
Exploiting Nonstationarity for Performance Prediction

Christopher Stewart
U. Rochester CS Dept.

stewart@cs.rochester.edu

Terence Kelly
Hewlett-Packard Labs

kterence@hpl.hp.com

Alex Zhang
Hewlett-Packard Labs

alex.zhang@hp.com

ABSTRACT
Real production applications ranging from enterprise applications
to large e-commerce sites share a crucial but seldom-noted charac-
teristic: The relative frequencies of transaction types intheir work-
loads arenonstationary, i.e., the transaction mix changes over time.
Accurately predicting application-level performance in business-
critical production applications is an increasingly important prob-
lem. However, transaction mix nonstationarity casts doubton the
practical usefulness of prediction methods that ignore this phe-
nomenon.

This paper demonstrates that transaction mix nonstationarity en-
ablesa new approach to predicting application-level performance
as a function of transaction mix. We exploit nonstationarity to
circumvent the need for invasive instrumentation and controlled
benchmarking during model calibration; our approach relies solely
on lightweight passive measurements that are routinely collected in
today’s production environments. We evaluate predictive accuracy
on two real business-critical production applications. The accuracy
of our response time predictions ranges from 10% to 16% on these
applications, and our models generalize well to workloads very dif-
ferent from those used for calibration.

We apply our technique to the challenging problem of predict-
ing the impact of application consolidation on transactionresponse
times. We calibrate models of two testbed applications running on
dedicated machines, then use the models to predict their perfor-
mance when they run together on a shared machine and serve very
different workloads. Our predictions are accurate to within 4% to
14%. Existing approaches to consolidation decision support pre-
dict post-consolidationresource utilizations. Our method allows
application-level performanceto guide consolidation decisions.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Experimentation, Management, Measurement, Performance

Keywords
enterprise, internet services, LAR regression, mutli-tier, noninva-
sive, nonstationarity, performance prediction, realistic workloads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07,March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00.

1. INTRODUCTION
Modern distributed applications continue to grow in scale and

complexity. Distributed enterprise applications are furthermore as-
suming a growing role in business-critical operations. Understand-
ing the performance of such applications is consequently increas-
ingly difficult yet increasingly important due to their economic value.
This paper considers the problem of performance predictionin dis-
tributed applications: Given forecasts of future application work-
load, we seek to predict application-level response times.A good
solution to this problem will enable operators to explore a wide
range of important “what-if” scenarios, e.g., “How will response
times change if the the number visitors at my Web site doublesand
the buy:browse ratio increases by 50%?” We do not address the
complementary problem of workload forecasting, but we showthat
if accurate workload forecasts are available they can be mapped
directly to accurate performance predictions.

The workloads of the real production applications that we seek to
model share a crucial but seldom-noted characteristic: thetransac-
tion mixes in these workloads are highlynonstationaryin the sense
that the relative frequencies of transaction types vary considerably
over time. This is a problem for most conventional performance
models, which implicitly assume that transaction mix is stationary,
because the system resource demands of different transaction types
are usually very different in real applications.

Our approach leverages earlier work that focused on retrospec-
tively explainingperformance in terms of transaction mix [23]. We
incorporate queueing-theoretic extensions into the earlier technique
to obtain a method suitable for prospectivelypredictingfuture per-
formance as a function of transaction mix. One novel featureof
our approach is that whereas performance models in prior systems
literature include ascalar measure of workload intensity, we de-
scribe workload using a transaction-mixvector. Another novel fea-
ture is that we exploit transaction mix nonstationarity to circumvent
the need for invasive instrumentation and controlled benchmarking
during model calibration.

Our approach is practical for real production systems and can
be applied to a wide range of applications. Our models are cal-
ibrated using purely passive measurements that are routinely col-
lected in today’s real production applications. Furthermore, they
work well under a wide range of workload conditions and a wide
variety of application architectures, including locally distributed
multi-tier E-commerce applications and globally-distributed high-
availability enterprise applications.

We compare our proposed method with several alternatives, eval-
uating their ability to predict response times in two very different
real production applications: the Web shopping site of a major re-
tailer and a business-critical internal enterprise application. Our
method accurately predicts response times for both applications.

Furthermore our performance models generalize well to regions of
workload space very different from those present in the calibration
data. We demonstrate that transaction mix models achieve sub-
stantially greater accuracy than similar models that employ scalar
measures of workload intensity.

Finally, we apply our method to the challenging problem of pre-
dicting response times in applications that areconsolidatedonto a
shared infrastructure, subject to a severe handicap: we must cal-
ibrate our models using only lightweight passive observations of
the applications running on dedicated machines prior to consoli-
dation. We evaluate our performance predictions in consolidated
environments using a testbed of benchmark applications, since real
production applications were unavailable for experimentation. Our
predictions are remarkably accurate according to two measures that
penalize inaccuracy in very different ways. The current state of the
art in consolidation decision support both in practice and in the re-
search literature predicts theresource utilizationeffects of consoli-
dation. We present a practical way to incorporateapplication-level
performanceinto consolidation decision-making.

The remainder of this paper is organized as follows: Section2
describes the prevalence of transaction mix nonstationarity in real-
world workloads, the problems it poses for many conventional per-
formance models, and the opportunities it creates that we exploit.
Section 3 presents our approach to performance prediction,defines
our main accuracy measure, and describes an accuracy-maximizing
model calibration procedure. Section 4 describes the applications
used in our tests and presents empirical results on the accuracy of
our predictions. Section 5 applies our models to the challenging
problem of predicting the performance of applications thatare con-
solidated onto a shared infrastructure. Section 6 reviews related
work, and Section 7 concludes with a discussion.

2. TRANSACTION MIX NONSTATIONAR-
ITY IN REAL WORKLOADS

It is well known that thevolumeof demand in production appli-
cations naturally fluctuates on several time scales (e.g., daily and
weekly cycles). Similarly, there is little reason for the transaction
mix of real applications to remain constant over time. In this sec-
tion, we describetransaction mix nonstationarityin two real pro-
duction applications (Section 4.1 describes the applications them-
selves in detail). An investigation into the factors that influence
nonstationarity in real applications is orthogonal to our goal of per-
formance prediction, so we leave it for future work.

Figures 1 and 2 illustrate time variations in transaction mix. The
first is a scatterplot of the relative frequencies of the two most com-
mon transaction types of the “VDR” application in 5-minute time
windows. Note that nearly every possible combination is present
(the upper right corner of the plot must be empty because the sum
of the two fractions cannot exceed 1). Figure 2 is a time series
of the fraction of “ACME” transactions that are of type “add-to-
cart” in 5-minute windows. It shows that this fraction varies over
two orders of magnitude during a four-day period (note that the
vertical scale is logarithmic). The transaction mix nonstationarity
evident in these figures is not an artifact of 5-minute time windows;
it remains when we aggregate measurements into much longer in-
tervals. Figure 4 shows the fraction of VDR transactions dueto the
most common transaction type in hour-long windows over a period
of several days; the fraction ranges from less than 5% to over50%.
Plots using longer aggregation intervals are qualitatively similar.

One implication of transaction mix nonstationarity is thatthe full
spectrum of workloads for which we must predict performancemay
not be available during model calibration. Performance models

must thereforegeneralizewell to workloads that are very different
from those used for calibration. Furthermore, a convincingvali-
dation of a performance prediction method requires nonstationary
workloads, because stationary workloads differ qualitatively from
real-world workloads.

Synthetic workload generators used in benchmarking and sys-
tems research typically employ first-order Markov models todeter-
mine the sequence of transactions submitted by client emulators;
examples include the standard TPC-W workload generator [47] and
the RUBiS workload generator [38]. This approach cannot yield
the kind of markedly nonstationary workloads that we observe in
real production applications, because the long-term relative state
occupancy probabilities of first-order Markov processes are station-
ary [43]. Figure 5 shows the relative fractions of the two most com-
mon transaction types in the workload generated by the default RU-
BiS generator during a 5-hour run, in 5-minute windows.Nearly
all of the 60+ data points lie on top of one another. Plots of differ-
ent transaction type pairs aggregated into different time windows
are qualitatively similar.

What are the implications of nonstationarity for performance
modeling? We define ascalar performance modelas one that ig-
nores transaction mix in workload and instead considers only a
scalar measure of workload intensity, e.g., arrival rate. Nonstation-
arity clearly poses serious problems for scalar performance mod-
els. For example, consider an application whose workload consists
of equal numbers of two transaction types: type A, which places
heavy demands on system resources, and type B, which has light
demands. Suppose that we want to predict the application’s perfor-
mance if the total number of transactions increases by 50%. Scalar
models may work well if the relative proportion of the two trans-
action types remains equal. However such models are unlikely to
yield accurate predictions if the transaction mix changes:Perfor-
mance will differ dramatically if the number of type-A transactions
doubles and the number of type-B remains constant, or vice versa.
Of course, evaluations of scalar performance models using first-
order Markov workload generators will not expose this problem.
Stationary test workloads mask the deficiencies of scalar perfor-
mance models.

This paper employstransaction mix modelsthat predict application-
level performance based on transaction counts by type. These mod-
els have a number of attractive features: they are “semantically
clear” in the sense that their free parameters have intuitive interpre-
tations; they yield accurate performance predictions under a wide
range of circumstances; and the computational procedures used for
model calibration are fairly straightforward. However it is non-
stationarity that makes our approach particularly practical, because
nonstationarity allows us to calibrate our models using only light-
weight passive measurements that are collected in today’s real pro-
duction environments. We describe the opportunities that nonsta-
tionarity creates for calibration in greater detail in Section 3.5, after
we describe our performance models.

