Noninteractive Zero Knowledge for NP
from Learning With Errors

Chris Peikert Sina Shiehian

TCS+
1 May 2019

1/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy, 7) V(Go, G1)
[Go = 7(G1)]

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy,) V(Go, Gh)
[Go = 7(G1)]

H
H = p(Go)

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy,) V(Go, Gh)
[Go = 7(G1)]
H = p(Go) "

b+ {0,1}

("Prove H =Gy")

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy, 7) V(Go, G1)
[Go = 7(G1)]
H
H = p(Go)
b+ {0,1}

("Prove H =Gy")

o=pomn®

?
check H = o(G))

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy,) V(Go, Gh)
[Go = 7(G1)]
H = p(Go) "

b+ {0,1}

("Prove H =Gy")

o=pomn®

?
check H = o(G))

® Complete: if Gy = G4, then P convinces V.

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy,) V(Go, Gh)
[Go = 7(G1)]
H = p(Go) &

b+ {0,1}

("Prove H =Gy")

o=pomn®

?
check H = o(G))

® Complete: if Gy = G4, then P convinces V.
® Sound: if Gy # G, cheating P* convinces V' with prob < 1/2.

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy,) V(Go, Gh)

(Go = n(G)

H = p(Co) &
b0l (“Prove H=Gy")
o=por’

?
check H = o(G))

® Complete: if Gy = G4, then P convinces V.

® Sound: if Gy # G, cheating P* convinces V' with prob < 1/2.
Soundness error can be reduced exponentially by (parallel) repetition.

2/15

Zero Knowled g€ [GoldwasserMicaliRackoff'85]

» Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V' that some x € L, while revealing nothing else.

» Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P(Go, Gy,) V(Go, Gh)

(Go = n(G)

H = p(Co) &
b0l (“Prove H=Gy")
o=por’

?
check H = o(G))

® Complete: if Gy = G4, then P convinces V.

® Sound: if Gy # G, cheating P* convinces V' with prob < 1/2.
Soundness error can be reduced exponentially by (parallel) repetition.

© Zero Knowledge: can simulate (honest) V's view when G = G1. 5

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Assuming OWFs, every NP language has a ZK proof/argument.

3/15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Assuming OWFs, every NP language has a ZK proof/argument.

» Applications: identification, secure multiparty computation, ...

3/15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Assuming OWFs, every NP language has a ZK proof/argument.

» Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

P(G,cycle C) V(G)

3/15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Assuming OWFs, every NP language has a ZK proof/argument.

» Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

P(G,cycle C) V(G)
{eij < Com(hi)}, Com(p)

H = p(G)

3/15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Assuming OWFs, every NP language has a ZK proof/argument.

» Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

P(G,cycle C) V(G)
{eij < Com(hi)}, Com(p)

H = p(G)
b« {0,1}

3/15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Assuming OWFs, every NP language has a ZK proof/argument.

» Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

P(G,cycle C) V(G)
{eij < Com(hi)}, Com(p)

H = p(G)
b« {0,1}

b=0:openall h;,p

check H = p(G)

3/15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Assuming OWFs, every NP language has a ZK proof/argument.

» Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

P(G,cycle C) V(G)
{eij < Com(hi)}, Com(p)

H = p(G)
b« {0,1}

b=0:openall h;,p

check H = p(G)
b=1:open h;;

for (i,7) € p(C)

check cycle

3/15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

P Interaction is not always possible. What if...?7

P(x,w Vix)

acc/rej

4/15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

P Interaction is not always possible. What if...?7

Pz, w V(x

acc/rej

» In 'plain’ model, NIZK = BPP (trivial).

4/15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

P Interaction is not always possible. What if...?7

acc/rej

» With common random /reference string, NP C NIZK assuming:

4/15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

P Interaction is not always possible. What if...?7

acc/rej

» With common random /reference string, NP C NIZK assuming:

* quadratic residuosity /trapdoor permutations [BDMP'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

4/15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

P Interaction is not always possible. What if...?7

new (S v

acc/rej

» With common random /reference string, NP C NIZK assuming:

* quadratic residuosity /trapdoor permutations [BDMP'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . ..

4/15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

P Interaction is not always possible. What if...?7

new (S v

acc/rej

» With common random /reference string, NP C NIZK assuming:

* quadratic residuosity /trapdoor permutations [BDMP'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . ..

