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ABSTRACT
The monitoring of unused Internet address space has been shown to
be an effective method for characterizing Internet threats including
Internet worms and DDOS attacks. Because there are no legitimate
hosts in an unused address block, traffic must be the result of mis-
configuration, backscatter from spoofed source addresses, or scan-
ning from worms and other probing. This paper extends previous
work characterizing traffic seen at specific unused address blocks
by examining differences observed between these blocks. While
past research has attempted to extrapolate the results from a small
number of blocks to represent global Internet traffic, we present ev-
idence that distributed address blocks observe dramatically differ-
ent traffic patterns. This work uses a network of blackhole sensors
which are part of the Internet Motion Sensor (IMS) collection in-
frastructure. These sensors are deployed in networks belonging to
service providers, large enterprises, and academic institutions rep-
resenting a diverse sample of the IPv4 address space. We demon-
strate differences in traffic observed along three dimensions: over
all protocols and services, over a specific protocol and service, and
over a particular worm signature. This evidence is then combined
with additional experimentation to build a list of sensor properties
providing plausible explanations for these differences. Using these
properties, we conclude with recommendations for better under-
standing the implications of sensor placement.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive
Software

General Terms
Security Measurement
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1. INTRODUCTION
As network-based threats become increasingly prominent, char-

acterizing, monitoring, and tracking these threats is critical to the
smooth running of individual organizations and to the Internet as
a whole. To increase their view of these threats, researchers and
network operators are instrumenting unused address space. While
tools to monitor unused address space are gaining in popularity,
there is still an open question as to how applicable results from
one address block are to the Internet as a whole. In this paper we
demonstrate that achieving a representative sample may not be as
simple as monitoring a few unused address blocks. We present
empirical evidence that different address blocks observe signifi-
cantly different traffic volumes and patterns. This evidence is then
combined with additional experimentation to build a list of sensor
properties providing plausible explanations for these differences.
Using these properties, we conclude with recommendations for un-
derstanding the implications of sensor placement.

Monitoring network traffic for malicious content takes many dif-
ferent forms. By far the most common technique is passive mea-
surement of live networks, which falls into three main categories:
data from security or policy enforcement devices, data from traffic
characterization mechanisms, and direct sensing or sniffing infras-
tructure. By either watching firewall logs, looking for policy viola-
tions, or by aggregating IDS alerts across multiple enterprises [20,
30], one can infer information regarding a worm’s spread. Other
policy enforcement mechanisms, such as router ACLs provide
coarse-grained information about blocked packets. Instead of us-
ing ACLs to monitor dropped packets, CenterTrack [25] leverages
the existing routing infrastructure to collect denial of service traffic
for analysis. Data collection techniques from traffic planning tools
offer another rich area of pre-existing network instrumentation use-
ful in characterizing threats. Coarse-grained interface counters and
more fine-grained flow analysis tools such as NetFlow [5] offer an-
other readily available source of information.

Another compelling alternative to measuring live networks is
monitoring blocks of unused address space. Because there are
no legitimate hosts in an unused address block, traffic must be
the result of misconfiguration, backscatter from spoofed source ad-
dresses, or scanning from worms and other network probing. This
pre-filtering of the traffic eliminates many of the false positive and
scaling issues of other monitoring approaches. There have been
various names used to describe this technique such as network tele-
scopes [14], blackholes [22, 15], and darknets [27]. The most com-
mon application of this technique is the global announcement and
routing of unused space to a collection infrastructure that records
incoming packets. This technique has been used both by host-based
honeypot tools [24] and by wide address space monitors [11, 14,
22]. More recently, researchers have combined ideas from host-
based honeypots with wide address measurement to elicit a behav-



ior that is only visible by participating in a network or application
session. For example, software like honeyd [18] and the iSink [31]
bring up a network of virtual honeypots over a single address space.

Using these techniques, researchers have successfully character-
ized and classified the traffic observed at unused blocks [12, 16].
The investigation in [16] utilized blocks located in three Class A
networks and was able to see a large number of Internet threats.
One interesting feature of the plots presented in that analysis were
the differences in magnitude and composition of traffic between the
different blocks. This is an important observation because black-
holes sample a small portion of the total used address space, it is
difficult to know if that sample is generalizable.

One approach for obtaining representative data is to increase the
number and size of unused address blocks [11]. However, without
understanding how theplacementof the monitoring blocks relates
to the traffic observed, there is no way to know if that sample is
representative.

To better understand how observed traffic is affected by sen-
sor placement, we use data from the Internet Motion Sensor [6]
to present evidence that distributed unused address blocks observe
significantly different traffic patterns. The Internet Motion Sensor
(IMS) is a distributed collection of blackhole sensors. These sen-
sors are deployed in networks belonging to service providers, large
enterprises, and academic institutions representing a diverse sam-
ple of the IPv4 address space.

This paper is divided into three major sections. § 2 details the
IMS collection infrastructure and describes the sensor deployments.
Next, § 3 demonstrates differences between blackholes using three
successively more specific views. Finally, § 4 discusses the features
of sensor placement that affect what a sensor observes.

