
Boolean Function Representation Based on Disjoint-Support Decompositions.�

Valeria Bertacco and Maurizio Damiani��
Dipartimento di Elettronica ed Informatica

Universita di Padova, Via Gradenigo 6/A, 35131 Padova, ITALY

Abstract

The Multi-Level Decomposition Diagrams (MLDDs) of
this paper are a canonical representation of Boolean func-
tions expliciting disjoint-support decompositions. MLDDs
allow the reduction of memory occupation with respect to
traditional ROBDDs by decomposing logic functions recur-
sively into simpler - and more sharable - blocks. The repre-
sentation is less sensitive to variable ordering, and because
of this property, analysis of the MLDD graphs allows at
times the identification of better variable orderings. The
identification of more terminal cases by Boolean algebra
techniques makes it possible to compensate the additional
- small- CPU time required to identify the disjoint-support
decomposition. We expect the properties of MLDDs to be
useful in several contexts, most notably logic synthesis, tech-
nology mapping, and sequential hardware verification.

1 Introduction
Reduced, Ordered Binary Decision Diagrams (ROBDDs)

[1] are probably the most powerful data structure known so
far for the manipulation of large logic functions, and for this
reason they have become pervasive in logic synthesis and
verification environments [2, 3, 4, 5]. Ongoing research is
attempting to extend their applicability to other domains,
such as word-level verification [6], the solution of graph
problems and integer-linear programming [7, 8].

Still, some key inefficiencies (an exponential blowup
for some classes of functions, the unpredictability of the
ROBDD size and shape with respect to the variable order-
ing chosen, etc ...) motivate an increasing research activity
in this area, including: Efficient implementations [9, 10],
development of ordering heuristics [11, 12, 13], and alter-
native representations altogether [14, 15, 16, 17, 18, 6, 19].

ROBDDs are closely related to deterministic automata:
input bits are evaluated sequentially, one at a time, along the
graph [19]. In this paper, we add to the basic ROBDD
representation the capability of decomposing a function
into an arbitrary, multiple-level tree of disjoint-support
sub-functions. Unlike ROBDDs, nodes represent not only
two-input MUXes, but also unlimited-fanin OR / AND (or
NAND-only, NOR-only) trees of gates.

The novel representation retains most of the properties
of ROBDDs, namely, canonicity, a directed-acyclic graph

�Research partially funded by the EC ESPRIT III Basic Research Pro-
gramme contract No. 9072 (Project GEPPCOM) and by CNR grant #
95.02061.CT07.
��Currently with Synopsys, Inc. 700 East Middlefield Road, Mtn.View,

CA 94043

structure, a recursive construction technique, and constant-
time complementation. Tree decomposition brings several
advantages. First, the representation is significantly less
order-sensitive than ROBDDs. For instance, fully decom-
posable functions are represented by minimal tree circuits,
of size linear in the number of variables, regardless of vari-
able ordering. while ROBDD size can range from linear
to exponential. Moreover, for this class of functions, some
difficult problems (like, Boolean NPN matching [20]) can
be solved in linear time by tree matching techniques.

Second, the new representation is usually more compact
than ROBDDs, because functions are decomposed in sim-
pler , more sharable blocks. More interestingly, the new
representation gives us a more systematic and exact insight
on the role of the input variables of a logic function, other-
wise deferred to special-purpose heuristics such as dynamic
reordering.

Eventually, we show that the additional CPU time for
decomposition is provably small. Moreover, the new rep-
resentation allows us to identify more terminal cases, and
therefore to obtain faster and shallow recursions. For in-
stance, the computation of f + g can be carried out in con-
stant time if f and g share no variables, and the size of the
result is jf j + jgj + 1, regardless of variable order. Other
simplifications arise from the recognition of common terms
in the decomposition of the operands. In practice, we found
the CPU time always to be close and often better than that
of reference ROBDD packages.

For reasons of space, theorem proofs are not included.
They will be available upon request.

2 Disjoint support decomposition
We consider the decomposition of functions into the NOR

(NAND, OR, AND) of disjoint-supportsubfunctions, when-
ever possible. This notion will lead to a recursive (e.g. tree)
decomposition style and to the definition of MLDDs.

Definition 1. Let f : Bn ! B denote a Boolean function
of n variables x1; � � � ; xn. We say that f depends on xi if
@f=@xi is not identically 0. We call support of f (indicated
by S(f)) the set of Boolean variables f depends on.

