DECOR: DEClarative network management and OpeRation

Xu Chen Yun Mao
Department of EECS AT&T Labs - Research
University of Michigan Shannon Laboratory

Ann Arbor, Ml Florham Park, NJ
chenxu@umich.edu maoy@research.att.com
Z. Morley Mao Jacobus Van der Merwe
Department of EECS AT&T Labs - Research
University of Michigan Shannon Laboratory
Ann Arbor, Ml Florham Park, NJ

zmao@eecs.umich.edu kobus@research.att.com

ABSTRACT tasks span a wide range of activities including (i) planneadnm
tenancee.g.,to upgrade or introduce new equipment, (i) emer-
gency repaire.g.,when a natural or human induced event causes
failure or malfunction, (iii) fault managemerd,g.,to localize and
replace faulty equipment, (iv) configuration managemerd,,to
enable new functionality or customer features, (v) traffcfor-
mance managemerg,g.,to deal with traffic growth and dynamic
traffic events, (vi) security managemeetg., dealing with secu-

Network management operations are complicated, tediods an
error-prone, requiring significant human involvement amgeet
knowledge. In this paper, we first examine the fundamentad-co
ponents of management operations and argue that the laak of a
tomation is due to a lack of programmability at the right leve
of abstraction. To address this challenge, we present DEGOR
database-oriented, declarative framework towards autmaet- TR . ..
work management. DECOR models router configuration and any rity incidents like worm Qutpreaks and DDoS attagks, (véjwork
generic network status as relational data in a conceptaaltyral- measurement and monitoringg.,to detect_ ano_malles. .

ized database. As such, network management operationsecan b The scale_ of mo_dern ”?tWOT"S' the dlve_rsny of the e_qument
represented as a series of transactional database quériels pro- used to realize their functlonallty, and 'the inherent camipy of
vide the benefit of atomicity, consistency and isolatione Thle- many of these op_eratlonal tasks comblr)ed_ make network neanag
based language in DECOR provides the flexible programntybili ment and operation one O.f the most 5|g.n|f|.cant challengesdiac
to specify and enforce network-wide management conssraamd by network operators. This S}".’lte,Of affa|_r SIS ex"’.‘cerba"‘?mb
achieve high-level task scheduling. We describe the desitio- fact'that networks are always “livel.e., traffic gssoua.ted with the
nale and architecture of DECOR and present some prelimmary ~ MYriad of services enabled by the network is continuousinge

amples applying our approach to common network managementcamed by the network._ The_ |r_npl|qat|on Is that _operatlot@ks
have to be performed with minimal impact on existing service

tasks. To address these challenges, it is desirable to have as mwuch a
. . . tomation as possible so that systems can be utilized to keeg t

Categories and Subject Descriptors of dependencies and constraints as network operatiori tas

C.2.3 Network Operations]: Network Management performed. However, the realization of a unifying framekves

enable fully automated network operations would be a chgiie

task at best and in the worst case might not be feasible.

General Terms In this paper we take a modest step towards the realization of

Design, Languages, Management such a unifying operational framework. Fundamental to eerall
approach is the recognition that automation can only beegetiin

a closed-loop fashion where the operational actions areriréd

Keywords by the state of the network, which reflect the result of presio
Network Management, Declarative Language operational actions as well as the dynamic behavior of thear&.
A significant challenge in realizing any automated operestio

1. INTRODUCTION management system is choosing the “right” level of abstract

abstractions are needed in all complicated systems in todede
unnecessary details; however, those exact same detaildetddn
one task might be important to expose in another task. Inibi&
we explore the utility of a database-oriented declaratwveliage
approach to facilitate both programmability as well as thiity to

o . :) realize different abstractions over the same data and thasrve
Permission to make digital or hard copies of all or part o§ twork for

. ; . . as a unifying framework towards automated network opematio
personal or classroom use is granted without fee providatdbpies are P o .
not made or distributed for profit or commercial advantage taat copies Specifically, we present DECOR, a unifying network operatio
bear this notice and the full citation on the first page. Toyoojherwise, to management system, which models router configurations layd a
republish, to post on servers or to redistribute to listguii@s prior specific generic network status as relational data in a conceptoaltyral-
permission and/or a fee. ized database. As such, network management operationsecan b

PRESTO'09August 21, 2009, Barcelona, Spain. represented as a series of transactional database quétiels pro-
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$10.00.