The main contributions of this work are:

• Deployment of ten distributed blackhole sensors at major
service providers, large enterprises, and academic networks
with address blocks that range in size from a /25 to a /8

• Identification of sensor placement as an important factor in
understanding and generalizing measurements from unused
address space

• Strong empirical results showing differences between traffic
observed on diverse distributed blackhole sensors

• Definition and application of sensor properties to help ex-
plain differences in traffic measurement on blackhole sensors

2. IMS ARCHITECTURE OVERVIEW
The data collected and analyzed in the this paper was collected

using the Internet Motion Sensor distributed blackhole infrastruc-
ture. It is important to understand this architecture because black-
hole sensors have a wide range of measurement fidelities. More
specifically, the data collected depends on the extent to which a sen-
sor emulates the services and characteristics of a real host, similar
to the interaction spectrum of honeypots [23]. The IMS is designed
to provide a consistent and comparable level of interaction across
all sensors. The level of sensor emulation was chosen to:

• Maintain a level of interactivity that can differentiate traffic
on the same service.

• Characterize emerging threats.

• Provide visibility into Internet threats beyond geographical
and operational boundaries.
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Figure 1: Internet Motion Sensor Architecture

The IMS architecture consists a set of heterogeneous sensors and
data aggregators as depicted in Figure 1. The sensors deployed in
the IMS can be divided into two basic categories: blackhole and
topology sensors. The blackhole sensors form the core of the IMS
by collecting threat data while the topology sensors provide context
for that information.

Each blackhole sensor monitors a dedicated range of unused IP
address space. The blackhole sensors in the IMS have an active and
passive component. The passive component records packets sent to
the sensor’s address space and the active component responds to
specific packets to illicit more data from the source.

The active component in each blackhole sensor only responds to
TCP connection requests. UDP and ICMP packets do not need an
active response because the sensors can collect all the information
available from the initial packet without taking on the personality
of specific services. For example, the Witty [21] and Slammer [12]
worms were based on UDP in which the entire worm payload was
transmitted in the first packet. TCP, on the other hand, is a connec-
tion based protocol and requires an active response to elicit payload
data. Using an active responser allows the IMS to capture the pay-
loads of TCP worms like Blaster [4] and Sasser [10].

The data storage mechanism in the IMS blackhole sensors is an
integral part of data analysis. One of the main design goals for
the IMS was to support real-time trending and analysis, necessitat-
ing a novel approach to data processing. The problem is that raw
traces gathered on each sensor can approach a gigabyte of data per
day. Attempting to transmit and store that data for a large number
of sensors while supporting real-time data analysis requires very
significant infrastructure. The obvious solution is to distribute the
workload. Each blackhole sensor is responsible for gathering and
archiving data, performing queries on its local data store, and gen-
erating alerts that are sent to the aggregator.

Storing the full payload for every packet has significant space
requirements, so the IMS uses a novel payload storage approach.
When a blackhole sensor receives a packet with a payload, it first
computes the MD5 checksum of the payload (without network
headers) and compares it against the checksum of all the other
packets it has seen in the past day. If the checksum (signature), has
already been recorded, the capture component logs the signature
but does not store the payload. If the signature is new, the payload
is stored and the signature is added to the database of signatures
seen in that day.

The results presented in this paper are based on data collected on
an IMS deployment of ten blackhole sensors. These deployments
include major service providers, a large enterprise, and academic



Label Organization Size
A ISP /23
B Academic Network /24
C Academic Network /24

D,E,F ISP /20, /21, /22
G ISP /25
H Large Enterprise /18
I National ISP /17
J ISP /8

Table 1: IMS Blackhole Deployments

networks with address blocks that range in size from a /25 to a
/8. Table 1 indicates the different deployments and their associated
anonymized labels which are used to annotate the plots shown in
the next section. These sensors represent a range of organizations
and a diverse sample of the routable IPv4 space including seven
of all routable /8 address ranges. This organizational and address
space diversity allows us to compare sensors placed in widely dif-
ferent locations. In addition, we are also able to compare finer
grained differences between sensors because several deployments
at a single organization share the same /16 prefix.

3. OBSERVATIONS FROM A DISTRIBUT-
ED BLACKHOLE DEPLOYMENT

The following investigation is motivated by the observation that
there are significant differences in the traffic observed in the dis-
tributed IMS blackhole sensors. Because many Internet threats
today, like many worms, are globally scoped, one might expect
somewhat similar traffic on equally sized blackholes. Recall that
unlike live networks, traffic must be the result of misconfigura-
tion, backscatter from spoofed source addresses, or scanning from
worms and other probing. Despite the global nature of these threats
and the lack of legitimate traffic, the IMS distributed sensors see
widely different amounts of traffic along several important dimen-
sions.

This section probes these differences using three successively
more specific views of traffic to a network of distributed blackhole
sensors. The data was recorded over a one month period with SYN
responders on TCP port 135, 445, 4444, and 9996 across all sen-
sors. These ports were chosen in order to monitor specific worms.
The first view looks at the traffic observed at each sensor over all
protocols and services. The second view looks at traffic to a spe-
cific protocol and port. Finally, the third view looks at the signature
of a known worm over all sensors.

