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ABSTRACT

We present a measurement study analyzing DDoS attacks
from multiple data sources, relying on both direct measure-
ments of flow-level information, and more traditional indi-
rect measurements using backscatter analysis. Understand-
ing the nature of DDoS attacks is critically important to
the development of effective counter measures to this press-
ing problem. While much of the community’s current un-
derstanding of DDoS attacks result from indirect measure-
ments, our analysis suggests that such studies do not give
a comprehensive view of DDoS attacks witnessed in today’s
Internet. Specifically, our results suggest little use of address
spoofing by attackers, which imply that such attacks will
be invisible to indirect backscatter measurement techniques.
Further, at the detailed packet-level characterization (e.g.,
attack destination ports), there are significant differences
between direct and indirect measurements. Thus, there is
tremendous value in moving towards direct observations to
better understand DDoS attacks. Direct measurements ad-
ditionally provide information inaccessible to indirect mea-
surements, enabling us to better understand how to defend
against attacks. We find that for 70% of the attacks fewer
than 50 source ASes are involved and a relatively small num-
ber of ASes produce nearly 72% of the total attack volume.
This suggests that network providers can reduce a substan-
tial volume of malicious traffic with targeted deployment of
DDoS defenses.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks|: Network
Operations—Network monitoring
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1. INTRODUCTION

Internet distributed denial of service (DDoS) attacks are
becoming increasingly prevalent [1]. To prevent the discov-
ery of attack sources, attackers have been known to spoof
the source IP addresses of packets in DDoS attack traffic.
These spoofed addresses were often chosen randomly from
the IPv4 space, which allowed a technique called backscat-
ter analysis [2] to be used to infer the prevalence of such
spoofed DDoS attacks on the Internet. This technique works
by measuring the amount of unwanted traffic sent to un-
used address blocks. Backscatter traffic originates from at-
tack targets responding to the attack packets by replying
to spoofed source addresses. Indeed, much of the current
understanding of the nature of DDoS attacks is a result of
analyzing such backscatter data by monitoring lightly used
or unused address blocks [3, 2].

Relying on backscatter analysis does not provide a com-
plete picture of all possible DDoS attacks. Ingress filter-
ing [4] at interfaces to customer networks can block ran-
domly spoofed traffic by only permitting traffic with ad-
dresses known to belong to the customers'. Backscatter
data might also be unavailable if the attacked IP address is
not responding to the attack packets. This can be due to the
fact that the attacker attacks a target IP address which is
not assigned to any host; the attacked host is down; the In-
ternet access link of the attack target is unavailable; or, the
attack traffic is filtered. In addition, not all DDoS attacks
employ address spoofing. For example, it is known that bot-
nets [6] consisting of thousands of compromised machines
can be used to launch DDoS attacks, frequently through
public IRC channels, without source address spoofing. From
the attacker’s point of view, this is an attractive alternative,

LA recent study [5] shows that a large number of networks
still do not deploy ingress filtering, thus allowing spoofed
attacks to originate from them.



as attackers do not need to be concerned with ingress filter-
ing which thwart the use of random source address spoofing.
Furthermore, attack sources are not owned by attackers and
thus, do not reveal their identity.

Our first contribution in this paper is a first-of-its-kind
analysis of DDoS attacks that uses two independent data
sources namely, indirectly measured DDoS activity using
backscatter data from a mostly unused /8 network, as well
as directly measured DDoS activity in an ISP network. For
the latter set, we use a combination of independently col-
lected Netflow and alarms from a commercial DDoS detec-
tion system, as well as a recently developed large-scale au-
tomated DDoS detection system to indicate the presence of
flow anomalies [7]. Using simple heuristics we are able to
verify that most of the flow anomalies were indeed DDoS
attacks. We compare the DDoS attack characteristics from
these data sets and find that almost all the attacks in the
directly measured data set are mot present in the backscat-
ter data. If indeed large spoofed attacks were present, a
monitored address as large as ours (an unused /8 network)
is highly likely to witness backscatter traffic. Also, such
large attacks would register volume-based hits on at least
the LADS detection system if not the commercial detec-
tion system as well. Therefore, the very minimal overlap
suggests that most DDoS attacks in today’s networks are
unlikely to be detected using the backscatter approach, and
direct measurements are required.