Network management and operational tasks are performed on
a daily basis in all large operational networks. These djmeral

vide the benefit of atomicity, consistency, and isolatiohe Tule-
based language in DECOR provides the flexible programntybili
to specify and enforce network-wide management conss;aamd
achieve high-level task scheduling. We describe the design
tionale and architecture of DECOR and present some predimin
examples from our experiences of applying the approachrteso
common network management tasks.

2. APPROACH

2.2 Abstracting Networ ks as Databases

In this paper we explore the utility of a database abstradto
network operations through a system called DECOR. We attstra
router state and network state into tables in a conceptoatyral-
ized relational database. Programmability is naturalbvjated by
a declarative language composed of a series of databasesues
a result, the database automatically propagates statgeticom
database tables to routers to carry out network operatidfesar-
gue that the approach has the following advantages:

In this section, we first examine the fundamental components Flexible levels of abstractiondvlanaging routers as databases not

of management operations, then present the benefits ancdctiie a
tectural overview of our database-oriented declaratiy@@ach to
automated network management.

2.1 Mechanics of Network Operations

Network operations are fundamental to the well-being o&yc&l
networks. In operational networks, they are usually penfxt
manually, or in a semi-automated fashion, via so caftesthod
of procedure (MOPYocuments. MOPs describe the procedures
to follow in order to realize specific operational tasks.eoftia
manualcommand line interface (CLProcedures.The procedures
usually serves as a template that stitches the followingdompo-
nents together to achieve actual network management tasks:

Configuration managementThe configuration of network ele-
ments collectively determines the very functionality pdad by

only raises the abstraction to a higher level than the MOPAPL
proach, but also provides the ability to realize differdrgtaactions
over the same data by creativigwson top of the base tables. For
example, one could derivepat h view that describes all paths es-
tablished by a routing protocol based ohiank table, which de-
scribes link relation between routers and is extracted fe@oh
router. As a result, operations and policies based on paftepties
can be directly specified against the derived view.

Configuration and status unificationBoth router configurations
and network status are represented as relational tableEGOR.
Therefore, it is straightforward to write queries that cgufie
routers based on different network conditions.

Transactional operationNetwork operations are represented as a
series of transactional database queries, which provieléehefit
of atomicity, consistency and isolation. Should any fai&ior pol-

the network in terms of protocols and mechanisms involved in icy violations occur, DECOR rolls back to the previous cstesit

providing functionality such as basic packet forwardingon€g-
uration management, or more generically all commands ¢ésdcu
via the operational interface of network elements, are @ileqri-
mary means through which most network operational taskpexre
formed.

Status checkingObtaining network running status is an essential
part of network management [1]. As a matter of fact, the tesul
of status-checking activities largely determines the @gbuogress

of network operational task. As a trivial example, a BGP isess
configuration would only be carried out on a router after Nele
connectivity to the remote BGP peer has been verified.

External synchronizationToday’s networks are inherently man-
aged by multiple parties. While devices can be logicallyeased
from a central location, field operators are essential inyaag out
operations on the physical infrastructure of the networkbere
are also external decision systems that can guide vari@es tyf
management tasks, such as router or link maintenance [Bm Fr
a network management system point of view, it is importargrto
code the capability of synchronizing with these externaligs.

High-level constraints:While making changes to the networks,
there are usually certain constraints that should neveiidiated.
For a large ISP network with many routers and inter-linkak li
maintenance is performed all the time. A bottom-line caaistr
could be “never partition the network”. This constraint lcbef-
fectively restrain two (only) cross-country links beingintained
at the same time.

