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ABSTRACT

Real production applications ranging from enterprise igpfibns

to large e-commerce sites share a crucial but seldom-nbi@adc-
teristic: The relative frequencies of transaction typetheir work-
loads arenonstationaryi.e., the transaction mix changes over time.
Accurately predicting application-level performance wsimess-
critical production applications is an increasingly imiamt prob-
lem. However, transaction mix nonstationarity casts dawbthe
practical usefulness of prediction methods that ignore pie-
nomenon.

This paper demonstrates that transaction mix nonstattgrer-
ablesa new approach to predicting application-level perforneanc
as a function of transaction mix. We exploit nonstatioryatt
circumvent the need for invasive instrumentation and ciien
benchmarking during model calibration; our approach sediaely
on lightweight passive measurements that are routinelgaeld in
today’s production environments. We evaluate predictaeieacy
on two real business-critical production applicationse @acuracy
of our response time predictions ranges from 10% to 16% sethe
applications, and our models generalize well to workloaaty dif-
ferent from those used for calibration.

We apply our technique to the challenging problem of predict
ing the impact of application consolidation on transactiesponse
times. We calibrate models of two testbed applications inghon
dedicated machines, then use the models to predict theforper
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1. INTRODUCTION

Modern distributed applications continue to grow in scaid a
complexity. Distributed enterprise applications aretfartmore as-
suming a growing role in business-critical operations. émsthnd-
ing the performance of such applications is consequentseas-
ingly difficult yet increasingly important due to their e@mic value.
This paper considers the problem of performance prediticiis-
tributed applications: Given forecasts of future applamatwork-
load, we seek to predict application-level response timdegood
solution to this problem will enable operators to explore iden
range of important “what-if” scenarios, e.g., “How will mse
times change if the the number visitors at my Web site doudnhels
the buy:browse ratio increases by 50%7?” We do not address the
complementary problem of workload forecasting, but we stiat
if accurate workload forecasts are available they can bepsthp
directly to accurate performance predictions.

The workloads of the real production applications that vekse
model share a crucial but seldom-noted characteristictrémsac-
tion mixes in these workloads are highignstationaryin the sense
that the relative frequencies of transaction types vargictamably
over time. This is a problem for most conventional perforogan
models, which implicitly assume that transaction mix igisteary,
because the system resource demands of different tramsagies
are usually very different in real applications.

Our approach leverages earlier work that focused on retmsp

mance when they run together on a shared machine and seyve ver tively explainingperformance in terms of transaction mix [23]. We

different workloads. Our predictions are accurate to wit#o to
14%. Existing approaches to consolidation decision suppe-
dict post-consolidatiomesource utilizations Our method allows
application-level performanc® guide consolidation decisions.
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incorporate queueing-theoretic extensions into theexadchnique
to obtain a method suitable for prospectivphgdictingfuture per-
formance as a function of transaction mix. One novel featdire
our approach is that whereas performance models in pritersgs
literature include ascalar measure of workload intensity, we de-
scribe workload using a transaction-nvigctor Another novel fea-
ture is that we exploit transaction mix nonstationarityitaemvent
the need for invasive instrumentation and controlled berasking
during model calibration.

Our approach is practical for real production systems amd ca
be applied to a wide range of applications. Our models are cal
ibrated using purely passive measurements that are rbutiok
lected in today’s real production applications. Furthemmdhey
work well under a wide range of workload conditions and a wide
variety of application architectures, including locallistibuted
multi-tier E-commerce applications and globally-distitiéd high-
availability enterprise applications.

We compare our proposed method with several alternativak, e
uating their ability to predict response times in two verffedient
real production applications: the Web shopping site of somiag-
tailer and a business-critical internal enterprise apfibim. Our
method accurately predicts response times for both apigica



Furthermore our performance models generalize well tmregof
workload space very different from those present in thebcation
data. We demonstrate that transaction mix models achidve su
stantially greater accuracy than similar models that eynpt@lar
measures of workload intensity.

Finally, we apply our method to the challenging problem &-pr
dicting response times in applications that enasolidatedonto a
shared infrastructure, subject to a severe handicap: we caiss
ibrate our models using only lightweight passive obseovetiof
the applications running on dedicated machines prior tsaidn
dation. We evaluate our performance predictions in codats#d
environments using a testbed of benchmark applicationseseal
production applications were unavailable for experimeoma Our
predictions are remarkably accurate according to two mreaghat
penalize inaccuracy in very different ways. The currenesté the
art in consolidation decision support both in practice anthe re-
search literature predicts tihesource utilizatioreffects of consoli-
dation. We present a practical way to incorporap@lication-level
performancento consolidation decision-making.

The remainder of this paper is organized as follows: Se@ion
describes the prevalence of transaction mix nonstatiyniarieal-
world workloads, the problems it poses for many conventipea
formance models, and the opportunities it creates that \ptix
Section 3 presents our approach to performance predictéiimes
our main accuracy measure, and describes an accuracy-maagm
model calibration procedure. Section 4 describes the egtjpins
used in our tests and presents empirical results on the amcof
our predictions. Section 5 applies our models to the chgihen
problem of predicting the performance of applications #ratcon-
solidated onto a shared infrastructure. Section 6 revielated
work, and Section 7 concludes with a discussion.

2. TRANSACTION MIX NONSTATIONAR-
ITY INREAL WORKLOADS

It is well known that thevolumeof demand in production appli-
cations naturally fluctuates on several time scales (eagly end
weekly cycles). Similarly, there is little reason for thartsaction
mix of real applications to remain constant over time. In this se
tion, we describdransaction mix nonstationaritin two real pro-
duction applications (Section 4.1 describes the apptinatthem-
selves in detail). An investigation into the factors thdtuance
nonstationarity in real applications is orthogonal to ooalgf per-
formance prediction, so we leave it for future work.

Figures 1 and 2 illustrate time variations in transactior.riihe
first is a scatterplot of the relative frequencies of the tvashtom-
mon transaction types of the “VDR” application in 5-minuit@é
windows. Note that nearly every possible combination isene
(the upper right corner of the plot must be empty becauseume s
of the two fractions cannot exceed 1). Figure 2 is a time serie
of the fraction of “ACME” transactions that are of type “atiz-
cart” in 5-minute windows. It shows that this fraction variever
two orders of magnitude during a four-day period (note that t
vertical scale is logarithmic). The transaction mix notistarity
evident in these figures is not an artifact of 5-minute timedeivs;
it remains when we aggregate measurements into much longer i
tervals. Figure 4 shows the fraction of VDR transactionstduae
most common transaction type in hour-long windows over @gder
of several days; the fraction ranges from less than 5% to &/
Plots using longer aggregation intervals are qualitatigehilar.

One implication of transaction mix nonstationarity is tte full
spectrum of workloads for which we must predict performamesy
not be available during model calibration. Performance efod

must thereforgeneralizewell to workloads that are very different
from those used for calibration. Furthermore, a convinaiat-
dation of a performance prediction method requires noostzty
workloads, because stationary workloads differ qualitdyi from
real-world workloads.

Synthetic workload generators used in benchmarking and sys
tems research typically employ first-order Markov modeldeter-
mine the sequence of transactions submitted by client eorgla
examples include the standard TPC-W workload generatdajdy
the RUBIS workload generator [38]. This approach cannadidyie
the kind of markedly nonstationary workloads that we obsénv
real production applications, because the long-termivelatate
occupancy probabilities of first-order Markov processesssation-
ary [43]. Figure 5 shows the relative fractions of the two troosn-
mon transaction types in the workload generated by the Hétals
BiS generator during a 5-hour run, in 5-minute windowearly
all of the 60+ data points lie on top of one anothétots of differ-
ent transaction type pairs aggregated into different tinmedaws
are qualitatively similar.

What are the implications of nonstationarity for perforrmoan
modeling? We define scalar performance models one that ig-
nores transaction mix in workload and instead considerg anl
scalar measure of workload intensity, e.g., arrival ratendtation-
arity clearly poses serious problems for scalar performanod-
els. For example, consider an application whose workloadists
of equal numbers of two transaction types: type A, which gdac
heavy demands on system resources, and type B, which has ligh
demands. Suppose that we want to predict the applicatienfsip
mance if the total number of transactions increases by 5@#las
models may work well if the relative proportion of the tworisa
action types remains equal. However such models are uylikel
yield accurate predictions if the transaction mix chandestfor-
mance will differ dramatically if the number of type-A tradions
doubles and the number of type-B remains constant, or viceve
Of course, evaluations of scalar performance models usiag fi
order Markov workload generators will not expose this peotl
Stationary test workloads mask the deficiencies of scaldope
mance models.