A set of non-constant functions ff1; � � �fkg, k � 1, with
respective supportsS(fi) is called a disjoint-support NOR
decomposition of f if:
f1 + � � �+ fk = f ; S(fi) \ S(fj) = ;; i 6= j (1)

A disjoint support NOR decomposition is maximal if no
function fi is further decomposable in the OR of other func-
tions with disjoint support. We define disjoint support OR,
AND, NAND decompositions in a similar fashion. We in-
dicate by DNOR(f) any such maximal decomposition. 2

a
b

c
d

e

Figure 1. A recursively decomposable function.

Example 1. The function f = (ab + a0c)(d + e) has the
following maximal disjoint-support decompositions:
� AND: ff1 = (ab+ a0c); f2 = (d+ e)g;
� NOR: ff1 = (ab + a0c)0; f2 = (d+ e)0g;
� NAND and OR: ffg.
2

In the rest of the paper, maximal disjoint-support de-
compositions are referred to as decompositions, for short.
Moreover, we focus only on NOR decomposition, as the
results for the other decompositions can be obtained readily
by standard Boolean algebra.

By decomposing recursively a logic function, we obtain
a NOR-tree representation of F :

Example 2. The function F = (a + b)(c0d0 + e) is recur-
sively NOR decomposable. From the first decomposition
we obtain f1 = (a + b)0 and f2 = [e + (c + d)0]0. These
functions are then again decomposable until reaching the
input variables, as in Fig. (1). 2

Definition 2. A tree decomposition of a logic function f is
a decomposition of f into a NOR-only tree of subfunctions,
where the functions at the inputs of each NOR are maximally
decomposed. We indicateby TDNOR the decomposition tree.
Similarly we can define TDNAND and TDAND/OR. 2

Theorem (1) below states a relevant intuitive result:

Theorem 1. For a given function f , 1) there is a unique
DNOR ; and 2) there is a unique TDNOR . 2

3 Multi-Level Decomposition Diagrams
We exploit tree decompositions to derive a hybrid repre-

sentation style. The model is based on applying tree decom-
position whenever possible, and then Shannon expansion
until reaching primary input variables or their complements.

Example 3. The function f = (a0b + ac0d0 + e0f 0)0 has
TDNOR as in Fig. (2.a). Note that we could not decompose
ac0d0 + a0b0 because of the disjoint support constraint. Ap-
plying Shannon expansion, in Fig. (2.b) we obtain a TDNOR
for each input of MUX. 2

Definition 3. A MLDD is a directed acyclic graph, with leaf
vertices labeled by a Boolean constant or variable and

c
d

e
f

b 0

1

a

e
f

a’b+ac’d’a) b)

Figure 2. a) Tree decomposition of the function in
Example (3). b) The same function with the addi-
tion of BDD nodes.

MLDD

MLDD

0 1

x

MLDDMLDDMLDDMLDD

a) b)

Figure 3. Second reduction rule. a) Mux vertices.
b) NOR vertices

two kinds of internal vertices: NOR vertices have a non-
empty set of outgoing edges, each pointing to a MLDD;
MUX vertices have two outgoing edges, labeled 0 and 1 and
each pointing to a MLDD. MUX vertices are labeled by a
Boolean variable.

A MLDD defines recursively a logic function with the
following rules:
� A terminal vertex labeled by variable or constant x de-

notes the function x.
� A MUX m labeled by x defines:

Fm = xF0(m) + xF1(m) (2)
� A NOR vertex n with k outgoing edges defines the func-

tion:
Fn = f1 + � � �+ fk (3)

where fi, i = 1; : : : ; k is the function defined by the
MLDD pointed by edge i.

2

In a MLDD, while MUX vertices correspond to ROBDD
nodes, NOR vertices indicate a function decomposition. Just
like ROBDDs, we impose reduction and ordering rules to
obtain a more compact and canonical representation:
� There are no two identical subgraphs;
� For each vertex, no two pointers point to the same

MLDD;
� Each path from root to a terminal must traverse subse-

quent MUX nodes in respect of the variable ordering and
each variable is evaluated at most once on each path.
The MLDD of a function matches a multi-level logic

circuit in the obvious way. In the subsequent drawings,
circles represent MUXes, while arrays of squares represent
NORs.