Most of the existing work [3, 4] focus on the automation of gen
erating configuration changes. Few, if any, effort has beadeto
automate checking network status, synchronizing withresiesn-
tities, enforcing high-level constraints and carrying opérational
procedures. As a matter of fact, today, all these aspectsastdy
performed manually and thus prone to error. A unified frantéwo
can bridge these aspects, for both automation and erritienee.

State.

Declarative policy enforcementDECOR enables network oper-
ators and administrators to specify high-level policies.(con-
straints). For example, one may specify that each routet have

a unique interface identifier, or at least one of the two irtgoar
links must be up. These policies are expredaddpendentljrom

the authors of operation transactions, and are considereldrd-
tive in that they describevhat should happen as opposedHhow

to enforce them during each network operation. Such enforce
ment mechanisms are automatically generated from theigoly
DECOR.

2.3 Architecture

Execution Rules Constraint
Rules

> Execution

Planner

User
Frontend

—
Regular
Tables

|_ _Adapters (optional) _ 1

Routerl % ’ ‘ % Router2

Figurel: DECOR architecture

The DECOR architecture is depicted in Figure 1. In a nutshell
DECOR maintains tables and views that reflect router cordigur
tions and network status. Network operations and conssraire

expressed as rule-based database queries. They are fétueiro-

ecution planner where automated execution programs aezafed
to manipulate the tables and views. Relevant state changbe i
tables are committed to the corresponding routers. For amiiyn
routers that do not support the database abstraction, exdagute
used to bridge the gap. A user interface is provided for dpesao

examine data and execute operations.

Data model All state involved in operation tasks is modeled as
relational data, and stored in one of the following typesadfes

in DECOR: i) regular tablesare just like tables in a traditional
database. Their state is not associated with any routeh @ibtes
are typically used to store auxiliary execution state fooperation,
such as the stage of a multi-stage operation;ai)fig tablesstore
router configuration information, such as IP addressedppob
specific parameters, interfaces, etc. One can read theles tab
get current configuration, and also write to those tableshtmge
the configuration. DECOR is responsible for maintainingsien
tency between config tables and router state. For examplap-an
date of thei nt er f ace table entryi nterface(if_id, "down")
effectively triggers CLI commands that shut down the acicayd
interface; iii) status tablesepresent the current network state. For
example, @i ng(Src, Dest, RTT) table represents the ping result
between two routersr ¢ andDest . These tables are read-only, and
maintained in an on-demand fashion: DECOR only fetchesistat
from the routers when relevant status table entries areareted in

a query.

Language DECOR adopts a rule-based query language Mo-
saic [5], a variant of Datalog [6], for operators and admniais
tors to program automated network operations. Datalog dsvkn
to be more expressive in representing recursive queriesSQa.,
which is desirable to describe network properties. DECOR e
three types of rules for different purposes:eRecution rulesare
used to define automated network operations. They are ysnall
the form of event-condition-actions (ECA rules). For exéan@m
start Op(Rout er | D) event triggers the execution of an ECA rule,
and depending on current router configurations and netwatks
(i.e.,conditions), different actions are taken to carry out therap
tion. In a complicated operation, an action may trigger ogvents,
which further lead to other actions that dictated by othercetion
rules; ii) constraint rulesspecify the policies of a network as the
consistency conditions of the database. Any actions inugi@t
rules should not make the database inconsistenti@iy rulesare
used to create views that are derived from existing tablegeors.
Views provide different levels of abstractions (recall theample
in Section 2.2).

3. EXAMPLES

In this section, we exemplify how to handle different typds o
network operations in DECOR.

3.1 Link Maintenance

We use the example of link maintenance with increasing saphi
tication to show how different aspects of network manageroen
be expressed as declarative rules. We also give some amtuiti
how the execution engine picks up and executes rules to aftom
management operations.

