
Noninteractive Zero Knowledge for NP
from Learning With Errors

Chris Peikert Sina Shiehian

TCS+
1 May 2019

1 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1.

2 / 15

Zero Knowledge [GoldwasserMicaliRackoff’85]

I Zero-knowledge (interactive) proof for language L: allows a prover P
to convince a verifier V that some x ∈ L, while revealing nothing else.

I Example: ‘cut-and-choose’ protocol for Graph Isomorphism

P (G0, G1, π) V (G0, G1)

[G0 = π(G1)]

H = ρ(G0)
H

b← {0, 1}
(“Prove H ≡ Gb”)

σ = ρ ◦ πb
check H

?
= σ(Gb)

1 Complete: if G0 ≡ G1, then P convinces V .

2 Sound: if G0 6≡ G1, cheating P ∗ convinces V with prob ≤ 1/2.

Soundness error can be reduced exponentially by (parallel) repetition.

3 Zero Knowledge: can simulate (honest) V ’s view when G0 ≡ G1. 2 / 15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

I Assuming OWFs, every NP language has a ZK proof/argument.

I Applications: identification, secure multiparty computation, . . .

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir’90]:

P (G, cycle C) V (G)

H = ρ(G)
{ci,j ← Com(hi,j)},Com(ρ)

b← {0, 1}

b = 0 : open all hi,j , ρ
check H = ρ(G)

b = 1 : open hi,j

for (i, j) ∈ ρ(C)
check cycle

3 / 15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

I Assuming OWFs, every NP language has a ZK proof/argument.

I Applications: identification, secure multiparty computation, . . .

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir’90]:

P (G, cycle C) V (G)

H = ρ(G)
{ci,j ← Com(hi,j)},Com(ρ)

b← {0, 1}

b = 0 : open all hi,j , ρ
check H = ρ(G)

b = 1 : open hi,j

for (i, j) ∈ ρ(C)
check cycle

3 / 15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

I Assuming OWFs, every NP language has a ZK proof/argument.

I Applications: identification, secure multiparty computation, . . .

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir’90]:

P (G, cycle C) V (G)

H = ρ(G)
{ci,j ← Com(hi,j)},Com(ρ)

b← {0, 1}

b = 0 : open all hi,j , ρ
check H = ρ(G)

b = 1 : open hi,j

for (i, j) ∈ ρ(C)
check cycle

3 / 15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

I Assuming OWFs, every NP language has a ZK proof/argument.

I Applications: identification, secure multiparty computation, . . .

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir’90]:

P (G, cycle C) V (G)

H = ρ(G)
{ci,j ← Com(hi,j)},Com(ρ)

b← {0, 1}

b = 0 : open all hi,j , ρ
check H = ρ(G)

b = 1 : open hi,j

for (i, j) ∈ ρ(C)
check cycle

3 / 15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

I Assuming OWFs, every NP language has a ZK proof/argument.

I Applications: identification, secure multiparty computation, . . .

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir’90]:

P (G, cycle C) V (G)

H = ρ(G)
{ci,j ← Com(hi,j)},Com(ρ)

b← {0, 1}

b = 0 : open all hi,j , ρ
check H = ρ(G)

b = 1 : open hi,j

for (i, j) ∈ ρ(C)
check cycle

3 / 15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

I Assuming OWFs, every NP language has a ZK proof/argument.

I Applications: identification, secure multiparty computation, . . .

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir’90]:

P (G, cycle C) V (G)

H = ρ(G)
{ci,j ← Com(hi,j)},Com(ρ)

b← {0, 1}

b = 0 : open all hi,j , ρ
check H = ρ(G)

b = 1 : open hi,j

for (i, j) ∈ ρ(C)
check cycle

3 / 15

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

I Assuming OWFs, every NP language has a ZK proof/argument.

I Applications: identification, secure multiparty computation, . . .

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir’90]:

P (G, cycle C) V (G)

H = ρ(G)
{ci,j ← Com(hi,j)},Com(ρ)

b← {0, 1}

b = 0 : open all hi,j , ρ
check H = ρ(G)

b = 1 : open hi,j

for (i, j) ∈ ρ(C)
check cycle

3 / 15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

I Interaction is not always possible. What if. . . ?