» Open [PV'08]: a ‘post-quantum’ foundation like lattices/LWE [Regev'05]

4/15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

P Interaction is not always possible. What if...?7

acc/rej

» With common random /reference string, NP C NIZK assuming:

* quadratic residuosity /trapdoor permutations [BDMP'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . ..

> Open [PV'08]: a ‘post-quantum’ foundation like lattices/LWE [Regev'05]

Our Main Theorem
» NP C NIZK assuming LWE /worst-case lattice problems are hard.

4/15

Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

5/15

Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P Vv
o
_—
g« {0,1}™
%

~
_

5/15

Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

g« {0,1}™" af=H(a)]y

~
_

5/15

Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

B« {0,1}™ a[f=H(a)]y

~
_

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate a, 3, ; then ‘program’ H so that H(«) = f.

5/15

Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

g« {0,1}™" af=H(a)]y

~
_

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate a, 3, ; then ‘program’ H so that H(«) = f.

Key Challenge: Soundness
@ Are there o,y with § = H(«) that fool V7

5/15

Fiat-Shamir Heuristic [FiatShamir's6]

> A way to remove interaction from a public-coin protocol, via hashing:

P N WS
) prs vrs

g« {0,1}™" af=H(a)]y

~
_

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate a, 3, ; then ‘program’ H so that H(«) = f.

Key Challenge: Soundness
@ Are there o,y with § = H(«) that fool V7

® Can a cheating P* find such values, given H? (Proof vs. argument.)

5/15

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

a[p=H(a)]y

6/15

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

a8 =H(a)]y

» Often, a correlation-intractable [CGH'98] hash family H suffices:

Given H < H, hard/impossible to find a s.t. (o, H(«)) € R.

Relation R = {(«,) : 3 v that fools V'}.

6/15

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

a8 =H(a)]y

» Often, a correlation-intractable [CGH'98] hash family H suffices:
Given H < H, hard/impossible to find a s.t. (o, H(«)) € R.
Relation R = {(«,) : 3 v that fools V'}.

Theorem [HL'18,CCH+'19]

> NP C NIZK assuming a Cl hash family for all bounded circuits:
Re = {(a,C(a))}, |C] < S = poly.

6/15

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

a8 =H(a)]y

» Often, a correlation-intractable [CGH'98] hash family H suffices:
Given H < H, hard/impossible to find a s.t. (o, H(«)) € R.
Relation R = {(«,) : 3 v that fools V'}.

Theorem [HL'18,CCH+'19]

> NP C NIZK assuming a Cl hash family for all bounded circuits:
Re = {(a,C(a))}, |C] < S = poly.

P Proof idea: for HamCycle™ protocol [FLS'90], each potential « has
< 1 'bad challenge’ g € {0,1}"™ allowing V to be fooled.

6/15

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

a8 =H(a)]y

» Often, a correlation-intractable [CGH'98] hash family H suffices:
Given H < H, hard/impossible to find a s.t. (o, H(«)) € R.
Relation R = {(«,) : 3 v that fools V'}.

Theorem [HL'18,CCH+'19]

> NP C NIZK assuming a Cl hash family for all bounded circuits:
Re = {(a,C(a))}, |C] < S = poly.

P Proof idea: for HamCycle™ protocol [FLS'90], each potential « has
<1 'bad challenge’ 5 € {0,1}"™ allowing V to be fooled.

Bad g is efficiently computable, using trapdoor for commitments in a.

6/15

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from ‘exotic’ assumptions,
e.g., ‘optimal’ hardness of ad-hoc LWE variants.

7/15

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from ‘exotic’ assumptions,
e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL'18] ClI for all sparse relations from (strong) obfuscation & more.

7/15

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from ‘exotic’ assumptions,
e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL'18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+'19] ClI for all bounded circuits from circularly secure FHE.

7/15

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from ‘exotic’ assumptions,
e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL'18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+'19] ClI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

7/15

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from ‘exotic’ assumptions,
e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL'18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+'19] ClI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction

» A ClI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

7/15

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from ‘exotic’ assumptions,
e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL'18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+'19] ClI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction

» A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)
P As in [CCH+'19], our construction has two ‘intractability modes':

@® Computational: given H < H, hard to find a s.t. H(«a) = C(«).
Yields statistically ZK argument in random-string model.