3. TRANSACTION MIX MODELS
This section describes our transaction mix performance models

and several variants and alternatives against which we shall later
compare them. All models have the same general high-level form:

P = F~a(~W) (1)

whereP is a scalar summary of application performance,F spec-
ifies the functional form of our models,~a is a vector of calibrated
parameter values, and~W is a vector of workload characteristics.
This section explains the development of our approach. Section 3.1
justifies our basic assumptions in terms of the measured properties

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

fr
ac

tio
n

of
 2

nd
 m

os
t p

op
ul

ar
 tr

an
sa

ct
io

n

fraction of most popular transaction

 0.001

 0.01

 0.1

 1

 0 24 48 72 96 120

fr
ac

tio
n

ad
d-

to
-c

ar
t

time (hours)

 0

 0.25

 0.5

 0.75

 1

 0 10 20 30 40 50 60 70 80 90 100

P
[X

<
=

x]

utilization seen by arriving transactions

ACME CPU

VDR CPU

ACME
disk

Figure 1: Fractions of VDR transactions,
two most common types. Each point rep-
resents a different 5-minute interval.

Figure 2: Fraction of ACME “add-to-
cart” transactions vs. time. Each point
represents a different 5-minute interval.

Figure 3: CDFs of resource utilizations
encountered by arriving transactions in
ACME and VDR applications.

 0
 0.25
 0.5

 0.75

 0 20 40 60 80 100 120 140 160 180 200
 0
 2000
 4000
 6000
 8000

fr
ac

tio
n

du
e

to
m

os
t p

op
ul

ar
 ty

pe

tr

an
sa

ct
io

ns
du

rin
g

ho
ur

time (hours)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

fr
ac

tio
n

2n
d

m
os

t p
op

ul
ar

 ty
pe

fraction most popular type

Figure 4: Fraction of VDR transactions due to most common
type (heavy line); total transaction volume (light line), 1-hr win-
dows.

Figure 5: Fraction of RUBiS transactions due to two most com-
mon types using default generator. The figure is not empty;
note the tight cluster of points at coordinates (0.3, 0.3). This
workload is highly stationary.

of real applications. Section 3.2 presents our performancemodels.
Section 3.4 defines the accuracy measure that we seek to optimize,
and Section 3.5 explains how we calibrate our models to maximize
accuracy according to this measure.

3.1 Assumptions
We begin with the following observations about modern dis-

tributed applications:

1. Workload consists of request-replytransactions.
2. Transactions occur in a small number oftypes(e.g., “log

in,” “browse,” “add-to-cart,” “checkout” for an E-commerce
site).

3. Transaction types strongly influence system resource demands
(e.g., “checkout” transactions at an E-commerce site require
more CPU than browsing).

4. Resources are adequately provisioned or over-provisioned in
business-critical production applications.

5. Transaction mix is nonstationary.

The first two observations apply to every commercially-important
distributed production application that we have encountered. The
third property arises because transaction types often determine the
run-time code path through application logic, which in turnstrongly
influences resource service demands. The fourth property, ade-
quate resource provisioning, is a fundamental requirementof ca-
pacity planning in business-critical applications. By design, allo-
cated capacity is generous relative to offered workload; heavy load
and overload represent serious failures of the capacity planning pro-
cess. Fortunately such failures are rare because capacity planning
for intra-enterprise applications can often exploit good estimates of
the total user population and anticipated usage patterns.

Even in server-consolidation scenarios where elevating resource
utilization is an explicit goal, practitioners are advisedto keeppeak
utilizations of resources such as CPU below 70% [14]. In practice,
enterprise system operators are typically even more cautious than

this conservative guideline. Figure 3 shows cumulative distribu-
tions of resource utilizations encountered by arriving transactions
in the two distributed production applications used in our investiga-
tion, “ACME” and “VDR.” Transactions arriving at these two very
different applications operated by two different firms rarely find uti-
lization at any resource in excess of 35%; utilization greater than
50% is almost never encountered. This implies that whilequeueing
times at resources such as CPUs and disks should not be ignored,
servicetimes will often account for much of overall transaction re-
sponse times. Another implication is that non-queueing congestion
effects associated with very heavy load, e.g., cache interference,
are likely to be rare in practice.

Together with our first three assumptions, Figure 3 suggestsa
radically simple performance model that accounts for transaction
service times but ignores queueing entirely. Our previous work re-
ports that such a model works surprisingly well in practice.Specif-
ically, the sum of response times across all transactions within a
specified time interval is well explained by transaction mixalone [23].
However, Figure 3 also suggests that waiting times are sometimes
non-negligible, and our approach in this paper models waiting times.

In summary, we observe that transaction mix alone is a powerful
performance predictor; it will be the~W of Equation 1. We have
also seen that queueing can be non-negligible, and our models will
explicitly account for waiting times in addition to servicetimes.
Our performance measureP will be aggregate transaction response
time within short time windows (e.g., 5-minute intervals);this can
easily be converted toaverageresponse time because we know the
number of transactions within each window. After specifying the
form of our modelsF and defining our measures of model accuracy,
we describe how to obtain accuracy-maximizing parameters~a by
exploiting naturally-occurring nonstationarity.

3.2 Models
This section develops a series of three performance models of

increasing sophistication and breadth of applicability. The Basic

model of Section 3.2.1 takes into account transaction mix alone; it
is taken from previous work [23]. Section 3.2.2 extends the Ba-
sic model to explicitly incorporate queueing delays. The Extended
model does not conform to the template of Equation 1, however,
because its inputs include resource utilizations as well astransac-
tion mix. While the Extended model may offer improved accuracy
when used to retrospectivelyexplainperformance, it cannot be used
to predictperformance given workload forecasts alone. The Com-
posite model of Section 3.2.3 corrects this deficiency by modeling
resource utilizations in terms of transaction mix and incorporating
the utilizations thus obtained into the Extended model. Finally, our
empirical evaluations will include variants of the Basic, Extended,
and Composite models that use only a scalar measure of workload
intensity rather than a vector describing transaction mix.

3.2.1 Basic Model
We divide time into short non-overlapping intervals, e.g.,5 min-

utes. For intervali let Ni j denote the number of transactions of type
j that began during the interval and letTi j denote the sum of their
response times. Our Basic model has the form

yi = ∑
j

Ti j = ∑
j

α jNi j (2)

whereyi is the sum of all transaction response times during inter-
val i. Note that no intercept term is present in Equation 2, i.e.,
we constrain the model to pass through the origin: Aggregatere-
sponse time must be zero for intervals with no transactions.Values
of model parametersα j are obtained through model calibration; let
a j denote these calibrated values. Intuitively, calibrated parameters
a j represent typicalservicetimes for the various transaction types,
summed over all service and delay centers on the transaction’s ex-
ecution path.

For given model parametersa j and observed transaction mixNi j
at timei, let

ŷi = F~a(~Ni) = ∑
j

a jNi j (3)

denote thefitted valueof the model at timei. If the Ni j repre-
sent past workload, ˆyi can be interpreted as the model’s guess of
what aggregate response time should have been during interval i.
If instead the given transaction mix is a forecast of future work-
load, the fitted value represents the model’s performance predic-
tion. Note that since the total number of transactions within an in-
terval is known—it is simply∑ j Ni j —one can convert a fitted value
ŷi representingaggregateresponse time into anaverageresponse
time.

Our Basic model can be thought of as an open queueing net-
work containing a single service station with an infinite number of
servers. Waiting cannot occur in such a system, and Equation2
does not explicitly model waiting times.

3.2.2 Extended Model
We extend the Basic model of Equation 2 by adding terms rep-

resenting waiting times, as follows:

yi =
n

∑
j=1

α jNi j +∑
r

(

1
λi

·
U2

ir

1−Uir

)

·
n

∑
j=1

Ni j . (4)

The rightmost term represents waiting times in an M/M/1 queue,
with one queue per resource;Uir denotes the utilization of resource
r during intervali. The naı̈ve approach of adding utilizations as
simple linear terms has no basis in queueing theory, but we shall
compare our approach with this alternative (see the discussion of
Table 4 in Section 4.2.1).

CPU

Network

Disk

CPU

Network

Disk

App Server DB Server

Figure 6: Extended queueing model: One station per resource
at each tier.

To derive Equation 4, we note that the term1λi
·

U2
ir

1−Uir
represents

the average waiting time (per transaction at resourcer over inter-
val i) in an M/M/1 queueing model, whereλi is the arrival rate
of transactions of all types in intervali. We multiply this term by
the number of transactions of all types in intervali to obtain the
sum of waiting times, to agree with the left-hand-side of theequa-
tion. Realizing thatλi = ∑n

j=1 Ni j /L whereL is the interval length
in seconds, one can further simplify the sum-of-waiting-time term

to ∑r L ·
U2

ir
1−Uir

. Finally, since the sum-of-waiting-time term on the
right-hand-side of Equation 4 does not involve any unknown pa-

rametersα j , one can regresszi ≡ yi −∑r L ·
U2

ir
1−Uir

against the trans-
action mix∑n

j=1 α jNi j .
Figure 6 depicts our Extended model as an open queueing net-

work consisting of a single-server station for each resource (e.g.,
CPU, disk, network) at each tier (e.g., application server,database
server). Although the figure shows only two tiers with three re-
sources each, the model can accommodate additional tiers (e.g., for
a Web server) and additional resources. The Extended model cap-
tures the distributed aspect of an application by explicitly including
network queueing effects.

3.2.3 Composite Model
Because it relies on resource utilizations, the Extended model of

Equation 4 cannot be used to predict performance based on transac-
tion mix Ni j alone. Our Composite model overcomes this difficulty
by estimating utilizations as weighted sums of transactioncounts:

Uir = β0r +∑
j

β jr Ni j (5)

whereβ jr represents the service demand of transaction typej on
resourcer. The total service demand placed on the resource is
the sum of service demands of all transaction types. As with the
Basic response time model of Section 3.2.1, we obtain for each
resourcer parametersb jr corresponding to theβ jr during model
calibration. Unlike the model of Equation 2, however, we include
an intercept termβ0r in our utilization models, because real system
resources are not entirely idle even in the complete absenceof ap-
plication workload. Equation 5 generalizes the familiar Utilization
Law; specifically, it reduces to the Utilization Law in the special
case of one transaction type and no intercept term.