P (x,w)

crs

V (x)

π
acc/rej

I With common random/reference string, NP ⊆ NIZK assuming:

F quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
F hard pairing-friendly groups [GrothOstrovskySahai’06]
F indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

I Open [PV’08]: a ‘post-quantum’ foundation like lattices/LWE [Regev’05]

Our Main Theorem
I NP ⊆ NIZK assuming LWE/worst-case lattice problems are hard.

4 / 15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

I Interaction is not always possible. What if. . . ?

P (x,w)

crs

V (x)

π
acc/rej

I In ‘plain’ model, NIZK = BPP (trivial).

F quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
F hard pairing-friendly groups [GrothOstrovskySahai’06]
F indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

I Open [PV’08]: a ‘post-quantum’ foundation like lattices/LWE [Regev’05]

Our Main Theorem
I NP ⊆ NIZK assuming LWE/worst-case lattice problems are hard.

4 / 15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

I Interaction is not always possible. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

I With common random/reference string, NP ⊆ NIZK assuming:

F quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
F hard pairing-friendly groups [GrothOstrovskySahai’06]
F indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

I Open [PV’08]: a ‘post-quantum’ foundation like lattices/LWE [Regev’05]

Our Main Theorem
I NP ⊆ NIZK assuming LWE/worst-case lattice problems are hard.

4 / 15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

I Interaction is not always possible. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

I With common random/reference string, NP ⊆ NIZK assuming:
F quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
F hard pairing-friendly groups [GrothOstrovskySahai’06]
F indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

I Open [PV’08]: a ‘post-quantum’ foundation like lattices/LWE [Regev’05]

Our Main Theorem
I NP ⊆ NIZK assuming LWE/worst-case lattice problems are hard.

4 / 15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

I Interaction is not always possible. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

I With common random/reference string, NP ⊆ NIZK assuming:
F quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
F hard pairing-friendly groups [GrothOstrovskySahai’06]
F indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

I Open [PV’08]: a ‘post-quantum’ foundation like lattices/LWE [Regev’05]

Our Main Theorem
I NP ⊆ NIZK assuming LWE/worst-case lattice problems are hard.

4 / 15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

I Interaction is not always possible. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

I With common random/reference string, NP ⊆ NIZK assuming:
F quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
F hard pairing-friendly groups [GrothOstrovskySahai’06]
F indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

I Open [PV’08]: a ‘post-quantum’ foundation like lattices/LWE [Regev’05]

Our Main Theorem
I NP ⊆ NIZK assuming LWE/worst-case lattice problems are hard.

4 / 15

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano’88]

I Interaction is not always possible. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

I With common random/reference string, NP ⊆ NIZK assuming:
F quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
F hard pairing-friendly groups [GrothOstrovskySahai’06]
F indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

I Open [PV’08]: a ‘post-quantum’ foundation like lattices/LWE [Regev’05]

Our Main Theorem
I NP ⊆ NIZK assuming LWE/worst-case lattice problems are hard.

4 / 15

Fiat-Shamir Heuristic [FiatShamir’86]

I A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS H V FS

α [β = H(α)] γ

I Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

5 / 15

Fiat-Shamir Heuristic [FiatShamir’86]

I A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS H V FS

α [β = H(α)] γ

I Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

5 / 15

Fiat-Shamir Heuristic [FiatShamir’86]

I A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS H V FS

α [β = H(α)] γ

I Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

5 / 15

Fiat-Shamir Heuristic [FiatShamir’86]

I A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS H V FS

α [β = H(α)] γ

I Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

5 / 15

Fiat-Shamir Heuristic [FiatShamir’86]

I A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS H V FS

α [β = H(α)] γ

I Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

5 / 15

Fiat-Shamir Heuristic [FiatShamir’86]

I A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS H V FS

α [β = H(α)] γ

I Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

5 / 15

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS H V FS

α [β = H(α)] γ

I Often, a correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCH+’19]

I NP ⊆ NIZK assuming a CI hash family for all bounded circuits:

RC = {(α,C(α))}, |C| ≤ S = poly.

I Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘bad challenge’ β ∈ {0, 1}m allowing V to be fooled.

Bad β is efficiently computable, using trapdoor for commitments in α.

6 / 15

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS H V FS

α [β = H(α)] γ

I Often, a correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCH+’19]

I NP ⊆ NIZK assuming a CI hash family for all bounded circuits:

RC = {(α,C(α))}, |C| ≤ S = poly.

I Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘bad challenge’ β ∈ {0, 1}m allowing V to be fooled.

