
Collaborative TCP Sequence Number Inference Attack —
How to Crack Sequence Number Under A Second

Zhiyun Qian
Department of EECS
University of Michigan
2260 Hayward Street
Ann Arbor, MI, USA

zhiyunq@umich.edu

Z. Morley Mao
Department of EECS

University of Michigan
2260 Hayward Street
Ann Arbor, MI, USA

zmao@umich.edu

Yinglian Xie
Microsoft Research

Silicon Valley
1288 Pear Avenue

Mountain View, CA, USA
yxie@microsoft.com

ABSTRACT
In this study, we discover a new class of unknown side chan-
nels — “sequence-number-dependent” host packet counters
— that exist in Linux/Android and BSD/Mac OS to enable
TCP sequence number inference attacks. It allows a piece
of unprivileged on-device malware to collaborate with an
off-path attacker to infer the TCP sequence numbers used
between a client and a server, leading to TCP injection and
hijacking attacks. We show that the inference takes, in com-
mon cases, under a second to complete and is quick enough
for attackers to inject malicious Javascripts into live Face-
book sessions and to perform malicious actions on behalf of a
victim user. Since supporting unprivileged access to global
packet counters is an intentional design choice, we believe
our findings provide important lessons and offer insights on
future system and network design.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protec-
tion—Information flow controls; C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Net-
works—Internet (e.g., TCP/IP)

General Terms
Security, Experimentation

Keywords
TCP hijacking, TCP sequence number, Network packet
counters

1. INTRODUCTION
Since TCP was not originally designed for security, for

years it has been patched to address various security holes,
among which the randomization of TCP’s initial sequence
number (ISN), introduced in RFC1948 [7] in 1996 was an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

important one. It was proposed to guard against off-path
spoofing attacks attempting to inject packets with forged
source addresses (for data injection or reset attacks) [7,
8]. ISN randomization prevents easy prediction of sequence
numbers; thus arbitrarily injected packets are likely to be
discarded at the receiver due to invalid sequence numbers.

The patch has largely rendered most sequence-number-
guessing-based attacks very hard to succeed. However, in
recent years, new attacks are reported. In 2007, a study
reported in Phrack magazine [1] has revisited the problem
and claimed that TCP sequence number can still be inferred
based on how a host treats in-window and out-of-window in-
coming packets. However, the scope of this attack is rather
limited, primarily targeting long-lived connections with a
rather low success rate (as shown in §3.3). In 2012, re-
searchers have discovered that the sequence number infer-
ence attack can be more generally applicable, impacting even
short-lived HTTP connections [26]. However, this attack
heavily relies on the presence of sequence-number-checking
firewall middleboxes deployed in the network. Specifically,
the idea is that if a packet has passed the sequence-number-
checking firewall, then it implies that the sequence number
of the packet is considered within a legitimate window.

Our work generalizes these attacks by eliminating the
strong requirements imposed on them to enable a broader
class of attacks. Specifically, we make the following key con-
tributions:
• Building on the threat model presented in the recent
work [26], we generalize the sequence number inference at-
tack by demonstrating that it can be reliably carried out
without the help of the firewall middleboxes. Our work pro-
vides further evidence that relying on TCP sequence number
for security is not an option.
• Distinct from the “error counters” (e.g., packets rejected
due to old timestamps) used in the previous study [26],
which serves only as an indication of whether a packet is
allowed to pass through the sequence-number-checking fire-
wall, we discover a new class of packet counters —“sequence-
number-dependent” counters in Linux/Android (1 counter)
and BSD/Mac OS (8 counters) — that can directly leak se-
quence numbers without requiring the presence of firewall
middleboxes, thereby elevating the danger of TCP injection
and hijacking attacks.
• We are able to complete the sequence number inference
within 4–5 round trips, which is much faster than the one
previously proposed [26], due to both the property of newly
discovered “sequence-number-dependent” counters as well as

a more efficient probing scheme. For instance, we show that
it takes as little as 50ms to complete the inference, two or-
ders of magnitude faster than previous method. It can even
eliminate the need of conducting additional TCP hijacking
attacks required before, resulting in a much higher attack
success rate (See §5.1).

As a proof-of-concept demonstration, we show that our
attack allows a piece of unprivileged malware on Android
smartphones to hijack a Facebook connection, replacing the
login page, or injecting malicious Javascripts to post new
status on behalf of the victim user, or performing other ac-
tions. All these attacks (except the TCP hijacking attack)
work on the latest Linux kernel. TCP hijacking requires ker-
nel versions earlier than 3.0.2, which are still the case for the
majority of the Android phones. Besides Android/Linux, we
also demonstrate that the attack is applicable to the latest
BSD/Mac OS. We believe our work presents an important
message that today’s systems still expose too much shared
state with poor isolation.

The rest of the paper is organized as follows: §2 thor-
oughly describes the related work. §3 explains how to infer
TCP sequence number (including both previous study and
our discovery). §4 covers how we can leverage the sequence
number inference as a building block to conduct a number of
TCP attacks. §5 shows several cases studies demonstrating
the impact on specific applications. §6 discusses why the
problem occurred and concludes.

2. RELATED WORK
TCP sequence number inference attack. By far,

there are only a few reported TCP sequence number in-
ference attacks. The first one goes back to 1999 where a
TCP stack bug causes the kernel to silently drop the third
packet during “three-way handshake” if the ACK number is
smaller than the expected ACK number, and sends a reset
otherwise [4]. This allows an attacker to send spoofed ACK
packets and infer the correct ACK number. This minor bug
was quickly fixed. Besides it, there are three other closely
related studies. One of them is described in the Phrack
magazine [1] that uses the IPID side channel on Windows
to infer both the server-side and the client-side TCP se-
quence numbers. According to our empirical results, such
attack is theoretically possible but very hard to carry out.
It can succeed under rather limited conditions due to a large
number of packets required as well as the noisy side-channel
that is leveraged. Following the same direction, a more re-
cent work [20] improves the reliability of the attack by re-
quiring certain control on the client (e.g., javascript through
browser), yet it still relies on the noisy IPID side channel
available on Windows only.

A closely related recent work [26] discusses how sequence-
number-checking firewall middleboxes can leak the TCP se-
quence number state stored on the firewall. The idea is
that if a packet has passed the sequence-number-checking
firewall, it implies that the sequence number of the packet is
considered within a legitimate window. Otherwise, it implies
that the packet has an out-of-window sequence number. As
a result, if an attacker can observe whether a spoofed packet
has passed the firewall, he will be able to know if a guessed
sequence number is correct. To do so, an attacker can in-
tentionally craft a spoofed packet with certain errors (e.g.,
old timestamp) and then leverage the error packet coun-
ters on the host (e.g., packets rejected due to old times-

tamps) to tell if a spoofed packet has passed the firewall
and reached the end-host. In our work, we make a ma-
jor improvement by eliminating the requirement of firewall
middleboxes altogether with the help of a class of “sequence-
number-dependent” packet counters that we discover. In
addition to a more general attack model, we also show sig-
nificant improvements on success rate and attack speed with
much lower network resource requirements.

Other TCP-sequence-number-related attacks. (1)
TCP sequence number prediction attack. Different from
TCP sequence number inference attack, the prediction at-
tack relies on the non-randomness of TCP Initial Sequence
Numbers (ISN) [25, 2]. To defend the attack, RFC1948 [7]
standardizes the ISN randomization behavior such that dif-
ferent connections should generate random sequence num-
bers independently. (2) Blind TCP RST attack. Due to the
fact that a connection will be reset as long as the sequence
number of the reset (RST) packet falls in the current receive
window, in a long-lived connection (e.g., a BGP session), an
attacker can brute force all possible target connections and
sequence number ranges [8, 32] to cause denial of service.