This paper employsansaction mix modelhat predict application-
level performance based on transaction counts by type.€lthes-
els have a number of attractive features: they are “senaiytic
clear” in the sense that their free parameters have inguititerpre-
tations; they yield accurate performance predictions uadgide
range of circumstances; and the computational procedsessfor
model calibration are fairly straightforward. However st mon-
stationarity that makes our approach particularly prattizecause
nonstationarity allows us to calibrate our models using dight-
weight passive measurements that are collected in todegfgro-
duction environments. We describe the opportunities tbasta-
tionarity creates for calibration in greater detail in $&@tB.5, after
we describe our performance models.

3. TRANSACTION MIX MODELS

This section describes our transaction mix performanceetsod
and several variants and alternatives against which we Isitei
compare them. All models have the same general high-levei:fo

P = Fa(W) @)

whereP is a scalar summary of application performan€espec-
ifies the functional form of our model§,is a vector of calibrated
parameter values, andf is a vector of workload characteristics.
This section explains the development of our approach.i@e8tl
justifies our basic assumptions in terms of the measurecepiep
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Figure 1: Fractions of VDR transactions,
two most common types. Each point rep-
resents a different 5-minute interval.
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Figure 4: Fraction of VDR transactions due to most common
type (heavy line); total transaction volume (light line), £hr win-
dows.

of real applications. Section 3.2 presents our performamodels.
Section 3.4 defines the accuracy measure that we seek tazmtim
and Section 3.5 explains how we calibrate our models to miagim
accuracy according to this measure.

3.1 Assumptions

We begin with the following observations about modern dis-
tributed applications:

1. Workload consists of request-repilgnsactions

2. Transactions occur in a small numbertgpes(e.g., “log
in,” “browse,” “add-to-cart,” “checkout” for an E-commezc
site).

3. Transaction types strongly influence system resourcadds
(e.g., “checkout” transactions at an E-commerce site requi
more CPU than browsing).

4. Resources are adequately provisioned or over-proddian
business-critical production applications.

5. Transaction mix is nonstationary.

The first two observations apply to every commercially-imiant
distributed production application that we have encowterThe
third property arises because transaction types oftemrdite the
run-time code path through application logic, which in tatrongly
influences resource service demands. The fourth propetéy,
quate resource provisioning, is a fundamental requirerokog-
pacity planning in business-critical applications. Byigdasallo-
cated capacity is generous relative to offered workloadyihéoad
and overload represent serious failures of the capacitnpig pro-
cess. Fortunately such failures are rare because capéaityipg
for intra-enterprise applications can often exploit gostireates of
the total user population and anticipated usage patterns.

Even in server-consolidation scenarios where elevatisguiee
utilization is an explicit goal, practitioners are advisedkeeppeak
utilizations of resources such as CPU below 70% [14]. Intizac
enterprise system operators are typically even more asutizan
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Figure 2: Fraction of ACME “add-to-
cart” transactions vs. time. Each point
represents a different 5-minute interval.
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Figure 3: CDFs of resource utilizations
encountered by arriving transactions in
ACME and VDR applications.
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Figure 5: Fraction of RUBIS transactions due to two most com-
mon types using default generator. The figure is not empty;
note the tight cluster of points at coordinates (0.3, 0.3). fAis
workload is highly stationary.
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this conservative guideline. Figure 3 shows cumulativeritis-
tions of resource utilizations encountered by arrivingnsactions

in the two distributed production applications used in onestiga-
tion, “ACME” and “VDR.” Transactions arriving at these tweny
different applications operated by two different firms tafand uti-
lization at any resource in excess of 35%; utilization gre#tan
50% is almost never encountered. This implies that wiieueing
times at resources such as CPUs and disks should not be dgnore
servicetimes will often account for much of overall transaction re-
sponse times. Another implication is that non-queueingyestion
effects associated with very heavy load, e.g., cache arnante,
are likely to be rare in practice.

Together with our first three assumptions, Figure 3 suggests
radically simple performance model that accounts for @atisn
service times but ignores queueing entirely. Our previoagkwe-
ports that such a model works surprisingly well in pract®pecif-
ically, the sum of response times across all transactiotisirwa
specified time interval is well explained by transaction alone [23].
However, Figure 3 also suggests that waiting times are sorast
non-negligible, and our approach in this paper models ngitmes.

In summary, we observe that transaction mix alone is a paverf
performance predictor; it will be thé/ of Equation 1. We have
also seen that queueing can be non-negligible, and our sadlél
explicitly account for waiting times in addition to servitienes.
Our performance measuRawill be aggregate transaction response
time within short time windows (e.g., 5-minute intervalt)is can
easily be converted taverageresponse time because we know the
number of transactions within each window. After specifythe
form of our modeld= and defining our measures of model accuracy,
we describe how to obtain accuracy-maximizing parameidrg
exploiting naturally-occurring nonstationarity.

3.2 Models

This section develops a series of three performance models o
increasing sophistication and breadth of applicabilitheTBasic



model of Section 3.2.1 takes into account transaction nurelit

is taken from previous work [23]. Section 3.2.2 extends tlae B
sic model to explicitly incorporate queueing delays. TheéeBxed
model does not conform to the template of Equation 1, however
because its inputs include resource utilizations as wetitaasac-
tion mix. While the Extended model may offer improved accyra
when used to retrospectivadxplainperformance, it cannot be used
to predict performance given workload forecasts alone. The Com-
posite model of Section 3.2.3 corrects this deficiency by efing
resource utilizations in terms of transaction mix and ipooating

the utilizations thus obtained into the Extended modelal®mnour
empirical evaluations will include variants of the Basiat&ded,
and Composite models that use only a scalar measure of vearklo
intensity rather than a vector describing transaction mix.

3.2.1 Basic Model

We divide time into short non-overlapping intervals, eSgmin-
utes. For interval letNj; denote the number of transactions of type
j that began during the interval and gt denote the sum of their
response times. Our Basic model has the form

Yi = > Tij =) ajNj
] ]

wherey; is the sum of all transaction response times during inter-
val i. Note that no intercept term is present in Equation 2, i.e.,
we constrain the model to pass through the origin: Aggregate
sponse time must be zero for intervals with no transactigakies
of model parameters; are obtained through model calibration,; let
a;j denote these calibrated values. Intuitively, calibratedmeters
aj represent typicaservicetimes for the various transaction types,
summed over all service and delay centers on the transacton
ecution path.

For given model parameteas and observed transaction nii
at timei, let

@)

v o= Fa(N) = > ajNjj (3)

]
denote thefitted valueof the model at timd. If the N;j repre-
sent past workloady; tan be interpreted as the model’s guess of
what aggregate response time should have been duringahterv
If instead the given transaction mix is a forecast of futurkw
load, the fitted value represents the model's performanedigr
tion. Note that since the total number of transactions witn in-
terval is known—it is simplyy ; Nijj—one can convert a fitted value
Vi representingaggregateresponse time into aaverageresponse
time.

Our Basic model can be thought of as an open queueing net-
work containing a single service station with an infinite fngmof
servers. Waiting cannot occur in such a system, and Equation
does not explicitly model waiting times.

3.2.2 Extended Model

We extend the Basic model of Equation 2 by adding terms rep-
resenting waiting times, as follows:
n
. Z Nij -
j=1

n 1
Vi :glajNij —Q—Z ()\.

The rightmost term represents waiting times in an M/M/1 gyeu
with one queue per resourdd;; denotes the utilization of resource
r during intervali. The naive approach of adding utilizations as
simple linear terms has no basis in queueing theory, but & sh
compare our approach with this alternative (see the digmuss
Table 4 in Section 4.2.1).

UZ

=i (4)
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Figure 6: Extended queueing model: One station per resource
at each tier.
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To derive Equation 4, we note that the teﬁiﬁn 18‘0" represents

the average waiting time (per transaction at resouroeer inter-
val i) in an M/M/1 queueing model, wherd is the arrival rate
of transactions of all types in interval We multiply this term by
the number of transactions of all types in intervab obtain the
sum of waiting times, to agree with the left-hand-side of¢hea-
tion. Realizing that; = Z?:l Nij /L whereL is the interval length
in seconds, one can further simplify the sum-of-waitingeiterm
toy,L- 18& . Finally, since the sum-of-waiting-time term on the
right-hand-side of Equation 4 does not involve any unknowan p

2 .
rametersxj, one can regress =Yy — 5, L- 18'0" against the trans-
action mixy " _; ojNij.
Figure 6 depicts our Extended model as an open queueing net-

work consisting of a single-server station for each reseecg.,
CPU, disk, network) at each tier (e.g., application serdatabase
server). Although the figure shows only two tiers with three r
sources each, the model can accommodate additional tigrsf(e

a Web server) and additional resources. The Extended magel ¢
tures the distributed aspect of an application by expji@ittluding
network queueing effects.