3.1 All protocols and services
We begin by looking at the packet rate observed by each sensor.

Figure 2 shows the average amount of traffic over all protocols and
services observed by ten blackhole sensors. Packets are normalized
by the size of a /24 so sensors covering different sized blocks can
be compared. Normalization is performed such that the magnitude
seen in a /23 would be divided by two and traffic in a /25 multiplied
by two. The granularity of a /24 was chosen to focus the discus-
sion on larger differences between blocks rather than individually
targeted addresses. While differences likely exist within individual
/24 blocks, this is beyond the focus of this paper.

Figure 2 clearly shows that the amount of traffic varies dramati-
cally and can differ by more than two orders of magnitude between
sensors. Of note, the larger blocks typically observe less traffic per
/24 than the smaller blocks. One possible explanation is that the
smaller blocks are closer in the IPv4 address space to live hosts than
the large blocks. There are many reasons a person or program may

Figure 2: Packet rate as seen by each sensor normalized by /24

Figure 3: Distribution of local preference per sensor

prefer to scan local addresses. Take for example someone on a uni-
versity network attempting to find open file shares. This person will
likely scan other blocks in the same /16, assuming these address
blocks are also in the university space. Another example is Inter-
net worms which have a local address preference in their scanning
algorithms, such as Code Red II [2], Nimda [1], and Blaster [4].

If local traffic was a significant component of the overall traffic,
it might explain the differences seen between the sensors. In par-
ticular, if the blocks which see the most traffic also receive a large
amount of local traffic, that might explain the overall inequalities.
Figure 3 shows the percentage of traffic to all protocols and services
from the same local /16 and local /8 as the sensor where the traffic
was observed. There are two important implications of this graph.
First, there are very different relative amounts of local /8 traffic seen
at the various sensors. Interestingly, the three blocks belonging to a
single ISP (D/20. E/21, F/22) observe close to 50% local traffic and
the other blocks each see less than 20%. One might expect more
local /8 traffic in the academic networks given less central control,
but clearly other organizations also show significant percentages of
local traffic. Second, although some sensors see a very significant
amount of normalized local /8 traffic, those blocks do not corre-
late with the sensors with the greatest magnitude of overall traffic.
For example, C/24 observes by far the greatest amount of traffic
but less than 10% of that traffic is from within the same /8 as the



Sensor 80 135 137 139 445 1025 4444 Other

A/23 1.2 9.5 1.3 16 4.9
B/24 11 0.2 68 0.7 1.1
C/24 104 0.3 30 0.6 3.9
D/20 4.1 0.7 4.9 0.7 2.2
E/21 5.4 1.0 9.5 0.7 3.1
F/22 4.5 0.9 7.0 0.7 2.4
G/25 1.4 0.2 1.2 0.5 0.6
H/18 0.5 0.1 1.8 0.1 0.4
I/17 1.3 0.1 1.1 0.1 0.5

Table 2: Packets (1,000,000s) to Top 4 TCP destination ports
normalized by /24

sensor. So, even though local traffic can be significant, the major
traffic differences are not due to local preference.

The next step is to break down the traffic by protocol and port.
We start by looking at the protocol distribution at each sensor.
When the global (non-local /8) traffic is broken down by protocol,
almost 99% of that traffic is dominated by TCP. This is logical be-
cause large portion of malware and scans are targeted toward TCP
and because the IMS sensors actively respond to TCP packets. One
SYN packet response typically generates three or more followup
packets not counting connection retries. Thus, the differences be-
tween sensors are dominated by differences in TCP traffic.

Given that TCP traffic dominates at all sensors, the next question
is what TCP destination ports are being targeted. Table 2 shows
the top four TCP ports at each sensor normalized by a /24. Notice
that the distribution is different across sensors and only TCP port
445 and 135 are consistent across all sensors. Despite a preference
toward actively responded ports, it is interesting that other TCP
ports like 137 and 139 show up as top ports. The similarity in
the top ports across all sensors implies that the differences we see
cannot be explained by traffic targeted at ports observed at some
sensors but not at others.

3.2 TCP port 135
Thus far we have shown that the differences between sensors are

not due to a simple port or protocol bias. To the contrary, TCP
accounts for almost all traffic and TCP port 135 and 445 are major
contributers to the traffic at all sensors. If these ports account for
such a large portion of the overall traffic, an interesting question
is whether this traffic is correlated with the differences in overall
traffic. TCP port 135 is used by the Windows DCOM RPC service
which has been the target of several vulnerabilities and exploits. In
particular, TCP port 135 is the infection vector for the well known
and still prevalent Blaster worm.

Figure 4 shows the number of unique source IPs observed on
TCP port 135 across the individual /24s that make up the sensor
blocks. Each bar in the figure represents the number of unique
source IPs seen at a /24. Thus, large address blocks like I/17 are
composed of many component /24s that are all shown individually.
Blocks are labeled on the horizontal axis and the separation be-
tween blocks is denoted with a small amount of white space. Sen-
sor blocks smaller then a /22 and the J/8 block are not shown for
legibility reasons.

Figure 4 has two important implications. First, there are sig-
nificant differences between the component /24s within the each
block. This means that even the destination addresses within a sen-
sor block observe different sources. Second, there are even larger
disparities between the unique sources seen across sensors, and
these differences correlate with differences in overall traffic (Fig-
ure 2).