Smartphone-based attacks. There have been a num-
ber of attacks against smartphones, many of which focus on
leaking sensitive information [15, 16, 28]. In addition, there
is a class of privilege escalation attacks on Android [17, 19,
14], but they are limited to gaining permissions that typi-
cally cannot affect the behavior of other applications. For
instance, one application may gain the permission of reading
the contact list or GPS location through other colluding or
vulnerable apps, but it cannot tamper with the TCP connec-
tion of other applications given the OS’s sandboxing mecha-
nisms. Our study demonstrates that injection and hijacking
of TCP connections can be achieved without requiring any
special permission other than the permission to access the
Internet.

Side-channel information leakage. A wide range of
side channels have been investigated before: CPU, power,
shared memory/files, and even electromagnetic waves, etc.
Researchers have found that it is possible to construct vari-
ous attacks, e.g., to infer keystrokes through many side chan-
nels [30, 33, 29, 13, 18]. It is especially interesting to see how
smartphones can allow malware to infer sensitive informa-
tion through on-board sensors (which can also be considered
as side-channels). For instance, Soundcomber [28] uses the
audio sensor to record credit card numbers entered through
keypad. In our work, we also rely on side-channels on the
host, but the attacks infer information at the network-layer.

3. TCP SEQUENCE NUMBER INFER-
ENCE ATTACK

The ultimate goal of the attack is to inject malicious TCP
payload into apps running on a victim smartphone or client
device. It is achieved by a piece of unprivileged on-device
malware collaborating with an off-path attacker on the In-
ternet. The main implication of this attack is that websites
that do not use HTTPS will be vulnerable to various at-
tacks such as phishing and Javascript injection because the
HTTP response can be potentially replaced. Even if HTTPS
is used, they are still vulnerable to connection reset attacks
as we show that the sequence number can be quickly inferred
in under a second.

1

(Y, Y + WIN)
? ?

Probing

Packets

2 Feedback

Figure 1: Threat model

3.1 Threat Model
The threat model is illustrated in Figure 1. There are

four main entities: (1) The victim smartphone and a target
application, constituting the attack target. (2) The legiti-
mate server, which talks to the victim smartphone using an
unencrypted application-layer protocol (e.g., HTTP). The
server can also become the attack target (see §5). (3) The
on-device malware, which is unprivileged and cannot tam-
per with other apps directly. (4) The off-path attacker, who
is capable of spoofing the IP address of the legitimate server
and the victim smartphone. The off-path attacker and the
malware collaborate to infer the correct TCP sequence num-
ber of the connection established between the target app and
the legitimate server. Note that different from the threat
model described in the recent study [26], this attack does
not require the network firewall middlebox, making our at-
tack model much more general.

At a high level, as shown in Figure 1, the off-path at-
tacker needs two pieces of information: (1) the four tuples
of a target connection, i.e., source/destination IP addresses
and source/destination port numbers and (2) the correct se-
quence number. The on-device malware can easily identify
the current active connections (e.g., through netstat), but
it does not know the sequence number in use. In this at-
tack model, the off-path attacker can send probe packets
using the target four tuples with different guessed sequence
numbers. The unprivileged malware then uses certain side-
channels to provide feedback on whether the guessed se-
quence numbers are correct. Guided by the feedback, the
off-path attacker can then adjust the sequence numbers to
narrow down the correct sequence number.

3.2 Packet Counter Side Channels
In this study, we look at a particular type of side chan-

nel, packet counters, that can potentially provide indirect
feedback on whether a guessed sequence number is correct.
In Linux, the procfs [24] exposes aggregated statistics on
the number of incoming/outgoing TCP packets, with certain
properties (e.g., wrong checksums). Alternatively, “netstat
-s” exposes a similar set of information on all major OSes
including Microsoft Windows, Linux, BSD, Mac OS and
smartphone OSes like Android and iOS. Since such coun-
ters are aggregated over the entire system, they are gener-
ally considered safe and thus accessible to any user or pro-
gram without requiring special permissions. The IPID side-
channel [27] can be considered as a special form of packet
counter that records the total number of outgoing packets
since it is incremented for every outgoing packet. However,
such side-channel is nowadays only available on Microsoft
Windows and is typically very noisy.

Even though it is generally perceived safe, we show that
an attacker can correlate the packet counter update with

how the TCP stack treats a spoofed probing packet with
a guessed sequence number. Different from the recent
work [26] that uses certain “error counters” as an indica-
tion of whether a spoofed packet has passed the sequence-
number-checking firewall middlebox, our hypothesis is that
the TCP stack may increment certain counters when the
guessed sequence number is wrong and remain the same
when it is correct, or vice versa. Such counters can directly
leak sequence numbers without the help of the firewall mid-
dlebox and are thus named “sequence-number-dependent
counters” (details in §3.4 and §3.5). To investigate such a
possibility, we first need to understand how TCP stack han-
dles an incoming TCP packet and how various counters are
incremented during the process.

3.3 TCP Incoming Packet Validation
In this section, we provide background on how a standard

TCP stack validates an incoming packet that belongs to an
established TCP connection. Specifically, we use the source
code of the latest Linux kernel 3.2.6 (at the time of writing)
as reference to extract the steps taken and checks performed
on an incoming packet (the packet validation logic is sta-
ble since 2.6.28). Based on the source code, we summarize
“sequence-number-dependent” side-channels on Linux and
extend it to BSD/Mac OS.

Error check

Sequence number

check

Ack number

check

0-payload check

In-window

Valid

Pass

Fail

Out-of-window

Invalid

0-payload

Payload >= 1

Error

counter++

tcp_send_dupack()

Drop

Ignore

Accept

Retransmission

check

Not retransmission

Retransmission
Immediate

ACK

Figure 2: Incoming packet validation logic

As we can see in Figure 2, there exist five main checks
performed by Linux TCP stack based on the corresponding
source code as well as our controlled experiments. These
checks are performed for any incoming TCP packet that is
deemed to belong to an established connection based on the
four tuples:

(1). Error check is for the purpose of dropping invalid
packets early on. There are a number of specific error checks:
1) MD5 option check, 2) timestamp option check, 3) packet
length and checksum check. Each has a corresponding error
packet counter. If a specific error is caught, the correspond-
ing host packet counter is incremented and the packet is not
inspected further. Otherwise, it goes to the next step.

(2). Sequence number check is the most relevant check.
It basically checks if a packet is in window by making sure
that the ending sequence number of the incoming packet is
larger than or equal to X, and the starting sequence number

is smaller than or equal to X+rcv win, where X is the next
expected sequence number and rcv win is the current re-
ceive window size. If the sequence number is out of window,
it triggers an immediate duplicate acknowledgment packet
to be sent back, indicating the correct sequence number that
it is expecting. Otherwise, the next check is conducted.

(3). Acknowledge number check is an additional validity
check on the packet. A valid ACK number should theoreti-
cally be within [Y, Y+outstanding bytes] to be considered
valid. Here Y is the first unacknowledged sequence num-
ber and outstanding bytes is total number of outstanding
bytes not yet acknowledged. Linux has a relaxed implemen-
tation which allows half of the ACK number space to be
considered valid (we discuss its impact later). If the ACK
number is considered invalid, then it is dropped without
further processing. Else, the packet goes through the later
non-validity-related checks.

(4). At this point the packet has the correct sequence
number and the ACK number. The stack needs to check if it
has any payload. If it does not have any payload, the packet
is silently ignored unless there happens to be pending data
that can be piggybacked. In particular, the host cannot send
another 0-payload acknowledgment packet for the 0-payload
incoming ACK packet, which will create endless TCP ACK
storm [23].