Bad β is efficiently computable, using trapdoor for commitments in α.

6 / 15

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS H V FS

α [β = H(α)] γ

I Often, a correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCH+’19]

I NP ⊆ NIZK assuming a CI hash family for all bounded circuits:

RC = {(α,C(α))}, |C| ≤ S = poly.

I Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘bad challenge’ β ∈ {0, 1}m allowing V to be fooled.

Bad β is efficiently computable, using trapdoor for commitments in α.

6 / 15

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS H V FS

α [β = H(α)] γ

I Often, a correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCH+’19]

I NP ⊆ NIZK assuming a CI hash family for all bounded circuits:

RC = {(α,C(α))}, |C| ≤ S = poly.

I Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘bad challenge’ β ∈ {0, 1}m allowing V to be fooled.

Bad β is efficiently computable, using trapdoor for commitments in α.

6 / 15

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS H V FS

α [β = H(α)] γ

I Often, a correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCH+’19]

I NP ⊆ NIZK assuming a CI hash family for all bounded circuits:

RC = {(α,C(α))}, |C| ≤ S = poly.

I Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘bad challenge’ β ∈ {0, 1}m allowing V to be fooled.

Bad β is efficiently computable, using trapdoor for commitments in α.

6 / 15

Obtaining Correlation Intractability
[CCRR’18] CI for all sparse relations from ‘exotic’ assumptions,

e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL’18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+’19] CI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction
I A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

I As in [CCH+’19], our construction has two ‘intractability modes’:

1 Computational: given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in random-string model.

2 Statistical: over H ← HC
c
≈ H, such α do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7 / 15

Obtaining Correlation Intractability
[CCRR’18] CI for all sparse relations from ‘exotic’ assumptions,

e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL’18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+’19] CI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction
I A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

I As in [CCH+’19], our construction has two ‘intractability modes’:

1 Computational: given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in random-string model.

2 Statistical: over H ← HC
c
≈ H, such α do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7 / 15

Obtaining Correlation Intractability
[CCRR’18] CI for all sparse relations from ‘exotic’ assumptions,

e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL’18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+’19] CI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction
I A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

I As in [CCH+’19], our construction has two ‘intractability modes’:

1 Computational: given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in random-string model.

2 Statistical: over H ← HC
c
≈ H, such α do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7 / 15

Obtaining Correlation Intractability
[CCRR’18] CI for all sparse relations from ‘exotic’ assumptions,

e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL’18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+’19] CI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction
I A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

I As in [CCH+’19], our construction has two ‘intractability modes’:

1 Computational: given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in random-string model.

2 Statistical: over H ← HC
c
≈ H, such α do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7 / 15

Obtaining Correlation Intractability
[CCRR’18] CI for all sparse relations from ‘exotic’ assumptions,

e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL’18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+’19] CI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction
I A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

I As in [CCH+’19], our construction has two ‘intractability modes’:

1 Computational: given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in random-string model.

2 Statistical: over H ← HC
c
≈ H, such α do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7 / 15

Obtaining Correlation Intractability
[CCRR’18] CI for all sparse relations from ‘exotic’ assumptions,

e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL’18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+’19] CI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction
I A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

I As in [CCH+’19], our construction has two ‘intractability modes’:

1 Computational: given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in random-string model.

2 Statistical: over H ← HC
c
≈ H, such α do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7 / 15

Obtaining Correlation Intractability
[CCRR’18] CI for all sparse relations from ‘exotic’ assumptions,

e.g., ‘optimal’ hardness of ad-hoc LWE variants.

[HL’18] CI for all sparse relations from (strong) obfuscation & more.

[CCH+’19] CI for all bounded circuits from circularly secure FHE.

Seems tantalizingly close to LWE! But not known from LWE
or worst-case lattice problems.

Our Main Construction
I A CI hash family for all bounded circuits C, from plain LWE

(for small poly approximation factors)

I As in [CCH+’19], our construction has two ‘intractability modes’:

1 Computational: given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in random-string model.

2 Statistical: over H ← HC
c
≈ H, such α do not exist w/h.p.

Yields computationally ZK proof in reference-string model.

7 / 15

Overview of Our Construction

1 A CI hash family for all NC1 (log-depth) circuits from LWE/SIS
(for small poly approx factors)

2 A CI ‘bootstrapping’ theorem, from (leveled) FHE decryption circuits
in NC1, to arbitrary bounded circuits, à la [Gentry’09,GGH+’13].