Figure 4: Unique source IPs to TCP 135 by /24 excluding local
/8 traffic

Intra-Sensor Standard Deviation
D/20, E/21, F/22 3188
H/18 3564
I/17 3478

Inter-Sensor Standard Deviation
All Sensors 21116

*Single /24s are not shown because variance is zero.

Table 3: Inter-sensor and Intra-sensor variance in unique
source IPs between /24s

In order to quantify the inter-sensor and intra-sensor differences
we analyzed the variances between the /24s within a given sen-
sor and between the sensors. Table 3 summarizes the results. As
we saw in the graphical representation, the inter-sensor variance
is much greater than the intra-sensor variance. To support this
hypothesis we used an Analysis of Variance (ANOVA) to show
that the inter-sensor differences are indeed significant. We con-
sider seven groups of sensors (D/20, E/21, and F/22 are grouped
together) including those with only a single /24 block. Using F dis-
tribution with 7 degrees of freedom in the numerator, and 217 de-
grees of freedom in the denominator, we calculate an F statistic of
145.1. The calculated P-value is extremely close to zero and much
smaller than the typicalα value of 0.05. Therefore, we can reject
the null hypothesis and conclude the inter-sensor variance cannot
be due to chance and represents some other process.

Table 3 clearly demonstrates that significant differences exist
in the number of source IPs observed within and between sen-
sors. Another metric to analyze the differences within and between
blocks is the rate at which packets are received. While the number
of sources indicates the number of senders, the packet rate indicates
how fast a particular address block is receiving packets. Figure 5
shows the average packet rate on TCP port 135 to each /24 labeled
by address block. There are two important conclusions that can be
drawn from this graph. First, there appears to be a significant bias
toward the beginning of each block which tails off toward the end
of the blocks (reading left to right). The intra-sensor variance is
quite small so the tails do not appear to be due to a random process.

The second important conclusion that can be drawn from Fig-
ure 5 is that the inter-sensor variations in this plot are are very
similar to the inter-sensor variations in the unique IPs plot 4. The
implication is that, on average, each unique source sends a simi-



Figure 5: Packet rate of TCP 135 by /24 excluding local /8 traf-
fic

Figure 6: Ratio of packet rate to the number of unique sources
observed on TCP 135 by /24 excluding local /8 traffic

lar amount of packets regardless which block the source is sending
to. This relationship is shown clearly in Figure 6 which depicts
the average packet rate per unique source IP on TCP port 135 to
each /24. Thus, no block appears to be the target of long lasting
directed attacks by a small number of sources. Recall that the data
presented is the aggregate over a month so short attacks are mostly
likely masked. The important message is that the average packet
rate per unique source is similar across blocks.

Another measure of the difference between blocks is the kinds
of payloads each block observes. When a packet is received by an
IMS blackhole sensor, the capture mechanism computes the MD5
hash of the payload and only stores that payload if the hash has
not been seen before. While the MD5 hash (also referred to as a
payloadsignature) does not say anything about the contents of the
payload, it is a simple means of differentiating payloads. Figure 7
shows the number of unique MD5 hash signatures observed on TCP
port 135 to each /24. Recall that a lightweight SYN-ACK responder
was running on TCP port 135 for the duration of the experiment
over all IPs. Hence, the payloads received all result from one SYN-
ACK packet.

The interesting message in Figure 7 is that all blocks see a simi-
lar number of unique signatures with a large intra-sensor variance.

Figure 7: Number of unique signatures to TCP 135 by /24 ex-
cluding local /8 traffic

Figure 8: Ratio of the number of unique signatures to the num-
ber of unique sources observed on TCP 135 by /24 excluding
local /8 traffic

While Figure 4, depicting the number of unique source IPs by /24,
showed a large inter-sensor difference, Figure 7 indicates very lit-
tle difference between blocks. The implication is that many unique
sources are sending exactly the same payloads. Figure 8 shows the
average number of unique signatures per unique IP on TCP port
135 by /24. Even at the /24 that sees the most new signatures, it
only sees 5 new unique signatures per 100 new unique hosts on av-
erage. The conclusion is that most the differences between blocks
on TCP port 135 cannot be due to certain payloads being targeted
specifically at one or a few blocks.

The analysis of TCP port 135 demonstrates that the number of
unique source IPs and number of packets per time observed varies
significantly between blocks. In contrast, the number of unique
signatures and the overall behavior per unique source (e.g. unique
signatures per unique host) is similar between blocks. It appears
there is no dominate behavior which is directed at a specific block.
In fact, it appears certain blocks are simply more heavily targeted
and thus see more unique source IPs and more packets. It must
be remembered that the data being presented is the aggregate over
a longer time scale so smaller features are lost. For example, it
is very difficult to isolate specific behaviors like linear scans from



Figure 9: Unique Source IPs of Blaster Infection Attempts by
/24 with local /16 traffic removed

the Blaster worm or random infection attempts from the Slammer
worm. The next section picks up on this idea and isolates one par-
ticular propagation strategy and attempts analyze the differences
seen between blocks.