(5). If the packet has non-zero payload, the final check is
to detect retransmission by checking if the ending sequence
number of the packet is smaller than or equal to the next
expected sequence number. If so, it does not process the
packet further and immediately sends an ACK packet to in-
form the other end of the expected sequence number. Since
step 2 has already ensured that the ending sequence number
cannot be smaller than the next expected sequence number,
the only possible ending sequence number that can satisfy
the retransmission check is the one equal to the next ex-
pected sequence number.

From the above description on how a TCP packet is han-
dled, it is not hard to tell that depending on whether the
sequence number is in or out of window, the TCP stack may
behave differently, which can be observed by the on-device
malware. Specifically, if it is an out-of-window packet with
0-payload, it most likely will not trigger any outgoing packet.
However, if it is an in-window packet, it immediately trig-
gers an outgoing duplicate ACK packet. As a result, it is
possible to use the counter that records the total number of
outgoing packets to tell if a guessed sequence number is in
window.

A similar observation has been made by the previous
study in the Phrack magazine [1]. The problem with their
approach to infer sequence number is that such general
packet counters can be very noisy — there may be back-
ground traffic which can increment the system-wide outgo-
ing packet counters. It is especially problematic when the
receive window size is small — a large number of packets
need to be sent and the probing is very likely to have limited
success. In fact, we have implemented such sequence num-
ber inference attack on a smartphone at home connected
to the broadband ISP through WiFi with 10Mbps down-
link bandwidth. Through 20 repeated experiments, we find
that the inference always failed because of the noise of the
background traffic

It is also worth noting that the error checks are performed
at the very beginning, preceding the sequence number check,

which means that the corresponding error counters used by
the recent study [26] alone cannot provide any feedback on
a guessed TCP sequence number.

3.4 Sequence-Number-Dependent Counter in
Linux

The reason why the Phrack attack [1] is difficult to carry
out is two-fold: (1) The required number of packets is too
large; an attacker needs to send at least one packet per re-
ceive window in order to figure out the right sequence num-
ber range. (2) The counter that records the total number of
outgoing packets is too noisy. Subsequently, we show that
both problems can be addressed by using a newly discov-
ered set of sequence-number-dependent packet counters that
increment when the sequence number of an incoming packet
matches certain conditions.

if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq

 && before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {

NET_INC_STATS_BH(sock_net(sk),

LINUX_MIB_DELAYEDACKLOST);
…

}

Figure 3: tcp send dupack() source code snippet in Linux

Server-side sequence number inference. We closely
study the function tcp send dupack() which is called af-
ter the sequence number check (depicted in Figure 2).
Within the function, we discover an interesting piece of
code shown in Figure 3. The “if” condition says if the
packet’s starting sequence number is not equal to its end-
ing sequence number (i.e., the packet has nonzero pay-
load), and its starting sequence number is “before” the ex-
pected sequence number, then a packet counter named De-
layedACKLost is incremented (which is publicly accessible
from /proc/net/netstat). This particular logic is to detect
lost delayed ACK packets sent previously and switch from
the delayed ACK mode into the quick ACK mode [12]. The
presence of an old/retransmitted TCP packet is an indica-
tion that the delayed ACKs were lost.

The question is how “before()” is implemented. In Linux
(and Mac OS), it basically subtracts an unsigned 32-bit in-
teger from another unsigned 32-bit integer and converts the
result into a signed 32-bit integer. This means that half of
the sequence number space (i.e., 2G) is considered before
the expected sequence number. For instance, two unsigned
integers 1G minus 2G would lead to an unsigned integer 3G.
When converting to an signed value, we obtain -1G.

The net effect of the tcp send dupack() is that it allows an
attacker to easily determine if a guessed sequence number
is before or after the expected sequence number. Since the
DelayedACKLost counter very rarely increments naturally
(See §3.8), an attacker can use this counter as a clean and
reliable side-channel.

Binary search. Using this special counter, it is straight-
forward to conduct a binary search on the expected sequence
number. Note that the process is significantly different than
the one proposed in the earlier work [26] in that the earlier
work still requires sending one packet per “window”, which
results in a total of thousands or tens of thousands of pack-
ets. Here, as illustrated in Figure 4, the attacker only needs
to send one packet each round and only a total of 32 packets,
resulting in hardly any bandwidth requirement.

Specifically, as shown in the figure, in the first iteration,
the attacker can try the middle of the sequence number space
(i.e., 2G). If the expected sequence number falls in the first
half (i.e., bin 1), the DelayedACKLost counter increments
by 1. Otherwise, (i.e., if it falls in bin 2), the counter remains
the same. Suppose the attacker finds that the expected se-
quence number is in the first half after the first iteration, in
the second iteration, he can try 1G to further narrow down
the sequence number. After log2 4G = 32 rounds (also 32
packets), the exact sequence number can be pinpointed. The
total inference time can be roughly calculated as 32×RTT .
In reality, the number of RTTs can be further reduced by
stopping the inference at an earlier iteration. For instance, if
it is stopped at the 31st iterations, the attacker would know
that the sequence number is either X or X+1. Similarly,
if the number of iterations is 22, the attacker knows that
the sequence number is within [X, X+1024). In many cases,
this is sufficient because the attacker can still inject a single
packet with payload of 1460 bytes and pad the first 1024
bytes with whitespace (which effectively leaves 436 bytes of
effective payload). For instance, if the application-layer pro-
tocol is HTTP, the whitespace is safely ignored even if they
happen to be accepted as part of the HTTP response.

0 4G

(a). First iteration

(b). Second iteration

2G

1

Bin 1
Counter++

0

of packets:

of packets:

Bin 2
Counter += 0

1G 2G

1

Bin 1
Counter++

Bin 2
Counter += 0

Figure 4: Sequence number inference illustration using the
DelayedACKLost packet counter (binary search)

N-way search. To further improve the inference speed,
we devise a variation of the “N-way search” proposed in the
recent work [26]. The idea is similar — instead of eliminating
half of the sequence number space each iteration, we can
eliminate N−1

N
of the search space by simultaneously probing

N-1 of N equally-partitioned bins. The difference is that
the inference requires one or two orders of magnitude fewer
packets compared to the previously proposed search.

Figure 5 illustrates the process of a 4-way search. In the
first iteration, the search space is equally partitioned into
4 bins. The attacker sends one packet with sequence num-
ber 1G, three packets with sequence number 2G, and two
packets with sequence number 3G. If the expected sequence
number falls in the first bin, the DelayedACKLost counter
increments by 2, as the two packets sent with sequence num-
ber 3G are considered before the expected sequence number.
Similarly, the counter increments by a different number for
different bins. In general, as long as the number of packets
sent for each bin follow the distance between two consecu-
tive marks on a circular/modular Golomb ruler [3], the De-
layedACKLost counter increment will be unique when the
expected sequence number falls in different bins.

In the later iterations, however, a much simpler strategy
can be used. In Figure 5(b), an attacker can just send one
packet per bin instead of following the circular Golomb ruler.
The reason is that now that the search space is reduced to

smaller than 2G, it is no longer circular (unlike the first
iteration where the counter increment in the first bin can be
impacted by the fourth bin). Now, if the sequence number
falls in the first bin, then the counter remains the same; if
it falls in the second bin, the counter will increment 1; and
so on. We discuss the realistic settings and performance of
different “N” in §3.7.

