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Byte-addressable non-volatile memory (NVM)—Intel Optane—is now 
shipping in volume. Today’s NVM offers performance between that of 
DRAM memory and flash storage [2, 7] and can be accessed via either 

storage or memory interfaces [8]. The latter offers the prospect of radically 
simplifying application software by allowing direct manipulation of persis-
tent data via CPU instructions (LOAD and STORE), thus offering an alterna-
tive to traditional persistence technologies such as relational databases and 
key-value stores. Industrial adoption of NVM and its corresponding style of 
programming is growing [9].

Given the excitement surrounding novel NVM hardware, now is a good time to remind our-
selves that it has long been possible to implement a software abstraction of persistent memory 
(“p-mem”) on conventional hardware—ordinary volatile DRAM and block-addressed durable 
storage devices. The corresponding “p-mem style of programming” resembles the style that 
NVM invites, and supports similar simplifications, but doesn’t require special NVM hardware.

This article illustrates p-mem programming on conventional hardware with C code for 
UNIX-like operating systems; all code is available at [3]. Spoiler alert: the basic technique is 
to lay out application data in memory-mapped files, with help from a few easy tricks and pat-
terns. Because conventional mmap() doesn’t guarantee data integrity in the face of failures, 
crash consistency requires extra support. The right crash consistency mechanism for p-mem 
programming on conventional hardware is failure-atomic msync() (FAMS) [6], and this 
article presents a concise new implementation of FAMS.

A Persistent Linked List
The C program below prepends words from stdin to a persistent singly linked list. It relies on 
a bare-bones persistent memory library, pmem, presented later. Notice that the list node data 
structure’s next field is not a conventional pointer but rather an offset—specifically a pmo_t 
(“persistent memory offset type”), defined as a uintptr_t in pmem.h. Under the hood, pmem 
computes offsets relative to the base address where persistent data are mapped, which may 
vary on different runs of the program. Offsets allow data structures to be relocatable, which 
improves portability and facilitates sharing persistent data between different applications. 
The alternative of non-relocatable persistent data offers different tradeoffs and is beyond the 
scope of this article; see [5] for a discussion.

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include “pmem.h”

typedef struct {
  pmo_t next;
  char string[];
} node_t;

#define NP(o)  ((node_t *)pmem_o2p(o))
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int main(int argc, char *argv[]) {

  int r;

  char buf[100];  /* harmonize with scanf() below */

  pmo_t head, t;

  if (2 != argc) {

    fprintf(stderr, "usage: %s pmemfile\n", argv[0]);

    return 1;

  }

  if (0 != (r = pmem_map(argv[1]))) {

    fprintf(stderr, “pmem_map() failed: %d\n”, r);

    return 2;

  }

  head = pmem_get_root();

  while  (1 == scanf(" %99s", buf)) {

     if (0 == strcmp("[dump]", buf))

       for (t = head; 0 != t; t = NP(t)->next)

       printf("%s\n", NP(t)->string);

     else {

       t = pmem_alloc(sizeof(node_t) + 1 + strlen(buf));

       if (0 == t) {

        fprintf(stderr, "pmem_alloc() failed\n");

        return 3;

       }

       strcpy(NP(t)->string, buf);

       NP(t)->next = head;

       head = t;

       pmem_set_root(head);

    }

  }

  return 0;

}

Function pmem_map() maps a given persistent data file into 
memory, initializing persistent heap metadata within the file 
if necessary. Unlike conventional mmap(), pmem_map() returns 
an error code rather than the address where the file has been 
mapped. Clients of pmem (i.e., code that uses pmem) neither know 
nor care about persistent data addresses—that’s the whole point 
of relocatability. Clients allocate from a persistent heap in the 
file via pmem_alloc(), which returns offsets rather than con-
ventional malloc()’s pointers. Finally, the pmem library embeds 
a root offset within the persistent data file. Clients must ensure 
that all persistent data are reachable from the root by calling 
pmem_set_root(). This allows the client to obtain an entry 
point into persistent data structures via pmem_get_root() on 
subsequent executions. Our list example program maintains the 
invariant that the root offset is always the head of the persistent 
linked list.

Function pmem_o2p() converts offsets to conventional pointers, 
which macro NP casts to a list-node pointer. Clients of pmem 
need offset-to-pointer conversions for accessing the innards of 

application-defined data structures. However, the pmem library 
doesn’t support pointer-to-offset conversions because well-
designed applications don’t need them: clients’ persistent data 
structures should contain only offsets returned by pmem_alloc() 
(or offsets derived therefrom), never pointers; only offsets are 
encountered when traversing persistent data. 