(Such FHE can be based on LWE w/ small poly factors [BV’14].)

I For NIZK we do not actually need bootstrapping, because the ‘bad
challenge’ functions can be implemented in NC1 [CCH+’19,Lombardi].

8 / 15

Overview of Our Construction

1 A CI hash family for all NC1 (log-depth) circuits from LWE/SIS
(for small poly approx factors)

2 A CI ‘bootstrapping’ theorem, from (leveled) FHE decryption circuits
in NC1, to arbitrary bounded circuits, à la [Gentry’09,GGH+’13].

(Such FHE can be based on LWE w/ small poly factors [BV’14].)

I For NIZK we do not actually need bootstrapping, because the ‘bad
challenge’ functions can be implemented in NC1 [CCH+’19,Lombardi].

8 / 15

Overview of Our Construction

1 A CI hash family for all NC1 (log-depth) circuits from LWE/SIS
(for small poly approx factors)

2 A CI ‘bootstrapping’ theorem, from (leveled) FHE decryption circuits
in NC1, to arbitrary bounded circuits, à la [Gentry’09,GGH+’13].

(Such FHE can be based on LWE w/ small poly factors [BV’14].)

I For NIZK we do not actually need bootstrapping, because the ‘bad
challenge’ functions can be implemented in NC1 [CCH+’19,Lombardi].

8 / 15

SIS and LWE [Ajtai’96,. . . ,Regev’05,. . .]

I Fix integer modulus q = poly(n) and dimensions n,m ≥ 2ndlog qe.

SIS: given uniform A ∈ Zn×mq , find ‘short’ nonzero z ∈ Zm s.t.

 A


z

 =

0

 ∈ Znq .

LWE: distinguish uniform A from A′

stA′ + et


for uniform A′ ∈ Z(n−1)×m

q and ‘short’ (Gaussian) s, e ∈ Zm.

9 / 15

SIS and LWE [Ajtai’96,. . . ,Regev’05,. . .]

I Fix integer modulus q = poly(n) and dimensions n,m ≥ 2ndlog qe.
SIS: given uniform A ∈ Zn×mq , find ‘short’ nonzero z ∈ Zm s.t.

 A


z

 =

0

 ∈ Znq .

LWE: distinguish uniform A from A′

stA′ + et


for uniform A′ ∈ Z(n−1)×m

q and ‘short’ (Gaussian) s, e ∈ Zm.

9 / 15

SIS and LWE [Ajtai’96,. . . ,Regev’05,. . .]

I Fix integer modulus q = poly(n) and dimensions n,m ≥ 2ndlog qe.
SIS: given uniform A ∈ Zn×mq , find ‘short’ nonzero z ∈ Zm s.t.

 A


z

 =

0

 ∈ Znq .

LWE: distinguish uniform A from A′

stA′ + et


for uniform A′ ∈ Z(n−1)×m

q and ‘short’ (Gaussian) s, e ∈ Zm.

9 / 15

SIS and LWE [Ajtai’96,. . . ,Regev’05,. . .]

I Fix integer modulus q = poly(n) and dimensions n,m ≥ 2ndlog qe.
SIS: given uniform A ∈ Zn×mq , find ‘short’ nonzero z ∈ Zm s.t.

 A


z

 =

0

 ∈ Znq .

LWE: distinguish uniform A from A′

stA′ + et


for uniform A′ ∈ Z(n−1)×m

q and ‘short’ (Gaussian) s, e ∈ Zm.

Theorems
I Worst-case lattice problems reduce to average-case SIS/LWE.

9 / 15

SIS and LWE [Ajtai’96,. . . ,Regev’05,. . .]

I Fix integer modulus q = poly(n) and dimensions n,m ≥ 2ndlog qe.
SIS: given uniform A ∈ Zn×mq , find ‘short’ nonzero z ∈ Zm s.t.

 A


z

 =

0

 ∈ Znq .

LWE: distinguish uniform A from A′

stA′ + et


for uniform A′ ∈ Z(n−1)×m

q and ‘short’ (Gaussian) s, e ∈ Zm.

I Linear G : {0, 1}m → Znq and nonlinear G− : Znq → {0, 1}m s.t.