3.2.3 Composite Model

Because it relies on resource utilizations, the Extendedietaf
Equation 4 cannot be used to predict performance basedrsata
tion mix Nj; alone. Our Composite model overcomes this difficulty
by estimating utilizations as weighted sums of transaatmmts:

Ur = Bor+) BirNij (%)
]

where 3 represents the service demand of transaction fype
resourcer. The total service demand placed on the resource is
the sum of service demands of all transaction types. As uigh t
Basic response time model of Section 3.2.1, we obtain foh eac
resourcer parametersj; corresponding to th@; during model
calibration. Unlike the model of Equation 2, however, welude

an intercept ternfBy, in our utilization models, because real system
resources are not entirely idle even in the complete absefiamg-
plication workload. Equation 5 generalizes the familiatlizition
Law; specifically, it reduces to the Utilization Law in theesjal
case of one transaction type and no intercept term.

Once we have obtained utilization estimaigsfrom a calibrated
utilizationmodel (Equation 5), we substitute these into a calibrated
Extendednodel to obtain &ompositenodel of aggregate response
time as a function of transaction mii; . In rare cases whetd, <
0 or Uiy > 1, we correct the utilization estimate to zero or &,
respectively.

3.2.4 Scalar Models

Recent queueing models of distributed application peréorce
rely on ascalarmeasure of workload intensity that ignores transac-
tion types [41, 48]. What additional predictive power do vitain
by using a transaction-mix vector? To address this question
empirical evaluations will compare our models with Scakaiants



that use only the totadlumberof transactions in each time interval.
For example, the Scalar variant of the Basic model is

i = >Tj = aN (6)
]

whereN; = 3 ; Njj is the total number of transactions that occurred
during time interval.

3.3 Discussion

Our approach contains a number of simplifications that deser
mention. We account for waiting times at each resource using
expression for a single-server queue, whereas many redugiion
applications run on systems with multiple CPUs and disksaaahe
tier. Previous work made similar simplifying assumptiodd][
and we find that in practice this approach works well. Our rhode
assumes an open network in which requests exit after sergice
closed network model would require us to model client “thinkes,”
as in some previous models of distributed applications48B,

Our queueing networks implicitly assume that transactidms
not recirculate among resources; our models aggregateralte
times from all of a transaction’s visits to a resource, rathan
explicitly modeling visits separately. More sophistightpieueing
models take into account recirculation among servicemstati20],
but such models require detailed information about howstan
tions move among resources, which is often not availablean-p
tice. Tools to gather this information exist as researchqbypes,
e.g., Magpie [7], but few real production systems are ctilyen-
strumented to measure fine-grained transaction resousite. W\Ve
have designed our models to require for calibration only diaat
is routinely collected on today’s real production applicas.

Our use of open queuing network models is in part motivated by
practical considerations: It is often difficult in practite obtain
for real production applications the client session infation re-
quired to calibrate closed models, and therefore the use opan
model facilitates more thorough empirical validation tharuld be
possible if we employed a closed model. However there ard goo
reasons for preferring open models for their own sake, thgy
are relatively simple. More importantly, open models areevap-
propriate if transient overloads are possible because opmfels
do not inherently restrict the number of concurrent tratisas in
a system. See Schroedsral. for a detailed discussion of the im-
plications of open versus closed models [40].

For all of the production and testbed applications considlén
this paper, transaction types are given—they can easilgfeeréd
by, e.g., inspecting the request URL. In our experience saets-
action type information is sufficient for our method and iadiy
available in practice. Our approach remains applicableifdac-
tion types are not given as long as a classifier can be cotetruc
that maps transactions to types that reflect their systeoures
service demands. Transaction type classification is arogotinal
problem to our modeling interests and has been the subjent-of
tensive research (see Section 6.1).

We have implicitly assumed that an application’s set of4ean
tion types is fixed and the relationship between transatyios and
resource demands is stable. This is not a restrictive adsumip
practice because the time required to re-calibrate nevopeence
models is short compared to the time scales on which apjalicat
logic and transaction structure changes. In our experiavitte
real production applications in the enterprise, changespmica-
tion structure and configuration are normally rare; staldgrs in
business-critical applications do not undertake such fivadiions
lightly or frequently. Even if transaction types or theisoairce de-
mands change completely, it takes only a day or two to gatifer s

ficient data to calibrate completely new performance modedss
drastic changes are easier to handle: Model calibratieif tekes
less than a second, and therefore continuous re-calibréiq.,
at the conclusion of every 5-minute measurement intenzaa) e
used to track gradual drift in the workload/performancetieh-
ship.

A final simplification is that our models ignore interactioh e
fects across transaction types and implicitly assume thatiging
is the only manifestation of congestion. However queueiogsd
not describe certain kinds of resource contention, e.ghemter-
ference. “Checkout” transactions, for instance, may meqmiore
CPU servicetime during heavy browsing if the latter reduces pro-
cessor cache hit rates for the former. Our models do not atcou
for such effects. The question of whether our simplifyinguasp-
tions areoversimplificationss ultimately an empirical one, which
we address in Section 4.

3.4 Accuracy Measures

If y;i is the actual measured aggregate response time during in-
tervali andyj is the fitted value obtained from a calibrated per-
formance model, le¢y = y; — ¥; denote theesidual (model error)
at timei. We measure model accuracy in terms of intuitive func-
tions of the residuals. We cannot use the conventional caesitiof
multiple determinatiofR? to assess model accuracy; it is not mean-
ingful because Equation 2 and Equation 4 lack intercept<¢83,

p. 163].

Our overall figure of merit, normalized aggregate error.egah

izes the familiar, intuitive concept of absolute percenver

vilal

normalized aggregate errae

@)

Consider, for example, single(y,y) pair: if y= 100 andy= 105,
then normalized aggregate error is 0.05, indicating trettbdel’s
prediction is off by 5%. We say that model parameters for Equa
tion 2 or Equation 4 areptimalif they minimize error as defined
by Equation 7.

In addition to our overall figure of merit we shall also report
the distribution of normalized residudks|/y;, scatterplots ofy, V)
pairs, and order statistics on the normalized residualsh Bethese
measures offers different insight into model accuracy agnbp
izes inaccuracy in a different way. For example, the distidn
of |&|/yi penalizes even small residuals if the corresponding mea-
surements are small, whereas Equation 7 penalizes residhake
magnitude is large even i§| is small relative to the corresponding
yi. A good model is accurate according to both measures.

3.5 Calibration

The input to calibration is a data set consisting of aggegat
sponse timey; and transaction mixels; (Ni1,Ni2,...). For our
Extended and Composite models we furthermore require resou
utilizationsUj,. These inputs correspond to readily available and
purely passive measurements of applications and theirriyiaip
system resources. A good rule of thumb is that model calibra-
tion requires roughly ten times as many measurement irgerva
as transaction types [33]. If measurements are taken anGteni
intervals, a few days suffice to collect enough data to caléoour
models of the production applications that we study.

The output of calibration is a set of calibrated parametéres
a; corresponding to therj parameters of the Basic and Extended
models and, for a Composite model, calibrated parameteesal
bjr corresponding to th¢8j parameters of the utilization model
(Equation 5).



The goal of calibration is to compute parameters that maémi
model accuracy. The denominator in Equation 7 is a conssant,
to achieve optimal accuracy a calibrated model must mirerttie
numerator, i.e., the sum of absolute residuals. This is ai@ipe
case of linear programming, for which specialized variarftthe
simplex algorithm have been developed; we use the algorithm
Barrodale & Roberts [8]. The algorithm yields model paraenet
that optimize retrospective explanatory accuracy witpeesto the
data used for calibration. This exercise is sometimes knas/n
least absolute residuald.AR) regression. Ordinary least squares
(OLS) regression minimizes the sum sfuaredresiduals, and it
can be shown that a model with OLS parameters can aebitrar-

If a first-order Markov model generates workload for calflma
and if measurement intervals contain a reasonably largéauof
requests, the result will almost certainly tearly-stationarywork-
load. This in turn causesulticollinearity, a regression pathology
that arises when predictor variables are mutually cordlafThe
net effect is that predictive accuracy will suffer regasdlef the
regression procedure used. On the other hand, our empealts
show that naturally-occurring workloads have sufficieahgaction
mix nonstationarity to allow us to calibrate very accuratedeis
using passive measurements of utilizations and respangs ti

In summary, the nonstationarity of real workloads makes pos
sible our lightweight model calibration approach, whiclie® on

ily worseaccuracy than an optimal model according to the measure passive measurements and requires no invasive system laaapp

of Equation 7. In practice we find that LAR-calibrated modais
more accurate than their OLS-calibrated counterparts.