It is worth noting that, unlike ROBBDs, second reduc-
tion rule bears different consequences on the two kinds of
internal vertices. As sketched in Fig. (3), a reduction of
a NOR vertex does not cause its deletion. In addition to
ROBDD-like rules, in order to grant canonicity we must
impose decomposition rules:
� the functions pointed by a NOR vertex must represent a

maximal decomposition.
� a function is represented by a MUX iff it is not decom-

posable, nor its complement.
The following result is a direct consequence of the canonicity
of tree decompositions and reduction rules:

Theorem 2. Reduced Ordered Decomposed MLDDs are
canonical. 2

The following results on DNORs are useful in the con-
struction of the core procedures:

Theorem 3. Suppose ff1; � � � ; fkg is a D of some function.
Then, by erasing elements from the set, the new set is also a
D. 2

� �

� �

NOR (mldd op1, mldd op2, int i) f
1 if (terminal case) return (terminal value);
2 D(opc) = D(op1) \ D(op2);
3 D(op1) = D(op1) n D(opc);
4 D(op2) = D(op2) n D(opc);
5 if (terminal case) return (D(opc) [terminal value);
6 res = comp lookup(op1, op2);
7 if (res != NULL) return (D(opc) [res);
8 x = top var(op1, op2);
9 le=NOR (op1.x’, op2.x’, i-1);ri=NOR (op1.x, op2.x, i-1);
10 res = mldd find (le, ri, x);
11 comp insert (op1, op2, res);
12 return (D(opc) [res); g

Figure 4. Pseudocode of NOR()
Theorem 4. If DNOR (f) = ff1; � � � ; fkg [fp1; � � � ; phg
and DNOR (g) = fg1; � � � ; glg [fp1; � � � ; phg, where gi 6=
fj ; i = 1; � � � l; j = 1; � � �k, then:

1. DNOR (f + g) = (fp1; � � � ; phg[
[DNOR ([(f1 + :::+ fk)0 + (g1 + :::+ gl)0]0))0

2. Let x denote a variable, and suppose f = (x + g)0.
Then, DNOR (f) = fxg [DNOR (g0x0)

3. Letx denote a variable not in the support of f or g. Then:
DNOR (x0f +xg) = fp1; � � � ; phg[DNOR ([x0(f1 + :::+
fk)0 + x(g1 + � � �+ gl)0]0)

2

4 MLDD manipulation routines
We tested two distinct implementations of MLDDs. In

the first implementation,vertices are realized uniformly with
n-tuples, the first element being an integer, all the others be-
ing pointers to other MLDDs. In the first element we encode
the type of node (i.e., MUX or NOR vertex), the number of
elements in the n-tuple (2 for MUX vertices) and the top
variable of the function represented. In the second imple-
mentation, NOR vertices are implemented by linked lists.
Although the memory occupation of a single list is twice
than that of the corresponding array, this implementation
allows the sharing of list elements. In practice, we found
little difference in terms of CPU time or memory occupa-
tion between the two lists. In either case, we maintain the
structure in strong canonical form, (i.e., no two copies of the
same graph exist), by the usual hashing.

We implemented Boolean operation routines. Fig. (4)
reports the pseudo-code for the NOR of two functions.

NOR is invoked by the netlist parser. For each call, the
parser knows the support of the two functions and it deter-
mines an upper bound i on the recursion depth, namely, the
depth of the last variable in common between op1, op2.

The recursion is structured as follows. First, terminal
cases are identified. Some terminal cases are induced by the
decomposition. They are reported in lines 4-6 of Table (1).
In line 4, we recognize whether op1, op2 are of type

op1 = f + g::; op2 = f 0 + h+ ::::

In this case, op1', op2' contain f; f0 and we return 0.
This is more general than just checking op1 = op2'. We
also check whether one operand appears as a component of
the other. Since scanning the two lists at each recursion
step is expensive, only the first list elements are actually
compared, after the two top variables have been determined.

terminal case return value
1 op1 = 1 or op2 = 1 0
2 op1 = 0 and op2 = 0 op2’, op1’
3 op1 = op2 op1’
4 9x 2 DSD(op1');x0 2 DSD(op2') 0
5 S(op1) \ S(op2) = ; fop1, op2g
6 op1 = f(x; : : :), op2 = x ff

x
0 , xg

Table 1. Terminal cases for NOR()

In line 5, we detect if op1, op2 have disjoint support. In
this case, we create and return a 2-input NOR, with inputs
pointing to op1, op2, respectively. Since this reduces to a
test to the input parameter i, it takes constant time, regard-
less of the variable ordering. In line 6, we construct fx0 (in
time linear to the size of f , in the worst case) and return a
NOR gate representing (fx0 + x)0.