Our second contribution is a characterization of DDoS
attacks using the directly measured attack data. To our
knowledge this study, in which we analyze DDoS packet-
level properties and attack sources and targets, is the first
study of its kind to be published. Such analysis is benefi-
cial in designing more effective and practical defense mech-
anisms, understanding mitigation deployment in large net-
works, as well as developing defense strategies deployable at
end-hosts.

The paper is organized as follows. In Section 2, we de-
scribe our data sets and the methodology we used to filter
the data sets to allow a fair comparison. In Section 3 we
present a characterization of DDoS attacks for all the data
sets that we use. Also, we determine the extent to which
attacks in our data set use randomly spoofed IP packets,
and subsequently analyze the sources and targets of attacks
in our data sets. We then conclude with a concise summary
of contributions and their implications.

2. DATA AND METHODOLOGY

‘We now describe the three data sources used in our study,
as well as our approach to validate the presence of DDoS at-
tack traffic in the flow based data. To allow direct compar-
isons across the data sets, we preprocess them by focusing
only on large attacks targeting address ranges advertised
by the tier-1 ISP under study. We expect large randomly
spoofed attacks to generate sufficient number of packets to
be observed in the /8 backscatter data set.

2.1 DDoS Data Sources

Flow Data from commercial anomaly detection
system: We used a commercial flow based DDoS detec-
tion system deployed within a tier-1 ISP and collected large
DDoS alarms generated by this system over 4 weeks in
March 2006. Since the algorithms used in this system are
proprietary in nature, we used separately collected Netflow

data, pertaining to the same time duration as the alarms, to
study and verify the alarms generated by the DDoS detec-
tion system. We use the following steps to derive the flow-
based attack traces: (1) Collect alarms for significant flow
anomalies from commercial flow based network anomaly de-
tectors deployed in key locations in a large ISP. (2) Correlate
the flow anomaly alarms into attack instances, where alarms
are combined if they target the same set of destination pre-
fixes and occur with no more than 15 minutes idle time in
between. (We focus on targeted attacks.) (3) Retrieve all
sampled Netflow records covering the entire network des-
tined toward the attack destination during the attack pe-
riod.

Flow Data from a custom anomaly detection sys-
tem: The other data source we have for analyzing DDoS at-
tacks is a home-grown DDoS detection system called LADS
— Large-scale Automated DDoS detection System [7] de-
ployed in the tier-1 provider. LADS is based on a trig-
gered multi-stage architecture for scalable, accurate, and
cost-effective large-scale attack detection. Conceptually, the
initial stages consist of low-cost anomaly detection mecha-
nisms that provide information to traffic collectors and an-
alyzers to reduce the search space for further traffic analy-
sis. Successive stages of the triggered framework, invoked
on demand and therefore much less frequently, then oper-
ate on data streams of progressively increasing granularity
(e.g., flow or packet header traces), and perform more fine-
grained analysis. Our system makes use of two data sources:
SNMP and Netflow, both of which are readily available in
commercial routers today. We adopt a two-stage approach
in LADS. In the first stage, we detect volume anomalies us-
ing low-cost SNMP data feeds (packets per second counters).
These anomalies are then used to trigger flow-collectors that
obtain Netflow records for the appropriate routers, inter-
faces, and time periods. For this stage, we build a traffic
prediction model, using packet rate as the metric, for each
customer egress interface using historical traffic data over a
5-week period. This prediction model is then used to iden-
tify traffic anomalies over the observation period. In the
second stage, we then perform automated analysis of the
flow records, using uni-dimensional aggregation and cluster-
ing techniques, to generate alarm reports indicative of DDoS
attacks targeted at customer networks. Here, flow-records
are partitioned into 4-different categories (All, ICMP, SYN,
RST), and we identify destinations receiving a large traf-
fic flood within the duration specified by the coarse-grained
volume anomaly. More details about the system design and
implementation can be found in [7].

The bandwidth thresholds depend on the type of flow
data and the capacity of the customer’s access interface.
For high-capacity interfaces (>5Mbps) we set the thresh-
old to be 10Mbps for aggregate attacks, and 2.5Mbps for
specific attacks (SYN, RST, ICMP). For low-capacity inter-
faces, the thresholds are set to be equal to the access-link
capacity. These thresholds are selected to focus on attacks
that would impact customers. Our current deployment of
LADS monitors in excess of 50,000 customer egress inter-
faces and collects flow data from over 500 routers in the
provider’s backbone for analysis. For the dataset used in
this paper, we collected 31612 alarms generated by LADS
over a four-week period in March 2006.