Another advantage of LAR is that it iebust i.e., it resists the
influence of extreme values in the calibration data set. Byrest,
OLS is far more sensitive to distortion by outliers. A wideiety
of robust regression procedures are available; severalasi@nts
of OLS and LAR [34,52]. We prefer plain-vanilla LAR because
it guarantees optimal retrospective accuracy, becausecdricep-
tually simple and easy to explain, and because it involvetine
able parameters. The only disadvantage of LAR is that nualeri
solvers are not as widely available. However, as reportesipr
ously, the accuracy gain over OLS outweighs the inconvesien
of LAR [23]. A final advantage of using linear programming for
model calibration is that it is easy to add additional caaists,
e.g., on the values of parameters. Extensions of elemestary
tistical techniques such as least-squares regressioroagtisnes
achieve similar capabilities, but in our experience theydooffer
the generality, convenience, and flexibility of linear praoxgming.

3.5.1 The Role of Nonstationarity

Model calibration in our approach exploits variations artsac-
tion volume, transaction mix, and resource utilizatiorhia talibra-
tion data—i.e., the kind of nonstationarity found in realridoads.
At the other extreme, it is easy to show that lightweight pass
measurements of response times and utilizations collaateler
perfectlystationaryworkload cannot be used for model calibration.
The essential difficulty is that the optimization problerattthe re-
gression procedure seeks to solve lacks a unique solutiggical
implementations of OLS regression, for example, fail inftscases
because they attempt to invert a singular (non-invertitvajrix.

A simple example conveys intuition for the insurmountalsiabp
lems created by perfectly stationary transaction mix. @mrsthe
following utilization and transaction mix measurements:

time utilization  number of transactions
intervali U type A type B
1 up 5 7
2 Uy 10 14
3 Uz 15 21
4 Uy 20 28

These data cannot be used to calibrate a utilization modglgE
tion 5) regardless of the calibration procedure usetidregardless
of the utilization measurements The problem is that the transac-
tion count information is essentially the same in each roeabse
the counts in rows 2 through 4 are multiples of those in rowd. an
the A:B ratio is everywhere the same—i.e., the transactionisn
stationary. This makes it impossible to determine whethés A
heavyweight transaction and B is lightweight or vice verSae
situation is the same if the data include aggregate respimss
rather than utilization measurements and our goal is thicE a
Basic model (Equation 2) or an Extended model (Equation 4).

tion instrumentation or controlled benchmarkirigonstationarity
allows model calibration to substitute data analysis fovéasive
measurement.

4. VALIDATION

We calibrate our models and evaluate their retrospectiplaag-
tory accuracy on the first half of each validation data set.theéa
apply the calibrated models to the transaction mix in eack fn-
tervali of the second half to obtain fitted valugs TFinally, we
compare thesg With observedy, to evaluate prospective predic-
tion accuracy. This section first describes the two real yprtdn
data sets used in our evaluation and an additional data lbetteal
in a lab environment, then presents our results.

4.1 Data Sets

Table 1 summarizes our data sets. The first two were collected
on distributed production applications serving real coms and
real enterprise users, respectively. Together these dtstasverely
challenge the ability of our method to generalize along isdvdi-
mensions. They differ in terms of the nature of the applaati
the extent of geographic distribution, and workload. Thedrk-
loads exhibit the nonstationarities described in SectiolD@e to
space limitations we provide an abbreviated descriptichetlata
sets here; additional information on all three data setsagable
in [24].

Pronounced workload periodicity is present in all of ouradat
sets. Referring to the light data series and right-handoatraxis
in Figure 4, we see that workload ranges from under 100 tohigug
7,300 transactions per hour. The ACME data set shows a simila
daily cycle with comparably wide variation. Other perigties and
nonstationarities are present in all of our data sets.

4.1.1 ACME: DotCom-Era Web Shopping

The “ACME” data set is taken from the busiest of seven servers
comprising a major US retailer's Web shopping site. Thiseeac-
counts for roughly 38% of all ACME transactions during theame
surement period. ACME was typical of large E-commerce sites
circa 2000. For confidentiality reasons, the researcherssiud-
ied the ACME site were not permitted to disclose the detdiiso
hardware and software infrastructure. However, an extengork-
load characterization is available [3]. The ACME data selides
measurements of transaction response times and systeoraeso
utilizations collected at the application server tier; @ed not in-
clude requests for static Web pages. Each transaction tisefur
more tagged as a cache hit or a miss, and we treat hits andsmisse
of the same transaction type as two different types.

4.1.2 VDR: Modern Enterprise Application

Figure 7 depicts the architecture of the globally-distréaliVDR
application. VDR is a high-availability business-criti¢aternal



Data Production Transactions: Trans’ns/min Resp time (sedype of

Set Dates Duration Number  Types Mean Median Mean Median iéqtmn

ACME July 2000 4.6days 1,180,430 93 182.2 183.0 0.929 0.437 eb Rétail Shopping

VDR Jan 2005 7.8 days 666,293 37 59.4 56.4 1.289 1.236 Busariieal Enterprise

PetStore  April 2004 38 hours 4,920,642 10 2147.8 3163.8 60.090.040  Sample application

Table 1: Summary of production data sets.
AMERICAS EUROPE ASIA VDR ACME PetStore

_ Scalar TMIX | Scalar TMIX | Scalar TMIX
3 Basic
§ WAN OLS | 0.1485 0.1002| 0.2034 0.1308| 0.4403 0.3605
g - . . LAR | 0.1462 0.0940f 0.2029 0.1281| 0.3646 0.3230
g ba\::cder bal:icder Extended
2 ‘ OLS | 0.1478 0.0997| 0.2012 0.1213| 0.2320 0.2897
bl - DB falover . DB fallover fappsnrl .. LAR | 0.1454 0.0936| 0.2006 0.1185| 0.1978 0.2221
(5}
j=)
R T [Primary 08} Backup 08 [Primary 08} Backup 0B Table 2: Retrospective explanatory accuracy: Normalized g-
=

Oracle DB replication

WAN

Figure 7: VDR application architecture.

HP application serving both external customers and HP wsers
six continents. Its system architecture therefore incai@s re-
dundancy and fail-over features both locally and globd&tggional
hubs in Atlanta, Swindon, and Singapore respectively sémee
Americas, Europe, and Asia regions. All application sehasts
are HP 9000/800 servers running HP-UX B.11.11. The Americas
region has two such hosts with 16 CPUs and 64 GB RAM each.
The European region has three, with 16 CPUs and 32 GB RAM
each, and the Asia region has two, with 12 CPUs and 20 GB RAM
each. All of the app servers ran BEA WebLogic. We have less
detailed information about hosts at the database tier, butrvow
that they are similar in number and specifications to thosthet
app server tier and that they ran Oracle 9i.

VDR operators and system architects have told us that VDR
transactions are relatively “heavyweight” in the senséittiey place

gregate error y; 6|/ 5 Vi-

tive evaluations will involve workloads different than g®used
in calibration. Nonstationarities provide a challengingl @redi-
ble evaluation of the extent to which models generalize bdybe
calibration data.

4.2.1 Retrospective Explanation

Table 2 summarizes the explanatory accuracy of eight models
on our three data sets according to our overall figure of maoit
malized aggregate error (Equation 7). The table includéis the
standard transaction mix model (TMIX) versions of our Basid
Extended models as well as Scalar variants that ignoreacting
types and use only the total number of transactions. Both &ids
LAR regression are used to calibrate each model variant.

First, the transaction mix models consistently outperfoneir
scalar counterparts by a wide margin for the production dats:
15% vs. 10% error for VDR and 20% vs. 13% error for ACME
regardless of the calibration procedure. Even for the deditely

substantial demands on system resources. The VDR data-set inoverloaded PetStore, which violates flow balance, the Eeeén

cludes both transaction records and system resourceatitiizmea-
surements collected abthapplication server and database server
tiers, derived respectively from application-level logglaOpen-
View Performance Agent (OVPA).