Rows 2, 3 and 4 of NOR are the application of Theorem
4, case 1. D(op) indicates the set of elements of the de-
composition of op. In a NOR vertex op, it is the set of all
outgoing pointers (n indicates set difference operation). We
seek common elements in the operands and remove them
from the recursion. This removal can result in faster execu-
tion, as the new operands have fewer variables. In practice,
only the first element of the two lists is checked, for reasons
of speed. After this removal, we check the operation to see
if it reduces again to a terminal case.

A computed table maintains partial results. It is looked
up in Line 6. The removal of common subfunctions reduces
table overwrites, as we exploit the entry F +G = H for
retrieving results of every operation of type Ff +Gf =
Hf . If the search fails, recursion starts.
� �

� �

evaltop (mldd op, boolean value) f
1 if (op is a MUX node) return (op.value);
2 i = element of op such that op.topvar = op.i.topvar;
3 opr = evaltop(op.i, value);
4 D(op) = D(op) n op.i;
5 D(res) = D(opr) [D(op);
6 return (res); g

Figure 5. Pseudocode of evaltop()

Unlike ROBDDs, cofactoring may be nontrivial. Proce-
dure evaltop(f, value) returns the cofactor fx=value
assuming x is the top variable of f . After recursion,
mldd find() creates a MLDD from a top var and its co-
factors. We now analyze in more detail cofactoring and
MLDD creation.

10

10

10

10

mldd Fb

d

c

e

10

10

10

mldd Gmldd F

10

a
10

d

c

e

b

Figure 6. An example of evaltop() application

The pseudo-code of evaltop is in Fig. (5), and Fig. (6)
illustrates its operation. evaltop() recursively goes down

� �

� �

mldd find(mldd left, mldd right, top var x) f
1 if (left == right) return (left);
2 if (right == 0) f
3 new vertex = find or create(0, 1, x);
4 D(res) = new vertex [D(right);
5 return(res);

g
6 if (right == 1) f similarly g
7 if (left == 1 or left == 0) f symmetric case g
8 D(opc) = D(left) \ D(right);
9 if (D(opc) = ;) return(find or create(left, right, x));
10 D(left) = D(left) n D(opc);
11 D(right) = D(right) n D(opc);
12 new vertex = mldd find(left, right, x);
13 D(res) = D(opc) [new vertex ;
14 return(res); g

Figure 7. Pseudocode of mldd find()

the decomposition tree (Line 3) until it reaches the MUX
node labeled with the top variable of the MLDD (Line 1).
Since each gate contains the indication of the critical input
with the top variable, only one path of the tree is traversed.
Returning from recursion, it takes the cofactor of the reached
MUX and substitutes NOR vertices with newly generated
ones, (dotted in Fig. (6.b)) while maintaining canonicity.
In practice, since often the graph of fx=value was created
by a previous computation, new gates are rarely generated.
Moreover, the recursion is typically very shallow (one or
two levels in most benchmark examples).

1

0 1

mldd F mldd G

x

x

mldd F mldd G

0

0 1

mldd F mldd G

x

x mldd Gmldd F

b)

a)

Figure 8. Identi�cation of D during traversal - ter-
minal cases

Procedure mldd find() is responsible for discovering
decompositions. Its pseudo-code is in Fig. (7). It builds
a MLDD discovering every possible ‘common term’ from
the two cofactors. It performs two distinct operations. First,
it considers cases (rows 2 to 7) in which one of the two
cofactors is a constant. For instance, rows 2 to 5 examine
the case right = 0, i.e., the function to generate is f =
x0 � left = (x+ l1 + � � �+ ln)0, where li are the components
of left. Fig. (8) shows these terminal cases.

Lines 8-13 deal with the general case. Common elements
between left and right MLDD are factored out (Fig. (9)).
This applies case 2 of Theorem 4.

As mentioned, evaltop() and mldd find() replace
cofactoring and find or create() in ROBDDs. While
these operations are constant-time in ROBDDs, they may
take O(d) time in MLDDs, where d denotes the tree depth.