Listing 1. Rulesfor Router Maintenance
R1 on insert Maintenance(L,"pending"), EndPoint(L, intdt2),
=> insert interface (intl,"down"), insert interface (int2lown");
R2 on periodic (10), Maintenance(L,"pending"), EndPdinitftl , int2),
interface (intl ,"down"), interface (int2 ,"down");

=> messageToField(L," start "), insert Maintenance(Lfiad ");
R3 on messageFromField(L,"done"), Maintenance(L," odhfigl
=> insert Maintenance(L,"fdone");
R4 on periodic (10), Maintenance(L,"fdone"), EndPoini(it] , int2)
=> insert interface (intl,"up"), insert interface (intaip™),
delete Maintenance(L,"fdone");

Basic link maintenance procedure: From a network operator’s
perspective, the basic operational procedure of link reaerice
includes: 1) shut down the interfaces on both ends of the Bk
coordinate with field team so that they work on the physical pia
the link; 3) bring up the interfaces.

Listing 1 shows how to use 4 execution ruléd{R4) to real-
ize a primitive maintenance procedure. Three tables aré imse
the example: th@ai nt enance table contains a list of links that
are under-going maintenance procedures, associatedtsvith-to-
date procedure status; tBedPoi nt table records each link and the
interface IDs of its two ends; thent er f ace table is a config table
to bring up or down router interfaces. Modifying the statanfin-
terface from “up" to “down" would result in configuration aiges
automatically populated to the actual devices. There aneetignts
messageToFi el d andnessageFr onFi el d in the example. They
are sent and received respectively via the user front-entdeoact
with operators.

R1- R4 are event-condition-action (ECA) rules. They are trig-
gered by events, including user-defined events, systentgven
database events. The actions of a rule are executed whemélil c
tions hold. SpecificallyR1 fires when a new link maintenance task
on link L is scheduled, indicated by the insertion event of a tuple
(L, "pendi ng") into theMai nt enance table. Then the endpoint
interfacesi nt 1 andi nt 2 of the link L are identified. Finally, it
performs the actions of shutting down both interfaces bynghay
thei nt er f ace table. The details of how this change is done are
transparent to the rule writers.

R2 and R3 are used to carry out external synchronization.
peri odi c(10) represents a system event that is triggered every
10 seconds. SaR2 is periodically triggered to find a link in
"pendi ng" state and both of its interface endpoints are already
shut down, then performs the actions of notifying field tearstart
working and changing the state of the link L to benfi el d".
nessageToFi el d and nessageFr onFi el d are both events for
exchanging messages with the field tears is fired if a mes-
sage is received from field team saying links done on their side,
resulting moving the state of linkto " f done" .

R4 is periodically triggered to pick up a link that is done
with field work, identifies both of its endpoint interfacelset per-
forms the action of bringing them up, and removingrom the
Mai nt enance table, indicating the completion of the task on link
L.

Given the above rules, maintaining a link is as simple agiimge
atuple(L, "pendi ng") into themai nt enance table, and then our
system would automatically fire the rules when appropriatént
ish the task. As illustrated in this example, itis very gihaforward
to express a procedural network operation using the déidlatan-
guage. Basically, the main management target is assigrtacawi
explicit state, which is updated as the operational staggrpsses.
At each stage, a set of table modification or event generatien
done. A new stage is entered, if the previous stage is vetified
have achieved its effect.