G(G−(u)) = u for all u ∈ Znq .
9 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe

I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Our Construction

I Goal: CI for size-S circuits C : {0, 1}` → {0, 1}m, m ≥ 2ndlog qe
I Uses LWE/SIS-based FH encryption/commitment [GSW’13,GVW’15]

Hash Key: commitment D̂ to ‘dummy’ circuit D : {0, 1}` → {0, 1}m.

([CCH+’19] uses FHE ciphertexts, also includes ‘circular’ ŝk.)

Evaluation: on input α ∈ {0, 1}`,
1 Homomorphically compute commitment D̂(α).

([CCH+’19] does the same, but with ciphertexts.)

2 Homomorphically evaluate linear G : {0, 1}m → Znq to

get ‘inert commitment’ cα = G(D(α)) ∈ Znq .

([CCH+’19] evaluates Decsk to get an FHE ciphertext.)

3 Output G−(cα) ∈ {0, 1}m.

Key Point: cα ∈ Znq hides a Znq -value: lets us compare the two directly,
not just reason about hidden values (as in [CCH+’19]).

10 / 15

Security Proof from SIS

Hash Key: commitment D̂.

Evaluation: H(α) := G−(G(D(α)))

= C(α).

I Let C : {0, 1}` → {0, 1}m have size S.

I Suppose that A, given hash key D̂, finds α s.t. H(α) = C(α).

I By commitment security, same holds for hash key Ĉ = Com(C;RC).

Apply G to both sides:

cα = G(C(α)) = G(C(α)) ∈ Znq .

That is, the inert commitment cα itself equals its ‘contents.’

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

11 / 15

Security Proof from SIS

Hash Key: commitment D̂.

Evaluation: H(α) := G−(G(D(α))) = C(α).

I Let C : {0, 1}` → {0, 1}m have size S.

I Suppose that A, given hash key D̂, finds α s.t. H(α) = C(α).

I By commitment security, same holds for hash key Ĉ = Com(C;RC).

Apply G to both sides:

cα = G(C(α)) = G(C(α)) ∈ Znq .

That is, the inert commitment cα itself equals its ‘contents.’

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

11 / 15

Security Proof from SIS

Hash Key: commitment Ĉ.

Evaluation: H(α) := G−(G(C(α))) = C(α).

I Let C : {0, 1}` → {0, 1}m have size S.

I Suppose that A, given hash key D̂, finds α s.t. H(α) = C(α).

I By commitment security, same holds for hash key Ĉ = Com(C;RC).

Apply G to both sides:

cα = G(C(α)) = G(C(α)) ∈ Znq .

That is, the inert commitment cα itself equals its ‘contents.’

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

11 / 15

Security Proof from SIS

Hash Key: commitment Ĉ.

Evaluation: H(α) := G−(G(C(α))) = C(α).

I Let C : {0, 1}` → {0, 1}m have size S.

I Suppose that A, given hash key D̂, finds α s.t. H(α) = C(α).

I By commitment security, same holds for hash key Ĉ = Com(C;RC).

Apply G to both sides:

cα = G(C(α)) = G(C(α)) ∈ Znq .

That is, the inert commitment cα itself equals its ‘contents.’

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

11 / 15

Security Proof from SIS

Hash Key: commitment Ĉ.

Evaluation: H(α) := G−(G(C(α))) = C(α).

I Let C : {0, 1}` → {0, 1}m have size S.

I Suppose that A, given hash key D̂, finds α s.t. H(α) = C(α).

I By commitment security, same holds for hash key Ĉ = Com(C;RC).

Apply G to both sides:

cα = G(C(α)) = G(C(α)) ∈ Znq .

That is, the inert commitment cα itself equals its ‘contents.’

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

11 / 15

Security Proof from SIS

Hash Key: commitment Ĉ.

Evaluation: H(α) := G−(G(C(α))) = C(α).

I Let C : {0, 1}` → {0, 1}m have size S.

I Suppose that A, given hash key D̂, finds α s.t. H(α) = C(α).

I By commitment security, same holds for hash key Ĉ = Com(C;RC).

Apply G to both sides:

cα = G(C(α)) = G(C(α)) ∈ Znq .

That is, the inert commitment cα itself equals its ‘contents.’

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

11 / 15

Security Proof from SIS

Hash Key: commitment Ĉ = Com(C;RC).

Evaluation: computes cα = G(C(α)) = G(C(α)).

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

I Commitments are w.r.t. an SIS matrix A ∈ Zn×mq , w/ ‘short’ coins:

Ĉ = A ·RC + encode(C) (mod q).