Once we have obtained utilization estimatesÛir from a calibrated
utilizationmodel (Equation 5), we substitute these into a calibrated
Extendedmodel to obtain aCompositemodel of aggregate response
time as a function of transaction mixNi j . In rare cases wherêUir <

0 or Ûir ≥ 1, we correct the utilization estimate to zero or 1− ε,
respectively.

3.2.4 Scalar Models
Recent queueing models of distributed application performance

rely on ascalarmeasure of workload intensity that ignores transac-
tion types [41,48]. What additional predictive power do we obtain
by using a transaction-mix vector? To address this question, our
empirical evaluations will compare our models with Scalar variants

that use only the totalnumberof transactions in each time interval.
For example, the Scalar variant of the Basic model is

yi = ∑
j

Ti j = αNi (6)

whereNi = ∑ j Ni j is the total number of transactions that occurred
during time intervali.

3.3 Discussion
Our approach contains a number of simplifications that deserve

mention. We account for waiting times at each resource usingan
expression for a single-server queue, whereas many real production
applications run on systems with multiple CPUs and disks at each
tier. Previous work made similar simplifying assumptions [41],
and we find that in practice this approach works well. Our model
assumes an open network in which requests exit after service. A
closed network model would require us to model client “thinktimes,”
as in some previous models of distributed applications [28,48].

Our queueing networks implicitly assume that transactionsdo
not recirculate among resources; our models aggregate all service
times from all of a transaction’s visits to a resource, rather than
explicitly modeling visits separately. More sophisticated queueing
models take into account recirculation among service stations [20],
but such models require detailed information about how transac-
tions move among resources, which is often not available in prac-
tice. Tools to gather this information exist as research prototypes,
e.g., Magpie [7], but few real production systems are currently in-
strumented to measure fine-grained transaction resource visits. We
have designed our models to require for calibration only data that
is routinely collected on today’s real production applications.

Our use of open queuing network models is in part motivated by
practical considerations: It is often difficult in practiceto obtain
for real production applications the client session information re-
quired to calibrate closed models, and therefore the use of an open
model facilitates more thorough empirical validation thanwould be
possible if we employed a closed model. However there are good
reasons for preferring open models for their own sake, e.g.,they
are relatively simple. More importantly, open models are more ap-
propriate if transient overloads are possible because openmodels
do not inherently restrict the number of concurrent transactions in
a system. See Schroederet al. for a detailed discussion of the im-
plications of open versus closed models [40].

For all of the production and testbed applications considered in
this paper, transaction types are given—they can easily be inferred
by, e.g., inspecting the request URL. In our experience suchtrans-
action type information is sufficient for our method and is readily
available in practice. Our approach remains applicable if transac-
tion types are not given as long as a classifier can be constructed
that maps transactions to types that reflect their system resource
service demands. Transaction type classification is an orthogonal
problem to our modeling interests and has been the subject ofex-
tensive research (see Section 6.1).

We have implicitly assumed that an application’s set of transac-
tion types is fixed and the relationship between transactiontype and
resource demands is stable. This is not a restrictive assumption in
practice because the time required to re-calibrate new performance
models is short compared to the time scales on which application
logic and transaction structure changes. In our experiencewith
real production applications in the enterprise, changes toapplica-
tion structure and configuration are normally rare; stakeholders in
business-critical applications do not undertake such modifications
lightly or frequently. Even if transaction types or their resource de-
mands change completely, it takes only a day or two to gather suf-

ficient data to calibrate completely new performance models. Less
drastic changes are easier to handle: Model calibration itself takes
less than a second, and therefore continuous re-calibration (e.g.,
at the conclusion of every 5-minute measurement interval) can be
used to track gradual drift in the workload/performance relation-
ship.

A final simplification is that our models ignore interaction ef-
fects across transaction types and implicitly assume that queueing
is the only manifestation of congestion. However queueing does
not describe certain kinds of resource contention, e.g., cache inter-
ference. “Checkout” transactions, for instance, may require more
CPUservicetime during heavy browsing if the latter reduces pro-
cessor cache hit rates for the former. Our models do not account
for such effects. The question of whether our simplifying assump-
tions areoversimplificationsis ultimately an empirical one, which
we address in Section 4.

3.4 Accuracy Measures
If yi is the actual measured aggregate response time during in-

terval i and ŷi is the fitted value obtained from a calibrated per-
formance model, letei = yi − ŷi denote theresidual (model error)
at time i. We measure model accuracy in terms of intuitive func-
tions of the residuals. We cannot use the conventional coefficient of
multiple determinationR2 to assess model accuracy; it is not mean-
ingful because Equation 2 and Equation 4 lack intercept terms [33,
p. 163].

Our overall figure of merit, normalized aggregate error, general-
izes the familiar, intuitive concept of absolute percent error:

normalized aggregate error≡
∑i |ei |

∑i yi
(7)

Consider, for example, asingle(y, ŷ) pair: if y = 100 and ˆy = 105,
then normalized aggregate error is 0.05, indicating that the model’s
prediction is off by 5%. We say that model parameters for Equa-
tion 2 or Equation 4 areoptimal if they minimize error as defined
by Equation 7.

In addition to our overall figure of merit we shall also report
the distribution of normalized residuals|ei |/yi , scatterplots of(y, ŷ)
pairs, and order statistics on the normalized residuals. Each of these
measures offers different insight into model accuracy and penal-
izes inaccuracy in a different way. For example, the distribution
of |ei |/yi penalizes even small residuals if the corresponding mea-
surements are small, whereas Equation 7 penalizes residuals whose
magnitude is large even if|ei | is small relative to the corresponding
yi . A good model is accurate according to both measures.

3.5 Calibration
The input to calibration is a data set consisting of aggregate re-

sponse timesyi and transaction mixes~Ni = (Ni1,Ni2, . . .). For our
Extended and Composite models we furthermore require resource
utilizationsUir . These inputs correspond to readily available and
purely passive measurements of applications and their underlying
system resources. A good rule of thumb is that model calibra-
tion requires roughly ten times as many measurement intervals i
as transaction types [33]. If measurements are taken at 5-minute
intervals, a few days suffice to collect enough data to calibrate our
models of the production applications that we study.

The output of calibration is a set of calibrated parameter values
a j corresponding to theα j parameters of the Basic and Extended
models and, for a Composite model, calibrated parameter values
b jr corresponding to theβ j parameters of the utilization model
(Equation 5).

The goal of calibration is to compute parameters that maximize
model accuracy. The denominator in Equation 7 is a constant,so
to achieve optimal accuracy a calibrated model must minimize the
numerator, i.e., the sum of absolute residuals. This is a special
case of linear programming, for which specialized variantsof the
simplex algorithm have been developed; we use the algorithmof
Barrodale & Roberts [8]. The algorithm yields model parameters
that optimize retrospective explanatory accuracy with respect to the
data used for calibration. This exercise is sometimes knownas
least absolute residuals(LAR) regression. Ordinary least squares
(OLS) regression minimizes the sum ofsquaredresiduals, and it
can be shown that a model with OLS parameters can havearbitrar-
ily worseaccuracy than an optimal model according to the measure
of Equation 7. In practice we find that LAR-calibrated modelsare
more accurate than their OLS-calibrated counterparts.

Another advantage of LAR is that it isrobust, i.e., it resists the
influence of extreme values in the calibration data set. By contrast,
OLS is far more sensitive to distortion by outliers. A wide variety
of robust regression procedures are available; several arevariants
of OLS and LAR [34, 52]. We prefer plain-vanilla LAR because
it guarantees optimal retrospective accuracy, because it is concep-
tually simple and easy to explain, and because it involves notun-
able parameters. The only disadvantage of LAR is that numerical
solvers are not as widely available. However, as reported previ-
ously, the accuracy gain over OLS outweighs the inconvenience
of LAR [23]. A final advantage of using linear programming for
model calibration is that it is easy to add additional constraints,
e.g., on the values of parameters. Extensions of elementarysta-
tistical techniques such as least-squares regression can sometimes
achieve similar capabilities, but in our experience they donot offer
the generality, convenience, and flexibility of linear programming.

3.5.1 The Role of Nonstationarity
Model calibration in our approach exploits variations in transac-

tion volume, transaction mix, and resource utilization in the calibra-
tion data—i.e., the kind of nonstationarity found in real workloads.
At the other extreme, it is easy to show that lightweight passive
measurements of response times and utilizations collectedunder
perfectlystationaryworkload cannot be used for model calibration.
The essential difficulty is that the optimization problem that the re-
gression procedure seeks to solve lacks a unique solution. Typical
implementations of OLS regression, for example, fail in such cases
because they attempt to invert a singular (non-invertible)matrix.

A simple example conveys intuition for the insurmountable prob-
lems created by perfectly stationary transaction mix. Consider the
following utilization and transaction mix measurements:

time utilization number of transactions
interval i U type A type B

1 u1 5 7
2 u2 10 14
3 u3 15 21
4 u4 20 28

These data cannot be used to calibrate a utilization model (Equa-
tion 5) regardless of the calibration procedure used, andregardless
of the utilization measurements ui . The problem is that the transac-
tion count information is essentially the same in each row because
the counts in rows 2 through 4 are multiples of those in row 1 and
the A:B ratio is everywhere the same—i.e., the transaction mix is
stationary. This makes it impossible to determine whether Ais a
heavyweight transaction and B is lightweight or vice versa.The
situation is the same if the data include aggregate responsetimes
rather than utilization measurements and our goal is to calibrate a
Basic model (Equation 2) or an Extended model (Equation 4).