7/15

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from ‘exotic’ assumptions,
e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL'18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+'19] ClI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction

» A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)
P As in [CCH+'19], our construction has two ‘intractability modes':
@ Computational: given H < #, hard to find a s.t. H(a) = C(«).

Yields statistically ZK argument in random-string model.

@® Statistical: over H < H¢o ~ H, such « do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7/15

Overview of Our Construction

@ A Cl hash family for all NC! (log-depth) circuits from LWE/SIS

(for small poly approx factors)

8/15

Overview of Our Construction

@ A Cl hash family for all NC! (log-depth) circuits from LWE/SIS

(for small poly approx factors)

® A Cl ‘bootstrapping’ theorem, from (leveled) FHE decryption circuits
in NC!, to arbitrary bounded circuits, 3 la [Gentry'09,GGH+'13].

(Such FHE can be based on LWE w/ small poly factors [BV’'14].)

8/15

Overview of Our Construction

@ A Cl hash family for all NC! (log-depth) circuits from LWE/SIS

(for small poly approx factors)

® A Cl ‘bootstrapping’ theorem, from (leveled) FHE decryption circuits
in NC!, to arbitrary bounded circuits, 3 la [Gentry'09,GGH+'13].

(Such FHE can be based on LWE w/ small poly factors [BV’'14].)

» For NIZK we do not actually need bootstrapping, because the ‘bad
challenge’ functions can be implemented in NC! [CCH+'19,Lombardi].

8/15

SIS and LWE [Ajtai’96,. .. ,Regev'05,...]

» Fix integer modulus ¢ = poly(n) and dimensions n,m > 2n[logq].

9/15

SIS and LWE [Ajtai’96,. .. ,Regev'05,...]

» Fix integer modulus ¢ = poly(n) and dimensions n,m > 2n[logq].

SIS: given uniform A € Zg‘xm, find ‘short’ nonzero z € Z™ s.t.

A z:OEZZ’.

9/15

SIS and LWE [Ajtai’96,. .. ,Regev'05,...]

» Fix integer modulus ¢ = poly(n) and dimensions n,m > 2n[logq].

SIS: given uniform A € Zg‘xm, find ‘short’ nonzero z € Z™ s.t.
A z|=10]€Zy,.
LWE: distinguish uniform A from
A/

stA’—l—et’

for uniform A’ € Z((Jnfl)xm and ‘short’ (Gaussian) s,e € Z™.

9/15

SIS and LWE [Ajtai’96,. .. ,Regev'05,...]

» Fix integer modulus ¢ = poly(n) and dimensions n,m > 2n[logq].

SIS: given uniform A € Zy*™, find ‘short’ nonzero z € Z™ s.t.
A z|=10]€Zy,.

LWE: distinguish uniform A from
A/
StA/ + et

for uniform A’ € Zgnil)xm and ‘short’ (Gaussian) s,e € Z™.

» \Worst-case lattice problems reduce to average-case SIS/LWE. l

9/15

SIS and LWE [Ajtai’96,. .. ,Regev'05,...]

» Fix integer modulus ¢ = poly(n) and dimensions n,m > 2n[logq].

SIS: given uniform A € Zg‘xm, find ‘short’ nonzero z € Z™ s.t.
A z|=10]€Zy,.

LWE: distinguish uniform A from
A/
StA/ + et
for uniform A’ € Zgnil)xm and ‘short’ (Gaussian) s,e € Z™.
> Linear G: {0,1}" — Zy and nonlinear G~ : Zy — {0,1}"™ s.t.

G(G™(u)) = u for all u € Zj.

9/15

Our Construction
» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.

Evaluation: on input o € {0,1}¢,

@ Homomorphically compute commitment D(«).

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.

Evaluation: on input o € {0,1}¢,

@ Homomorphically compute commitment D(«).

® Homomorphically evaluate linear G: {0,1}™ — Zj to
get ‘inert commitment’ ¢, = G(D(a)) € Z7.

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.

Evaluation: on input o € {0,1}¢,

@ Homomorphically compute commitment D(«).

® Homomorphically evaluate linear G: {0,1}™ — Zj to
get ‘inert commitment’ ¢, = G(D(a)) € Z7.

® Output G~ (cq) € {0,1}™.