3.3 Blaster signature
To test the propagation hypothesis, we isolated a particular signa-

ture which has well known propagation strategy. The signature we
choose was that of the Blaster worm. Blaster has a simple propaga-
tion mechanism which is based on a sequential scan through IPv4
space. When the Blaster worm is launched due to a new infection
or a rebooted computer, the worm choses an initial target address
that is in the same local /16 as the source 40% of the time and a
completely random address the other 60%. The Blaster worm will
then scan sequentially from that initial address attempting to infect
IPs in blocks of 20 at a time.

Figure 9 shows Blaster infection attempts by unique source IPs
as seen by a /24. In order to eliminate the possibility of certain
blocks being biased by Blaster’s local preference, Blaster sources
from the same /16 were eliminated. This figure again reveals large
differences between sensors. This is a very surprising result. Even
though we have attempted to control for propagation strategy, there
are still significant differences in the number of unique sources be-
tween sensors. Another interesting observation is that the sensor
blocks which observed more overall traffic (Figure 2) also observed
relatively more Blaster sources. However, there are certain hotspots
(for example, the large spike in I/17) in the middle of blocks which
do not correlate with patterns in overall traffic. The regularity of
the distribution indicates some other non-random process may be
at work. For example, a poorly designed random number generator
or a bad source of entropy may contribute to the results depicted in
Figure 9.

This section has demonstrated differences between sensors using
three successively more specific views of traffic to a network of dis-
tributed blackhole sensors. The first view showed differences in the
traffic observed at each sensor over all protocols and services. The
second view demonstrated that these differences persist on traffic
to TCP port 135. It was also shown that inter-sensor differences
dominated intra-sensor differences. The third view established that
differences existed even when observing the Blaster worm which
has a known propagation strategy. The result is that there is no
definitive explanation for the differences between sensors and more
investigation is required. In the next section, we enumerate the dis-

Figure 10: The Witty worm as recorded by three blackhole sen-
sors

tinguishing properties of blackhole sensors in order to better under-
stand how these differences arise.

4. EXPLAINING DIFFERENCES IN
SENSOR OBSERVATIONS

There are several properties of blackhole sensors that influence
the traffic they observe. These properties provide valuable insight
into why differences exist between sensors and the importance of
understanding sensor placement. Furthermore, this discussion pro-
vides a methodology for characterizing sensor properties which
aids in interpreting blackhole sensor measurements. In addition,
these properties can guide decisions about sensor placement, al-
lowing maximization of limited resources. Our goal is to enable
more accurate predictions of global attack trends. To illustrate the
impact of these properties, we use concrete examples based on our
measurement data as well as simple analysis.

4.1 Filtering policy
It is important to understand factors that affect thereachability

from sources to the blackhole sensors. One reason why traffic can-
not reach a sensor is due to filtering by routers or firewalls. Thus,
policies applied at a router/appliance between the traffic source and
the sensor can affect the visibility of the traffic at the sensor. These
routing policies are in terms of what traffic to filter at routers via
route or packet filters. When attacks become known and if they tar-
get or originate from a well-known port not used by other popular
services, ISPs typically install access control lists to filter such traf-
fic. More sophisticated packet filters based on packet content sig-
natures can also be deployed. We differentiate between two types
of filtering: at the core and at the edge.

4.1.1 Filtering at the core
If the network paths between end hosts and the sensors traverse

through any such filters blocking traffic, then the sensors will not
make complete observations. An extreme case would be all net-
work paths traversing a common provider, most likely the imme-
diate upstream provider of the sensors. This problem is illustrated
in our own measurement data from sensors deployed in three di-
verse address blocks (two /16s, one /8) sharing the same upstream
provider. That is, the sensors are address-diverse but topologically
similar. Figure 10 shows the traffic seen from these three sensors
during the Witty worm outbreak. It shows a sharp drop in UDP src



Figure 11: Distribution of disjoint AS path diversity metric for
all routable prefixes

port 4000 traffic for a 20 minute period. Upon further investiga-
tion, it was revealed that the drop was due to a policy decision to
filter such traffic imposed by the shared upstream provider. This
type of filtering has been seen frequently during large worm out-
breaks. In order to maximize visibility, a blackhole sensor’s imme-
diate upstream provider should impose no filtering policies on the
monitored address space.

Considering the possibility of being filtered at the AS level, a
good placement strategy is to place sensors in ASes to which other
ASes have maximally diverse set of AS paths. This strategy is
highly resistant to filtering and has a high probability of finding
scan traffic. We call such a propertydisjoint AS path diversity. For
example, for ASX where a sensor resides, if all other ASes reach it
via AS path[YABX], with only Y being variable, then if eitherA or
B instruments filtering,X will observe no scan traffic. This argues
for multihomed sensors and sensors with a diverse set of upstream
providers that are all used for live traffic (rather than only providing
backup services). Hypothetically, if all tier-1 providers impose fil-
tering at their edge routers, it becomes very difficult for sensors to
achieve good coverage due the fact that most AS paths go through
a tier-1 ISP. However, it is known that there is an increasing trend
for lower tier providers to peer with each other to reduce transit
costs [7]. In such cases, traffic does not necessarily have to transit
through any tier-1 providers assuming that is where traffic is most
likely to be filtered.