If a first-order Markov model generates workload for calibration
and if measurement intervals contain a reasonably large number of
requests, the result will almost certainly benearly-stationarywork-
load. This in turn causesmulticollinearity, a regression pathology
that arises when predictor variables are mutually correlated. The
net effect is that predictive accuracy will suffer regardless of the
regression procedure used. On the other hand, our empiricalresults
show that naturally-occurring workloads have sufficient transaction
mix nonstationarity to allow us to calibrate very accurate models
using passive measurements of utilizations and response times.

In summary, the nonstationarity of real workloads makes pos-
sible our lightweight model calibration approach, which relies on
passive measurements and requires no invasive system or applica-
tion instrumentation or controlled benchmarking.Nonstationarity
allows model calibration to substitute data analysis for invasive
measurement.

4. VALIDATION
We calibrate our models and evaluate their retrospective explana-

tory accuracy on the first half of each validation data set. Wethen
apply the calibrated models to the transaction mix in each time in-
terval i of the second half to obtain fitted values ˆyi . Finally, we
compare these ˆyi with observedyi to evaluate prospective predic-
tion accuracy. This section first describes the two real production
data sets used in our evaluation and an additional data set collected
in a lab environment, then presents our results.

4.1 Data Sets
Table 1 summarizes our data sets. The first two were collected

on distributed production applications serving real customers and
real enterprise users, respectively. Together these data sets severely
challenge the ability of our method to generalize along several di-
mensions. They differ in terms of the nature of the application,
the extent of geographic distribution, and workload. Theirwork-
loads exhibit the nonstationarities described in Section 2. Due to
space limitations we provide an abbreviated description ofthe data
sets here; additional information on all three data sets is available
in [24].

Pronounced workload periodicity is present in all of our data
sets. Referring to the light data series and right-hand vertical axis
in Figure 4, we see that workload ranges from under 100 to roughly
7,300 transactions per hour. The ACME data set shows a similar
daily cycle with comparably wide variation. Other periodicities and
nonstationarities are present in all of our data sets.

4.1.1 ACME: DotCom-Era Web Shopping
The “ACME” data set is taken from the busiest of seven servers

comprising a major US retailer’s Web shopping site. This server ac-
counts for roughly 38% of all ACME transactions during the mea-
surement period. ACME was typical of large E-commerce sites
circa 2000. For confidentiality reasons, the researchers who stud-
ied the ACME site were not permitted to disclose the details of its
hardware and software infrastructure. However, an extensive work-
load characterization is available [3]. The ACME data set includes
measurements of transaction response times and system resource
utilizations collected at the application server tier; it does not in-
clude requests for static Web pages. Each transaction is further-
more tagged as a cache hit or a miss, and we treat hits and misses
of the same transaction type as two different types.

4.1.2 VDR: Modern Enterprise Application
Figure 7 depicts the architecture of the globally-distributed VDR

application. VDR is a high-availability business-critical internal

Data Production Transactions: Trans’ns/min Resp time (sec) Type of
Set Dates Duration Number Types Mean Median Mean Median Application

ACME July 2000 4.6 days 1,180,430 93 182.2 183.0 0.929 0.437 Web Retail Shopping
VDR Jan 2005 7.8 days 666,293 37 59.4 56.4 1.289 1.236 Business-critical Enterprise

PetStore April 2004 38 hours 4,920,642 10 2147.8 3163.8 0.096 0.040 Sample application

Table 1: Summary of production data sets.

client client client

WAN

App Srvr App Srvr

Load
balancer

Primary DB Backup DB

client client client

WAN

App Srvr App Srvr

Load
balancer

Primary DB Backup DB

client client client

WAN

App Srvr App Srvr

Load
balancer

Primary DB Backup DB

WAN
Oracle DB replication

AMERICAS EUROPE ASIA

DB failover DB failover

M
an

ag
ed

 A
pp

 S
er

ve
r

P
ro

vi
de

r

Figure 7: VDR application architecture.

HP application serving both external customers and HP userson
six continents. Its system architecture therefore incorporates re-
dundancy and fail-over features both locally and globally.Regional
hubs in Atlanta, Swindon, and Singapore respectively servethe
Americas, Europe, and Asia regions. All application serverhosts
are HP 9000/800 servers running HP-UX B.11.11. The Americas
region has two such hosts with 16 CPUs and 64 GB RAM each.
The European region has three, with 16 CPUs and 32 GB RAM
each, and the Asia region has two, with 12 CPUs and 20 GB RAM
each. All of the app servers ran BEA WebLogic. We have less
detailed information about hosts at the database tier, but we know
that they are similar in number and specifications to those atthe
app server tier and that they ran Oracle 9i.

VDR operators and system architects have told us that VDR
transactions are relatively “heavyweight” in the sense that they place
substantial demands on system resources. The VDR data set in-
cludes both transaction records and system resource utilization mea-
surements collected atbothapplication server and database server
tiers, derived respectively from application-level logs and Open-
View Performance Agent (OVPA).

4.1.3 PetStore: Sample Application
The PetStore data set was collected on a testbed applicationserv-

ing a highly variable and highly nonstationary workload. The total
request rate and the ratios of transaction type frequenciesvary si-
nusoidally, and the total rate increases over time so that the peaks
represent transient overloads (“flash crowds”) during which offered
workload exceeds the system capacity. Our models implicitly as-
sume that load doesnot exceed system capacity, so this data set
provides an extraordinary challenge to our approach. The PetStore
data set and the environment in which it was collected are described
in detail in earlier publications [15,24]; due to space limitations we
do not repeat these descriptions here. The PetStore data setwas
generated long before the present investigation began and therefore
was not (consciously or otherwise) tailored to the methodology pro-
posed in this paper.

4.2 Results
We calibrate our models on the first half of each data set, and

also measure their retrospective explanatory accuracy on the first
half. We then evaluate the predictive accuracy of the calibrated
models using the transaction mixes in the second half of eachdata
set. Transaction mix nonstationarity therefore implies that predic-

VDR ACME PetStore
Scalar TMIX Scalar TMIX Scalar TMIX

Basic
OLS 0.1485 0.1002 0.2034 0.1308 0.4403 0.3605
LAR 0.1462 0.0940 0.2029 0.1281 0.3646 0.3230

Extended
OLS 0.1478 0.0997 0.2012 0.1213 0.2320 0.2897
LAR 0.1454 0.0936 0.2006 0.1185 0.1978 0.2221

Table 2: Retrospective explanatory accuracy: Normalized ag-
gregate error ∑i |ei |/∑i yi .

tive evaluations will involve workloads different than those used
in calibration. Nonstationarities provide a challenging and credi-
ble evaluation of the extent to which models generalize beyond the
calibration data.

4.2.1 Retrospective Explanation
Table 2 summarizes the explanatory accuracy of eight models

on our three data sets according to our overall figure of merit, nor-
malized aggregate error (Equation 7). The table includes both the
standard transaction mix model (TMIX) versions of our Basicand
Extended models as well as Scalar variants that ignore transaction
types and use only the total number of transactions. Both OLSand
LAR regression are used to calibrate each model variant.

First, the transaction mix models consistently outperformtheir
scalar counterparts by a wide margin for the production datasets:
15% vs. 10% error for VDR and 20% vs. 13% error for ACME
regardless of the calibration procedure. Even for the deliberately
overloaded PetStore, which violates flow balance, the Extended
transaction mix model calibrated with LAR has only a 22% error.
We achieve substantially greater accuracy by exploiting transac-
tion mix.

Second, the Extended model, which accounts for queueing, out-
performs the Basic model, which does not. Our Basic model achieves
nearly the same accuracy for both production applications as the
Extended model. This is what we expect because queueing is de-
liberately minimized in production applications (see Figure 3 and
the discussion in Section 3.1). For the heavily-loaded PetStore data,
in which queueing is a first-order effect, the Extended modelper-
forms substantially better than the Basic model (22% vs. 32%when
LAR is used).

Third, normalized aggregate error is lower when LAR regression
is used. Outliers (extreme data values) are present in both data sets
and are particularly numerous and large in the PetStore data. LAR
is a robust estimation procedure and is less sensitive to outliers than
OLS, and therefore yields more accurate models according toour
accuracy measure.

We also evaluated model variants that include an intercept term
in Equations 2 and 4. Such models are “wrong” from a queueing-
theoretic perspective because they imply nonzero aggregate response
times even when no transactions occur. However an interceptcan
increase retrospective accuracy but cannot reduce it, so wemight
be tempted to include one if we are willing to trade “sanity” for
accuracy. We found that the benefits of including an intercept are
very limited, and that the principled models with no intercept are
nearly as accurate.

0.1

1

10

102

103

104

105

0.1 1 10 102 103 104 105fit
te

d
su

m
 o

f r
es

po
ns

e
tim

es
 (

se
co

nd
s)

actual sum of response times (seconds)

normal
episode 1
episode 2
episode 3

y = x
y = x/2
y = 2x

Figure 8: A performance anomaly in the “FT” application.

VDR ACME PetStore
Scalar TMIX Scalar TMIX Scalar TMIX

∑i |ei |
∑i yi

Basic 0.1621 0.1226 0.1749 0.1470 0.6528 0.6257
Composite 0.1606 0.1218 0.1723 0.1305 0.3702 0.4173
median
|ei |/yi

Basic 0.1418 0.0963 0.1724 0.1378 0.5247 0.5056
Composite 0.1420 0.0931 0.1664 0.1230 0.1708 0.2365

Table 3: Prospective prediction accuracy: Normalized aggre-
gate error ∑i |ei |/∑i yi and median|ei |/yi .