0 4G

(a). First iteration

(b). A later iteration

2G1G 3G

1 3 2

Bin 1
Counter += 2

0 250M

1

of packets:

of packets:

Bin 2
Counter += 1

Bin 3
Counter += 4

Bin 4
Counter += 5

500M 750M 1G

1 1

Bin 1
Counter += 0

Bin 2
Counter += 1

Bin 3
Counter += 2

Bin 4
Counter += 3

Figure 5: Sequence number inference illustration using the
DelayedACKLost packet counter (four-way search)

Client-side sequence number inference. Sometimes,
it is necessary to infer the client-side sequence number, for
the purpose of either injecting data to the victim server,
or injecting data to the victim client with an appropri-
ate ACK number. The latter is currently unnecessary as
Linux/Android and BSD/Mac OS allows half of the ACK
number space to be valid [26]. For the former, we can still
use the same DelayedACKLost counter to infer the ACK
number.

Specifically, as discussed in §3.3, the only ending sequence
number that can satisfy the retransmission check is the one
equal to the next expected sequence number. When that
happens, the TCP stack increments the DelayedACKLost
packet counter again. The source code of the retransmission
check is shown in Figure 6.

Since the retransmission check is after the ACK num-
ber check, it allows an attacker to send a non-zero payload
packet that has the ending sequence number equal to the
next expected sequence number with a guessed ACK num-
ber. If it does not pass the ACK number check, the packet
is dropped and the DelayedACKLost counter does not incre-
ment. Otherwise, the packet is considered a retransmitted
packet and triggers the counter to increment. Based on such
behavior, we can perform a binary search or N-way search
on the ACK number similar to the sequence number search.
In fact, the procedure is mostly identical.

if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {

NET_INC_STATS_BH(sock_net(sk),

LINUX_MIB_DELAYEDACKLOST);

…

}

Figure 6: Retransmission check source code snippet from
tcp data queue() in Linux

3.5 Sequence-Number-Dependent Counters
in BSD/Mac OS

Inspired by the newly discovered counter in Linux, we
further conduct a survey on the latest FreeBSD source code

(version 10). Surprisingly, we find that at least four pairs
of packet counters can leak TCP sequence number. The
counters are confirmed to exist in Mac OS as well. This find-
ing shows that the sequence-number-dependent counters are
widely available and apparently considered safe to include in
the OS. They are: 1) rcvduppack and rcvdupbyte; 2) rcvpack-
afterwin and rcvbyteafterwin; 3) rcvoopack and rcvoobyte; 4)
rcvdupack and rcvacktoomuch. They can be either accessed
through the standard“netstat -s” interface or sysctl API [11].

The first three pairs can be used to infer server-side se-
quence numbers. Specifically, based on the source code, the
semantic of rcvduppack is identical to that of DelayedACK-
Lost. rcvdupbyte, however, additionally provides informa-
tion on the number of bytes (payload) carried in the incom-
ing packets that are considered duplicate (with an old se-
quence number). This counter greatly benefits the sequence
number inference. Following the same “N-way” procedure,
the first iteration can be improved by changing the “k pack-
ets sent per bin” to “a single packet with k bytes payload”.
This improvement substantially reduces the number of pack-
ets/bytes sent in each iteration, especially when “N” is large
(shown in §3.7).

The semantic of rcvpackafterwin and rcvbyteafterwin is
similar to rcvduppack and rcvdupbyte, except that the for-
mer increments only when the sequence number is bigger
than (instead of smaller than) certain sequence number X.
In this case, X is the expected sequence number plus the
receive window size. rcvbyteafterwin can be used similarly
as rcvdupbyte to conduct the sequence number inference.

rcvoopack and rcvoobyte differ from the previous two pairs.
They increment only when packets arrive out of order, or
more precisely, when the sequence number is bigger than
the expected sequence number yet smaller than the expected
sequence number plus the receive window size. Even though
an attacker needs to send a lot more packets to infer the
TCP sequence number using this counter pair, at least they
can be used to replace the original noisy side-channel in the
Phrack attack [1] to improve success rate.

rcvdupack and rcvacktoomuch are used to determine the
client-side sequence numbers. Specifically, the former in-
crements when the ACK number of an incoming packet
is smaller than or equal to the unacknowledged number
(SND.UNA). The latter increments when the ACK num-
ber is greater than the sequence number of the next origi-
nal transmit (SND.MAX). The comparison again follows the
“unsigned integer to signed integer conversion”such that half
of the ACK number space is considered to match the condi-
tion.

We currently did not combine the counters together to im-
prove the inference speed. However, we do realize there are
potential ways to speed things up. For instance, the rcvdup-
byte and rcvdupack allows the client-side sequence number
inference to be piggybacked with the server-side sequence
number inference.

3.6 Sequence-Number-Dependent Counters
in Microsoft Windows

Interestingly, Microsoft Windows OSes do not appear to
expose such sequence-number-dependent counters and are
thus not vulnerable to the attack. On Windows 7, for ex-
ample, the TCP-related packet counters include the total
number of incoming packets, outgoing packets, and the num-
ber of packets retransmitted from the output of “netstat -

s”. These packet counters do not leak sequence numbers
directly.

3.7 Inference Performance and Overhead
We have implemented the sequence number inference on

both Android (which incorporates the Linux kernel) and
Mac OS. We are interested in the tradeoffs between different
strategies in picking “N” in the “N-way search”.

Generally, as “N” goes up, the total number of bytes sent
should also increase. Since the first iteration in the “N-way”
search requires sending more bytes, we pick a smaller “N”
for the first iteration and a bigger “N” in the later iterations
to ensure that the number of bytes sent in each round is
similar. In the Linux implementation, we pick the following
pairs of N, (2/2, 4/6, 8/30, 12/84); For Mac OS, we pick
(2/2, 4/6, 34/50, 82/228). Here 4/6 means that we pick
N=4 for the first iteration and N=6 for the later iterations.

As shown in Figure 7, we can see that the general tradeoff
is that the fewer iterations an attacker wants, the more bytes
he needs to send in total. For instance, when the number of
iterations is 4, an attacker on Linux needs to send 13.7KB.
With the presence of the rcvdupbyte counter in Mac OS, it
requires to send only 8.4KB. This is a rather low network
resource requirement because it takes only 70ms to push
8.4KB onto the wire with even just 1Mbps bandwidth. Go-
ing further down to 3 iterations requires sending 27.75KB
for Mac OS. Depending on the available bandwidth and the
RTT, we may or may not want to increase the number of
bytes to save one round trip.

Next, we pick N=34/50 (4 round trips) for Mac OS at-
tacks, and N=8/30 (5 round trips) for Linux attacks (with
roughly the same resource requirement), and plot the infer-
ence time measured under various conditions. We control
the RTT between the attacker and the victim in three dif-
ferent settings: 1) The victim is in an office environment
(enterprise-like) connected to the network using WiFi, and
the attacker is in the same building (the RTT is around
5-10ms). 2) The victim is in a home environment and the
attacker is 50ms RTT away. 3) The victim is in a home envi-
ronment and the attacker is 100ms RTT away. In Figure 8,
we see that in the first setting the inference time for Android
and Mac OS are 80ms and 50ms, which are low enough to
directly launch injection attacks on HTTP connections with
the guarantee that the inference finishes before the first le-
gitimate response packet comes back (also discussed later
in §4.2). In fact, inference time between 350ms and 700ms
can be short enough in certain scenarios (see §5.1).

3.8 Noisiness of Sequence-Number-
Dependent Counters

So far, we have claimed that these sequence-number-
dependent counters are “clean” side-channels that rarely in-
crement naturally even with background traffic. To quanti-
tatively support this claim, we conduct a worse-case-scenario
experiment as follows: We open a YouTube video at the
background and browse web pages at the same time to see
how often the counters get incremented. Since it is easier
to do the multi-tasking on Mac OS, we choose it over the
Android platform. The Android counters should increment
even less frequently since smartphones are rarely used for
video streaming and web browsing simultaneously.