Backscatter Data: The backscatter data consist of traf-
fic logs detailing the timestamp, packet type, source and



destination IP address and port numbers obtained from a
mostly unused /8 network over the same time period as the
flow data. There are very few address blocks from the /8
actively used. Thus, traffic received at the unused addresses
is most likely illegitimate — a result of replies to attack pack-
ets, measurement probing, worm scanning, misconfiguration
etc. To exclude packets that are not replies of DDoS attack
packets, we take the same set of steps as suggested by prior
work on backscatter analysis [2] — that is, we only con-
sider flows with more than 100 packets and lasting more
than 60 seconds. We define flows to be consecutive packets
with the same source IP address and protocol, based on a 5-
minute time out to achieve resilience to temporary outages
while not combining unrelated traffic flows [2]. This data
set is called the Backscatter set in the remainder of this
paper, and consists of 3491 events that originate from IP
addresses belonging to the tier-1 ISP network. Note that we
only focus on backscatter events originating from addresses
of the tier-1 ISP and its customers, as we can observe the
corresponding attacks targeted to such addresses using the
above-mentioned anomaly detection systems.

2.2 Data Processing

Flow Data: To ensure a sufficient number of samples
in our data, we therefore focus our analysis on large DDoS
attacks which during the time period of the DDoS alarm,
transmitted at least 10 million packets through the ISP
guaranteeing us at least 25 sampled flow records per at-
tack?. Furthermore, we only consider attacks with an aver-
age packet rate of at least 6666 packets per second, ensuring
that at least one sample per minute is received, given on
average 20MB per sample flow record. Considering both at-
tacks that target destinations within the ISP and attacks
that originate from customers connected to the ISP gives us
a filtered set comprising of 46 potential attacks. This set is
referred to as the LargeFlow data set. We apply the same
filtering to the flow data from the LADS system, giving the
LADS data set comprising of in 536 attack instances.

Backscatter Data: To allow direct comparison between
the Netflow based data (consisting of large DDoS attacks)
and the backscatter based data, we filtered the backscatter
data based on the same criteria used to classify large ISP
DDoS attacks, i.e., with at least 10 million packets total,
and average packet rate of at least 6666 packets per second.
Note that we scale the above packet rate and packet count
by 256 given that we monitor a /8 block, roughly ﬁ of
the IPv4 address space. This filtered set, comprising of 248
events will be referred to as the LargeBackscatter data set.

2.3 Validation of Flow Anomalies of the Com-
mercial System

Unlike the backscatter data, which are most likely a re-
sult of attacks or misconfigurations, the flow anomaly based
DDoS data can contain false positives, especially given the
proprietary nature of the commercial DDoS detection mech-
anism. Note that the flow anomalies from the LADS sys-
tem, a public DDoS detection system, have already been
validated independently [7]. We now describe how we vali-

2@Given 10 million packets, assuming 100Byte average packet
sizes, the probability of observing at least one sample based
on the sampling algorithm [8, 9] is calculated to be very
close to 1 using the formula of 1 — e(~1*7/20000000) ¢} T
being the total number of bytes.

date, with high probability, that the data produced by the
commercial system is indeed the result of DDoS attacks.
Specifically, from the LargeFlow data set, we created a fil-
tered data set, called the SureFlow set, for which we inde-
pendently validated the flow records as being part of a DDoS
attack by using the following heuristics. We assume a flow
based attack trace is a real attack if, considering all flows
associated with the trace, any of the following holds true:

e More than 95% of packets in the flows are UDP packets
originating from a large number of source IPs (poten-
tial UDP flooding attacks).

e More than 95% of packets in the flows are ICMP pack-
ets (potential ICMP flooding attacks).

e More than 90% traffic is TCP and all TCP packets
have only a single flag. (Most of these flags are SYN,
RST, ACK, an indication of SYN flooding attacks or
reflector attacks)?

The SureFlow set consists of 41 events, containing a little
more than 89% of the original LargeFlow data set of 46
events. Using the independent Netflow data we therefore are
able to verify that at least 89% of the large attack alarms
are real DDoS attacks. Note that this does not imply that
the remaining 11% of the attacks are not real DDoS attacks,
it just means we could not verify them as attacks using our
simple heuristics.