4.2.2 Application: Performance Anomaly Detection
Our previous work explains how accurate retrospective explana-

tory performance models can be useful [23]. The most obviousap-
plication isperformance anomaly detection, i.e., identifying when
performance is surprising, given workload. Knowing whether work-
load explains performance can guide our choice of diagnostic tools:
Ordinary overload might recommend bottleneck analysis, whereas
degraded performancenot explained by workload might suggest a
fault in application logic or configuration.

We have shown that a real performance bug episode in a real
distributed production application appears as a prominentperfor-
mance anomaly. Figure 8 shows a scatterplot of(yi , ŷi) pairs gen-
erated by a Basic model of the “FT” application during a period
when application operators reported episodes of a performance bug
due to a misconfiguration in a concurrency parameter. One episode
corresponds to the prominent clusters of points in the lowerright
corner of the figure. FT is a globally-distributed enterprise applica-
tion that resembles VDR in several respects. See [23] for details on
the FT application and on this case.

Model calibration takes under one second for large data sets,
so our method can be used to detect anomalies in real time by
simply recomputing a new model at the conclusion of each time
interval (e.g., every 5 minutes) using a large moving windowof
historical data (e.g., from the previous week or month). Thedata
point corresponding to the most recent interval may then be deemed
anomalous if the overall accuracy of the model is good but themost
recent performance observationyi disagrees substantially with the
model’s fitted value ˆyi .

4.2.3 Prospective Prediction
Table 3 summarizes predictive accuracy results for our Basic and

Composite models calibrated using LAR regression; the table also
includes Scalar variants of both models. We do not present results
for OLS calibration because they do not alter the qualitative con-
clusions we drew from Table 2: LAR works better, sometimes bya
substantial margin.

In addition to normalized aggregate error, Table 3 shows theal-
ternative accuracy measure discussed in Section 3.4: the median of
the distribution of normalized absolute residuals|ei |/yi . The two
measures differ in how they penalize inaccuracy. Normalized ag-
gregate error severely punishes even a single large residual but may
“forgive” many small residuals, even those where|yi − ŷi | is large
in relation toyi . Our other accuracy measure, median|ei |/yi , has
the opposite tendency: It forgives a large residual if the correspond-
ing yi is also large, but it penalizes us if the residual is often large
in relation toyi .

Our prospective prediction results are consistent with ourretro-
spective explanation results: First, transaction mix models (TMIX)
outperform their Scalar counterparts by a very large marginfor both
real production applications by both accuracy measures. Even the
Basic TMIX achieves normalized aggregate error under 15% for
both real production data sets, and its individual performance pre-
dictions ŷi are within 14% of the true valueyi half of the time.
The Basic model leaves little room for improvement when applied
to real production applications; as we would expect, the Compos-
ite model offers relatively modest accuracy improvements for the
real production applications, which are intentionally very lightly
loaded (Figure 3). Queueing delays are likely to be small in rela-
tion to service times in such situations, so we gain relatively little
by modeling queueing. However for the deliberatelyoverloaded
PetStore the situation is very different, as we would expect: The
Composite model consistently achieves far better accuracyby both
of our accuracy measures.

The relative benefits of incorporating transaction mix and queu-
ing in the testbed application and the production applications are
consistent with our expectations: PetStore is heavily loaded and
has few transaction types; as we expect, the greatest increase in
accuracy occurs when we move from the Basic model to the Com-
posite model. The production applications are lightly loaded and
have many transaction types; not surprisingly, the greatest increase
in accuracy occurs when we move from a Scalar model to a TMIX
model.

The combined benefits of accounting for both queueing and trans-
action mix in production applications are striking. Compared with
the TMIX/Composite models, the Scalar/Basic models have sub-
stantially worse normalized aggregate error: 33% greater error for
VDR and 34% greater error for ACME. The differences are even
larger when we consider median|ei |/yi : 52% greater error for VDR
and 40% greater error for ACME.

Figures 9, 10, and 11 illustrate both retrospective and predictive
accuracy for a Composite model of the VDR application calibrated
with LAR regression. In all cases, retrospective fitted values or
residuals are shown in blue and prospective fitted values areshown
in red. Figure 9 presents a time series of observed aggregatere-
sponse timesyi overlaid on fitted values ˆyi . Overall, the latter track
the former quite closely. Residuals are not markedly largerfor
prospective performance prediction than for retrospective perfor-
mance explanation. For the VDR data set, our model generalizes
well from historical data used for calibration to future workload
data used for prediction.

Figure 10 shows a scatterplot of(yi , ŷi) pairs. The three straight
diagonal lines in the figure are they = x diagonal, indicating per-
fect prediction, flanked byy = 2x andy = x/2. Although observed
valuesyi range over three orders of magnitude, fitted values ˆyi al-
most always agree to within a factor of two, and are usually within
15% of the trueyi value. Finally, Figure 11 shows the full distri-
butions of|ei |/yi for both explanatory and predictive models. Our
Composite model is highly accurate for retrospectively explaining
performance, and the figure shows that residuals remain remark-

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00

5−minute interval (train+test)

su
m

_o
f_

re
sp

_t
im

es
actual
fitted (on train)
predicted (on test)

2 5 10 20 50 100 500 2000

5
 e

−
01

5
 e

+
00

5
 e

+
01

5
 e

+
02

Actual sum_of_resp_times

P
re

di
ct

ed
 s

um
_o

f_
re

sp
_t

im
es

on train dataset
on test dataset

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute Percentage Error (APE): |Predict−Actual|/Actual

C
um

ul
. D

en
si

ty
 F

un
ct

io
n

(C
D

F
)

on train dataset
on test dataset

Figure 9: Time series ofyi and ŷi . Figure 10: Scatterplot of (yi , ŷi) pairs. Figure 11: CDF of |ei |/yi .

VDR ACME PetStore
Basic 0.1226 0.1470 0.6257
naı̈veUr 0.1221 0.2193 0.5794
Composite 0.1218 0.1305 0.4173

Table 4: Incorporating utilization naı̈vely vs. correctly: Nor-
malized aggregate error.

ably small when the model is used to predict performance based on
transaction mix.

4.2.4 Generalizing to New Conditions
We performed an additional experiment to evaluate the ability of

our Composite model to predict performance in a real application
under workload conditions very different from those of the cali-
bration data. We sorted the VDR data set in ascending order on
application server CPU utilization. The first half of the resulting
re-ordered data set contains time intervals during which CPU uti-
lization on the app server was very low. The second half contains
time intervals during which utilization was much higher. Figure 12
shows the distributions of CPU utilizations in both halves of the
re-ordered VDR data set.

We calibrated a Composite model on the first half of the re-
ordered VDR data, when load was very light (CPU utilization be-
tween 4% and 18%). We then evaluated the model’s predictive
accuracy on the second half, when load was much heavier (utiliza-
tion between 18% and 45%). The model’s predictive accuracy was
remarkably high under this challenging test: normalized aggregate
error∑i |ei |/∑i yi was under 9.7%; most predictions ˆyi were within
8% of the true valueyi . Furthermore, the model’s predictive accu-
racy did not vary with load: Figure 13 shows a scatterplot of error
per time interval|ei |/yi versus CPU utilization on the app server.
The figure shows that accuracy is not noticeably worse under high
utilization (i.e., there is no upward trend to the right).

4.2.5 Modeling Utilization
A nonspecialist in queueing theory might wonder why we do

not simply incorporate resource utilizations into our performance
model by addinglinear Ur terms rather than the mysteriousU2/(1−
U) terms of Equation 4. Table 4 compares the predictive accuracy
of our Basic and Composite models with a model that incorporates
utilization in the naı̈ve way. We see that the naı̈ve approach some-
times improves upon our Basic model. However the “correct” ap-
proach of our Composite model yields still better accuracy.Several
similar cases not reported here tend toward the same conclusion:
Embellishing the Basic model in haphazard ways sometimes offers
modest advantages, but amendments with sound theoretical justi-
fications (as in our Extended and Composite models) yield better
results overall.

5. PERFORMANCE-AWARE APPLICATION
CONSOLIDATION

Enterprise systems that comprise multiple applications often ex-
ecute each sub-application on separate machines to isolatethe ef-
fects of software faults and workload spikes. Compared withsuch
machine-granularity application boundaries, application consolida-
tion (i.e., executing multiple applications on one machine) has sev-
eral advantages including better resource utilization andlower man-
agement and maintenance overheads. However, workload fluctua-
tions in consolidated environments can have complex effects on
application-level performance that reduce the overall predictability
of the system. In this section, we use our transaction mix model to
predict application-level performance amidst contentionfor shared
physical resources.

5.1 Consolidation Model
We predict system-wide performance in consolidated environ-

ments by combining the Composite transaction mix models of each
target application running in isolation. We concatenate the transac-
tion mix vectors and sum the resource utilizations in the Composite
transaction mix models of the target applications. More formally,
the system-wide sum of response times for two consolidated appli-
cations in intervali is:

ŷi =
n′+n′′

∑
j=1

α jNi j +∑
r

(

1
λi

(U ′
ir +U ′′

ir)
2

1− (U ′
ir +U ′′

ir)

)

·
n′+n′′

∑
j=1

Ni j

where superscripts (′ and ′′) distinguish between the two appli-
cations. For brevity, we show a unifieda j and Nj which repre-
sent concatenation of each application’s individual parameters. The
variablen represents the number of transaction types,Ur represents
the utilization of resourcer, andλ represents the post-consolidation
arrival rate of both applications. Note that the unificationof several
Composite models can trivially be extended to handle the consol-
idation of more than two applications, though we do not provide
empirical results on this more general case. We acknowledgethat
additive measures of resource utilization may not account for some
additional costs of resource sharing (e.g., context switching). We
have achieved accurate performance predictions without consider-
ing such effects, though their impact may become more significant
as the degree of consolidation increases. Likewise, we assume an
application’s resource requirements do not decrease afterconsoli-
dation, which can happen if the target applications interact or share
data.