The shell commands below demonstrate that our program’s 
list is indeed persistent. truncate creates a new sparse back-
ing file whose size is a multiple of the system page size. We run 
list twice, feeding it different words and dumping the list. The 
second dump shows that the words entered on the first run have 
persisted.

% truncate -s 409600 list.bf

% echo ‘wun too [dump]’ | ./list list.bf

too

wun

% echo ‘free fore [dump]’ | ./list list.bf

fore

free

too

wun

Persistent memory programming based on memory-mapped 
files is much more versatile and powerful than the brief exam-
ples above would suggest. In particular, retrofitting persistence 
onto legacy software that was not designed for persistence can 
be remarkably easy, and the rules governing multithreaded 
p-mem are straightforward [5].

Library Internals
The pmem library interfaces used above admit a succinct no-frills 
implementation, shown below. There’s nothing arcane going on; 
much of the code simply checks internal consistency and catches 
corner-case errors, syscall failures, and client misuse. The library 
often returns line numbers where errors occur rather than errno-
like codes (“use the Source, Luke”), and the persistent heap sup-
ports a p-mem allocator but no corresponding free().

The pmem library defines a header structure (pmh_s) that will 
occupy the first few machine words of the backing file that 
contains persistent data. The header contains allocator book-
keeping information and the root offset described above. The 
library stores in static external variables e_base and e_len, 
respectively, the address at which the backing file is mapped  
and the size of the backing file.

Library function pmem_map() invokes conventional mmap()  
to map a specified backing file into the caller’s address space;  
at most one such mapping at a time is supported. Function 
pmem_unmap() removes mappings; pmem_alloc() allocates 
persistent memory; and the paired pmem_[get|set]_root()’ 
functions provide access to the root offset.
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Again, the pmem library is intentionally Spartan. It serves merely 
to remind us that a few dozen lines of code suffice to support 
rudimentary persistent memory programming on conventional 
hardware.

#include <assert.h>

#include <fcntl.h>

#include <stdint.h>

#include <stddef.h>

#include <unistd.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/types.h>

#include "pmem.h"

static_assert(sizeof(pmo_t) == sizeof(void *),   /* C11 */

                 "offsets & pointers incompatible");

typedef struct {  /* header of backing file & in-memory image */

  pmo_t avail, end,  /* allocator bookkeeping */

          root;         /* live data must be reachable from root */

} pmh_s;  /* “persistent memory header structure” */

static pmh_s * e_base;  /* start address of in-memory image */

static size_t  e_len;     /* length of in-memory image */

#define UNIT (_Alignof(max_align_t))  /* C11 */

#define ALIGNED(o) (0 == (o) % UNIT)

#define ALIGN(o) do { while(! ALIGNED(o)) (o)++; } while (0)

/* Backing file and its in-memory image consist of a header (of

    type pmh_s above), a heap (nearly everything else), and final

    padding (one UNIT). Padding at the high end eliminates an

    awkward corner case. A root offset must “point” within the

    heap. Other offsets (e.g., “end”) may point one byte beyond

    heap, analogous to C rule for pointers (N1570 Sec 6.5.6). */

#define VALID(o)  \

  (0 == (o) || (sizeof *e_base <= (o) && (o) <= e_len - UNIT))

#define VALID_ROOT(o) \

  (0 == (o) || (sizeof *e_base <= (o) && (o) <  e_len - UNIT))

#define SANITY_CHECKS 	 \

  do {     	 \

    assert((NULL == e_base && 0 == e_len) ||	 \

            (NULL != e_base && 0 != e_len) );	 \

    assert(NULL == e_base ||	 \

           (  ALIGNED(e_base->avail) && ALIGNED(e_base->end)	 \

             && VALID(e_base->avail) &&   VALID(e_base->end)	 \

             && VALID_ROOT(e_base->root) ));	 \

  } while (0)

void * pmem_o2p(pmo_t o) {  /* convert offset to pointer */

  assert(VALID(o));

  return 0 == o ? NULL : (char *)e_base + o;

}

#define P2O(p) ((pmo_t)((char *)(p) - (char *)e_base))

#define RL return __LINE__  /* indicates where error occurs */

int pmem_map(const char * const file) {

  int fd, prot = PROT_READ | PROT_WRITE, flag = MAP_SHARED;

  long int pgsz;  struct stat sb;  size_t s;  pmh_s *t;