4.1.3 PetStore: Sample Application

The PetStore data set was collected on a testbed application
ing a highly variable and highly nonstationary workload eThtal
request rate and the ratios of transaction type frequeneigssi-
nusoidally, and the total rate increases over time so tleap#aks
represent transient overloads (“flash crowds”) during Wiaffered
workload exceeds the system capacity. Our models impliagt
sume that load doesot exceed system capacity, so this data set
provides an extraordinary challenge to our approach. Thgtoe
data set and the environment in which it was collected arerites!
in detail in earlier publications [15, 24]; due to space tatibns we
do not repeat these descriptions here. The PetStore dateaset
generated long before the present investigation begarhanefore
was not (consciously or otherwise) tailored to the methoglppro-
posed in this paper.

4.2 Results

transaction mix model calibrated with LAR has only a 22% erro
We achieve substantially greater accuracy by exploitirrmsac-
tion mix.

Second, the Extended model, which accounts for queueirtg, ou
performs the Basic model, which does not. Our Basic modééaeh
nearly the same accuracy for both production applicatientha
Extended model. This is what we expect because queueing is de
liberately minimized in production applications (see Fg8 and
the discussion in Section 3.1). For the heavily-loaded teetSiata,
in which queueing is a first-order effect, the Extended maqae!
forms substantially better than the Basic model (22% vs. @2fn
LAR is used).

Third, normalized aggregate error is lower when LAR regoss
is used. Outliers (extreme data values) are present in ladéhsets
and are particularly numerous and large in the PetStore Hafa
is a robust estimation procedure and is less sensitive liemithan
OLS, and therefore yields more accurate models accordiogito
accuracy measure.

We also evaluated model variants that include an interezpt t
in Equations 2 and 4. Such models are “wrong” from a queueing-
theoretic perspective because they imply nonzero aggregspponse
times even when no transactions occur. However an inteozapt

We calibrate our models on the first half of each data set, and increase retrospective accuracy but cannot reduce it, smiglet

also measure their retrospective explanatory accuracyefiirst
half. We then evaluate the predictive accuracy of the catéat
models using the transaction mixes in the second half of dath
set. Transaction mix nonstationarity therefore impliest fredic-

be tempted to include one if we are willing to trade “sanitgt f
accuracy. We found that the benefits of including an intereep
very limited, and that the principled models with no intercare
nearly as accurate.
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Figure 8: A performance anomaly in the “FT” application.

VDR ACME PetStore
Scalar TMIX | Scalar TMIX | Scalar TMIX
2ilel
2 Basic | 0.1621 0.1226| 0.1749 0.1470| 0.6528 0.6257
Composite| 0.1606 0.1218| 0.1723 0.1305 0.3702 0.4173
median
l&]/yi
Basic | 0.1418 0.0963| 0.1724 0.1378| 0.5247 0.5056
Composite| 0.1420 0.0931| 0.1664 0.1230[ 0.1708 0.2365

Table 3: Prospective prediction accuracy: Normalized agge-
gate error i |&|/ iy and median|g|/yi.

4.2.2 Application: Performance Anomaly Detection

Our previous work explains how accurate retrospectiveazgl
tory performance models can be useful [23]. The most obvapys
plication isperformance anomaly detectioire., identifying when
performance is surprising, given workload. Knowing whetherk-
load explains performance can guide our choice of diagntmsbis:
Ordinary overload might recommend bottleneck analysisreds
degraded performang®t explained by workload might suggest a
fault in application logic or configuration.

We have shown that a real performance bug episode in a real
distributed production application appears as a promiperfor-
mance anomaly. Figure 8 shows a scatterpldynfj;) pairs gen-
erated by a Basic model of the “FT" application during a perio
when application operators reported episodes of a perfucenbug
due to a misconfiguration in a concurrency parameter. Orsodei
corresponds to the prominent clusters of points in the |awggt
corner of the figure. FT is a globally-distributed enterpigplica-
tion that resembles VDR in several respects. See [23] fatildain
the FT application and on this case.

Model calibration takes under one second for large data sets

so our method can be used to detect anomalies in real time by

simply recomputing a new model at the conclusion of each time
interval (e.g., every 5 minutes) using a large moving windafw
historical data (e.g., from the previous week or month). da=
point corresponding to the most recent interval may thereleed
anomalous if the overall accuracy of the model is good bufrthst
recent performance observatigndisagrees substantially with the
model’s fitted valuey;”

4.2.3 Prospective Prediction

Table 3 summarizes predictive accuracy results for ourdasi
Composite models calibrated using LAR regression; theetalsio
includes Scalar variants of both models. We do not presenttse
for OLS calibration because they do not alter the qualiéation-
clusions we drew from Table 2: LAR works better, sometimes by
substantial margin.

In addition to normalized aggregate error, Table 3 showsathe
ternative accuracy measure discussed in Section 3.4: tHeamef
the distribution of normalized absolute residugds/y;. The two
measures differ in how they penalize inaccuracy. Normeleg-
gregate error severely punishes even a single large résidumay
“forgive” many small residuals, even those whéye- V| is large
in relation toy;. Our other accuracy measure, medjaf/y;, has
the opposite tendency: It forgives a large residual if theezpond-
ing y; is also large, but it penalizes us if the residual is oftegdar
in relation toy;.

Our prospective prediction results are consistent withretno-
spective explanation results: First, transaction mix ne@EVIX)
outperform their Scalar counterparts by a very large mdagihoth
real production applications by both accuracy measureen e
Basic TMIX achieves normalized aggregate error under 1586 fo
both real production data sets, and its individual perfaroespre-
dictionsy; are within 14% of the true valug half of the time.
The Basic model leaves little room for improvement when igbl
to real production applications; as we would expect, the @usn
ite model offers relatively modest accuracy improvemeantstlie
real production applications, which are intentionally ywéightly
loaded (Figure 3). Queueing delays are likely to be smalkla-r
tion to service times in such situations, so we gain relbtilittle
by modeling queueing. However for the deliberatelyerloaded
PetStore the situation is very different, as we would exp&tie
Composite model consistently achieves far better accumdoth
of our accuracy measures.

The relative benefits of incorporating transaction mix anduy
ing in the testbed application and the production applicetiare
consistent with our expectations: PetStore is heavily édadnd
has few transaction types; as we expect, the greatest s&ina
accuracy occurs when we move from the Basic model to the Com-
posite model. The production applications are lightly kddnd
have many transaction types; not surprisingly, the greatesease
in accuracy occurs when we move from a Scalar model to a TMIX
model.

The combined benefits of accounting for both queueing amdtra
action mix in production applications are striking. Congzhwith
the TMIX/Composite models, the Scalar/Basic models have su
stantially worse normalized aggregate error: 33% greater éor
VDR and 34% greater error for ACME. The differences are even
larger when we consider medié&|/yi: 52% greater error for VDR
and 40% greater error for ACME.

Figures 9, 10, and 11 illustrate both retrospective andigtied
accuracy for a Composite model of the VDR application calied
with LAR regression. In all cases, retrospective fitted ealor
residuals are shown in blue and prospective fitted valuestemgn
in red. Figure 9 presents a time series of observed aggregate
sponse timey; overlaid on fitted valueg;.” Overall, the latter track
the former quite closely. Residuals are not markedly lafger
prospective performance prediction than for retrospeagierfor-
mance explanation. For the VDR data set, our model genesaliz
well from historical data used for calibration to future \Woad
data used for prediction.

Figure 10 shows a scatterplot Of , ;) pairs. The three straight
diagonal lines in the figure are tlye= x diagonal, indicating per-
fect prediction, flanked by = 2x andy = x/2. Although observed
valuesy; range over three orders of magnitude, fitted valyes-"
most always agree to within a factor of two, and are usualtjiwi
15% of the truey; value. Finally, Figure 11 shows the full distri-
butions of|g|/y; for both explanatory and predictive models. Our
Composite model is highly accurate for retrospectivelyl@xing
performance, and the figure shows that residuals remainrkema
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Figure 9: Time series ofy; and ;.

VDR ACME PetStore
Basic 0.1226 0.1470 0.6257
naiveU, 0.1221 0.2193 0.5794
Composite  0.1218 0.1305 0.4178

Table 4: Incorporating utilization naively vs. correctly: Nor-
malized aggregate error.

ably small when the model is used to predict performancedbaise
transaction mix.