I From RC we can compute coins R for Ĉ(α) [GVW’15]:

Ĉ(α) = A ·R+ encode(C(α)) (mod q).

I From R we can compute coins rα for inert commitment cα [this work]:

G(C(α)) = A · rα +G(C(α))

= G(C(α))

∈ Znq .

I Thus A · rα = 0, solving SIS!

(Also need rα 6= 0, an easy tweak.)

12 / 15

Security Proof from SIS

Hash Key: commitment Ĉ = Com(C;RC).

Evaluation: computes cα = G(C(α)) = G(C(α)).

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

I Commitments are w.r.t. an SIS matrix A ∈ Zn×mq , w/ ‘short’ coins:

Ĉ = A ·RC + encode(C) (mod q).

I From RC we can compute coins R for Ĉ(α) [GVW’15]:

Ĉ(α) = A ·R+ encode(C(α)) (mod q).

I From R we can compute coins rα for inert commitment cα [this work]:

G(C(α)) = A · rα +G(C(α))

= G(C(α))

∈ Znq .

I Thus A · rα = 0, solving SIS!

(Also need rα 6= 0, an easy tweak.)

12 / 15

Security Proof from SIS

Hash Key: commitment Ĉ = Com(C;RC).

Evaluation: computes cα = G(C(α)) = G(C(α)).

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

I Commitments are w.r.t. an SIS matrix A ∈ Zn×mq , w/ ‘short’ coins:

Ĉ = A ·RC + encode(C) (mod q).

I From RC we can compute coins R for Ĉ(α) [GVW’15]:

Ĉ(α) = A ·R+ encode(C(α)) (mod q).

I From R we can compute coins rα for inert commitment cα [this work]:

G(C(α)) = A · rα +G(C(α))

= G(C(α))

∈ Znq .

I Thus A · rα = 0, solving SIS!

(Also need rα 6= 0, an easy tweak.)

12 / 15

Security Proof from SIS

Hash Key: commitment Ĉ = Com(C;RC).

Evaluation: computes cα = G(C(α)) = G(C(α)).

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

I Commitments are w.r.t. an SIS matrix A ∈ Zn×mq , w/ ‘short’ coins:

Ĉ = A ·RC + encode(C) (mod q).

I From RC we can compute coins R for Ĉ(α) [GVW’15]:

Ĉ(α) = A ·R+ encode(C(α)) (mod q).

I From R we can compute coins rα for inert commitment cα [this work]:

G(C(α)) = A · rα +G(C(α))

= G(C(α))

∈ Znq .

I Thus A · rα = 0, solving SIS!

(Also need rα 6= 0, an easy tweak.)

12 / 15

Security Proof from SIS

Hash Key: commitment Ĉ = Com(C;RC).

Evaluation: computes cα = G(C(α)) = G(C(α)).

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

I Commitments are w.r.t. an SIS matrix A ∈ Zn×mq , w/ ‘short’ coins:

Ĉ = A ·RC + encode(C) (mod q).

I From RC we can compute coins R for Ĉ(α) [GVW’15]:

Ĉ(α) = A ·R+ encode(C(α)) (mod q).

I From R we can compute coins rα for inert commitment cα [this work]:

G(C(α)) = A · rα +G(C(α)) = G(C(α)) ∈ Znq .

I Thus A · rα = 0, solving SIS!

(Also need rα 6= 0, an easy tweak.)

12 / 15

Security Proof from SIS

Hash Key: commitment Ĉ = Com(C;RC).

Evaluation: computes cα = G(C(α)) = G(C(α)).

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

I Commitments are w.r.t. an SIS matrix A ∈ Zn×mq , w/ ‘short’ coins:

Ĉ = A ·RC + encode(C) (mod q).

I From RC we can compute coins R for Ĉ(α) [GVW’15]:

Ĉ(α) = A ·R+ encode(C(α)) (mod q).

I From R we can compute coins rα for inert commitment cα [this work]:

G(C(α)) = A · rα +G(C(α)) = G(C(α)) ∈ Znq .

I Thus A · rα = 0, solving SIS!

(Also need rα 6= 0, an easy tweak.)

12 / 15

Security Proof from SIS

Hash Key: commitment Ĉ = Com(C;RC).

Evaluation: computes cα = G(C(α)) = G(C(α)).

Theorem

I From coins RC for Ĉ we can compute coins rα for cα, solving SIS.