Although the SureFlow set provides an upper bound of
11% on the number of false positives (the case in which the
commercial DDoS detection system marks non-DDoS traf-
fic as a DDoS attack), it is substantially harder to provide
a bound on false negatives (no alarms are generated while
a DDoS attack was present). Although false negatives do
not introduce false data in our analysis, they might bias the
analysis of our results. This appears to be a fundamental
problem with any DDoS detection mechanism. However,
given that the characteristics of large DDoS attacks (com-
pared to small DDoS attacks) are quite unusual and, there-
fore, easy to detect, we expect the number of false negatives
of the commercial DDoS detection system to be low for large
DDoS attacks. Furthermore, we also use LADS, a recently
developed DDoS detection system with a publicly known
algorithm that focuses on flooding attacks on customer in-
terfaces to improve detected attack coverage.

3. DATA ANALYSIS RESULTS

We now detail the data analysis using the four data sets
previously mentioned: Backscatter (BS), the backscatter set
corresponding to the 100 packet, 60 second rule [2]; Large-
Backscatter (LBS), the backscatter set filtered to correspond
to large DDoS attacks; SureFlow (SF), the flow-based set for
which we were able to verify the existence of DDoS traffic
in the flow records; and LADS, the flow data using custom
volume-based anomaly detection. We compare the data sets
whenever possible and correlate them to infer the prevalence
of random address spoofing.

It is possible that the complete failure of a busy server
might cause an increase in the number of SYN packets be-
ing sent to a particular IP address as clients attempt to re-
establish connectivity. This might cause the resulting traffic
flows to be incorrectly classified as a SYN flooding attack.
Since our study is limited to large DDoS attacks, we do not
expect this to be a problem.
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Figure 1: Attack duration and packet count properties

3.1 Attack Characterization

We present a detailed characterization of the attack traffic
captured from the four data sets above. In the process,
we also point out important network properties and traffic
characteristics of the attack traffic that make them stand
out from regular traffic.

Traffic properties: We first focus on general traffic
properties in terms of attack durations, packet counts, and
packet rate. Figure 1(a) depicts the distribution of attack
duration for four data sets described above. About 86%
of the SureFlow attacks last less than one hour, but some
persist as long as 12 hours. The attack duration for both
the Backscatter and LargeBackscatter data sets appear to
be slightly longer, with about 67% of the LargeBackscatter
attacks lasting less than one hour. This could be due to
our conservative way of classifying attacks in the backscat-
ter data: as long as there are no idle periods of longer than
5 minutes, data packets are grouped into the same attack
flow. This may result in unrelated events grouped together.
The attack duration distribution for LADS alarms matches
very closely to that for LargeBackscatter attacks. Note that
the overall distribution for all the data sets are quite similar.

We find strong correlation between attack duration and
the amount of attack traffic in both packet and byte count
for the SureFlow data set, and similarly strong correlation
for the LADS data set. This means that long-lived attacks
usually have more attack traffic. The correlation is much
weaker for the Backscatter data set. This is probably an
artifact of the 5 minute idle time used to define flows for
backscatter data. This implies it is possible that several
separate flows are classified as a single flow, resulting in
overall lower attack rate for longer-lived attack. The distri-
butions of the total number of packets in each attack are
shown in Figure 1(b). Given that our detector uses large
traffic volume as one of the criteria to generate alarms, it
is not surprising that the attacks in the SureFlow, Large-
backscatter, and LADS data set on average have at least
40 Mega packets, very likely aggregated from many traffic
flows. The packet count distribution across these data sets
match very well. The Backscatter data set has a wider dis-
tribution including many smaller attacks with an average of
130K packets. This shows that the majority of the backscat-
ter events, likely caused by the use of spoofed IPs, are quite
small in size.

Directly related to the traffic volume metric is the traffic
rate. To have a first order estimate, we plot the distribu-

tion of the average packet rate for individual attacks. Fig-
ure 2(a) shows the distribution. Again the data points for
the three data sets consisting of SureFlow, Largebackscat-
ter, and LADS match reasonably well with medians ranging
between 23K and 62K packets per second. The attacks in
SureFlow have the highest rate followed by LADS and then
Largebackscatter. These rates can be sustained without no-
ticeable impact by today’s core ISP networks, but may im-
pact servers or even firewalls [2]. Based on the Backscatter
data, the largest attack has an estimated rate of 280K pack-
ets per second. The largest attack observed in the anoma-
lous flow data set is close to 1 million packets per second.
This difference might be due to the fact that very large at-
tacks may not be randomly spoofed, thus not visible in the
backscatter data. We confirm this conjecture later.