4.2.4 Generalizing to New Conditions

We performed an additional experiment to evaluate thetglaifi
our Composite model to predict performance in a real apjica
under workload conditions very different from those of ttedi-c

Actual sum_of_resp_times

Figure 10: Scatterplot of (y;, Vi) pairs.

100 500 2000 1.0 15

Absolute Percentage Error (APE): |Predict-Actuall/Actual

Figure 11: CDF of |g|/yi.

5. PERFORMANCE-AWARE APPLICATION
CONSOLIDATION

Enterprise systems that comprise multiple applicatiotesnoéx-
ecute each sub-application on separate machines to ishtat-
fects of software faults and workload spikes. Compared wuith
machine-granularity application boundaries, applicationsolida-
tion (i.e., executing multiple applications on one machimes sev-
eral advantages including better resource utilizationlewdr man-
agement and maintenance overheads. However, workloaddhct
tions in consolidated environments can have complex affent
application-level performance that reduce the overaliljotability
of the system. In this section, we use our transaction mixehtad
predict application-level performance amidst contenf@mrshared
physical resources.

bration data. We sorted the VDR data set in ascending order ong 1 Consolidation Model

application server CPU utilization. The first half of the uking
re-ordered data set contains time intervals during whick) Q&-
lization on the app server was very low. The second half ¢esta
time intervals during which utilization was much highergéiie 12
shows the distributions of CPU utilizations in both halvéste
re-ordered VDR data set.

We calibrated a Composite model on the first half of the re-
ordered VDR data, when load was very light (CPU utilizati@a b
tween 4% and 18%). We then evaluated the model’s predictive
accuracy on the second half, when load was much heaviae&itil
tion between 18% and 45%). The model’s predictive accuraay w
remarkably high under this challenging test: normalizegregate
errory;|el/ Sy was under 9.7%; most predictiogswere within
8% of the true valus;. Furthermore, the model’s predictive accu-
racy did not vary with load: Figure 13 shows a scatterplotrofre
per time intervallg|/y; versus CPU utilization on the app server.
The figure shows that accuracy is not noticeably worse unidér h
utilization (i.e., there is no upward trend to the right).

4.2.5 Modeling Utilization

A nonspecialist in queueing theory might wonder why we do
not simply incorporate resource utilizations into our perfance
model by addindinear U, terms rather than the mysteridug/(1—

U) terms of Equation 4. Table 4 compares the predictive acgurac
of our Basic and Composite models with a model that incotesra
utilization in the naive way. We see that the naive apgraame-
times improves upon our Basic model. However the “corrept’ a
proach of our Composite model yields still better accur&sweral
similar cases not reported here tend toward the same comtlus
Embellishing the Basic model in haphazard ways sometinfessof
modest advantages, but amendments with sound theoretstal |
fications (as in our Extended and Composite models) yieltebet
results overall.

We predict system-wide performance in consolidated enviro
ments by combining the Composite transaction mix modelsciie
target application running in isolation. We concatenaésttansac-
tion mix vectors and sum the resource utilizations in the pasite
transaction mix models of the target applications. Morenaity,
the system-wide sum of response times for two consolidgipti-a

1 Uy +Up)?

cations in interval is:
a.N.A_’_ =
iNi Z(Aﬂ(uawi’;))

where superscripts @nd”) distinguish between the two appli-
cations. For brevity, we show a unifief andN; which repre-
sent concatenation of each application’s individual patens. The
variablen represents the number of transaction typksepresents
the utilization of resource, andA represents the post-consolidation
arrival rate of both applications. Note that the unificatidiseveral
Composite models can trivially be extended to handle theaen
idation of more than two applications, though we do not pievi
empirical results on this more general case. We acknowléugfe
additive measures of resource utilization may not accaurgdme
additional costs of resource sharing (e.g., context swithh We
have achieved accurate performance predictions withagider-
ing such effects, though their impact may become more sagmifi
as the degree of consolidation increases. Likewise, warassun
application’s resource requirements do not decrease @itesoli-
dation, which can happen if the target applications intevashare
data.

The resulting transaction mix model can be manipulated to de
rive performance predictions for each application undeisotbida-
tion by considering the sum of the transaction types coording
to a target application. Specifically, we extract the pgsliaption

n+n"

X N
A

n+n"

Yi= >

=1
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Figure 12: CDFs of app server CPU utilization in both halves
of re-ordered VDR data set.

performance under consolidation as follows:

. U/ U//)Z n
)/i = ZGJN|]+Z )\IW JZ]_NIJ
n+n’ 1 (U' U”) n+n”
gy = a;Njj + N-.
5.2 Realistic Workload Generation

Not surprisingly, the ACME and VDR administrators did not al
low us to perform consolidation experiments using theirliapp
tions, so we built our own testbed from benchmark applicetio
Unfortunately, the workload generators shipped with ounche
mark applications produced stationary workloads, whichwa
have seen, differ qualitatively from workloads observethawild.
We developed our own workload generator which appliessteli
nonstationary workloads to our testbed by mimicking theges-
tion type frequencies in the traces of real applicationg. (ACME
and VDR). First, we separately ranked the transaction typesth
our real and testbed applications according to their pojtylan
the real trace and workload generator probabilities resdy. \We
created a synthetic trace that imitates the the nonstaiigmd real
workloads by replacing each transaction type in the reaétveith
the transaction type with the same popularity rank in thébezb
application. Finally, our workload generator also mimige sea-
sonality of real workloads by varying the request rate aiogr
to a sawtooth pattern. Henceforth references to a real cgign
(i.e., ACME or VDR) preceded by “M-" will indicate a mimicked
workload based on the named dataset.

5.3 Evaluation

Our testbed consists of two benchmark applications. The Ric
University Bidding System (RUBIS) [38] is an online auctioench-
mark that consists of 22 transaction types that provideicesv
such as browsing for items, placing bids, or viewing a user's
formation. The StockOnline [42] trading system comprises s
transaction types corresponding to buying, selling, vigngrices,
viewing holdings, updating account information, and drephew
users. Each application runs on top of the JBoss 4.0.2 apiolic
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App server utilization
Figure 13: Prediction error |g|/y; versus app server CPU uti-
lization in re-ordered VDR data set.

distributed by Red Hat. All of the experiments mentionedhiis t
section were run for five hours. Matching our observationthef
ACME workload, each test was configured to exhibit eight com-
plete sawtooth fluctuations in request rate. Unless otlsermoted,
request rates were set for low CPU utilization (15-25%) wéech
application ran in isolation. Measurements were colleetady 30
seconds using the SAR system monitor. Each respectiveetbstb
application was calibrated using the M-ACME imitation wiaikd.

Table 5 shows the accuracy of our consolidation predicticns
ing the metrics discussed in Section 4.2.3. We show one &onso
idation scenario where the calibration and evaluation Veaids
are the same (M-ACME) and two scenarios in which the work-
load under consolidation differs from the calibration wiodd (M-
ACME). Under the same calibration and evaluation worklces
aggregate error is 5.5% and 11% for RUBIS and Stock respdytiv
We also observe that the composition of transaction mix risdde
consolidation is robust to changes in workload; predictiegfor-
mance on completely different workloads from the calilmatset
still yields aggregate errors within 9% and 14%. We note that
normalized errors for the StockOnline application are alice
that of RUBIS. Upon further investigation, we found that&on-
line is developed in a fashion such that transaction types e
provide much distinctive information about resource deatsarin
this sense, StockOnline violates one of our fundamentalnags
tions about applications, yet we are still able to repornmalized
aggregate errors of between 11% and 14%.

Figure 14 shows the cumulative distribution of absoluteeer
error when the RUBIS and StockOnline applications are dénso
dated and subjected to the M-VDR workloads. More than 97.6%
and 74.2% of RUBIS and StockOnline predictions respegctiaed
within 20% actual response time. The calibration and evalnaf
StockOnline on different workloads represents a significiual-
lenge for our model yet 98% of performance predictions athiwi
40% of the actual response time.