0 1

x

mldd H mldd I mldd Jmldd F mldd G

mldd H

0 1

x

mldd I mldd J mldd F mldd G

Figure 9. Identi�cation of D during traversal - gen-
eral case

To this regard, we observe that d is bound by the number
of variables and it is rather small in practice.

Constant-time complementation
Complement edges (i.e.NOT gates) in ROBDDs allow us to
represent f and f 0 with the same structure, and constant-time
checking of equality f = g0 speeds up execution. NOT gates
give rise to canonicity problems, as one may have a repre-
sentation of g as NOT(f) and another representation rooted
at a ROBDD node. this problem is solved in ROBDDs by
applying appropriate rules when returning from recursion
[9]. That approach is extended to MLDDs with the help of
the following result:

Theorem 5. If a logic function F is NOR-decomposable,
then its complement F 0 is not. 2

From Theorem (5), we group functions in three classes:
decomposable, with decomposable complement, and not
decomposable. Our goal is to always represent functions
of the second class as the NOT of a function of the first
class. From Theorem (4), however, if F is in the second
class, then its cofactors must be in that class as well. Hence,
the situation prior to the call to mldd find must be as in
Fig. (10), and the standard complement edge reduction rules
apply.

10

10

10

10

Figure 10. Equivalent MLDDs

5 MLDDs vs. ROBDDs
In this section we present some comparisons in repre-

senting functions with MLDDs and ROBDDs.

Exponential growth
MLDDs are less sensitive to variable ordering. Consider the
functions:
Fn = (x1 + x2)(x3 + x4) � � � (x2n�1 + x2n) (4)

An improper ordering of the variables (for example, placing
the odd-labeled variables up top) results in a ROBDD forFn

with over 2n nodes [1]. Moreover, in spite of the simplicity
of the function, most variable orderings forFn can be proved
bad. The MLDD of the function, instead, corresponds to the
natural, 2-level NOR realization with n+1 NOR gates, and
is of size linear in the number of variables, regardless of the
variable order.

0

0

0

1

1

1

1

1

10

bb

0

0

10

a

0

B

1

A

b
0

1

a
0

0

AA

1

0 1

1

0 1

c
0 1

Aa b B a Bb A

c
0 1

a)
b)

Figure 11. a) ROBDD structure for the function of
Example (4). b) MLDD for the same function.

Example 4. Consider the function f = (a+A)(b+B)c0 +
(a + b)(A + B)c, with an ordering of variables placing c
on top. Since fc=0 6= fc=1, any ROBDD has the aspect
shown in Fig. (11.a). In general, we may think of a case
where the two cofactors look like a function fn of Eq. (4),
but with a different combination of products. Any ordering
of a;A; b; B which optimizes one branch is bound to be
sub-optimal for the other branch of the ROBDD. Fig. (11.b)
illustrates the MLDD for the same function. Both branches
are automatically decomposed optimally. 2

Sharing of logic.

Decomposition makes it possible to share blocks of logic
that could not be shared with ROBDDs:

Example 5. Fig. (12.a) shows ROBDDs of functions: F =
(x0+y0)(p+q), G = (x0+y0)(a+b), H = (p+q)(a+b). If
we have to represent those three simultaneously, whichever
order we choose, we can share at most two subgraphs, either
(a + b) or (p + q) or (x0 + y0). This is because ROBDDs
represent the AND of two disjoint-support functions putting
one above the other. The MLDD representation, instead,
can exploit maximal sharing. 2 .

0

G

1

1

0
y

x

10

0 1

0

a

b
1

0

H p

q
0

0

1

1

10

0 1

0

a

b
1

1

F
1

10

0

y

x

0

10
q

p

0 1

0

1

can be shareda) b)
x’ y’

F G H

qpa b

Figure 12. a) ROBDDs for Example (5). b) equiva-
lent MLDDs

5.1 Experimental results

We compared MLDDs against ROBDDs on a number of
benchmark circuits. Benchmarks are divided in three sec-
tions: multi-level circuits, two-level and the combinational
part of synchronous circuits [21]. For the first set of tests,
we used the Berkeley variable ordering [3], and no dynamic
reordering took place in either package. We assumed bare-
bone implementations, in which in particular each ROBDD
node takes three machine words. Moreover ROBDDs have
complement edges. For MLDD vertices we assumed an im-
plementation where each node consists of an array. The first

element stores node information, while others are pointers.
Complement edges are used for NOT gates.