The traffic properties described above are fairly coarse-
grained, and according to these properties there is a strong
similarity between attacks observed from LargeBackscatter
and those from the anomalous flow data sets: SureFlow and
LADS.

Packet details: We now examine the packet header and
the packet type to study properties such as distribution of
port numbers, protocol types, and packet sizes. We do not
have information on packet payload due to the aggregate na-
ture of our traffic data, but we can speculate on the applica-
tion type based on port numbers. Again, we highlight prop-
erties of attack traffic that make it stand out from regular
traffic. Figure 2(b) displays the distribution of the number
of destination ports in attacks. In the case of the backscat-
ter data, if the data is a result of spoofed attack, the source
port of the backscatter packets correspond to the destina-
tion port of the attack targets. Only about 27% SureFlow
attacks target a single port, indicative of a single application
under attack, the corresponding number is 43% for LADS,
57% for Backscatter, and close to 90% for LargeBackscatter
data set. The distribution of the number of destination ports
varies significantly across the four data sets, with the Large-
Backscatter having the smallest number of destination ports
and both LADS and Backscatter data having the largest
number of destination ports on average. In fact, the actual
values of the destination ports are also quite different across
the data sets. The destination ports receiving most packets
or highest average packet rate often include service ports for
applications such as HTTP, SSH, DNS, IRC. Other popular
ports are not well-known and are suspected to be used by
peer to peer applications.
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Protocol | SF- SF- LADS- LADS- LBS- LBS-
PPS BPS PPS BPS Pkts Attacks
TCP 73.06 72.48 49.98 72.15 99.93  99.60
UDP 17.08 17.08 46.18 15.11 0.07 0.40
ICMP 9.86 10.44 2.45 0.52 0.00 0.00
Table 1: Pctg contribution of protocols to attack
traffic (SF: SureFlow,PPS: Packets/sec,BPS: Bytes/sec,

LBS: LargeBackscatter,Pkts: Packets count, Attacks: At-

tack count)

Next we characterize the distribution of IP protocols by
examining the protocol field in the IP header of the traffic in
Netflow data and by inference from the backscatter packet
types using previously described techniques [2]. Table 1
shows the average traffic contribution in bytes per second
and packets per second across all attacks for all the proto-
cols found for the SureFlow and LADS data set. For the
LargeBackscatter data set, the table shows the correspond-
ing percentages for the number of packets and the number
of attacks respectively. Not surprisingly, similar to regu-
lar traffic, TCP is the dominant protocol, UDP being the
second highest contributor. Interestingly, the percentage of
UDP attacks detected in the SureFlow and LADS data is
significantly higher than in the LargeBackscatter data. A
possible explanation is that UDP data on random ports are
typically blocked by firewalls, which might reduce the po-
tential amount of UDP traffic generating backscatter.

Protocol | BS-Pkts BS-Attacks BSAIl-Pkts BSAll-Attacks
TCP 98.99 95.76 98.68 25.45
UDP 0.25 0.78 0.40 59.50
ICMP 0.03 0.90 0.03 0.26
Table 2: Pctg contribution of protocols to at-

tack traffic in backscatter data (BS: backscatter us-
ing 60 sec 100 packet filter, BSAIl: all backscat-
ter data without filtering, Pkts: Number of packets,
Attacks: Number of attacks )

A recent work in progress presented by Nazario [10] also
based on backscatter data from a mostly unused /8 net-
work suggested that attacks are shifting from TCP to the
UDP protocol. However, our analysis did not confirm this.
One possible explanation for this discrepancy is explained
by Table 2 where the data set is not filtered based on source
addresses belonging to the customer of the tier-1 ISP. Here,
BSALL refers to all backscatter instances without any filter-
ing, and BS is the 60 second 100 packet filtered Backscatter

set. Surprisingly, for BSALL, we observe a large number
of UDP based attacks contributing little traffic, i.e., 59.5%
of the attacks which contribute only 0.4% of the number of
packets. (Recall that for this data set we did not filter out
smaller attacks.) We believe that such events are unlikely
caused by real DDoS attacks and more likely due to probing
into the dark address space.