Listing 2: Rulesfor Router M aintenance

% include rules from previous listing
#include (R1,R2,R3)

/I maintain a list of links that are down

V1 linkDown(L) :— EndPoint(L,intf,_), interface (intf, "down");

V2 linkDown(L) :— EndPoint(L,_, intf), interface (intf, "down");

/I Shortest path routing

BP1 path(S,D,P,C)= link (L,S,D,C), !linkDown(L), P=[L];

BP2 path(S,D,P,C)= link (L,S,Z,C1), !linkDown(L), path(Z,D,P2,C2),
C=C1+C2, P=[L]+P2;

BP3 bestPath (S,D,P, min<C>} path(S,D,P,C);

/I maintain links that are used

V3 linksInUse (L) = link(L,_,_,), bestPath(_,_,P,_), P.contains (L);

/I cost out the link, as the new first step

R5 on insert Maintenance(L,"prgoending”), link (L,S,D,C) =>
insert link (L,S,D,inf), insert Maintenance(L,"costoyt "

insert costSave (L,C);

/I only schedule to shut down the link if it’s cost out

R6 on periodic (10), Maintenance(L,"costout "), !linksleg)L) =>
insert Maintenance(L,"pending");

R4’ on periodic (10), Maintenance(L,"fdone"), EndPointfitl, int2),

costSave (L,C), link(L,S,D,)

=> insert interface (intl,"up"),
delete Maintenance(L,"fdone"),

insert interface (intaip™),
insert link(L,S,D,C);

Routing protocolsintegration: The procedure defined in listing 1
is straightforward, yet problematic in that an interface ba shut
down, even if it is still being used actively for packet fordimg,
causing transient network packet loss until the routindgqual re-
converges. In listing 2, we show how to make the maintenaasie t
aware of network protocol running state.

First, we introduce several views (in rwe- v3,BP1- 3) to raise
the level of abstraction to special links and routing pats.and
V2 are view rules that define links that are down—we consider a
link to be down if one of its interface endpoint is dowBP1- 3
create aest Pat h view that is generated by a shortest path routing
protocol [7]. Basically,BP1- 2 computes the path®) with cost
(C) between a sources) and destinationd), in a recursive fashion.
Note that we add additional dependencyt ©nk Down to make sure
a down link is not usedBP3 selects the best path between any pair
of source and destination. We assume the routing table igpset
according to théest Pat h view. RuleV3 is used to derive a list of
links that are currently used from the routing table.

Next, in ruleR5, we introduce a new state opr e- pendi ng"
for a link in the Mai ntenance table. To maintain a link,
(L, "pre-pending") should be inserted to take advantage of
the additional sophistication. R5 states that for each link in
"pre-pendi ng" state, we first change its link cost to infinity
(i nf). This would effectively remove the link from the current
routing table R6 states that only if the link is confirmed not to be
used in the routing table, can we transit it to thpendi ng" state,
resulting a shut down b1 (included from listing 1). We use4’
to replace the origina®4, adding the action to restore the link cost
of L.

Note that this program is meant to exemplify how the network
status observation can be integrated into the network tipasa
Our system does not require the routing protocols to be imple
mented declaratively. We can simply populate a status tatite
up-to-date network routing state and write queries basetiain

Listing 3: Rulesfor Router Maintenance
#include (R1,R2,R3,R4’',BP1,BP2,BP3,V3,R5,R6)
/I for every router S and D, there must be a path
C1 router (S), router (D}-> path(S,D,_,);

Constraint enforcement: While the rules in the above two pro-

nation of these programs may introduce bad state, such asnket
partition. In this example, we introduce the usage of camstr
rules. C1 in Listing 3 is a simple way to express, for any two
routersC and D, there is always a path between them. Note that
constraint rules are assertions that do not change any atdiiee
ECA rules where the actions do make state changes. Coristrain
can be used to expressed high-level policies over all thearkt
operations. The constraints can be “do not partition thevow",

“do not cause traffic oscillation more than X percent”, ethéan
execution rule firing has the potential of violating thesestoaints,
that rule firing is canceled or delayed to retry at a later time

3.2 Network Monitoring and Fault Diagnosis

Listing 4: VPN Monitoring and Fault Diagnosis

/I periodically test the connectivity between R1 and R2

/I pingResult would only store the recent N seconds of data

R7 on periodic (10), router (R1), router (R2), R1!=R2,
ping(R1,R2, result), T=PosixTime::now()
=> insert pingResult(R1,R2,T, result);