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.
([CCH4"19] uses FHE ciphertexts, also includes ‘circular’ @)
Evaluation: on input o € {0,1}¢,

—

@ Homomorphically compute commitment D(«).

® Homomorphically evaluate linear G: {0,1}™ — Zj to
get ‘inert commitment’ ¢, = G(D(a)) € Z7.

® Output G~ (cq) € {0,1}™.

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.
([CCH4+"19] uses FHE ciphertexts, also includes ‘circular’ gl;)
Evaluation: on input o € {0,1}¢,

@ Homomorphically compute commitment D(«).
([CCH+"19] does the same, but with ciphertexts.)
® Homomorphically evaluate linear G: {0,1}™ — Zj to
get ‘inert commitment’ ¢, = G(D(a)) € Z7.

® Output G~ (cq) € {0,1}™.

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.
([CCH4+"19] uses FHE ciphertexts, also includes ‘circular’ gl;)
Evaluation: on input o € {0,1}¢,

@ Homomorphically compute commitment D(«).
([CCH+"19] does the same, but with ciphertexts.)

® Homomorphically evaluate linear G: {0,1}™ — Zj to
get ‘inert commitment’ ¢, = G(D(a)) € Z7.
([CCH+"19] evaluates Dec,, to get an FHE ciphertext.)
® Output G~ (cq) € {0,1}™.

10/15

Our Construction

» Goal: Cl for size-S circuits C: {0,1}* — {0,1}™, m > 2n[logq]
» Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment D to ‘dummy’ circuit D: {0,1}¢ — {0,1}™.
([CCH4+"19] uses FHE ciphertexts, also includes ‘circular’ gl;)
Evaluation: on input o € {0,1}¢,

@ Homomorphically compute commitment D(«).
([CCH+"19] does the same, but with ciphertexts.)
® Homomorphically evaluate linear G: {0,1}™ — Zj to
get ‘inert commitment’ ¢, = G(D(a)) € Z7.
([CCH+'19] evaluates Dec,y, to get an FHE ciphertext.)
® Output G~ (cq) € {0,1}™.

Key Point: ¢, € Z; hides a Z;-value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+'19]).

10/15

Security Proof from SIS

Hash Key: commitment D.
Evaluation: H(a) := G~ (G(D(w)))

> Let C: {0,1} — {0,1}™ have size S.

11/15

Security Proof from SIS

Hash Key: commitment D.
Evaluation: H(a) := G~ (G(D(a))) = C(a).

> Let C: {0,1} — {0,1}™ have size S.
P> Suppose that A, given hash key D, finds a s.t. H(a) = C(a).

11/15

Security Proof from SIS

Hash Key: commitment C.
Evaluation: H(a) := G~ (G(C(a))) = C(a).

» Let C: {0,1} — {0,1}™ have size S.
> Suppose that A, given hash key D, finds « s.t. H(a) = C(a).

> By commitment security, same holds for hash key C' = Com(C;Re).

11/15

Security Proof from SIS
Hash Key: commitment C.
Evaluation: H(a) := G~ (G(C(a))) = C(a).

» Let C: {0,1} — {0,1}™ have size S.

> Suppose that A, given hash key D, finds o s.t. H(a) = C(a).

> By commitment security, same holds for hash key C' = Com(C;Re).
Apply G to both sides:

ca = G(C(a)) = G(C(a)) € Zy.

11/15

Security Proof from SIS

Hash Key: commitment C.
Evaluation: H(a) := G~ (G(C(a))) = C(a).
» Let C: {0,1} — {0,1}™ have size S.
> Suppose that A, given hash key D, finds « s.t. H(a) = C(a).

> By commitment security, same holds for hash key C' = Com(C;Re).
Apply G to both sides:

ca = G(C(a)) = G(C(a)) € Zy.

That is, the inert commitment ¢, itself equals its ‘contents.’

11/15

Security Proof from SIS

Hash Key: commitment C.
Evaluation: H(a) := G~ (G(C(a))) = C(a).
» Let C: {0,1} — {0,1}™ have size S.
> Suppose that A, given hash key D, finds « s.t. H(a) = C(a).

> By commitment security, same holds for hash key C' = Com(C;Re).
Apply G to both sides:

ta = G(C(a)) = G(C(a)) € Z1.

That is, the inert commitment ¢, itself equals its ‘contents.’