Given that TCP is the dominant protocol in attack traf-
fic, we analyze the distribution of TCP flags as shown in
Table 3. The table shows the average contribution of par-
ticular TCP flags only for the flags contributing to more
than 1% of the attack traffic in all SureFlow and LADS at-
tacks. To our surprise, we found significantly large amounts
of packets in SureFlow and LADS are due to ACK packets,
contributing to more than 60% of packet rate and data rate.
This implies that these packets may result from reflector at-
tacks targeting the host. Such traffic will not be visible in
the backscatter data, as it only consists of packets destined
to the unused address block. We also observe the prevalence
of SYN-flooding based attacks, as SYN packets contribute
to more than 20% of the packet and bit rate. The most pop-
ular packet types in the LargeBackscatter data confirms the
presence of a large number of SYN flooding attacks, as the
most popular packet type is SYNACK. We observe much
fewer ICMP port unreachable and echo reply packets which
is possibly resulting from UDP and ping flooding attacks.

Finally, we examine the distribution of packet sizes in at-
tack traces for SureFlow. Note, it is impossible to under-
stand this property by using backscatter data alone. We
found many attacks purely consisting of packets smaller than
100 Bytes. In about 6% of attacks, no packets were smaller
than 100 Bytes. However, in about 83% of attacks, all traffic
consist of these small packets. Such properties clearly can
be used to identify DDoS attacks.

3.2 Spoofing Analysis Results

Given the discrepancies of some of the packet and traf-
fic properties between the backscatter data and the DDoS
data from the ISP, we correlate them further to understand
their common subset, which would indicate the use of source
address spoofing.

Random spoofing: Given the 41 large attacks using
the commercial detection system and 536 large attacks us-
ing the LADS system observed at the large ISP over our
measurement period, we found only 4(0.7%) such alarms
matching the backscatter data. Note that all these attack
targets belong to customers of the ISP. We use the follow-



SureFlow LADS LargeBackscatter
TCP flag PPS BPS TCP flag PPS BPS Packet type attack freq packet cnt
ACK 65.75  66.62 ACK 72.67 63.09 | SYNACK 95.56 91.88
SYN 29.13  27.60 PSH,ACK 18.54 35.31 | ICMP_.UNREACH_PORT 1.21 0.07
PSH,ACK 2.64 3.16 SYN 5.83 0.70 ICMP_ECHOREPLY 0.40 0.00
RST,PSH,ACK 2.42 2.42 SYN,ACK 1.36 0.15

Table 3: Average contribution by packets with particular TCP flags (flags contributing at least 1% of traffic)

ing simple method to perform the correlation: if there exists
some backscatter packets coming from the detected attack
target identified in the DDoS alarm during the duration of
the alarm (with 5 minutes time window), then we consider
this a match. Note that here we do not filter out backscatter
attacks based on the size. In fact, among the four matching
attack instances, in the backscatter data none of them gen-
erated sufficient number of packets and at high enough rate
to be considered a large attack.

Another way to determine if an attack used random IP
address spoofing is to check if it contains flow records with
private nonroutable source IP addresses. Even though the
flow records in the SureFlow set are sampled, some flow
records with nonroutable source IPs should still be present
in our data for attacks which use purely random IP address
spoofing. This is due to the fact that a large fraction of the
IP address space is not routable and our analysis is limited
to attacks which produced at least 25 sampled flow records.
Among the 41 large attacks in the SureFlow set, we found
4 attacks with at least one flow record using nonroutable
source IPs. Interestingly, these attacks are not visible in
the backscatter data. One explanation is that these attacks
are indeed using randomly spoofed source addresses, how-
ever, the attack target either didn’t generate the backscatter
packets or the packets were filtered. Combining these two
results we therefore conclude, with high likelihood, that less
than 1% of the attacks in the flow-based data set use random
IP address spoofing.

Local spoofing: Note that the above discussion focuses
on random address spoofing which is much more likely to be
detected using backscatter data or nonroutable source IPs.
To overcome ingress filtering, attack tools can perform local
spoofing or spoof addresses from the local network using the
knowledge of the routing address block. It is also possible
that the attackers were in fact performing random spoofing
but ingress filtering somewhere in the network dropped all
but a subset of the attack packets. To understand the possi-
ble occurrence of local spoofing, we perform simple cluster-
ing at the /24 granularity and count the number of unique
source IPs in each /24 for each attack in the SureFlow data
set. We found some indication of possible local spoofing in
4 attacks (which are not the ones found in the backscatter
data) where there are more than 200 IP addresses partici-
pating in the attack from the same /24 network. We believe
these events very likely result from local spoofing, as it is
unlikely for an attacker to own an entire /24.