To illustrate that address blocks can have varying degrees of
disjoint AS path diversity, we do a simple analysis using BGP
data from the Oregon RouteViews project [28] which receives BGP
feeds from 31 distinct Autonomous Systems (ASes). We assume
scanning traffic originates from ASes where we have default-free
BGP tables using RouteViews data. We now randomly pick some
address blocks commonly announced by most of these 31 ASes
and study the disjoint AS path diversity of these AS paths. We
use a simple metric to characterize the overlap in these AS paths:
we calculate the percentage of AS paths that the next popular AS
(excluding the origin AS) occurs in. Popularity is measured by
how often an AS appears in the AS paths. The higher the value
of this metric, the less disjoint AS path diversity there is. For ex-
ample, Table 4 shows four randomly selected prefixes with widely
diverging degrees of disjoint AS path diversity ranging from 0.14
to 1.00. For the first prefix 4.17.225.0/24, besides the origin AS,
AS11853 occurs in all AS paths. If it imposes filtering, no traffic

from the RouteViews ASes can reach the prefix. In contrast, for
prefix 65.116.144.0/24, the most common AS AS2914 occurs in
only 14% of the AS paths. Thus, the impact of filtering by a single
AS can affect at most 14% of the traffic to this sensor.

Obviously, longer AS paths have a higher chance of a commonly
shared AS. Upon closer inspection, the address block 65.116.144.
0/24, which has the most disjoint AS path diversity, is directly al-
located by Qwest, a tier-1 ISP. The other three blocks are allocated
to an individual company. This explains why this block has such a
diverse number of nexthop ASes and a shorter AS path from other
ASes.

Figure 11 shows the distribution of disjoint AS path diversity
for all routable prefixes visible in the RouteViews BGP feeds. We
observe that less than 20% of prefixes have a diversity value below
50%. It is preferable to select such prefixes in order to be resilient to
AS level filtering. In general, it is important for blackhole sensors
to havediverse routing topology, so that the network paths between
end hosts and the sensors have a diverse set of network providers.

It is well known that some countries such as China impose very
strict traffic filtering to prevent access to certain Web sites. To over-
come such traffic restrictions, sensors need to have sufficientgeo-
graphic diversity. For instance, if sensors are only located in a
single country with restrictive traffic filters to the external network,
these sensors will have a highly biased view of traffic behavior and
may not be able to observe much activity.

4.1.2 Filtering at the edge
So far we have discussed filtering instrumented at the ISP’s net-

works or provider networks. Filtering can also be done at the edge
or stub networks where a sensor resides. Given relatively smaller
amounts of traffic, the edge networks can afford more expensive
filtering using additional state information. Network intrusion de-
tection systems such as Bro [17] and Snort [19] as well as firewalls
are often used by enterprise networks to protect against intrusion
attempts. Of interest here are the security policies which influence
the filtering of incoming traffic. Imagine an enterprise network
hosting the blackhole sensor that disallows all incoming traffic to
port 80, 443, 2002, 1978, and 4156, which are ports used by the
Slapper worm [26]. In such cases, a sensor residing in this net-
work cannot detect any infection attempts from external networks.
If there are compromised hosts inside the enterprise network, scan
traffic from internal local hosts can still hit the sensor. In this case,
the traffic sources will be biased towards local hosts.

In summary, given service-specific filtering instrumented at the
edge networks, it is important for sensors to haveorganizational
diversity to achieve good coverage. This means it is best to have
sensors placed in different types of organizations, e.g., university
networks, large company enterprise networks, small business site,
government sites, ISP networks, etc.

4.2 Propagation strategy
Worm target selection algorithms or propagation strategies of-

ten have a bias towards local addresses [29], e.g., Code Red II [2],
Nimda [1], and Blaster [3] all prefer to scan nearby addresses. This
effectively enables a worm to increase the speed of the infection
due to smaller network distance to local hosts. Nearby addresses of
vulnerable hosts are also target-rich due to common administrative
practices. Local preferences also allows a worm to take advantage
of breaches in firewalls and other security mechanisms. The easiest
way to identify local hosts is to select nearby addresses. A slightly
smarter strategy is to use BGP routing information to identify other
address blocks, potentially non-contiguous, which originate from
the same organization. This idea is similar to taking advantage



Prefix 4.17.225.0/24 12.29.162.0/24 64.106.248.0/21 65.116.144.0/24

Metric 1.00 0.67 0.44 0.14
Shared AS AS11853 AS1239 AS2914 AS2914
AS-paths 11608 6461 3561118536496 11608 2914 7018 12163 11608 3491 22205 116082914209

293 3561118536496 293 7018 12163 6453291422205 6453 209
6453 701118536496 645312395778 12163 293 3356 22205 293 209
13237 2914118536496 13237 174 7018 12163 13237291422205 13237 174 209
16150 8434 8210 4200 2914118536496 16150 8434 8210 335612395778 12163 16150 8434 3257291422205 16150 8434 8210 4200 209
7018 3561118536496 7018 12163 7018 12182 22205 7018 209
2905 701118536496 2905 70112395778 12163 2905 701 12182 22205 2905 701 209
15290 701118536496 15290 7018 12163 15290 3491 22205 15290 7018 209
6762 701118536496 6762 701 7018 12163 6762 3491 22205 6762 701 209
267 2914118536496 6453 7018 12163 267291422205 6453 209
6453 701118536496 313012395778 12163 6453291422205 31302914209
3130 1239 3561118536496 286 20912395778 12163 3130291422205 286 209
10876 1239 3561118536496 6939 791112395778 12163 286 3491 22205 6939 6453 209

Table 4: A subset of BGP paths from RouteViews ASes to four randomly selected prefixes as potential candidates for blackhole
sensors: showing varying degrees of disjoint AS path diversity.