I Commitments are w.r.t. an SIS matrix A ∈ Zn×mq , w/ ‘short’ coins:

Ĉ = A ·RC + encode(C) (mod q).

I From RC we can compute coins R for Ĉ(α) [GVW’15]:

Ĉ(α) = A ·R+ encode(C(α)) (mod q).

I From R we can compute coins rα for inert commitment cα [this work]:

G(C(α)) = A · rα +G(C(α)) = G(C(α)) ∈ Znq .

I Thus A · rα = 0, solving SIS! (Also need rα 6= 0, an easy tweak.)

12 / 15

Linear Homomorphism to an Inert Commitment

Given: commitment x̂ [and ‘short’ coins R] for x ∈ {0, 1}m:

x̂ = A ·R+
(
x1G · · · xmG

)
(mod q).

Goal: compute inert L(x) [and coins r] for linear L : {0, 1}m → Znq .

I Write L(x) =
∑

i xi · ci for some ci ∈ Znq . Define short

vL :=

G−1(c1)
...

G−1(cm)

 .

I Then

x̂ · vL = A ·R · vL︸ ︷︷ ︸
r

+
∑
i

xi ·G ·G−1(ci)

= A · r+ L(x) = L(x).

13 / 15

Linear Homomorphism to an Inert Commitment

Given: commitment x̂ [and ‘short’ coins R] for x ∈ {0, 1}m:

x̂ = A ·R+
(
x1G · · · xmG

)
(mod q).

Goal: compute inert L(x) [and coins r] for linear L : {0, 1}m → Znq .

I Write L(x) =
∑

i xi · ci for some ci ∈ Znq . Define short

vL :=

G−1(c1)
...

G−1(cm)

 .

I Then

x̂ · vL = A ·R · vL︸ ︷︷ ︸
r

+
∑
i

xi ·G ·G−1(ci)

= A · r+ L(x) = L(x).

13 / 15

Linear Homomorphism to an Inert Commitment

Given: commitment x̂ [and ‘short’ coins R] for x ∈ {0, 1}m:

x̂ = A ·R+
(
x1G · · · xmG

)
(mod q).

Goal: compute inert L(x) [and coins r] for linear L : {0, 1}m → Znq .

I Write L(x) =
∑

i xi · ci for some ci ∈ Znq . Define short

vL :=

G−1(c1)
...

G−1(cm)

 .

I Then

x̂ · vL = A ·R · vL︸ ︷︷ ︸
r

+
∑
i

xi ·G ·G−1(ci)

= A · r+ L(x) = L(x).

13 / 15

Linear Homomorphism to an Inert Commitment

Given: commitment x̂ [and ‘short’ coins R] for x ∈ {0, 1}m:

x̂ = A ·R+
(
x1G · · · xmG

)
(mod q).

Goal: compute inert L(x) [and coins r] for linear L : {0, 1}m → Znq .

I Write L(x) =
∑

i xi · ci for some ci ∈ Znq . Define short

vL :=

G−1(c1)
...

G−1(cm)

 .

I Then

x̂ · vL = A ·R · vL︸ ︷︷ ︸
r

+
∑
i

xi ·G ·G−1(ci)

= A · r+ L(x) = L(x).

13 / 15

LWE-Based Construction

I SIS construction is computationally CI with uniform key (A, D̂).

Yields computationally sound, statistically ZK protocol.

I An LWE-based statistically CI construction with non-uniform key:

Hash Key: commitment Ĉ w.r.t. LWE matrix A =
(

A′

stA′+et

)
∈ Zn×mq

Evaluation: computes cα = G(C(α))−
(

0
q/2

)
∈ Znq

I Now H(α) = C(α) yields Arα =
(

0
q/2

)
. So A′rα = 0 and

q
2 = (stA′ + et) · rα = et · rα (mod q),

but e, rα are too small for this: contradiction!

14 / 15

LWE-Based Construction

I SIS construction is computationally CI with uniform key (A, D̂).

Yields computationally sound, statistically ZK protocol.

I An LWE-based statistically CI construction with non-uniform key:

Hash Key: commitment Ĉ w.r.t. LWE matrix A =
(

A′

stA′+et

)
∈ Zn×mq

Evaluation: computes cα = G(C(α))−
(

0
q/2

)
∈ Znq

I Now H(α) = C(α) yields Arα =
(

0
q/2

)
. So A′rα = 0 and

q
2 = (stA′ + et) · rα = et · rα (mod q),

but e, rα are too small for this: contradiction!