/I count how many failed pings and how many in total

V4 recentPingFail (R1,R2,countx) :— pingResult(R1,R2,_, result),
result =" failed ", groupBy(R1,R2);

V5 recentPingTries (R1,R2,countx) :— pingResult(R1,R2, ,),
groupBy(R1,R2);

V6 recentPingFailRatio (R1,R2,r)-: recentPingFail (R1,R2,f),
recentPingTries (R1,R2,t), r=f/t;

/I if failed ping ratio is higher than a threshold trigger gli@sis

R8 on periodic (30), vpn(C1,P1,VPN), vpn(C2,P2,VPN), G125
P1!=P2, recentPingFailRatio (C1,C2,R), R> alert_pctg ,

! VpnDiag(C1,C2,_), T=PosixTime::now()
=> insert VpnDiag(C1,C2,P1,P2,"diag_ce_pe"T);

R9 on insert VpnDiag(C1,C2,P1,P2,"diag_ce_pe",T),
recentPingFailRatio (C1,P1,R1), R>alert_pctg
=>alarm(C1,C2,"down due to CE to PE link !");

R10 on insert VpnDiag(C1,C2,P1,P2,"diag_ce_pe",T),

recentPingFailRatio (C1,P1,R1), R<=alert_pctg
=> insert VpnDiag(C1,C2,P1,P2,"diag_pe_route",T);

Listing 4 shows how to build a simple network connectivityrnmo
itor and further automates VPN connectivity problem diagsdn
DECOR.

R7 is a very straightforward rule used to get raw connec-
tivity data: it is triggered every 10 seconds for every pdir o
routers, api ng table query is issued and the ping result stored in
pi ngResul t table. As a status table, any query to theng table
is translated to a ping command on the corresponding roter.
andVs are views that count the number of failed and total ping tri-
als between any pair of routers based ongihegResul t table.v6
calculates the failure ratio between all pairs of routerhinithe re-
cent N seconds. This exemplified DECOR'’s capability of hinid
high-level abstraction over relatively low-level dataretmts.

R8 monitors VPN connectivity by firing every 30 seconds and
finding two CE routersCl andC2, that are within the same VPN
but connecting to different PE®1{ and P2): if the ping failure
ratio is between the two CEs is higher than a pre-definedhbtes
an automatic diagnosis procedure on this pair of CEs isestart
Note that,! VpnDi ag(Cl, C2, _) is used as a condition to prevent
launching a diagnosis procedure for the same pair of CE®twic

VPN diagnosis is very complicated and involves in multiple
steps to narrow down the problem. For brevity, we only show on
step from an online tutorial [8] in the example. In this stemg
need to verify if the CEC1 can reach the PB1 correctly. R9 and

grams can help the careful progression of a link maintenance R10 check the failure ratio betweetl andP1: 1) if the ratio is

task, some operators may include some other rules to matépul
i nterface table in other ways. The problem is that the combi-

higher than a threshold9 is fired, meaning that the problem is
confirmed to the connectivity loss between CE and PE and thus a

alarm is generated; 2) otherwisR10 is fired, moving on to next
stage diagnosisdi ag_pe_r out e", which tries to determine if the
CE router’s loopback IP exists in the PE router’s VRF table.

A wide range of network monitoring and follow-up automated
response can be expressed similarly. For example, thenolip
rule can be used to monitor link usage and perform rateiligit
automatically: on peri odi ¢c(10), LinkUsage(L,R), R>0.8
=> RateLimt(L).

4. CHALLENGES

In the preceding sections, we have described an archieettat
leverages a database abstraction for network managenmeht- a
lustrated some of the benefits through examples. Buildit su
system, however, has to deal with many challenges that dexiit
in traditional DBMS. We discuss them in this section.