(a) (b)

(c) (d)

Figure 12: Traffic from a single /16 captured from 3 different
perspectives

of BGP routing information by scanning only routable addresses
rather than the entire address space [32].

Figures 12 clearly illustrates that there is a strong local prefer-
ence in traffic directed towards blackhole sensors. Figure 12(a)
shows the placement of the sensors. There are three /24 sensors,
two within two separate /16s within the same /8, and another in
a different /8. Figures (b), (c), and (d) show traffic to the three
sensors from hosts within the same /16 as the first sensor. We see
that traffic originating from the single /16 network favors sensors in
nearbyaddress space. In this case, the sensor in the same /16 sees
the most traffic from the source. The sensor in the same /8 sees
slightly less traffic, and the sensor in a different /8 rarely sees any
traffic. Thus, sensors placed near less centrally managed hosts e.g.,
cable modem networks and open university campus networks, will
more likely see more local traffic.

In addition to local preference, certain networks are more likely
to be targeted. This can include highly visible targets (e.g.,www.
whitehouse.gov), hosts with high traffic volume, and highly ac-
tive or popular hosts. This implies that blackhole sensors placed in
nearby address space to highly targeted networks are more likely to
see attack traffic. Overall, proximity to both live hosts and to tar-
geted networks will affect the traffic observed at a blackhole sensor.

4.3 Sensor address visibility
Previous research [8] has shown that 5% of the routed Internet

address space is not globally visible. The lack of global reacha-
bility can be accounted for by reasons such as misconfiguration,
policies, network failures, or even malicious intent. It is important
that blackhole address blocks be globally reachable. Instability of
the routes to the sensor address space can also result in reachability
problems, especially given that route flap damping can be triggered
during convergence to suppress unstable routes [9].

Using the BGP updates data from RouteViews BGP monitor, we
studied the availability of the routes to the sensor blocks in our de-
ployment from a large set of ASes. There are occasional updates
relevant to the sensor address blocks, most of them are announce-
ments with very few withdrawal updates. We studied the dura-
tion of the withdrawal, i.e., the time period the withdrawal is in
effect until the subsequent announcement, and found that they are
of very short durations, typically on the order of 10s of seconds.
Furthermore, during the period we captured the packet data, we
never found any sequence of routing updates that affected a large
number of views or ASes from which we receive the BGP data.
This means that there was never a routing instability event related
to these sensors with sufficient impact to affect a large portion of
the Internet during our measurement time period.

One solution to these potential problems is to make every effort
to ensure the stability of the monitored address blocks. For exam-
ple, if there exist larger address blocks, i.e., a supernet, that cover
the sensor address space, then the instability of the sensor address
block can be contained and hidden. For instance, a /24 sensor block
with a /16 supernet that is also announced and visible in most exter-
nal routing tables will be less susceptible to flap damping and rout-
ing instability. Route announcements pertaining to smaller address
blocks are more likely to be filtered than those for larger addresses.
Thus, for both stability and reachability reasons, it is good practice
to announce the supernet of the sensor address block.

Another way to enhance path and topological diversity and in-
crease routing stability, is toanycastthe sensor address blocks [13].
Anycast means that the address block is announced at topologically
different locations. This translates to multiple diverse AS paths that
reach to the same sensor address space. This has the added bene-
fit of load-balancing the monitoring function at different servers.
Route selection given a diverse set of AS paths also enables the
traffic to flow along a shorter path in terms of AS hop count. Any-
cast has been used to increase the redundancy of the routes to Root
DNS servers. Given that there is a limited number of unused ad-
dress blocks available, anycast effectively increases coverage as re-
dundant paths make it more resilient to filtering.
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Figure 13: Effect of Slammer on traffic and routes at a tier-2
ISP (data and visualization courtesy of Arbor Networks)

While we didn’t see any major routing instability during our own
measurement, we still believe that routing instability is a significant
potential cause of differences in sensor observation. For this rea-
son it is advantageous to have more stable upstream providers with
good connectivity for hosting blackhole sensors. It is essential to
analyze the routing instability during the period of sensor observa-
tion to account for potential differences in observation.

Similar to the reachability from the external Internet to the black-
hole address space block, it is also important to ensure good reach-
ability from the site hosting the blackhole sensor to the rest of the
Internet. Redundant upstream connectivity for the sensor address
blocks to provide a diverse set of routes from each sensors will
increase visibility. If the sensors are multihomed, failure at one up-
stream provider can be protected against by the other provider(s).
Similarly, if one route is suppressed due to flap damping, there still
exists an alternate route to reach the sensor. Suchrouting redun-
dancyat the sensor site will improve the chances of a packet from
the active responder reaching the original end host. The IMS topol-
ogy sensors described in Section 2 are used to monitor connectivity.
The enhancement of path and topological diversity is a topic of our
ongoing work.