We also wish to demonstrate the robustness of our consiolidat
prediction under heavy load. We increased the workloadgity
by ramping up utilizations such that CPU utilizations reat70%
on the application server. Figure 15 shows the cumulatistridi
bution of the normalized residual error in our heavy-loadsm-
idation scenario. We report normalized aggregate erro”d%

server [21] and accesses MySQL [32] as the back-end databaseand 11.7% for RUBIS and StockOnline respectively. Whilesthe

The application server and database run on separate macRae
source consumption at the database is negligible in ouregdsso
we focus on the consolidation of the application server tier

results indicate the robustness of our consolidation medehote
the limitations of our queueing model: As we noted with thé-Pe
Store application, our predictions are not intended fotesys in

Our experiments are run on a three-machine cluster. Eaoh nod which a resource is frequently saturated. Consolidatiqresx

consists of four 2.4-GHz CPUs with Intel Hyperthreadinghrea-
ogy and 6 GB of main memory. We use the Linux 2.6.9 kernel

ments under such situations gave performance predictidhsww



RUBIS Accuracy Stock Accuracy
Consolidated| Consolidated| Normalized Median of Normalized Median of
RUBIS Stock Aggregate Normalized Aggregate Normalized
Workload Workload | Error (%) Absolute Residualgé|/y;) | Error (%) Absolute Residualdé|/yi)
M-ACME M-ACME 0.0549 0.0383 0.1064 0.1263
M-ACME M-VDR 0.0724 0.0706 0.1391 0.1184
M-VDR M-VDR 0.0810 0.0626 0.1349 0.1145

Table 5: Application-level performance prediction accuracy in consolidated environments. Predictions are based on @asurements
of each application in isolation. In all cases model calibraon employed the M-ACME workload.
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Figure 14: CDF of absolute percent error (g|/y;) under differ-
ent calibration and evaluation workloads.

acceptable (41%) normalized standard error; since thigtrissex-
pected it is not shown here.

6. RELATED WORK

This section reviews literature on several topics relatedur
work: We begin with a survey of workload characterizatiomdst
ies that have identified regularities in modern applicatiork-
loads and then consider workload generators used in résaaddn
commercial benchmarking. We then review instrumentatoatst
and techniques that can be used to calibrate performancelspod
theoretical performance models themselves, and the apiplicof
such models to practical performance prediction probldfirally,
we summarize the state of the art in server consolidatioparel
and practice. A review of literature on an important appiaaof
our modeling technique, performance anomaly detectioayad-
able in [23]. A review of literature on LAR regression is dahie
in [24].

6.1 Workload Characterization

Previous research has characterized many aspects of wdrikio
modern transactional applications, e.g., Web server wadd [4]
and Web user sessions [2]. Menastal.propose first-order Markov
models of customer accesses at e-commerce sites [30] acribdes
statistically self-similar arrival patterns at such sif28]. Some
forms of nonstationarity have been observed in workloads, &
Internet traffic [12] and in the diurnal cycles of requestsiteb
sites [5]. However to the best of our knowledge nonstatioynar
the mix of application-level transaction types is not cdeséd in
previous research.

Many characterization studies lead directly to presavipifor
improved performance. Breslat al. show that the Zipf-like dis-
tribution of Web document access frequencies implies thattain

1.0

0.8

Cumulative Density Function (CDF)

0.2

— Rubis

1 — Stock
T T T T T

0.0

0.0

02 0.4 0.6 08

sumRespTime Absolute ge Error (APE): |Pred

Figure 15: CDF of absolute percent error (g]/y;) under heavy
non-saturating workload.

Web cache removal policy is optimal [11]. Arlitt & Williamsdind
support for size-based Web cache removal policies in tredisz
tributions of Web documents [5]. Jurg al. characterize transient
overload events (“flash crowds”) and suggest ways for system
fenses to distinguish them from denial-of-service att42R$.

Clustering techniques are frequently employed to simplidyk-
load for performance modeling [6]. Often workload units elkes-
tered according to their resource demands as in Magpie [F]ran
Espositoet al. [18], but occasionally clustering is applied to other
aspects of workload, e.g., customers [51].

Our contribution is to recognize that in many modern applica
tions transaction types effectively cluster workload edeits ac-
cording to their resource demands, and that nonstatignatitans-
action mix presents an opportunity to calibrate perforneanodels
without invasive instrumentation or controlled benchniragk

6.2 Workload Generation

Commercial synthetic workload generators are used to evalu
ate the performance of live applications and systems [3d]ian
standard benchmarks such as TPC-W [47]. To the best of our
knowledge, such tools generate workloads with stationaamyst
action mixes. Schroedest al. survey workload generators used
in research, emphasizing the distinction between open mseéd
generators [40]. These tools allow users to configure drrate
parameters but do not facilitate the generation of worldoatth
nonstationary transaction mixes. To the best of our knogdethe
only workload generator that does so is the SWAT tool of Krish
murthy et al. [25, 26]. SWAT employs sophisticated mathematical
programming techniques to construct a mix of sessions tat ¢
forms to user-specified aggregate workload criteria; ratiwstarity
follows from the use of recorded sessions from a real praoiuct
system. SWAT strives to provide both the fidelity of simplace



replay with the control and configurability of conventionedbrk-
load generators.

Our contribution is to recognize that the stationary woakle
produced by conventional workload generators make pasarast
timation for performance modelinmore difficultthan naturally-
occurring nonstationary workloads. Indeed, our resultssthat
controlled experiments using synthetic workload genesadce not
necessary to calibrate performance models. Accurate npeaftce
models may be calibrated using the kinds of lightweight pass
measurements routinely collected in today’s productisiesps—
transaction logs and utilization logs.

We furthermore report that the simple expedient of replayin
transaction logs from real production applications with thans-
action types re-named to suit a testbed application (Seé&id)
yields good results.

6.3 Instrumentation & Measurement

A wide range of commercial performance measurement toels ar
available. Sauerst al. provide a candid survey of the strengths
and limitations of one vendor’s products [39]. Some tools-pr
vide insight into transaction execution paths and resousage
noninvasively—without application source code modificas—
via instrumented middleware [19]. If source code is avddabp-
plications may be systematically instrumented to recordenute-
tailed transaction execution information, e.g., using AfRM in-
strumentation standard [45]. Instrumentation to charemetd@rans-
action resource demands in greater detail and with lowethexasl
remains an active research area [7, 27, 46].

Our contribution is to recognize that transaction mix natist-
arity in real-world workloads enables us to use very lighighe
measurements to characterize the resource demands aidtians
types for the purpose of calibrating performance models.

6.4 Queueing Theory

Queueing networks are the subject of a large theoretiat lit
ature; see Bolclet al. for a lengthy survey [10]. Jain describes
applications of queueing theory to computer system peidoca
analysis [20]. The approaches that Jain surveys differ fooms
in several key respects: Jain emphasizes the design ofodedtr
experiments for performance analysis, and an underlyisgrap-
tion throughout much of the book is that systematic benckimgr
is possible. Furthermore most of Jain’'s queueing networketso
assume far more detailed information about transactiorabeh
than is available in many practical situations. For ins¢aiitds fre-
quently assumed that the number of times a transactiors viait
ious resources and the distribution of service times at station

classes can also be used to represent different transagpes.
One problem with existing multiclass methods for our pugsos
that most assume a closed network—our production trace®to n
include sufficient information about client sessions forausmploy
a closed model. Another problem is that the computationstl ab
computing exact solutions to MVA using conventional alguoris
increases rapidly with the number of classes. A more efficikgyo-
rithm has appeared recently [13] but it is formidably comped
difficult to implement. Multiclass models with more than atéul
of classes are rarely used in practice due to their complexitl
the computational cost of computing solutions.

Our contribution is to introduce a computationally tradtadénd
conceptually simple performance model for open networkg th
takes transaction mix into account, that models multipleise
centers, that is easy to calibrate, and that yields accueapnse
time predictions for real production applications.

6.5 Applied Performance Prediction

This section reviews in depth two recent papers that appyeu
ing models to distributed applications, highlighting damities and
contrasts with respect to our work. We refer the reader tio éxe
cellent literature reviews for recent, broad, and thorosigiveys of
related work in this field [41, 48].

Urgaonkaret al. model multi-tier Internet services as product-
form queueing networks and employ mean value analysis té com
pute average response times [48]; in some respects thisisvairk-
ilar to that of Liuet al. [28]. The Urgaonkaet al. model assump-
tions differ from ours in several details. For instance, ddngkar
et al. explicitly model concurrency limits whereas we do not. We
assume an open queueing network whereas Urgaartkal. as-
sume a closed network. We explicitly model distinct phyisiea
sources such as CPUs and disks whereas Urgaehkhrssociate
a single queue with each tier. The models differ in their agsu
tions about how requests recirculate among tiers; comparEig-
ure 6 with their Figure 3 [48, p. 294]. An important differenis
that their method requires more diverse model parametienatsts
than ours, including request visit ratios at each tier, isertimes
at each tier, user think times, and certain other parametéated
to congestion effects. Urgaonkat al. report that their approach
yields accurate average response time estimates for twolsam-
plications RUBIS and Rubbog subjected to stationary synthetic
workloads in a testbed environment; they do not report aitich
results on real production applications.