We pick the rcvdupbyte counter (which is equivalent to De-
layedACKLost on Linux) and run the experiments for about

8.5 minutes. The video is long enough that it has not been
fully buffered by the end of the experiment. To quantify
the counter noisiness, we break down the time into 30ms in-
tervals to mimic the window of exposure during one round
of probing, and then count how many intervals in which
we observe any counter increment. As expected, there are
only 10 intervals out of 16896 that have the increment. This
indicates that the probability that the counter increments
due to noise and interference with one round of probing is
roughly 0.059%. Even if there are 22 rounds (worse case),
the probability that the entire probing will be affected by
the counter noisiness is only 1.2%.

4. DESIGN AND IMPLEMENTATION OF
TCP ATTACKS

In the previous section, we described how to infer TCP
sequence number efficiently and reliably using the newly dis-
covered set of sequence-number-dependent packet counters.
Since the sequence number inference only takes less than a
second, it can be fast enough to launch many application-
layer attacks. In this section, we discuss four possible TCP
attacks that can be launched against a variety of applica-
tions. All of the attacks leverage the TCP sequence number
inference as the essential building block, but the main dif-
ference is in the timing and reliability with slightly different
requirements. We have implemented the attacks on both
Android and Mac OS. We use Android as the example for
description

Injection vs. Hijacking. Using the same terminology as a
recent work [26], we define TCP hijacking to be the more
powerful attack than TCP injection. Specifically, TCP hi-
jacking allows an attacker to inject packets right after the
TCP 3-way handshake. For instance, it enables an attacker
to inject a complete HTTP response without any interfer-
ence. In contrast, TCP Injection is more general and does
not require this capability.

The four attacks are named as: (1). client-side TCP Injec-
tion, (2). passive TCP hijacking, (3). active TCP hijacking,
(4). server-side TCP injection.

4.1 Attack Requirements
There are a number of base requirements that need to

be satisfied for all of these TCP attacks. Note that our
attacks have much fewer requirements than the one proposed
in the recent study [26]. Specifically, we do not require a
firewall middlebox in the network, which makes our attacks
applicable in a much more general environment.

The set of requirements include: (1) malware on the client
with Internet access, (2) malware that can run in the back-
ground and read packet counters, (3) malware that can
read the list of active TCP connections and their four tu-
ples, and (4) a predictable external port number if NAT
is deployed. The first three requirements are straightfor-
ward. All of the Android applications can easily request In-
ternet access, read packet counters (i.e.,/proc/net/netstat
and /proc/net/snmp, or “netstat -s”), and read active TCP
connections’ four tuples (e.g., through /proc/net/tcp and
/proc/net/tcp6, or “netstat”). The requirements can be eas-
ily satisfied on most modern OSes as well. In addition, an
off-path attacker needs the client’s external port mapping to
choose the correct four tuples when sending probing packets,
so we need the fourth requirement. This requirement is also

commonly satisfied, since many NAT mapping types allow
the external port to be predictable to facilitate NAT traver-
sal. For instance, our home routers directly map the internal
ports to the external ports. According to recent measure-
ment studies on the NAT mapping types [21, 31], the major-
ity of the NATs studied do have predictable external ports.
Further, even if the prediction is not 100% accurate, attacks
may still succeed by guessing the mappings.

Additional requirements for passive TCP hijacking are C1
and S1:

(C1). Client-side ISN has only the lower 24-bit random-
ized. This requirement is necessary so that the malware
can roughly predict the range of the ISN of a newly created
TCP connection. In Linux kernels earlier than 3.0.2, the
ISN generation algorithm is designed such that ISNs for dif-
ferent connections are not completely independent. Instead,
the high 8 bits for all ISNs is a global number that incre-
ments slowly (every five minutes). This feature is designed
to balance security, reliability, and performance. It is long
perceived as a good optimization, with the historical details
and explanations in this article [5]. The result of this design
is that the ISN of two back-to-back connections will be at
most 224 = 16, 777, 216 apart. Even though it is a design
decision and not considered a “vulnerability”, since Linux
3.0.2, the kernel has changed the ISN generation algorithm
such that two consecutive connections will have independent
ISNs. The majority of Android systems that are on the mar-
ket are still on Linux 2.6.XX, which means that they are all
vulnerable to the passive TCP hijacking attack.

(S1). The legitimate server has a host-based stateful TCP
firewall. Such a firewall is capable of dropping out-of-state
TCP packets. Many websites such as Facebook and Twitter
deploy such host firewalls to reduce malicious traffic. For
instance, iptables can be easily configured to achieve this
purpose [10]. Interestingly, as we will discuss later, this se-
curity feature on the server actually enables TCP hijacking
attacks.

In order to perform active TCP hijacking attacks, the ad-
ditional requirements include S1 and C2:

(C2). Client-side ISN monotonically incrementing for the
same four tuples. This client-side requirement is in fact ex-
plicitly defined in RFC 793 [9] to prevent packets of old con-
nections, with in-range sequence numbers, from being ac-
cepted by the current connection mistakenly. Even though
the latest Linux kernel has eliminated the requirement C1,
C2 is still preserved.

4.2 Client-Side TCP Injection
In this attack, an attacker attempts to inject malicious

data into a connection established by other apps on the
phone. The essential part of the attack is the TCP sequence
number inference which has already been described in de-
tail. The challenge is that the injected data may compete
with the data sent from the legitimate server. For instance,
considering the connection under attack is an HTTP session
where a valid HTTP response typically follows immediately
after the request is sent, by the time the sequence number
inference is done, at least part of the HTTP response is al-
ready sent by the server. The injected HTTP packets likely
can only corrupt the response and cause denial of service
instead of serious damage.

Even though the timing requirement sounds difficult to
satisfy, we did implement this attack against websites such

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20 22

to
ta

l
#

 o
f

b
y
te

s
 r

e
q

u
ir
e

d
 (

K
B

)

of round trips (iterations)

Android
Mac

Figure 7: Tradeoff between inference
speed and overhead

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

In
fe

re
n
c
e
 t
im

e
 (

m
s
)

RTT between attacker and client (ms)

Android
Mac

Figure 8: Relationship between RTT
and inference time

Off-path
attacker

Legit
Server

Victim
App

Unprivileged
malware

Phone

C
o

n
n

e
ctio

n
 re

se
t

6. Seq number inference -- start

7. Seq number inference -- end

...

8. Malicious response

4. Spoofed
 RSTs

1. SYN

5. ACK/request

3. SYN-ACK (seq = Y)

2. Notification of new conn

Figure 9: Passive TCP hijacking se-
quence

Off-path
attacker

Legit
Server

Victim
App

Unprivileged
malware

Phone
C

o
n

n
e

ctio
n

 re
se

t

9. Seq number inference -- start

10. Seq number inference -- end

...

11. Malicious response

8. Spoofed
 RSTs

1. Conn(X)

6. Conn(X)

3. Seq + ACK inference -- start

2. Notification of conn(X)

4. Seq + ACK inference -- end

7. Notification of conn(X)

...
5. Port jamming

Figure 10: Active TCP hijacking se-
quence

as Facebook where we are able to inject malicious Javascripts
to post new status on behalf of a victim user. The detail is
described in §5.1.

The idea is to leverage two common scenarios: (1) The
server may take a long time to process a request and as-
semble the response. This is especially common as many
services (websites) take longer than 100ms or more to pro-
cess a request. The fact that the sequence number inference
time in certain scenarios (when RTT from the server to the
client is small) can be made below 100ms makes the injection
attack as powerful as hijacking. (2) A single TCP connec-
tion is reused for more than one pair of HTTP request and
response. The idea is to use the inferred sequence number
for injecting malicious data not on the first HTTP request
but the later ones. In both cases, an attacker has enough
time to conduct sequence number inference.