CPU-time was taken on a HP Vectra 5/133 with 48Mbytes
of RAM. From Table (2), MLDDs turn out to be more com-
pact on average of 18%. Some benchmarks give particularly
good results. For example, comp and pair are decomposed
very effectively. For decomposable functions, MLDDs of-
ten result also in a better CPU time, because term sharing
can be used effectively. The largest benchmarks, however,
resistant to decomposition, and in these cases MLDDs re-
sult in larger CPU time expenditure without a significant
memory saving.

We implemented dynamic reordering in our model with
a sifting-based algorithm [13]. Over ROBDDs, we have
the advantage to know more about a ‘good variable order’
directly from the data structure.

In Table (2) we make comparisons using for each bench-
mark the order given by our sifting (interestingly, the final
ordering differs from that given for ROBDDs.) Variable
ordering took place only at the end of execution.

Results show that, after sifting, MLDDs improve slightly
further over ROBDDs. This is because during sifting we
exploit our better knowledge of the function’s structure and
can avoid to go through orderings that give a small advantage
but block further improvements.

6 Conclusions and future work

MLDDs have proved themselves efficient in making ex-
plicit the Ds of logic functions. This property allows us
to reach a more compact, flexible and robust graph-based
representation. Moreover, this representation is more infor-
mative on the role of the support variables of a function.
We expect these properties to be useful in diverse applica-
tions, most notably technology mapping for combinational
circuits and especially Boolean matching /reachability anal-
ysis for verification / ATPG in sequential circuits, where the
ability of decomposing functions in simpler blocks is useful
for drawing implications among next-state functions.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. on Computers, 35(8):677–691,
August 1986.

[2] O. Coudert and J.C. Madre. A unified framework for the
formal verification of sequential circuits. In Proc. ICCAD,
pages 126–129, November 1990.

[3] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Logic verification using binary decision dia-
grams in a logic synthesis environment. In Proc. ICCAD,
pages 6–9, November 1988.

[4] Y. Matsunaga and M. Fujita. Multi-level logic optimization
using binary decision diagrams. In Proc. ICCAD, pages 556–
559, November 1989.

[5] H. Touati, H. Savoj, B. Lin, R.K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration of
finite state machines using BDD’s. In Proc. ICCAD, pages
130–133, November 1990.

[6] R. E. Bryant. Binary decision diagrams and beyond: enabling
technologies for formal verification. In Proc. ICCAD, pages
236–243, 1995.