4.4 Resource constraints
So far we have discussed how reachability to blackhole sensors

can be affected by: filtering policies along the path to the sensors,
propagation strategies, as well as the availability of the routes to
the sensors. Another important aspect that affects reachability is
resource constraints which determine the performance and avail-
ability of the data paths to the sensors. The presence of a route in
the routing table does not guarantee reachability, as the data path
can have performance problems. For instance, if the network host-
ing the sensors is under a Denial of Service attack, causing the
access link to the upstream provider(s) to be congested, scan traffic
may not reach the sensors. Transient conditions due to link fail-
ures resulting in high packet drop rates inside the local network can
also affect observations. Resource constraints are especially impor-
tant during availability events like the power blackout in August
of 2003 which affected the Northeastern US. Another significant
availability event was the Slammer/Sapphire worm [12] which was
a bandwidth-limited scanning worm. These worms use scanning

algorithms that are limited by the throughput of the sender rather
than by latency to the target.

Figure 13 shows the impact of Slammer on both traffic levels
and routing updates. The top graph shows the inbound traffic levels
(negative numbers) as well as the outbound levels (positive num-
bers). The bottom graph shows the number of prefixes seen at a
BGP sensor on the same network as the traffic sensor. At the same
time that the traffic sensor saw a large increase in the amount of
inbound and outbound traffic, the routing sensor detected a large
decrease in the number of announced prefixes, mostly due to the
loss of many /24 routes. With a single sensor, it is difficult to de-
termine how this drop in routing table size affected the measure-
ment of traffic. While increasing the number of sensors might help,
it’s still important to recognize that these resource constraints can
greatly influence the observed traffic.

4.5 Statistical variations
Another important cause of differences between sensors arises

from the fact we are sampling traffic from a wider pool of address
space. Ignoring the other factors mentioned above, and assuming a
perfectly uniformly random scanning algorithm, there may still be
variance between sensors due to sampling error. As we have shown
in Section 3, hypothesis testing for homogeneity can be used to
help account for these errors. Thus, it is important to be aware
of statistical variation when comparing results. One way to gain
statistical significance is to increase the number of observations by
sensors.

In addition to pure sampling error, there are also non-uniformities
in many of the random propagation algorithms. For example the
source of entropy used in many random address generation meth-
ods is based on a clock seed or other poor source of randomness. In
addition the random number generator itself may be biased. Thus,
the distribution of addresses produced may not uniform.

5. CONCLUSION AND FUTURE WORK
In this paper we have explored issues associated with inferring

global threat properties from a set of distributed blackhole sensors.
In particular we demonstrated that significant differences exist in
observations made at sensors of equal size that are deployed at dif-
ferent locations. These differences were demonstrated to persist
over a month’s worth of data even when local scanning preference
was removed. Furthermore, differences appeared not only in ag-
gregate, but also with specific ports and protocols. This variance
was demonstrated within each sensor and proved to be statistically
significant between sensors. Finally, we showed these differences
existed even controlling for propagation strategy.

We then examined several properties of blackhole sensors in or-
der to explain the difference in sensor observations. First, we exam-
ined the effects of policy deployed at the core and the edge. Next,
we analyzed the role of local scanning preferences and the proxim-
ity of a blackhole sensor to target hosts. We then discussed routing
availability including both availability of source addresses and the
availability of blackhole addresses to the rest of the world. In ad-
dition, we showed that resource constraints in the host, network, or
routers can produce differences. Finally, variance due to sampling
and random address can affect observations.

These results demonstrate that observations made at a certain
address block are potentially influenced by a number factors that
must be accounted for when trying to generalize the result to other
address spaces. Specifically, we hope this will assist researchers
in understanding data captured using blackhole sensors in order
to generalize their results. We are continuing our data collection
which will allows us to determine if these differences persist over



longer time frames and with different threats. We are also expand-
ing the IMS blackhole sensor network to include additional diverse
address blocks with locations around the globe. Commitment has
been received for 20 new deployments, spanning universities, cor-
porations, and ISPs.

In addition to more deployments, we plan on continuing to eval-
uate blackhole sensor placement. We plan to study the efficacy of
a given deployment using the following metrics.

• Coverage: the observed source addresses should be represen-
tative of the actual threat host population.

• Speed in detection: there is a high probability of capturing
initial activity of a global event.

• Ability to identify scanning algorithm: sufficient breadth
to determine the target selection function of an automated
global threat.

• Resistance to filtering and resource bottlenecks: traffic ob-
served by the sensor is unlikely to be blocked by filtering or
constrained due to lack of resources.

• Scalability and cost: accomplishing the above while mini-
mizing the number of deployed sensors and locations.

As a next step to sensor placement evaluation, we plan to de-
velop a methodology for sensor placement that balance the above
metrics. Finally, we hope to use this knowledge and our experience
in IMS deployment to elucidate global trends in worm infection
based on our sensor observations. We believe our work in identi-
fying essential differences in sensor observations and providing an
understanding of sensor properties is an important first step towards
understanding distributed blackhole placement.
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