Synchronization issues: While DECOR uses database tables as a
new layer of abstraction, there is the possibility that théatlase
tables and the actual network status are out-of-sync. Etpauitic-
ularly true when we use adapters to interact with non-detiar
systems or components.

On the one hand, network changesy(,configuration modifica-
tion) need to be populated to the network as fast as possiile.
synchronization process usually takes tireqy., tens of seconds
to effect configuration changes. The challenge is how to lecthe
access to those tables containing data entries that amafisition”.

On the other hand, network status should be reflected by the ta
bles in a timely fashion. Instead of querying the networkickey
at a fast rate to get a close-to-realtime view of the netwamkore
scalable solution is to rely on router programmability sthekt no-
tifications can be sent out when relevant events occur onéehe d
vices,e.g.,routing table update, interface status change.

Failure handling support: There is already the notion of trans-
actional group commit, roll-back suppostc. in database litera-
ture. The roll-back support in traditional databases camldree
by reverting a set of changed table entries. In DECOR, howeve
updating table entries has direct or indirect impact on tttec
networks, thus additional care must be taken to to prevansient
bad network states.

We consider two types of failure handling in DECOR:

Implicit handling can be done by reversing the list of rules exe-
cuted, based on execution history information. For exaniilen
listing 1 is the start of a sequence of operations. We canlgimp
modify the rule to add a marking, so that whenever the DECOR
system executes this rule, it takes a checkpoint of theew|t-

ble entries and start recording the rules fired afterwardailfire
occurs, we can undo the rules fired one by one in the reverse. ord

Explicit handlingmakes use of an additional failure state. If failure
is detectedd.qg.,a failure detector rule fired), the management oper-
ation transit explicitly into the failure state, after whia sequence

of well-defined rules are fired to handle the failure like &eotet-
work operation. This might be desired if a special routineusth

be carried out.

Constraint enforcement: Formally, a constraint is a predicate that
is based on network status and always should be evaluateel to b
true. These predicates are usually associated with the tedi-
beings of the networke.g.,“network is not partitioned”, which if
violated could potentially have disastrous effects. Thest@ints

are usually written by network experts that are familiarhwiite
overall network design. DECOR can easily facilitate thepsup

of setting up rules tdetectpredicate violations and generate alarm

messages. However, at the time of the alarm, the networklhas a
ready entered an undesirable running state. As such, wetwant
design DECOR so that the execution planner can intelligeyath-

cel or delaya rule to fire, if one of the predicates may no longer
hold if the rule fires at the current network state.

Prioritization in rule execution: In existing declarative systems,
rules fire whenever the conditions are met. DECOR, on therothe
hand, takes priority into consideration when it schedutes exe-
cutes rules. The rationale here is that the computationhdlitga
of the rule processing engine is always limited, and it isantgnt
to prioritize more important rules. When comparing the impo
tance of rule firings, both the rule body and the rule firingapae-
ters are considered. For example, routing protocol ruleslshbe
processed with the highest priority, because the timedidagctly
translates to faster convergence time. On the other handhéo
same maintenance rule fires with different parameters, ilavoe
better to prioritize the task for core routers than edgeeisut

Function refactoring for distributed rule processing: In the first
instance we envision the DECOR system architecture as eatent
ized database which is populated with network states aedadicts
with devices from the whole network. To deal with the scatabi
ity issue when the networks become larger, DECOR can tréide-o
the centralized processing overhead with distributed comioa-
tion overhead by deciding to offload portion of the datababées
and rule processing to the distributed devices, taking raidge of
the increasingly more available programmability support.

5. RELATED WORK

Applying declarative approaches to system and networkialg-p
lems has gained considerable attentions in recent yeaesdddiar-
ative networking project proposes a distributed recurgivery lan-
guage to concisely specify and implement traditional rayipro-
tocols at control plane [7]. Since then, the declarativerag@gh
is taken by numerous projects.g.,to implement overlay [9] and
sensor network protocols [10], data and control plane c@rpo
tion [11], and distributed storage policies [12]. Compareith
those work, DECOR focuses on a different application domain
network management. DECOR is also unique in terms of ex-
ploiting database transaction semantics and global densig con-
straints in network operation task executions.