4.3 Passive TCP Hijacking
Passive TCP hijacking allows an attacker to hijack TCP

connections that are passively detected. This means that the
attacker can hijack TCP connections issued by the browser
or any other app, regardless of how and when they are made.
It is the most powerful TCP attack in this study. As demon-
strated in §5, with this attack, it is possible to replace the
Facebook login page with a phishing one.

The high-level idea is the same as proposed in the recent
work [26], which is to reset the connection on the legitimate
server as soon as possible to allow the attacker to claim to
be the legitimate server talking to the victim. The key is
that such reset has to be triggered right after the legitimate
server sends SYN-ACK. Requirement C1 allows the mal-
ware and the attacker to predict the rough range of victim’s
ISN and send reset packets with sequence numbers in that
range. This is helpful because the attacker is required to
send fewer spoofed RST packets (thus with lower bandwidth
requirement) compared to enumerating the entire 4G space.
Further, after the legitimate server is reset, requirement S1
is necessary since it helps prevent the legitimate server from
generating RST upon receiving out-of-state data or ACK
packets from the victim.

The attack sequence diagram is shown in Figure 9. Time
steps 1 to 3 are the same as the previous attack where the un-
privileged malware detects and reports the newly established

TCP connection. In addition, the malware also needs to es-
tablish a connection to the off-path attacker to report the
current ISN value (high 8 bits). With this information, at
time 4, the off-path attacker can flood the legitimate server
with a number of spoofed RSTs enumerating the lower 24
bits (sequence numbers can increment by a step size as large
as the server’s receive window size). Note that the RST
packets have to arrive before the ACK/request packets at
time 5; otherwise, the server may send back the response
packets before the attacker. Of course, the server may need
some time to process the request as well, which can vary
from case to case, allowing the attacker additional time to
complete the reset procedure. After the legitimate server’s
connection is reset, all future packets from the victim app
will be considered out-of-state and silently dropped due to
requirement S1. For instance, the ACK packet received at
time 5 is silently discarded. From time 6 to 7, the attacker
conducts the sequence number inference described earlier
and injects malicious content afterwards at time 8 with the
inferred sequence number. A more detailed analysis on the
bandwidth and time requirement is discussed in a similar
setting in a prior work [26].

4.4 Server-side TCP Injection
In this attack, an attacker tries to inject malicious payload

into a victim connection, destined for the server (as opposed
to the client). For instance, as shown in the case study in §5,
we are able to target at Windows live messenger protocols
to inject malicious commands to cause persistent changes to
the victim user account, e.g., adding new friends or removing
existing friends.

This attack is straightforward by combining the sequence
number inference and ACK number inference as described
in §3. We omit the detailed attack sequence as it does not
include other important steps. This attack has no additional
requirements besides the base requirements. In general, ap-
plications with unencrypted and stateful protocols are good
attack targets.

4.5 Active TCP Hijacking
In this attack, an attacker attempts to hijack connections.

However, because the latest Linux kernel since 3.0.2 has the
entire 32-bit randomized for ISNs of different four tuples,

requirement C1 is no longer satisfied. In this case, we show
that it is still possible to launch a weaker version of TCP
hijacking by “actively” performing offline analysis as long as
requirement C2 is satisfied. As shown in §5, we have success-
fully used the port-jamming-assisted active TCP hijacking
to replace a Facebook login page with a phishing one.

Requirement C2 specifies that the ISN for the same four-
tuple always increments with time. This implies that as long
as an attacker can infer the client’s ISN for a particular four-
tuple once, he can store the value for a future connection
that reuses the same four-tuple, and reset the server using
the stored ISN (plus the increment by time) so that the
attacker can hijack the connection.

The detailed attack sequence is demonstrated in Fig-
ure 10, at time 1, the unprivileged malware establishes a
connection on its own to a target server of interest (e.g.,
Facebook server), and notifies the off-path attacker imme-
diately (at time 2) so that it can infer the client ISN of the
used four tuples (through time 3 to 4). Now, assuming that
the attacker knows that a victim app is about to initiate a
connection to the same server, an attacker can immediately
perform port jamming to exhaust all the local port numbers
(at time 5) so that the victim app’s connection can only use
the local port number that was in the inferred four tuples
(we will describe how port jamming can be done later). Now
that the victim connection reuses the same four tuples, the
malware can immediately notify the off-path attacker (at
time 6) which uses the previously inferred client-side ISN
to reset the server (at time 7). Subsequently, the attack
sequence is identical to the end of passive TCP hijacking.

In the above attack sequence, one critical part is the
knowledge of when the victim app initiates the connection to
the target website. One simple strategy is to actively trigger
the victim app to make the connection through the unpriv-
ileged malware. On Android, for instance, any app could
directly invoke the browser going to a given URL, before
which the attacker can perform the port jamming.

One alternative strategy is to perform offline analysis on
as many four tuples as possible so that it can essentially ob-
tain the knowledge of ISN for all possible four tuples going
to a particular website (without requiring port jamming).
This way, after the offline analysis is performed, the attacker
basically can launch passive TCP hijacking on any of the
four tuples that have been previously analyzed. Since each
client-side ISN inference should take a little over a second,
an attacker can infer, for instance, 1000 four tuples in 15
minutes. Even though a connection to Facebook may have
1% probability falling in the range, the user may repeatedly
visit the website and the probability that all of the connec-
tions failing to match any existing four tuples is likely very
low. We have verified that the ISN for the same four-tuple
does increment consistently over time for over an hour. We
suspect that the cryptographic key for computing ISN does
not change until reboot in Linux 3.0.2 and above.

To jam local ports, the unprivileged malware can simply
start a local server, then open many connections to the local
server intentionally occupying most of the local port except
the ones that are previously seen for inference. One chal-
lenge is that the OS may limit the total number of ports that
an application can occupy, thus preventing the attacker from
opening too many concurrent connections. Interestingly, we
find such limit can be bypassed if the established connections
are immediately closed (which no longer counts towards the

limit). The local port numbers are not immediately released
since the closed connections enter the TCP TIME WAIT
state for a duration of 1 to 2 minutes.

5. ATTACK IMPACT ANALYSIS FROM
CASE STUDIES

Experiment setup. As discussed earlier, even though our
attacks are implemented on both Android and Mac OS, we
choose to focus on Android in our implementation and ex-
periments. We use two different phones: Motorola Atrix and
Samsung Captivate. We verified that all attacks work on
both Android phones, although the experimental results are
repeated based on Atrix. The WiFi networks include a home
network and a university network. The off-path attacker is
hosted on one or more Planetlab nodes in California.

We describe four case studies corresponding to the four
TCP attacks proposed in the previous section. We also
present experimental results such as how likely we can suc-
ceed in hijacking the Facebook login page based on repeated
experiments.

For all attacks, we implemented the malware as a benign
app that has the functionality of downloading wallpapers
from the Internet (thus justifying the Internet permission).
Since the malware needs to scan netstat (or /proc/net/tcp
and /proc/net/tcp6 equivalently) for new connection detec-
tion, which can drain the phone’s battery very quickly, we
make the malware stealthy such that it only scans for new
connections when it detects that the victim app of interest
is at the foreground. This can be achieved by querying each
app’s IMPORTANCE FOREGROUND flag which is typi-
cally set by the Android OS whenever it is brought to the
foreground. Further, the malware queries the packet counter
only when the off-path attacker instructs it to do so. The
malware is only used in our controlled experiment environ-
ments without affecting real users.