14 / 15

LWE-Based Construction

I SIS construction is computationally CI with uniform key (A, D̂).

Yields computationally sound, statistically ZK protocol.

I An LWE-based statistically CI construction with non-uniform key:

Hash Key: commitment Ĉ w.r.t. LWE matrix A =
(

A′

stA′+et

)
∈ Zn×mq

Evaluation: computes cα = G(C(α))−
(

0
q/2

)
∈ Znq

I Now H(α) = C(α) yields Arα =
(

0
q/2

)
. So A′rα = 0 and

q
2 = (stA′ + et) · rα = et · rα (mod q),

but e, rα are too small for this: contradiction!

14 / 15

LWE-Based Construction

I SIS construction is computationally CI with uniform key (A, D̂).

Yields computationally sound, statistically ZK protocol.

I An LWE-based statistically CI construction with non-uniform key:

Hash Key: commitment Ĉ w.r.t. LWE matrix A =
(

A′

stA′+et

)
∈ Zn×mq

Evaluation: computes cα = G(C(α))−
(

0
q/2

)
∈ Znq

I Now H(α) = C(α) yields Arα =
(

0
q/2

)
. So A′rα = 0 and

q
2 = (stA′ + et) · rα = et · rα (mod q),

but e, rα are too small for this: contradiction!

14 / 15

LWE-Based Construction

I SIS construction is computationally CI with uniform key (A, D̂).

Yields computationally sound, statistically ZK protocol.

I An LWE-based statistically CI construction with non-uniform key:

Hash Key: commitment Ĉ w.r.t. LWE matrix A =
(

A′

stA′+et

)
∈ Zn×mq

Evaluation: computes cα = G(C(α))−
(

0
q/2

)
∈ Znq

I Now H(α) = C(α) yields Arα =
(

0
q/2

)
. So A′rα = 0 and

q
2 = (stA′ + et) · rα = et · rα (mod q),

but e, rα are too small for this: contradiction!

14 / 15

LWE-Based Construction

I SIS construction is computationally CI with uniform key (A, D̂).

Yields computationally sound, statistically ZK protocol.

I An LWE-based statistically CI construction with non-uniform key:

Hash Key: commitment Ĉ w.r.t. LWE matrix A =
(

A′

stA′+et

)
∈ Zn×mq

Evaluation: computes cα = G(C(α))−
(

0
q/2

)
∈ Znq

I Now H(α) = C(α) yields Arα =
(

0
q/2

)
. So A′rα = 0 and

q
2 = (stA′ + et) · rα = et · rα (mod q),

but e, rα are too small for this: contradiction!

14 / 15

Open Problems

1 CI beyond NC1 from SIS (not LWE) w/poly factors?

Currently we need bootstrapping, which brings in LWE.

2 Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

[GOS’06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

3 Compactness? Our hash key grows with the circuit size for CI, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

4 Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

15 / 15

Open Problems

1 CI beyond NC1 from SIS (not LWE) w/poly factors?

Currently we need bootstrapping, which brings in LWE.

2 Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

[GOS’06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

3 Compactness? Our hash key grows with the circuit size for CI, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

4 Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

15 / 15

Open Problems

1 CI beyond NC1 from SIS (not LWE) w/poly factors?

Currently we need bootstrapping, which brings in LWE.

2 Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

[GOS’06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

3 Compactness? Our hash key grows with the circuit size for CI, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

4 Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

15 / 15

Open Problems

1 CI beyond NC1 from SIS (not LWE) w/poly factors?

Currently we need bootstrapping, which brings in LWE.

2 Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

[GOS’06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

3 Compactness? Our hash key grows with the circuit size for CI, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

4 Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

15 / 15

Open Problems

1 CI beyond NC1 from SIS (not LWE) w/poly factors?

Currently we need bootstrapping, which brings in LWE.

2 Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

[GOS’06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

3 Compactness? Our hash key grows with the circuit size for CI, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

4 Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

15 / 15

Open Problems

1 CI beyond NC1 from SIS (not LWE) w/poly factors?

Currently we need bootstrapping, which brings in LWE.

2 Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

[GOS’06] gets NIWI from statistical soundness in random-string model.

But we just have computational soundness there.

3 Compactness? Our hash key grows with the circuit size for CI, unlike
those based on ‘exotic’ assumptions (e.g., obfuscation).

4 Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

15 / 15