» From coins R¢ for C' we can compute coins r,, for ¢, solving SIS. \

11/15

Security Proof from SIS

Hash Key: commitment C' = Com(C; R¢).
Evaluation: computes ¢, = G(C(a)) = G(C(«)).

» From coins R¢ for C' we can compute coins r,, for c,, solving SIS. l

12/15

Security Proof from SIS

Hash Key: commitment C' = Com(C; R¢).
Evaluation: computes ¢, = G(C(a)) = G(C(«)).

» From coins R¢ for C' we can compute coins r,, for c,, solving SIS. \

> Commitments are w.r.t. an SIS matrix A € Z;*™, w/ 'short’ coins:

C = A -R¢ +encode(C) (mod q).

12/15

Security Proof from SIS

Hash Key: commitment C' = Com(C; R¢).
Evaluation: computes ¢, = G(C(a)) = G(C(«)).

» From coins R¢ for C' we can compute coins r,, for c,, solving SIS. \

> Commitments are w.r.t. an SIS matrix A € Z;*™, w/ ‘short’ coins:

C = A -R¢ +encode(C) (mod q).

—

» From R¢ we can compute coins R for C(«) [GVW'15]:

o —

C(a) = A -R+encode(C(ar)) (mod q).

12/15

Security Proof from SIS

Hash Key: commitment C' = Com(C; R¢).
Evaluation: computes ¢, = G(C(a)) = G(C(«)).

» From coins R¢ for C' we can compute coins r,, for c,, solving SIS. \

> Commitments are w.r.t. an SIS matrix A € Z;*™, w/ ‘short’ coins:

C = A -R¢ +encode(C) (mod q).

—

» From R¢ we can compute coins R for C(«) [GVW'15]:

C@ = A -R +encode(C(a)) (mod q).
> From R we can compute coins r,, for inert commitment c, [this work]:

G(C(a)) =A r,+G(C(a)) € Zy.

12/15

Security Proof from SIS

Hash Key: commitment C' = Com(C; R¢).
Evaluation: computes ¢, = G(C(a)) = G(C(«)).

» From coins R¢ for C' we can compute coins r,, for c,, solving SIS. \

> Commitments are w.r.t. an SIS matrix A € Z;*™, w/ ‘short’ coins:

C = A -R¢ +encode(C) (mod q).

—

» From R¢ we can compute coins R for C(«) [GVW'15]:

C@ = A -R +encode(C(a)) (mod q).
> From R we can compute coins r,, for inert commitment c, [this work]:

G(C(a)) = A -1y +G(C(a)) = G(C(a)) € Zy.

12/15

Security Proof from SIS

Hash Key: commitment C' = Com(C; R¢).
Evaluation: computes ¢, = G(C(a)) = G(C(«)).

» From coins R¢ for C' we can compute coins r,, for c,, solving SIS. \

> Commitments are w.r.t. an SIS matrix A € Z;*™, w/ ‘short’ coins:

C = A -R¢ +encode(C) (mod q).

—

» From R¢ we can compute coins R for C(«) [GVW'15]:

—

C(a) = A -R+encode(C(ar)) (mod q).
> From R we can compute coins r,, for inert commitment c, [this work]:
G(C(a)) = A -1y +G(C(a)) = G(C(a)) € Zy.

» Thus A -r, = 0, solving SIS!

12/15

Security Proof from SIS

Hash Key: commitment C' = Com(C; R¢).
Evaluation: computes ¢, = G(C(a)) = G(C(«)).

» From coins R¢ for C' we can compute coins r,, for c,, solving SIS. \

> Commitments are w.r.t. an SIS matrix A € Z;*™, w/ ‘short’ coins:

C = A -R¢ +encode(C) (mod q).

—

» From R¢ we can compute coins R for C(«) [GVW'15]:

—

C(a) = A -R+encode(C(ar)) (mod q).
> From R we can compute coins r,, for inert commitment c, [this work]:
G(C(a)) = A -1y +G(C(a)) = G(C(a)) € Zy.

» Thus A -r, = 0, solving SIS! (Also need r, # 0, an easy tweak.)

12/15

Linear Homomorphism to an Inert Commitment

Given: commitment Z [and ‘short’ coins R] for z € {0,1}™:

T=A R+ (z:G -+ 2,G) (modq).