Note that most apps except the browser on the smart-
phones do not have an indication about whether the con-
nection is using SSL, which means that the users may be
completely unaware of the potential security breach for un-
encrypted connections (e.g., HTTP connections used in the
Facebook app).

5.1 Facebook Javascript Injection
We launch the attack based on client-side TCP injec-

tion as described in §4.2. Recall that the injection can hap-
pen only after the sequence number inference finishes. If the
inference cannot be done earlier than the response comes
back, the attacker will miss the window of opportunity.

By examining the packet trace generated by visiting the
Facebook website where a user is already logged in, we iden-
tify two possible ways to launch the Javascript injection at-
tack. The first attack is surprisingly straightforward. Ba-
sically, when the user visits m.facebook.com, the browser
issues an HTTP request that fetches all recent news. We ob-
serve that it consistently takes the server more than 1.5 sec-
onds to process the request before sending back the first re-
sponse packet. According to our results in §3.7, the inference
time usually finishes within 0.7s even when RTT=100ms. It
allows enough time for an attacker to inject the malicious
response in time (or inject a phishing login page as well).
As shown in Table 1, the success rate is 87.5% based on
40 repeated experiments in our home environment where

m.facebook.com

RTTa=70ms1 RTTa=100ms
Succ Rate 97.5% (39/40) 87.5% (35/40)
1 RTTa is the RTT between the attacker and the client

Table 1: Success rate of Facebook Javascript injection (case study 1)

RTT=100ms. It goes up to 97.5% when the experiment is
conducted in the university network where RTT=70ms. The
failed cases are mostly due to packet loss.

The second attack is based on the observation that mul-
tiple requests are issued over the same TCP connection to
the Facebook site. Even if the attacker is not able to in-
fer the sequence number in time to inject response for the
first request (e.g., Facebook may improve the server pro-
cessing time in the future), he can still perform inference
for the second request. Specifically, if the user visits the
root page on Facebook, the browser on one of the Android
phones (Samsung Captivate) will send two HTTP requests:
the first request is asking for the recent news; the second
request seems to be related to prefetching (e.g., retrieving
the friend list information in case a user clicks on any friend
for detailed information).

Since there is a delay of about 1s between the end of the
first request and the start of the second request, an attacker
can monitor if the sequence number remains the same for a
certain period of time to detect the end of the first response.
Furthermore, the second request takes about 100ms to pro-
cess on the server. A simple strategy that an attacker can
employ is to just wait for around 1.1s before injecting the
malicious response for the second request. A more sophis-
ticated attacker could also monitor the start of the second
request by tracking the current ACK number. Specifically,
when the second request is sent, the valid ACK number
range moves forward by the number of bytes in the request
payload.

In our proof-of-concept implementation, we always inject
the Javascript after waiting for a fixed amount of time after
the connection is detected, which can already succeed for
a few times. However, a more sophisticated attacker can
definitely do better.

5.2 Phishing Facebook Login Page
We launch this attack based on passive TCP hijack

which passively monitors if a new connection to Facebook
is made. In this case study, we look at how to replace the
Facebook login page by resetting the Facebook immediately
after it has responded with SYN-ACK.

We assume that the user is not already logged in to Face-
book. Otherwise, as described in the previous attack, the
server processing delay for the first HTTP request is so long
that is is too easy to succeed. When the user is not logged
in, the server processing delay will become negligible and
the effective time window for reset to succeed is basically a
single round trip time. This scenario is also generic enough
that the attack can be applied for many other websites such
as twitter.com.

In Table 2, we show how likely the attack can succeed un-
der different conditions. For instance, when there’s a single
Planetlab node, the success rate is a little below 50%. How-
ever, when we use two nodes for latency values of 70ms and
100ms respectively, the success rate increases significantly to
62.5% and 82.5% , indicating that we have more bandwidth

to reset the server. In addition, the result also verifies that
the larger the RTT, the more likely the attack can succeed.

Note that the 100ms RTT to Facebook may sound very
large given the popularity of CDN services. However, the
CDNs are mostly used for hosting static contents such as
images and Javascripts. For webpages that are highly cus-
tomized and dynamic (e.g., personalized Facebook news
feed), they are very likely to be stored on the main server in
a single location (e.g., Facebook main servers are hosted in
California). We find that this is a common design for many
sites with dynamic contents (e.g., twitter).

5.3 Command Injection on Windows Live
Messenger

Leveraging server-side TCP injection described
in §4.4, the case study of command injection attack on Win-
dows Live Messenger is an interesting example of server-side
attack carried out on a connection where the user is already
logged in. The main connection of Windows Live Messenger
runs on port 1863 and uses Microsoft Notification Protocol
(MSNP) which is a complex instant messenger protocol de-
veloped by Microsoft [6]. Many Windows Live Messenger
clients on Android as well as the ones on the desktops (in-
cluding official ones) use plaintext in their connections, thus
allowing the attack. Once upon the detection of a vulner-
able Windows Live Messenger app running or a connection
established to known port numbers and IP addresses that
are associated with the app, an attacker can launch this at-
tack.

We have verified that the commands that are possible to
inject into the server include, but not limited to, (1) adding
a new friend or removing an existing friend (specified by the
account email address), (2) changing the status messages,
and (3) sending messages to friends. Given that the messen-
ger client is idle most of the time and the fact that the client-
side sequence number inference only takes 2–3 seconds, the
attack can be launched fairly easily. The commands can
cause serious damage. For instance, the add-friend com-
mand allows an attacker to add its malicious account as a
friend which can subsequently send spam or phishing mes-
sages. In addition, after being added as a friend, the attacker
can read the friend list (email accounts) of the victim user,
delete them, or spam them. Finally, new status posting can
be part of the phishing attack against the friends as well.

5.4 Restricted Facebook Login Page Hijack
This attack is launched based on active TCP hijack as

described in §4.5. The goal of this attack is still to hijack
TCP connections. However, due to the lack of ability to
reset the server-side connection in the new version of the
Linux kernel, it requires offline analysis on the client-side
ISN of the target four tuples.

In our implementation, we develop a simple Android test
malware that performs the offline analysis right after it is
started. The four tuples we target include a pre-selected
local port and the Facebook server IP that’s resolved for
m.facebook.com. After the analysis, the attack takes a lit-

twitter.com

One Planetlab node Two Planetlab nodes
RTTb=70ms1 RTTb=100ms RTTb=70ms RTTb=100ms

Succ Rate 42.5% (17/40) 47.5% (19/40) 62.5% (25/40) 82.5% (33/40)
1 RTTb is the RTT between the attacker and the Facebook server

Table 2: Success rate of Facebook login page injection (case study 2)

tle over one second, and it performs port jamming immedi-
ately (which takes about 5 seconds). After this, our mal-
ware app immediately sends an Intent that asks to open
m.facebook.com through the browser. An attacker may
come up with reasons such as asking a user to use his Face-
book account to register for the app. When the browser
starts the connection to Facebook, the malware works with
the off-path attacker to hijack the connection (as described
in §4.5). We have verified that the Facebook login page can
indeed be hijacked following these steps.

The main difficulty in this attack is not about successfully
inferring the sequence number. Instead, it requires the user
to be convinced that the app indeed has a relationship with
the target website (i.e., Facebook) so that the user will enter
his password into the browser.

6. DISCUSSION AND CONCLUSION
From these real attacks, there are a few lessons that

we learn: (1) Even though OS statistics are aggregated
and seemingly harmless, they can leak critical internal net-
work/system state through unexpected interactions from the
on-device malware and the off-path attacker. Similar obser-
vations have been made recently in a few other studies as
well, e.g., using procfs as side channels [22]. Our study
reveals specifically that the packet counters can leak TCP
sequence numbers. (2). Our systems today still have too
much shared state: the active TCP connection list shared
among all apps (through netstat or procfs); the IP address of
the malware’s connection and other apps’; the global packet
counters. Future system and network design should carefully
evaluate what information an adversary can obtain through
these shared state.