Our results also indicate that even though it is possible for
compromised machines in botnets to spoof source addresses,
they do not appear to be doing so in large numbers.

3.3 Sources and Targets of Attacks

We now provide an initial characterization of the network
elements involved in DDoS attacks as observed in our data
sets. In particular, we analyze attack sources and targets,
and their implications for effective network defense.

3.3.1 Source Analysis

To our knowledge, there has been no systematic study on
understanding DDoS attack sources to date, as backscat-
ter data inherently do not have such information. Some
related work examined hosts infected by particular worms.
For example, Kumar et al. [11] recently characterized Witty-
infected hosts by exploiting the worm’s structures to de-
termine properties such as the number of disks. Although
worm-infected hosts can participate in DDoS attacks, there
has been no study directly examining the DDoS attack
sources. We fill this important gap by taking a first look
at the network properties of DDoS attack sources. Given
the disjoint nature between attacks observed in backscatter
data and the attacks directly observed in the large ISP in
our study, we are confident that most attack sources we dis-
covered correspond to actual IP addresses of hosts that took
part in DDoS attacks.

We first seek to understand “how distributed” these at-
tacks are, i.e., how many network entities are taking part in
an attack? Second, we attempt to understand whether the
same network entities are repeatedly involved in attacks. We
perform this analysis at two levels of granularity. First we
study the ASes from which attacks originate, indicating the
ultimate attack sources. Second, we examine the network
ingress interfaces where attacks enter the ISP under our ob-
servation, which is important from a network management
and mitigation perspective.

Distributed nature of attack sources: In Figure 3,
we show the distributed nature of attack sources from three
data sets - the SureFlow data set; the LADS data set; and
the SureFlow_exrtended data set which is an extended version
of the SureFlow data set covering an 11-month period up
to March 2006. From the figure, it is clear that a sizable
number of attacks originate from few sources and ingress
interfaces for all three data sets. For instance, for SureFlow
data set, there are fewer than 100 source IPs and 50 ASes
that were involved in about 70% of attacks, and similarly
fewer than 0.1% of ingress interfaces were involved in all
attacks. This indicates that DDoS attacks are much less
distributed than their name implies.

Topological predictability of attack sources: Ta-
bles 4 and 5 capture the volume contributions of ASes and
network interfaces to attacks — originating from a partic-
ular AS and entering the ISP network via a particular in-
terface. The former table represents the SureFlow data set
while the latter the SureFlow_extended data set. The tables
show results for three different “bins” corresponding to the
individual contribution of each entity (AS or ingress inter-
face). As shown in the tables, attacks tend to originate from
the same set of networks, and for the ISP under observation
enter through the same set ingress interfaces. For example,
for the SureFlow data set, just 2 ASes, each individually
contributing at least 1% of total attack traffic, together con-
tribute more than 72% of attack traffic observed. Similarly,
0.01% of the ingress interfaces will carry more than 90% of
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contribution ASes contribution | ingress interfaces | contribution
> 1.0% 2 72.08 0.01 93.26
<=1.0% and > 0.1% | 54 13.56 0.027 6.38
<=0.1% 1901 14.36 0.087 0.36

Table 4: Distribution of origin ASes and ingress interfaces for the SureFlow data set.

the attack traffic by volume, while each such interface carries
at least 1% attack traffic. Even more interestingly, from the
SureFlow_extended, we find that less than 1.1% of all ingress
interfaces participated in any DDoS activity over a 11-month
period. Note that, due to smart sampling of Netflow records,
our source analysis considers a subset of the actual distinct
number of sources involved in the attacks. However, the
numbers stated above are not expected to be significantly
different. Hence, such predictability is very useful for at-
tack detection and mitigation purposes. For example, an
ISP only has to deploy mitigation equipment at about 2%
of its ingress interfaces to be able to mitigate all DDoS traf-
fic within our observation period before it enters the ISP’s
backbone.