13/15

Linear Homomorphism to an Inert Commitment

Given: commitment Z [and ‘short’ coins R] for z € {0,1}™:
T=A R+ (z:G -+ 2,G) (modq).

Goal: compute inert L(z) [and coins r] for linear L: {0, 1}™ — Zj.

13/15

Linear Homomorphism to an Inert Commitment

Given: commitment Z [and ‘short’ coins R] for z € {0,1}™:
T=A R+ (z:G -+ 2,G) (modq).
Goal: compute inert L(x) [and coins r] for linear L: {0,1}™ — Ly
> Write L(z) =), z; - ¢; for some ¢; € Z. Define short

G '(c1)

G (cm)

13/15

Linear Homomorphism to an Inert Commitment

Given: commitment Z [and ‘short’ coins R] for z € {0,1}™:
T=A R+ (z:G -+ 2,G) (modq).
Goal: compute inert L(x) [and coins r] for linear L: {0,1}™ — Ly
> Write L(z) =), z; - ¢; for some ¢; € Zj. Define short

G '(c1)

Gil(cm)
» Then

Fvi=A R-vy+) 2;-G G ()
S—— -

r 7

=A-r+ L(z) = L(x).

13/15

LWE-Based Construction

> SIS construction is computationally Cl with uniform key (A,ﬁ).

14 /15

LWE-Based Construction

> SIS construction is computationally Cl with uniform key (A,ﬁ).

Yields computationally sound, statistically ZK protocol.

14 /15

LWE-Based Construction

> SIS construction is computationally Cl with uniform key (A,ﬁ).

Yields computationally sound, statistically ZK protocol.

> An LWE-based statistically Cl construction with non-uniform key:

14 /15

LWE-Based Construction

> SIS construction is computationally Cl with uniform key (A,ﬁ).

Yields computationally sound, statistically ZK protocol.

> An LWE-based statistically Cl construction with non-uniform key:

Hash Key: commitment 6’ w.r.t. LWE matrix A = (St,A’%ref,) € ZZ}X"‘

14 /15

LWE-Based Construction

> SIS construction is computationally Cl with uniform key (A,ﬁ).

Yields computationally sound, statistically ZK protocol.

> An LWE-based statistically Cl construction with non-uniform key:

Hash Key: commitment 6’ w.r.t. LWE matrix A = (St,A’%ref,) € ZZ}X"‘

Evaluation: computes ¢, = G(C(a)) — (q(/)2> € Zy

14 /15

LWE-Based Construction

> SIS construction is computationally Cl with uniform key (A,ﬁ).

Yields computationally sound, statistically ZK protocol.

> An LWE-based statistically Cl construction with non-uniform key:

Hash Key: commitment 6’ w.r.t. LWE matrix A = (St,AA/‘;e,) € ngm

Evaluation: computes ¢, = G(C(a)) — <q(/)2) € Zy

» Now H(a) = C(a) yields Ar, = <q?2>. So A'r, =0 and

I=(s'A"+e)-ro=¢"1r, (mody),

but e, r, are too small for this: contradiction!

14 /15

Open Problems

@ Cl beyond NC! from SIS (not LWE) w/poly factors?
Currently we need bootstrapping, which brings in LWE.

15/15

Open Problems
©® Cl beyond NC! from SIS (not LWE) w/poly factors?

Currently we need bootstrapping, which brings in LWE.

@® Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

15/15

Open Problems

©® Cl beyond NC! from SIS (not LWE) w/poly factors?
Currently we need bootstrapping, which brings in LWE.

® Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?
[GOS'06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

15/15

Open Problems

©® Cl beyond NC! from SIS (not LWE) w/poly factors?
Currently we need bootstrapping, which brings in LWE.

® Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?
[GOS'06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

©® Compactness? Our hash key grows with the circuit size for Cl, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

15/15

Open Problems

©® Cl beyond NC! from SIS (not LWE) w/poly factors?
Currently we need bootstrapping, which brings in LWE.

® Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?
[GOS'06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

©® Compactness? Our hash key grows with the circuit size for Cl, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

O Succinct ZK arguments from LWE? Via Fiat-Shamir?

15/15

Open Problems

©® Cl beyond NC! from SIS (not LWE) w/poly factors?
Currently we need bootstrapping, which brings in LWE.

® Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?
[GOS'06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

©® Compactness? Our hash key grows with the circuit size for Cl, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

O Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

15/15