On the defense side, there are a few measures that may
improve security: (1) always using SSL/TLS, (2) removing
unnecessary global state (such as the active TCP connection
list and packet counters) or only allow privileged programs
to access such state, (3) providing better isolation among
resources, e.g., providing a separate set of packet counters
for each app. With IPv6 widely deployed, we may even
provide different source IP addresses for connections in dif-
ferent processes on a device so that malware will not be able
to learn the IP address of the connection established by an-
other process. In the extreme case, each app may run in its
own virtual machine.

To conclude, we have demonstrated an important type
of TCP sequence number inference attack enabled by host
packet counter side-channels under a variety of client OS
and network settings. We also offer insights on why they
occur and how they can be mitigated.

7. REFERENCES

[1] Blind TCP/IP Hijacking is Still Alive. http:
//www.phrack.org/issues.php?issue=64&id=15.

[2] CERT Advisory CA-1995-01 IP Spoofing Attacks and
Hijacked Terminal Connections.
http://www.cert.org/advisories/CA-1995-01.html.

[3] Golomb Ruler.
http://en.wikipedia.org/wiki/Golomb_ruler.

[4] Linux Blind TCP Spoofing Vulnerability.
http://www.securityfocus.com/bid/580/info.

[5] Linux: TCP Random Initial Sequence Numbers.
http://kerneltrap.org/node/4654.

[6] MSN Messenger Protocol.
http://www.hypothetic.org/docs/msn/.

[7] RFC 1948 - Defending Against Sequence Number
Attacks. http://tools.ietf.org/html/rfc1948.

[8] RFC 5961 - Improving TCP’s Robustness to Blind
In-Window Attacks.
http://tools.ietf.org/html/rfc5961.

[9] RFC 793 - Transmission Control Protocol.
http://tools.ietf.org/html/rfc793.

[10] Stateful Firewall and Masquerading on Linux. http:
//www.puschitz.com/FirewallAndRouters.shtml.

[11] sysctl Mac OS X Manual.
https://developer.apple.com/library/mac/

#documentation/Darwin/Reference/Manpages/man3/

sysctl.3.html#//apple_ref/doc/man/3/sysctl.

[12] TCP Delayed Ack in Linux. http://wiki.hsc.com/
wiki/Main/InsideLinuxTCPDelayedAck.

[13] S. Chen, R. Wang, X. Wang, and K. Zhang.
Side-channel Leaks in Web Applications: A Reality
Today, a Challenge Tomorrow. In Proc. of IEEE
Security and Privacy, 2010.

[14] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight Provenance for Smart
Phone Operating Systems. In Proc. of USENIX
Security Symposium, 2011.

[15] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In
NDSS, 2011.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In OSDI, 2010.

[17] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A Study of Android Application Security. In Proc. of
USENIX Security Symposium, 2011.

[18] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall.
Idle Port Scanning and Non-interference Analysis of
Network Protocol Stacks using Model Checking. In
Proc. of USENIX Security Symposium, 2010.

[19] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission Re-delegation: Attacks and

http://www.phrack.org/issues.php?issue=64&id=15
http://www.phrack.org/issues.php?issue=64&id=15
http://www.cert.org/advisories/CA-1995-01.html
http://en.wikipedia.org/wiki/Golomb_ruler
http://www.securityfocus.com/bid/580/info
http://kerneltrap.org/node/4654
http://www.hypothetic.org/docs/msn/
http://tools.ietf.org/html/rfc1948
http://tools.ietf.org/html/rfc5961
http://tools.ietf.org/html/rfc793
http://www.puschitz.com/FirewallAndRouters.shtml
http://www.puschitz.com/FirewallAndRouters.shtml
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man3/sysctl.3.html#//apple_ref/doc/man/3/sysctl
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man3/sysctl.3.html#//apple_ref/doc/man/3/sysctl
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man3/sysctl.3.html#//apple_ref/doc/man/3/sysctl
http://wiki.hsc.com/wiki/Main/InsideLinuxTCPDelayedAck
http://wiki.hsc.com/wiki/Main/InsideLinuxTCPDelayedAck

Defenses. In Proc. of USENIX Security Symposium,
2011.

[20] Y. Gilad and A. Herzberg. Off-Path Attacking the
Web. In Proc. of USENIX Workshop on Offensive
Technologies (WOOT), 2012.

[21] S. Guha and P. Francis. Characterization and
Measurement of TCP Traversal through NATs and
Firewalls. In Proc. ACM SIGCOMM IMC, 2005.

[22] S. Jana and V. Shmatikov. Memento: Learning secrets
from process footprints. In Proc. of IEEE Security and
Privacy, 2012.

[23] L. Joncheray. A Simple Active Attack against TCP. In
Proc. of USENIX Security Symposium, 1995.

[24] G. LEECH, P. RAYSON, and A. WILSON. Procfs
Analysis. http://www.nsa.gov/research/_files/
selinux/papers/slinux/node57.shtml.

[25] R. Morris. A Weakness in the 4.2BSD Unix TCP/IP
Software. Technical report, 1985.

[26] Z. Qian and Z. M. Mao. Off-Path TCP Sequence
Number Inference Attack – How Firewall Middleboxes
Reduce Security. In Proc. of IEEE Security and
Privacy, 2012.

[27] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu. Investigation
of Triangular Spamming: A Stealthy and Efficient
Spamming Technique. In Proc. of IEEE Security and
Privacy, 2010.

[28] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala,
A. Kapadia, and X. Wang. Soundcomber: A Stealthy
and Context-Aware Sound Trojan for Smartphones. In
NDSS, 2011.

[29] D. X. Song, D. Wagner, and X. Tian. Timing Analysis
of Keystrokes and Timing Attacks on SSH. In Proc. of
USENIX Security Symposium, 2001.

[30] M. Vuagnoux and S. Pasini. Compromising
electromagnetic emanations of wired and wireless
keyboards. In Proc. of USENIX Security Symposium,
2009.

[31] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang.
An Untold Stody of Middleboxes in Cellular
Networks. In SIGCOMM, 2011.

[32] P. A. Watson. Slipping in the Window: TCP Reset
Attacks. In CanSecWest, 2004.

[33] K. Zhang and X. Wang. Peeping Tom in the
Neighborhood: Keystroke Eavesdropping on
Multi-User Systems. In Proc. of USENIX Security
Symposium, 2009.

http://www.nsa.gov/research/_files/selinux/papers/slinux/node57.shtml
http://www.nsa.gov/research/_files/selinux/papers/slinux/node57.shtml

	Introduction
	Related Work
	TCP Sequence Number Inference Attack
	Threat Model
	Packet Counter Side Channels
	TCP Incoming Packet Validation
	Sequence-Number-Dependent Counter in Linux
	Sequence-Number-Dependent Counters in BSD/Mac OS
	Sequence-Number-Dependent Counters in Microsoft Windows
	Inference Performance and Overhead
	Noisiness of Sequence-Number-Dependent Counters

	Design and Implementation of TCP Attacks
	Attack Requirements
	Client-Side TCP Injection
	Passive TCP Hijacking
	Server-side TCP Injection
	Active TCP Hijacking

	Attack Impact Analysis from Case Studies
	Facebook Javascript Injection
	Phishing Facebook Login Page
	Command Injection on Windows Live Messenger
	Restricted Facebook Login Page Hijack

	Discussion and Conclusion
	References