Stewart & Shen present a performance model of distributed In
ternet applications based on “profiles” that summarize hpplia
cation software components and their workloads place ddsnam

can be measured directly. Our work proceeds from the assump-underlying system resources [41]. Their model also acsofort

tion that lightweight passive measurements of transacéeponse
times and resource utilizations are all that is available.
Operational analysis is a branch of queueing theory thergits
to avoid probabilistic assumptions about system workload.(
Poisson arrivals and exponentially-distributed servioges) and
rely solely upon measurable quantities [17]; Little’s Landahe
Utilization Law are classic examples of operational lawseak¥
Value Analysis (MVA) restricts attention to the averages ¢@-
posed to the full distributions) of performance measuré&$. [Ro-
lia & Sevcik introduce a variant of MVA designed to accommimda
softwareservers in addition to conventional hardware service sta-
tions [36]. Like conventional MVA, this method pertains tosed
gueueing networks, whereas we employ open network models.
Generalizations of queueing-theoretic models and MVA eslsir
multiclassnetworks [9]. Workload classes are often interpreted
as categories such as “batch,” “terminal,” and “transactidut

inter-component communications and component placerniéris.
work shares some features in common with our approach. For in
stance, Stewart & Shen account for waiting times at servers u
ing an M/G/1 model; we employ a similar model in Equation 4.
They estimate the resource demands of components by filting |
ear models to benchmark data. However, they describe wamtklo
by a constant scalar arrival rate, whereas we use a timéagargc-

tor of per-type transaction counts. Stewart & Shen repaitt titeir
most sophisticated model variant predicts average respimes

to within 14%. Their validation uses testbed applicatioR§/BiS
and StockOnling and stationary synthetic workloads.

An important difference with respect to our work is that the
method of Stewart & Shen requires very extensive calibnafidne
resource consumption profile of each component must beastim
via controlled benchmark experiments, and inter-compboem-
munication overheads must also be measured. They place each



profiled componentn a dedicated machirguring calibration and cations to maximize revenue while controlling the potdrftare-
require at least one benchmark run per component. For thikir f  source overload [49].
model, O(N?) benchmark runs are required to estimate pairwise  The state of the art in research and in practice is to base@kons

inter-component communication costs [41, p. 75]. We expion- idation decisions on considerations of resource utiliratiand ei-
stationarity to obtain similar performance profiles usimdydight- ther ignore application-level workload or model it as a acguan-
weight passive measurements of running production systéhes tity. This is problematic because the relationship betvagglication-
coefficients of our utilization model (Equation 5) corresgalosely level performance and utilization is complex, and becaagle te-

to those in the “component resource profiles” of Stewart &She pend on transaction mix. Our contribution is a practical wagb-
(see Figure 2 and Tables 1 and 2 in [41]. Another difference is tain accurate predictions afsponse timeis transactional applica-
that we do not require knowledge of internal application pom tions, thus allowing consolidation decisions to consigmli@ation-
nent structure; we use only externally-visible transactigpes. level performance as well as system resource utilization.

We emphasize two important differences between our evaluat
experiments and those presented in Urgaoekat. and in Stewart 7. CONCLUSIONS
& Shen. First, as noted above, we have employed two real produ )
tion traces for our evaluations; they have used only testpgi-
cations. The workload of our applicationsnisnstationaryin sev-
eral key parameters, including both workload intensity &ads-
action mix. By contrast, Stewart & Shen and Urgaorddal. em-
ploy synthetic workloads reminiscent of classic stead@yesbench-
marks both for model calibratioand for evaluation The transac-
tion mixes in their synthetic workload (e.g., the buy:brewatio
in their synthetic e-commerce workloads) remegnstantduring
both calibration and evaluation. We believe that our ndiwtary
workload yields a far more challenging and more realistit ¢ a
performance model’s generalizability and predictive aacy

Our empirical evaluations could not include comparisongwi
the methods of Stewart & Shen and of Urgaonkaml. for two
reasons: First, the input-output behavior of the three nsddesuf-
ficiently different to preclude a true apples-to-apples parison.
More importantly, the other two approaches require far neaten-
sive calibration data than is available in our data sets ¢oarent
testbed at HP does not permit the same instrumentation dsmse
Stewart & Shen; e.g., kernel modifications are not allowéttyw-
ever we do compare our preferred approach with alternatiags
like the models of Stewart & Shen and of Urgaonk&tal., employ
a scalar measure of workload intensity (Section 3.2.4). dvad
that transaction mix models offer substantially higheuaacy than
their Scalar counterparts (Section 4.2).

The global geographic distribution, organizational déadiza-
tion, opaque component structures, and unprecedenteziccabd-
ern application architectures confound performance nigleh
challenging new ways. Performance prediction in busieiisal
applications, however, remains an important problem dugheo
growing economic importance of these applications. Thisepa
presents a practical, versatile, and accurate approacdtedicfing
application-level response times in complex modern diisted ap-
plications. Our method exploits naturally-occurring wodd non-
stationarity to circumvent the need for invasive instrutagan or
controlled benchmarking for model calibration. It reliedety on
measurement data that is routinely collected in today’slpction
environments. Our method can be adapted to a wide range of ap-
plications, and calibrated models generalize well to neyiores of
workload/performance space. It is novel in its use of tratisa
mix to predict performance, and we have shown that trarmacti
mix is a far more powerful predictor of application performsa
under realistic conditions than scalar workload volume.

Our empirical results show that our method predicts respons
times in real production applications to within 16% by twoyvdif-
ferent accuracy measures. A model of a real production egifpin
calibrated under light load predicts performance undevhézad
to within 10%. Our results show that if accurate workloadefor
casts are available, they can be mapped directly to accpeater-
mance predictions. Furthermore we predict response tifesne

: : solidated applications to within 4% to 14% based on pasgige p
6.6 Consolidation consolidation measurements, even when workload changesath

The Computing trends of the 1980s and 1990s led to deCGntra'-ica”y between calibration and evaluation. Whereas Engsap_

ized IT infrastructures that can be more difficult to managd a proaches to consolidation decision Support consider m’ﬂyurce

less cost-effective than their centralized predecessiesver con-  ilization, our approach enables application-level ceme times
solidation attempts to increase resource utilization evtelducing to guide consolidation decisions.

the costs of hardware, data center floor space, power, ¢paimd

administration. The resource cost benefits of consolidatione

are potentially attractive: Andrzejait al. studied CPU utilization ACknOWledgmentS

in six enterprise data centers containing roughly 1,000 €&tH Martin Arlitt supplied the ACME data set. Ira Cohen, Julie/®yns,

found that consolidation could reduce the number of CPUderte  and the second author collected the FT and PetStore datéosets

during peaks by 53% and the mean number required by 79% [1]. separate projects [15,16]. We thank the operators of the B,
Administrators know that systems can be overloaded if tine su  and VDR production systems for providing anonymized treate.d

of consolidated application resource demands is excesHikac- Hsiu-Khuern Tang answered questions on statistical nsatéajun
titioners are advised to rely on rough guidelines for togslource Nath provided valuable assistance to our testbed expersmgye
utilization, e.g., “avoid peak CPU utilization over 70%4J1L Com- are deeply grateful to Narayan Krishnan and Eric Wu for tbeir
mercial capacity planning decision support aids may empioye traordinarily assistance in setting up and administerirggduster
sophisticated time-series analysis of pre-consoliddtistorical data, we used for consolidation tests. We thank David Oppenheimer
but their suggestions are based on considerations of i@soti- Jerry Rolia, and Bhuvan Urgaonkar for many insightful dsscu
lizations [44,50]. sions of performance modeling and its applications, andhaak
Recent research on consolidation decision support alsesbas Kim Keeton, Kai Shen, Zhikui Wang, Xiaoyun Zhu, Sharad Sing-
recommendations on resource utilization. Relial. analyze his- hal, and the anonymous reviewers for reading drafts andidfe
torical utilization data to provide statistical guarargea post-con- many helpful suggestions. The first author acknowledgepatip

solidation utilization [37]. Urgaonkaet al. profile applications on from the U.S. National Science Foundation CAREER Award CCF-
dedicated nodes to estimate resource demands and “pack’ app 0448413.
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