The resulting transaction mix model can be manipulated to de-
rive performance predictions for each application under consolida-
tion by considering the sum of the transaction types corresponding
to a target application. Specifically, we extract the per-application

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

App server utilization

C
um

ul
. D

en
si

ty
 F

un
ct

io
n

(C
D

F
)

0.20 0.25 0.30 0.35 0.40 0.45

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

App server utilization

|A
ct

ua
l −

 P
re

di
ct

ed
|/A

ct
ua

l

Figure 12: CDFs of app server CPU utilization in both halves
of re-ordered VDR data set.

Figure 13: Prediction error |ei |/yi versus app server CPU uti-
lization in re-ordered VDR data set.

performance under consolidation as follows:

ŷ′i =
n′

∑
j=1

α jNi j +∑
r

(

1
λi

(U ′
ir +U ′′

ir)
2

1− (U ′
ir +U ′′

ir)

)

·
n′

∑
j=1

Ni j .

ŷ′′i =
n′+n′′

∑
j=n′+1

α jNi j +∑
r

(

1
λi

(U ′
ir +U ′′

ir)
2

1− (U ′
ir +U ′′

ir)

)

·
n′+n′′

∑
j=n′+1

Ni j .

5.2 Realistic Workload Generation
Not surprisingly, the ACME and VDR administrators did not al-

low us to perform consolidation experiments using their applica-
tions, so we built our own testbed from benchmark applications.
Unfortunately, the workload generators shipped with our bench-
mark applications produced stationary workloads, which, as we
have seen, differ qualitatively from workloads observed inthe wild.
We developed our own workload generator which applies realistic
nonstationary workloads to our testbed by mimicking the transac-
tion type frequencies in the traces of real applications (e.g., ACME
and VDR). First, we separately ranked the transaction typesin both
our real and testbed applications according to their popularity in
the real trace and workload generator probabilities respectively. We
created a synthetic trace that imitates the the nonstationarity of real
workloads by replacing each transaction type in the real trace with
the transaction type with the same popularity rank in the testbed
application. Finally, our workload generator also mimics the sea-
sonality of real workloads by varying the request rate according
to a sawtooth pattern. Henceforth references to a real application
(i.e., ACME or VDR) preceded by “M-” will indicate a mimicked
workload based on the named dataset.

5.3 Evaluation
Our testbed consists of two benchmark applications. The Rice

University Bidding System (RUBiS) [38] is an online auctionbench-
mark that consists of 22 transaction types that provide services
such as browsing for items, placing bids, or viewing a user’sin-
formation. The StockOnline [42] trading system comprises six
transaction types corresponding to buying, selling, viewing prices,
viewing holdings, updating account information, and creating new
users. Each application runs on top of the JBoss 4.0.2 application
server [21] and accesses MySQL [32] as the back-end database.
The application server and database run on separate machines. Re-
source consumption at the database is negligible in our testbed, so
we focus on the consolidation of the application server tier.

Our experiments are run on a three-machine cluster. Each node
consists of four 2.4-GHz CPUs with Intel Hyperthreading technol-
ogy and 6 GB of main memory. We use the Linux 2.6.9 kernel

distributed by Red Hat. All of the experiments mentioned in this
section were run for five hours. Matching our observations ofthe
ACME workload, each test was configured to exhibit eight com-
plete sawtooth fluctuations in request rate. Unless otherwise noted,
request rates were set for low CPU utilization (15–25%) wheneach
application ran in isolation. Measurements were collectedevery 30
seconds using the SAR system monitor. Each respective testbed
application was calibrated using the M-ACME imitation workload.

Table 5 shows the accuracy of our consolidation predictionsus-
ing the metrics discussed in Section 4.2.3. We show one consol-
idation scenario where the calibration and evaluation workloads
are the same (M-ACME) and two scenarios in which the work-
load under consolidation differs from the calibration workload (M-
ACME). Under the same calibration and evaluation workloadsthe
aggregate error is 5.5% and 11% for RUBiS and Stock respectively.
We also observe that the composition of transaction mix models for
consolidation is robust to changes in workload; predictingperfor-
mance on completely different workloads from the calibration set
still yields aggregate errors within 9% and 14%. We note thatthe
normalized errors for the StockOnline application are about twice
that of RUBiS. Upon further investigation, we found that StockOn-
line is developed in a fashion such that transaction type does not
provide much distinctive information about resource demands. In
this sense, StockOnline violates one of our fundamental assump-
tions about applications, yet we are still able to report normalized
aggregate errors of between 11% and 14%.

Figure 14 shows the cumulative distribution of absolute percent
error when the RUBiS and StockOnline applications are consoli-
dated and subjected to the M-VDR workloads. More than 97.6%
and 74.2% of RUBiS and StockOnline predictions respectively are
within 20% actual response time. The calibration and evaluation of
StockOnline on different workloads represents a significant chal-
lenge for our model yet 98% of performance predictions are within
40% of the actual response time.

We also wish to demonstrate the robustness of our consolidation
prediction under heavy load. We increased the workload intensity
by ramping up utilizations such that CPU utilizations reached 70%
on the application server. Figure 15 shows the cumulative distri-
bution of the normalized residual error in our heavy-load consol-
idation scenario. We report normalized aggregate error of 12.8%
and 11.7% for RUBiS and StockOnline respectively. While these
results indicate the robustness of our consolidation model, we note
the limitations of our queueing model: As we noted with the Pet-
Store application, our predictions are not intended for systems in
which a resource is frequently saturated. Consolidation experi-
ments under such situations gave performance predictions with un-

RUBiS Accuracy Stock Accuracy
Consolidated Consolidated Normalized Median of Normalized Median of

RUBiS Stock Aggregate Normalized Aggregate Normalized

Workload Workload Error (∑i |ei |
∑i yi

) Absolute Residuals (|ei |/yi) Error (∑i |ei |
∑i yi

) Absolute Residuals (|ei |/yi)

M-ACME M-ACME 0.0549 0.0383 0.1064 0.1263
M-ACME M-VDR 0.0724 0.0706 0.1391 0.1184
M-VDR M-VDR 0.0810 0.0626 0.1349 0.1145

Table 5: Application-level performance prediction accuracy in consolidated environments. Predictions are based on measurements
of each application in isolation. In all cases model calibration employed the M-ACME workload.

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sumRespTime Absolute Percentage Error (APE): |Predict−Actual|/Actual

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n
(C

D
F

)

Rubis
Stock

Figure 14: CDF of absolute percent error (|ei |/yi) under differ-
ent calibration and evaluation workloads.

acceptable (41%) normalized standard error; since this result is ex-
pected it is not shown here.

6. RELATED WORK
This section reviews literature on several topics related to our

work: We begin with a survey of workload characterization stud-
ies that have identified regularities in modern applicationwork-
loads and then consider workload generators used in research and in
commercial benchmarking. We then review instrumentation tools
and techniques that can be used to calibrate performance models,
theoretical performance models themselves, and the application of
such models to practical performance prediction problems.Finally,
we summarize the state of the art in server consolidation research
and practice. A review of literature on an important application of
our modeling technique, performance anomaly detection, isavail-
able in [23]. A review of literature on LAR regression is available
in [24].

6.1 Workload Characterization
Previous research has characterized many aspects of workload in

modern transactional applications, e.g., Web server workloads [4]
and Web user sessions [2]. Menasceet al.propose first-order Markov
models of customer accesses at e-commerce sites [30] and describe
statistically self-similar arrival patterns at such sites[29]. Some
forms of nonstationarity have been observed in workloads, e.g., in
Internet traffic [12] and in the diurnal cycles of requests toWeb
sites [5]. However to the best of our knowledge nonstationarity in
the mix of application-level transaction types is not considered in
previous research.

Many characterization studies lead directly to prescriptions for
improved performance. Breslauet al. show that the Zipf-like dis-
tribution of Web document access frequencies implies that acertain

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sumRespTime Absolute Percentage Error (APE): |Predict−Actual|/Actual

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n
(C

D
F

)

Rubis
Stock

Figure 15: CDF of absolute percent error (|ei |/yi) under heavy
non-saturating workload.

Web cache removal policy is optimal [11]. Arlitt & Williamson find
support for size-based Web cache removal policies in the size dis-
tributions of Web documents [5]. Junget al.characterize transient
overload events (“flash crowds”) and suggest ways for systemde-
fenses to distinguish them from denial-of-service attacks[22].

Clustering techniques are frequently employed to simplifywork-
load for performance modeling [6]. Often workload units areclus-
tered according to their resource demands as in Magpie [7] and in
Espositoet al. [18], but occasionally clustering is applied to other
aspects of workload, e.g., customers [51].

Our contribution is to recognize that in many modern applica-
tions transaction types effectively cluster workload elements ac-
cording to their resource demands, and that nonstationarity in trans-
action mix presents an opportunity to calibrate performance models
without invasive instrumentation or controlled benchmarking.

6.2 Workload Generation
Commercial synthetic workload generators are used to evalu-

ate the performance of live applications and systems [31] and in
standard benchmarks such as TPC-W [47]. To the best of our
knowledge, such tools generate workloads with stationary trans-
action mixes. Schroederet al. survey workload generators used
in research, emphasizing the distinction between open and closed
generators [40]. These tools allow users to configure arrival rate
parameters but do not facilitate the generation of workloads with
nonstationary transaction mixes. To the best of our knowledge, the
only workload generator that does so is the SWAT tool of Krishna-
murthyet al. [25, 26]. SWAT employs sophisticated mathematical
programming techniques to construct a mix of sessions that con-
forms to user-specified aggregate workload criteria; nonstationarity
follows from the use of recorded sessions from a real production
system. SWAT strives to provide both the fidelity of simple trace

replay with the control and configurability of conventionalwork-
load generators.

