (cq) € {0,1}™.

Key Point: ¢, € Z; hides a Z;-value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+'19]).
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> From R we can compute coins r,, for inert commitment c, [this work]:
G(C(a)) = A -1y +G(C(a)) = G(C(a)) € Zy.
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T=A R+ (z:G -+ 2,G) (modq).
Goal: compute inert L(x) [and coins r] for linear L: {0,1}™ — Ly
> Write L(z) = ), z; - ¢; for some ¢; € Zj. Define short

G '(c1)

Gil(cm)
» Then

Fvi=A R-vy+) 2;-G G ()
S—— -

r 7

=A-r+ L(z) = L(x).
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LWE-Based Construction

> SIS construction is computationally Cl with uniform key (A,ﬁ).

Yields computationally sound, statistically ZK protocol.

> An LWE-based statistically Cl construction with non-uniform key:

Hash Key: commitment 6’ w.r.t. LWE matrix A = (St,AA/‘;e,) € ngm

Evaluation: computes ¢, = G(C(a)) — <q(/)2) € Zy

» Now H(a) = C(a) yields Ar, = <q?2>. So A'r, =0 and

I=(s'A"+e)-ro=¢"1r, (mody),

but e, r, are too small for this: contradiction!
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©® Compactness? Our hash key grows with the circuit size for Cl, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

O Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!
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