Berkeley ordering After dynamic reordering
Benchmark ROBDDs MLDDs ROBDDs MLDDs

nod mem CPU nod mem CPU nod mem CPU nod mem CPU
MULTILEVEL
apex6 1171 3513 0.2 903 3377 0.1 669 2007 0.1 537 2147 0.1
C1355.iscas 45922 137766 4.8 44156 150231 6.8 30460 91380 2.8 30043 95622 3.8
C432.iscas 31178 93534 4.3 16147 82676 5.9 1300 3900 0.1 2478 11054 0.8
C499.iscas 45922 137766 3.8 44156 150231 5.6 30460 91380 2.2 30043 95622 3.0
C880.iscas 12841 38523 0.8 9173 31476 1.1 6969 20907 0.4 4294 14392 0.6
comp 5476 16428 0.2 434 1459 0.3 152 456 0.0 66 381 1.4
DES 31508 94524 6.7 28185 90660 8.8 9515 28545 2.2 8058 28898 2.8
example2.blif 869 2607 0.1 223 1362 0.0 646 1938 0.1 183 1061 0.0
k2 28336 85008 3.3 27437 86341 3.8 1426 4278 0.2 617 3796 0.3
pair 41128 123384 1.4 8053 26641 1.3 6032 18096 0.6 4283 15485 1.0
rot 12537 37611 1.1 7796 27463 2.8 7069 21207 0.6 3708 14185 1.5
too large 7096 21288 2.1 4876 18153 5.6 1113 3339 0.9 578 2529 1.9
vda 4345 13035 0.2 4203 13235 0.3 534 1602 0.1 289 1648 0.1
TWOLEVEL
apex5.pla 2679 8037 1.0 1088 5259 1.2 1440 4320 1.0 881 3935 1.2
e64.pla 1441 4323 0.4 66 2404 0.2 732 2196 0.1 66 2404 0.2
misex3.pla 1301 3903 1.8 814 3929 2.3 760 2280 1.8 185 1170 1.9
misex3c.pla 828 2484 0.2 552 2571 0.3 617 1851 0.1 201 1190 0.2
sao2.pla 155 465 0.0 48 319 0.1 133 399 0.0 45 289 0.0
vg2.pla 1044 3132 0.1 520 2429 0.1 414 1242 0.1 59 403 0.1
FSM
ex1 769 2307 0.0 118 1785 0.1 639 1917 0.0 104 1568 0.1
s1196 3387 10161 0.2 2216 9523 0.3 806 2418 0.2 318 1862 0.1
s1238 3087 9261 0.2 2018 8998 0.3 813 2439 0.2 311 1812 0.1
s1494 654 1962 0.2 500 2072 0.2 468 1404 0.2 178 1156 0.2
s386 160 480 0.0 90 490 0.0 137 411 0.0 45 346 0.0
s400 180 540 0.0 96 511 0.0 148 444 0.0 91 467 0.0
s713 903 2709 0.1 228 1480 0.1 747 2241 0.1 173 1110 0.1
s820 409 1227 0.1 217 1178 0.1 280 840 0.1 90 664 0.1
s838 300 900 0.1 148 668 0.1 293 879 0.1 147 665 0.1
s953 474 1422 0.1 201 1302 0.1 498 1494 0.1 158 1081 0.1

Table 2. ROBDD vs. MLDD in size and performance

[7] F. Corno, P. Prinetto, and M. Sonza Reorda. Using symbolic
techniques to find the maximum clique in very large sparse
graphs. In Proc. EDAC, pages 320–324, March 1995.

[8] Y-T. Lai and S. Sastry. Edge-valuedbinary decision diagrams
for multi-level hierarchical verification. In Proc. DAC, pages
240–243, June 1992.

[9] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient imple-
mentation of a BDD package. In Proc. DAC, pages 40–45,
June 1990.

[10] H. Ochi, K. Yasuoka, and S. Yajima. Bredth-first manipula-
tion of very large binary decision diagrams. In Proc. DAC,
pages 48–55, November 1993.

[11] K. M. Butler, D. E. Ross, R. Kapur, and M. R. Mercer.
Heuristics to compute variable orderings for the efficient ma-
nipulation of binary decision diagrams. In Proc. DAC, pages
417–420, June 1991.

[12] S. J. Friedman and K. J. Supowit. Finding the optimal vari-
able ordering for binary decision diagrams. IEEE Trans. on
Computers, 39:710–713, 1990.

[13] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In Proc. ICCAD, pages 42–47, November
1993.

[14] U. Kebschull, E. Schubert, and W. Rosentiel. Multilevel
logic based on functional decision diagrams. In EuroDAC,
Proceedings of the European Conference on Design Automa-
tion, pages 43–47, September 1992.

[15] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A.
Perkowski. Efficient representation and manipulation of of
switching functions based on ordered kronecker functional
decision diagrams. In Proc. DAC, pages 415–419, June 1994.

[16] Kevin Karplus. Representing boolean functions with if-then-
else dags. Technical Report UCSC-CRL-88-28, Baskin Cen-
ter for ComputerEngineering & Information Sciences, 1988.

[17] S.-I. Minato. Zero-suppressed bdds for set manipulation in
combinatorial problems. In Proc. DAC, pages 272–277, June
1993.

[18] Y.-T.Lai, M. Pedram, and S. B. K. Vrudhula. Evbdd-based
algorithms for ilp, spectral trnasform and function decompo-
sition. IEEE Trans. on CAD/ICAS, 13(8):959–975, August
1994.

[19] V. Bertacco and M. Damiani. Boolean function represen-
tation using parallel-access diagrams. In Sixth Great Lakes
Symposium on VLSI, March 1996.

[20] F. Mailhot and G. DeMicheli. Algorithms for technology
mapping based on binary decision diagrams and on boolean
operations. IEEE Trans. on CAD/ICAS, pages 599–620, May
1993.

[21] S. Yang. Logic synthesis and optimization benchmark user
guide, version 3.0. MCNC, January 1991.