3.3.2 Target Analysis

We analyzed the targets of attacks from all three data sets.
Across all three data sets, we find that many attacks tar-
get customers of service providers. These include end-users
of broadband Internet Service Providers (cable and DSL),
network service providers for small businesses, web-hosting
services, providers of network telecommunications like VoIP,
and network customer care services. In fact, for the Sure-
Flow data set, we found that more than 90% of all targets
were likely end-users or small businesses, who leased network
connectivity from lower tiered service providers. The num-
bers for the SureFlow_extended and LADS data sets were
80% and 73% respectively. There were very few university-
based users in the targets attack data sets. Likewise, there
were very few of the Fortune 500 corporations targeted.

In terms of frequency, most targets were victims of a sin-
gle or a small number of attacks. For the SureFlow data
set, about 99% of targets featured in 1 or 2 attacks; while
for the SureFlow_extended and LADS data sets, these num-
bers were 91% and 83% respectively. Moreover, the more
frequent targets in all three data sets were clustered fairly
close together with no single target being the most favored
over an extended period. Small businesses were the most
favored amongst all targets across all 3 data sets.

3.4 Result Summary and Implications

Here we summarize the main observations from our study.
For the analysis using both direct and indirect measure-
ments we found that at a coarse-grained aggregate level,
large attacks observed in backscatter data match well with
those in direct measurements from Netflow data. These sim-
ilarities do not hold when more fine-grained attack proper-
ties, such as the type of service under attack and IP pro-
tocols used, are being considered. We list some specific re-
sults: (i) Most attacks (at least 70%) last for less than an
hour. (ii) Packet rates are in the tens of thousands per sec-
ond, maximum close to 1 million packets per second. (iii)
Most attacks use TCP. Here we saw some difference with
LADS data showing much higher UDP involvement (46%
by packets for LADS versus less than 1% for backscatter).
(iv) Most TCP based attacks are ACK or SYN only floods.
(v) Less than 1% of the directly measured attacks produced
backscatter. Using the direct measurements we found that:
(i) Most attacks (83%) consist only of packets smaller than
100 Bytes. (ii) We saw evidence of local spoofing in a small
number (4) of the attacks. (iii) Attacks are only mildly dis-
tributed (fewer than 50 ASes were involved in about 70% of
the attacks as attack sources, and less 0.1% of ingress inter-
faces were involved in all attacks). (iv) There is significant
predictability in attacks both in terms of their originating
AS as well as from which interface they enter a large ISP
network. (v) Small businesses seem to be the most common
targets of attacks.

These results have significant implications for attack de-
fense. With respect to attack detection and understanding
attacks, relying on indirect measurements is clearly not suf-
ficient given current trends in attacks, since very few if any
of attacks appear to be using spoofed source addresses. As
a corollary, we also find that direct measurements can pro-
vide significantly more diagnostic capability that can better
guide the design and deployment of attack defenses. In fact,
there are positive implications for attack defense. We find
that from the perspective of service providers DDoS attacks
are really not as distributed as they are made out to be.
Since the vast majority of malicious traffic arises from a



Individual volume Number of | AS volume Percent of Interface volume
contribution ASes contribution | ingress interfaces | contribution

> 1.0% 18 32.08 0.02 89.80

<=1.0% and > 0.1% | 126 30.58 0.042 8.53

<=0.1% 15743 37.34 1.083 1.67

Table 5: Distribution of origin ASes and ingress interfaces of the SureFlow_extended data set.

small set of ASes and network ingress points, providers can
ensure significant protection for their customers with even
limited (but intelligently targeted) deployment of DDoS de-
fense mechanisms (e.g. [12]).

4. CONCLUSION

Our work is a first study at combining multiple indepen-
dent data sources to study large DDoS attacks. We ex-
amined backscatter data from a mostly unused /8 network
along with flow anomaly based DDoS data from a tier-1 ISP
network. The attack characterization indicates that most
properties such as attack duration, packet count, packet
rate, and dominant protocol type match fairly well in the
two data sets. However, we do observe strong discrepancies
in other properties such as the number of attack destina-
tion ports. One possible explanation for such differences is
that they cover different types of DDoS attacks as shown
by the very small overlap between them: one consists en-
tirely of spoofed attacks, the other are mostly unspoofed.
Using direct DDoS attack measurements, we performed a
first analysis of several DDoS properties which is impossible
using indirect measurements.
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