Our contribution is to recognize that the stationary workloads
produced by conventional workload generators make parameter es-
timation for performance modelingmore difficult than naturally-
occurring nonstationary workloads. Indeed, our results show that
controlled experiments using synthetic workload generators are not
necessary to calibrate performance models. Accurate performance
models may be calibrated using the kinds of lightweight passive
measurements routinely collected in today’s production systems—
transaction logs and utilization logs.

We furthermore report that the simple expedient of replaying
transaction logs from real production applications with the trans-
action types re-named to suit a testbed application (Section 5.2)
yields good results.

6.3 Instrumentation & Measurement
A wide range of commercial performance measurement tools are

available. Sauerset al. provide a candid survey of the strengths
and limitations of one vendor’s products [39]. Some tools pro-
vide insight into transaction execution paths and resourceusage
noninvasively—without application source code modifications—
via instrumented middleware [19]. If source code is available, ap-
plications may be systematically instrumented to record more de-
tailed transaction execution information, e.g., using theARM in-
strumentation standard [45]. Instrumentation to characterize trans-
action resource demands in greater detail and with lower overhead
remains an active research area [7,27,46].

Our contribution is to recognize that transaction mix nonstation-
arity in real-world workloads enables us to use very lightweight
measurements to characterize the resource demands of transaction
types for the purpose of calibrating performance models.

6.4 Queueing Theory
Queueing networks are the subject of a large theoretical liter-

ature; see Bolchet al. for a lengthy survey [10]. Jain describes
applications of queueing theory to computer system performance
analysis [20]. The approaches that Jain surveys differ fromours
in several key respects: Jain emphasizes the design of controlled
experiments for performance analysis, and an underlying assump-
tion throughout much of the book is that systematic benchmarking
is possible. Furthermore most of Jain’s queueing network models
assume far more detailed information about transaction behavior
than is available in many practical situations. For instance, it is fre-
quently assumed that the number of times a transaction visits var-
ious resources and the distribution of service times at eachstation
can be measured directly. Our work proceeds from the assump-
tion that lightweight passive measurements of transactionresponse
times and resource utilizations are all that is available.

Operational analysis is a branch of queueing theory that attempts
to avoid probabilistic assumptions about system workload (e.g.,
Poisson arrivals and exponentially-distributed service times) and
rely solely upon measurable quantities [17]; Little’s Law and the
Utilization Law are classic examples of operational laws. Mean
Value Analysis (MVA) restricts attention to the averages (as op-
posed to the full distributions) of performance measures [35]. Ro-
lia & Sevcik introduce a variant of MVA designed to accommodate
softwareservers in addition to conventional hardware service sta-
tions [36]. Like conventional MVA, this method pertains to closed
queueing networks, whereas we employ open network models.

Generalizations of queueing-theoretic models and MVA address
multiclassnetworks [9]. Workload classes are often interpreted
as categories such as “batch,” “terminal,” and “transaction,” but

classes can also be used to represent different transactiontypes.
One problem with existing multiclass methods for our purposes is
that most assume a closed network—our production traces do not
include sufficient information about client sessions for usto employ
a closed model. Another problem is that the computational cost of
computing exact solutions to MVA using conventional algorithms
increases rapidly with the number of classes. A more efficient algo-
rithm has appeared recently [13] but it is formidably complex and
difficult to implement. Multiclass models with more than a handful
of classes are rarely used in practice due to their complexity and
the computational cost of computing solutions.

Our contribution is to introduce a computationally tractable and
conceptually simple performance model for open networks that
takes transaction mix into account, that models multiple service
centers, that is easy to calibrate, and that yields accurateresponse
time predictions for real production applications.

6.5 Applied Performance Prediction
This section reviews in depth two recent papers that apply queue-

ing models to distributed applications, highlighting similarities and
contrasts with respect to our work. We refer the reader to their ex-
cellent literature reviews for recent, broad, and thoroughsurveys of
related work in this field [41,48].

Urgaonkaret al. model multi-tier Internet services as product-
form queueing networks and employ mean value analysis to com-
pute average response times [48]; in some respects this workis sim-
ilar to that of Liuet al. [28]. The Urgaonkaret al. model assump-
tions differ from ours in several details. For instance, Urgaonkar
et al. explicitly model concurrency limits whereas we do not. We
assume an open queueing network whereas Urgaonkaret al. as-
sume a closed network. We explicitly model distinct physical re-
sources such as CPUs and disks whereas Urgaonkaret al.associate
a single queue with each tier. The models differ in their assump-
tions about how requests recirculate among tiers; compare our Fig-
ure 6 with their Figure 3 [48, p. 294]. An important difference is
that their method requires more diverse model parameter estimates
than ours, including request visit ratios at each tier, service times
at each tier, user think times, and certain other parametersrelated
to congestion effects. Urgaonkaret al. report that their approach
yields accurate average response time estimates for two sample ap-
plications (RUBiS and Rubbos) subjected to stationary synthetic
workloads in a testbed environment; they do not report validation
results on real production applications.

Stewart & Shen present a performance model of distributed In-
ternet applications based on “profiles” that summarize how appli-
cation software components and their workloads place demands on
underlying system resources [41]. Their model also accounts for
inter-component communications and component placement.This
work shares some features in common with our approach. For in-
stance, Stewart & Shen account for waiting times at servers us-
ing an M/G/1 model; we employ a similar model in Equation 4.
They estimate the resource demands of components by fitting lin-
ear models to benchmark data. However, they describe workload
by a constant scalar arrival rate, whereas we use a time-varying vec-
tor of per-type transaction counts. Stewart & Shen report that their
most sophisticated model variant predicts average response times
to within 14%. Their validation uses testbed applications (RUBiS
andStockOnline) and stationary synthetic workloads.

An important difference with respect to our work is that the
method of Stewart & Shen requires very extensive calibration: The
resource consumption profile of each component must be estimated
via controlled benchmark experiments, and inter-component com-
munication overheads must also be measured. They place each

profiled componenton a dedicated machineduring calibration and
require at least one benchmark run per component. For their full
model, O(N2) benchmark runs are required to estimate pairwise
inter-component communication costs [41, p. 75]. We exploit non-
stationarity to obtain similar performance profiles using only light-
weight passive measurements of running production systems: The
coefficients of our utilization model (Equation 5) correspond closely
to those in the “component resource profiles” of Stewart & Shen
(see Figure 2 and Tables 1 and 2 in [41]. Another difference is
that we do not require knowledge of internal application compo-
nent structure; we use only externally-visible transaction types.

We emphasize two important differences between our evaluation
experiments and those presented in Urgaonkaret al.and in Stewart
& Shen. First, as noted above, we have employed two real produc-
tion traces for our evaluations; they have used only testbedappli-
cations. The workload of our applications isnonstationaryin sev-
eral key parameters, including both workload intensity andtrans-
action mix. By contrast, Stewart & Shen and Urgaonkaret al.em-
ploy synthetic workloads reminiscent of classic steady-state bench-
marks both for model calibrationand for evaluation. The transac-
tion mixes in their synthetic workload (e.g., the buy:browse ratio
in their synthetic e-commerce workloads) remainconstantduring
both calibration and evaluation. We believe that our nonstationary
workload yields a far more challenging and more realistic test of a
performance model’s generalizability and predictive accuracy.

Our empirical evaluations could not include comparisons with
the methods of Stewart & Shen and of Urgaonkaret al. for two
reasons: First, the input-output behavior of the three models is suf-
ficiently different to preclude a true apples-to-apples comparison.
More importantly, the other two approaches require far moreexten-
sive calibration data than is available in our data sets (ourcurrent
testbed at HP does not permit the same instrumentation as used in
Stewart & Shen; e.g., kernel modifications are not allowed).How-
ever we do compare our preferred approach with alternativesthat,
like the models of Stewart & Shen and of Urgaonkaret al., employ
a scalar measure of workload intensity (Section 3.2.4). We found
that transaction mix models offer substantially higher accuracy than
their Scalar counterparts (Section 4.2).

6.6 Consolidation
The computing trends of the 1980s and 1990s led to decentral-

ized IT infrastructures that can be more difficult to manage and
less cost-effective than their centralized predecessors.Server con-
solidation attempts to increase resource utilization while reducing
the costs of hardware, data center floor space, power, cooling, and
administration. The resource cost benefits of consolidation alone
are potentially attractive: Andrzejaket al. studied CPU utilization
in six enterprise data centers containing roughly 1,000 CPUs and
found that consolidation could reduce the number of CPUs needed
during peaks by 53% and the mean number required by 79% [1].

Administrators know that systems can be overloaded if the sum
of consolidated application resource demands is excessive. Prac-
titioners are advised to rely on rough guidelines for total resource
utilization, e.g., “avoid peak CPU utilization over 70%” [14]. Com-
mercial capacity planning decision support aids may employmore
sophisticated time-series analysis of pre-consolidationhistorical data,
but their suggestions are based on considerations of resource uti-
lizations [44,50].

Recent research on consolidation decision support also bases
recommendations on resource utilization. Roliaet al. analyze his-
torical utilization data to provide statistical guarantees on post-con-
solidation utilization [37]. Urgaonkaret al.profile applications on
dedicated nodes to estimate resource demands and “pack” appli-

cations to maximize revenue while controlling the potential for re-
source overload [49].