In network management, NetDB [13] is probably the closest
work to our vision. However, it provides a read-only databab-
straction for router configurations, where one can writerigseto
audit and analyze existing configurations in offline fashiorcon-
trast, DECOR allows writes to the database to change theonletw
configurations, as well as queries of network status as paheo
operation specifications. Combining these two capalslitidth
policy constraint enforcement, DECOR tries to detect aregmt
policy violations at the operation stage, as opposed tmeffiudit-
ing to find already-happened damages.

Much work has been done for automating network configuration
changes [4, 3]. DECOR takes a step further trying to autoniate
holistic network management operations. Other management
tomation frameworks feature different abstractions. Bameple,
CONMan [14] takes the approach in which devices and network
functionality is captured by modules. Many managementstask
tunneling connectivity in particular, can be accomplish@&ma-
nipulation of the abstracted modules.

6. CONCLUSION

In this paper, we introduce DECOR, a new paradigm for net-
work management and operations. The fundamental idea tis tha

by abstracting a network as a database, we have the potefitial
providing the different levels of abstraction for carryiogt differ-
ent network management tasks. The declarative feature GIQHE
enables a unified framework to allow both management opesti
and network-wide constraints be expressed and carried Tug.
future work includes a complete design, implementatiod, &ral-
uation of DECOR'’s capability of automating network managam
and operations.

7. REFERENCES
[1] X.Chen, Z. M. Mao, and J. Van der Merwe, “Towards

Automated Network Management: Network Operations
using Dynamic Views,” irProceedings of ACM SIGCOMM
Workshop on Internet Network Management (INRDO7.

[2] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and
J. Rexford, “NetScope: Traffic engineering for IP netwdrks.
IEEE Network Magazine, March/April 2000, pp. 11-19.

[3] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel,
A. Greenberg, S. Rao, and W. Aiello, “Configuration
management at massive scale: system design and
experience,” irProceedings of the USENIX'07

[4] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang,
“Automated Provisioning of BGP CustomertZEE
Network vol. 17, 2003.

[5] “The Mosaic Project.” https://mosaic.maoy.net.

[6] R. Ramakrishnan and J. D. Uliman, “A Survey of Research
on Deductive Database Systemiurnal of Logic
Programming vol. 23, no. 2, pp. 125-149, 1993.

[7] B.T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakriahn
“Declarative Routing: Extensible Routing with Declarativ
Queries,” inProc. of SIGCOMM (Philadelphia, PA), 2005.

[8] “Juniper Networks: Troubleshooting Layer 3 VPNs."
http://wwv. j uni per.net/.

[9] B.T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,

T. Roscoe, and |. Stoica, “Implementing Declarative

Overlays,” inProc. of SOSP2005.

D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,

S. Shenker, and I. Stoica, “The design and implementation of

a declarative sensor network system,Piroc. of SenSys

(Sydney, Australia), November 2007.

[11] Y. Mao, B. T. Loo, Z. G. lves, and J. M. Smith, “MOSAIC:

Unified Declarative Platform for Dynamic Overlay

Composition,” inProc. of CONEXT(Madrid, Spain), Dec

2008.

N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and

R. Grimm, “PADS: A Policy Architecture for building

Distributed Storage systems,” Rroc. of NSD] April 2009.

D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg,

G. Hjalmtysson, and J. Rexford, “The cutting EDGE of IP

router configuration,” irProceedings of ACM SIGCOMM

HotNets Workshg@November 2003.

H. Ballani and P. Francis, “CONMan: A Step Towards

Network Manageability,” irProc. of SIGCOMM2007.

[10]

[12]

[13]

[14]