The state of the art in research and in practice is to base consol-
idation decisions on considerations of resource utilizations and ei-
ther ignore application-level workload or model it as a scalar quan-
tity. This is problematic because the relationship betweenapplication-
level performance and utilization is complex, and because both de-
pend on transaction mix. Our contribution is a practical wayto ob-
tain accurate predictions ofresponse timesin transactional applica-
tions, thus allowing consolidation decisions to consider application-
level performance as well as system resource utilization.

7. CONCLUSIONS
The global geographic distribution, organizational decentraliza-

tion, opaque component structures, and unprecedented scale of mod-
ern application architectures confound performance modeling in
challenging new ways. Performance prediction in business-critical
applications, however, remains an important problem due tothe
growing economic importance of these applications. This paper
presents a practical, versatile, and accurate approach to predicting
application-level response times in complex modern distributed ap-
plications. Our method exploits naturally-occurring workload non-
stationarity to circumvent the need for invasive instrumentation or
controlled benchmarking for model calibration. It relies solely on
measurement data that is routinely collected in today’s production
environments. Our method can be adapted to a wide range of ap-
plications, and calibrated models generalize well to new regions of
workload/performance space. It is novel in its use of transaction
mix to predict performance, and we have shown that transaction
mix is a far more powerful predictor of application performance
under realistic conditions than scalar workload volume.

Our empirical results show that our method predicts response
times in real production applications to within 16% by two very dif-
ferent accuracy measures. A model of a real production application
calibrated under light load predicts performance under heavy load
to within 10%. Our results show that if accurate workload fore-
casts are available, they can be mapped directly to accurateperfor-
mance predictions. Furthermore we predict response times of con-
solidated applications to within 4% to 14% based on passive pre-
consolidation measurements, even when workload changes dramat-
ically between calibration and evaluation. Whereas existing ap-
proaches to consolidation decision support consider only resource
utilization, our approach enables application-level response times
to guide consolidation decisions.

Acknowledgments
Martin Arlitt supplied the ACME data set. Ira Cohen, Julie Symons,
and the second author collected the FT and PetStore data setsfor
separate projects [15,16]. We thank the operators of the ACME, FT,
and VDR production systems for providing anonymized trace data.
Hsiu-Khuern Tang answered questions on statistical matters. Arjun
Nath provided valuable assistance to our testbed experiments. We
are deeply grateful to Narayan Krishnan and Eric Wu for theirex-
traordinarily assistance in setting up and administering the cluster
we used for consolidation tests. We thank David Oppenheimer,
Jerry Rolia, and Bhuvan Urgaonkar for many insightful discus-
sions of performance modeling and its applications, and we thank
Kim Keeton, Kai Shen, Zhikui Wang, Xiaoyun Zhu, Sharad Sing-
hal, and the anonymous reviewers for reading drafts and offering
many helpful suggestions. The first author acknowledges support
from the U.S. National Science Foundation CAREER Award CCF-
0448413.

8. REFERENCES
[1] A. Andrzejak, M. Arlitt, and J. A. Rolia. Bounding the resource

savings of utility computing models. Technical Report
HPL-2002-339, HP Labs, Dec. 2002.

[2] M. Arlitt. Characterizing Web user sessions.Performance Evaluation
Review, 28(2), Sept. 2000.

[3] M. Arlitt, D. Krishnamurthy, and J. A. Rolia. Characterizing the
scalability of a large web-based shopping system.ACM Trans. on
Internet Tech, 1(1):44–69, Aug. 2001.

[4] M. Arlitt and C. Williamson. Web server workload characterization:
The search for invariants. InSIGMETRICS, May 1996.

[5] M. F. Arlitt and C. L. Williamson. Internet Web servers: Workload
characterization and performance implications.IEEE/ACM Trans. on
Networking, 5(5):631–644, Oct. 1997.

[6] H. P. Artis. Capacity planning for MVS computer systems.
Performance Evaluation Review, 8(4):45–62, 1979.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. InOSDI, pages 259–272,
Dec. 2004.

[8] I. Barrodale and F. Roberts. An improved algorithm for discrete L1
linear approximations.SIAM Journal of Numerical Analysis,
10:839–848, 1973.

[9] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open,
closed, and mixed networks of queues with different classesof
customers.J. ACM, 22(2):248–260, Apr. 1975.

[10] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.Queueing
Networks and Markov Chains. Wiley, 1998.

[11] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and Zipf-like distributions: Evidence and implications. In
INFOCOM, Mar. 1999.

[12] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun. On the
nonstationarity of Internet traffic. InSIGMETRICS, pages 102–112,
June 2001.

[13] G. Casale. An efficient algorithm for the exact analysisof multiclass
queueing networks with large population sizes. InSIGMETRICS,
pages 169–180, June 2006.

[14] A. Cockcroft and B. Walker.Capacity Planning for Internet Services.
Sun Press, 2001.

[15] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: A building block
for automated diagnosis and control. InOSDI, Oct. 2004.

[16] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.
Capturing, indexing, clustering, and retrieving system history. In
SOSP, Oct. 2005.

[17] P. J. Denning and J. P. Buzen. The operational analysis of queueing
network models.ACM Computing Surveys, 10(3):225–261, Sept.
1978.

[18] A. Esposito, A. Mazzeo, and P. Costa. Workload characterization for
trend analysis.Performance Evaluation Review, 10(2), July 1981.

[19] Hewlett-Packard. OpenView Transaction Analyzer, Sept. 2006.
http://h20229.www2.hp.com/products/tran/.

[20] R. Jain.The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[21] The JBoss J2EE Application Server.http://www.jboss.com.
[22] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and

denial of service attacks: characterization and implications for CDNs
and Web sites. InWWW, May 2002.

[23] T. Kelly. Detecting performance anomalies in global applications. In
USENIX WORLDS, Dec. 2005.

[24] T. Kelly and A. Zhang. Predicting performance in distributed
enterprise applications. Technical Report HPL-2006-76, HP Labs,
May 2006.http://www.hpl.hp.com/techreports/
2006/HPL-2006-76.html.

[25] D. Krishnamurthy, J. A. Rolia, and S. Majumdar. SWAT: A tool for
stress testing session-based Web applications. InComputer
Measurement Group Conf., Dec. 2003.

[26] D. Krishnamurthy, J. A. Rolia, and S. Majumdar. A synthetic
workload generation technique for stress testing session-based
systems.IEEE Trans. Software Engineering, 32(11):868–882, Nov.
2006.

[27] J. R. Larus. Whole program paths. InPLDI, May 1999.

[28] X. Liu, J. Heo, and L. Sha. Modeling 3-tiered web applications. In
Proc. MASCOTS, Sept. 2005.http://www.cs.mcgill.ca/
∼xueliu/publications/MASCOTS05 Modeling.pdf.

[29] D. Menasce, V. Almeida, R. Riedi, F. Ribeiro, R. Fonseca, and
W. Meira. In search of invariants for e-business workloads.In ACM
E-Commerce Conf., Oct. 2000.

[30] D. A. Menasce, V. A. F. Almeida, R. Fonseca, and M. A. Mendes. A
methodology for workload characterization of e-commerce sites. In
ACM E-Commerce Conf., Nov. 1999.

[31] Mercury Interactive. Loadrunner load tester, Sept. 2006.
http://www.mercury.com/us/products/
performance-center/loadrunner/.

[32] MySQL database.http://www.mysql.com.
[33] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman.

Applied Linear Statistical Models. Irwin, fourth edition, 1996.
[34] C. R. Rao and H. Toutenburg.Linear Models: Least Squares and

Alternatives. Springer, 1999.
[35] M. Reiser and S. Lavenberg. Mean value analysis of closed

multichain queuing networks.J. ACM, 27(2):313–322, Apr. 1980.
[36] J. A. Rolia and K. C. Sevcik. The method of layers.IEEE Trans.

Software Engineering, 21(8):689–700, Aug. 1995.
[37] J. A. Rolia, X. Zhu, and M. Arlitt. Resource access management for a

resource utility for commercial applications. InInt’l Sympos. on
Integrated Network Mgmt. (IM), Mar. 2003.

[38] Rice University Bidding System (RUBiS), Mar. 2004.
http://rubis.objectweb.org/.

[39] R. F. Sauers, C. P. Ruemmler, and P. S. Weygant.HP-UX 11i Tuning
and Performance. Prentice Hall, 2004.

[40] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus
closed: A cautionary tale. InNSDI, pages 239–252, May 2006.

[41] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online services. InNSDI, pages
71–84, May 2005.

[42] The StockOnline Benchmark.http:
//forge.objectweb.org/projects/stock-online.

[43] D. W. Stroock.An Introduction to Markov Processes. Springer, May
2005.

[44] R. Talaber. Server consolidation assessments with VMware
CapacityPlanner, Oct. 2005.http://download3.vmware.
com/vmworld/2005/pac196.pdf.

[45] The Open Group. Application response measurement (ARM), Sept.
2006.http://www.opengroup.org/management/arm.

[46] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek,
J. Lopez, and G. R. Ganger. Stardust: Tracking activity in a
distributed storage system. InProc. SIGMETRICS, pages 3–14, June
2006.

[47] Transaction Processing Performance Council. TPC-W benchmark,
Apr. 2005.http://www.tpc.org/tpcw/.

[48] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi.
An analytical model for multi-tier Internet services and its
applications. InSIGMETRICS, pages 291–302, June 2005.

[49] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms. InOSDI, Dec.
2002.

[50] VMWare. Server capacity planning and consolidation, Oct. 2005.
http://www.vmware.com/news/releases/
vac services.html.

[51] Q. Wang, D. J. Makaroff, and H. K. Edwards. Characterizing
customer groups for an e-commerce website. InACM E-Commerce
Conf., May 2004.

[52] R. R. Wilcox.Introduction to Robust Estimation and Hypothesis
Testing. Elsevier, second edition, 2005.

$Id: wpm.tex,v 1.115 2007/04/10 23:23:37 kterence Exp $