  SANITY_CHECKS;

  if (NULL != e_base)  /* limit: one mapping at a time */	 RL;

  if (1 > (pgsz = sysconf(_SC_PAGESIZE)))                  	 RL;

  if (UNIT > (size_t)pgsz)                                 	 RL;

  if (0 > (fd = open(file, O_RDWR)))                       	 RL;

  if (0 != fstat(fd, &sb))                                 	 RL;

  if (10 * UNIT + sizeof *t > (s = (size_t)sb.st_size))    	 RL;

  if (0 != s % (unsigned long)pgsz)                        	 RL;

  if (MAP_FAILED ==

      (t = (pmh_s *)mmap(NULL, s, prot, flag, fd, 0)))       {

    if (0 != close(fd))  /* don’t leak fds ... */          	 RL;

    else                                                   	 RL; }

  if (0 != close(fd))                                              {

    if (0 != munmap(t, s))  /* ... or memory either */     	 RL;

    else                                                   	 RL; }

  /* file must be either new or already initialized: */

  if ( ! (   (0 == t->avail && 0 == t->end && 0 == t->root)

          || (0 != t->avail && 0 != t->end)))              	 RL;

  if (! (ALIGNED(t->avail) && ALIGNED(t->end)))            	 RL;

  e_base = t;

  e_len   = s;

  if (! (VALID(t->avail) && VALID(t->end)

         && VALID_ROOT(t->root)))                          	 RL;

  if (0 == t->avail) {  /* initialize persistent heap */

    t->avail = P2O(1 + t);

    ALIGN(t->avail);

    t->end   = P2O((char *)t + s - UNIT);

    t->root   = 0;

  }

  else  /* previously initialized; check size: */

    if (t->end != P2O((char *)t + s - UNIT))               	 RL;

  SANITY_CHECKS;

  return 0;

}

pmo_t pmem_alloc(size_t n) {  /* “bump-pointer” allocator */

  pmo_t r;

  SANITY_CHECKS;

  assert(NULL != e_base);

  if (0 == n                             	 || /* ask 0, get 0 */

      e_base->avail     >= e_base->end   	|| /* out of p-mem */

      e_base->avail     >  ~(pmo_t)0 - n  	|| /* “+n” overflows */

      e_base->avail + n >  e_base->end)     /* <n bytes left */

    return 0;

  r = e_base->avail;

  e_base->avail += n;



32    WI N T ER 20 19   VO L .  4 4 ,  N O.  4 	 www.usenix.org

PROGRAMMING
Good Old-Fashioned Persistent Memory

  ALIGN(e_base->avail);

  SANITY_CHECKS;

  return r;

}

int pmem_unmap(void) {

  SANITY_CHECKS;

  if (NULL == e_base)                 RL;

  if (0 != munmap(e_base, e_len))  RL;

  e_base = NULL;

  e_len = 0;

  return 0;

}

void pmem_set_root(pmo_t o) {

  SANITY_CHECKS;

  assert(NULL != e_base && VALID_ROOT(o));

  e_base->root = o;

}

pmo_t pmem_get_root(void) {

  SANITY_CHECKS;

  assert(NULL != e_base);

  return e_base->root;

}

Crashes and Data Integrity
Could a full-featured incarnation of the pmem library be suitable 
for serious purposes? Yes, for applications that always perform 
an orderly shutdown. However, pmem is inadequate for applica-
tions that must tolerate sudden crashes, e.g., power outages, OS 
kernel panics, and application software crashes. Why? Because 
pmem creates shared file-backed memory mappings with conven-
tional mmap(), which cannot prevent crashes from corrupting the 
backing file. One fundamental problem is that the OS may write 
modified memory pages down to the backing file at any time and 
in any order, regardless of if/when msync() is called. Another 
problem is that if msync() is called, the changes it makes to the 
backing file are not atomic with respect to failure. The state of 
the backing file following a crash is therefore indeterminate.

Failure-atomic msync() (FAMS) solves this problem by 
strengthening the semantics of conventional mmap() / msync(). 
FAMS guarantees that the backing file always reflects the most 
recent successful msync(), regardless of failures [6]. The FAMS 
abstraction is the ideal foundation for crash-tolerant persistent 
memory programming on conventional hardware. It has been 
implemented in the Linux kernel, in file systems, and in user-
space libraries; at least six FAMS implementations exist, two of 
which are in commercial products [5]. FAMS has the attractive 
property that underlying durable storage is a freely configurable 
placeholder: “durability” for a FAMS-based p-mem program can 
mean anything from a single hard disk to a RAID array or geo-
replicated cloud storage. Furthermore, FAMS is easy to reason 

about because it merely restricts the behavior of well-understood 
standard interfaces: FAMS guarantees behavior that is possible 
(but, sadly, unlikely) in conventional mmap() / msync().

Existing FAMS implementations have demonstrated the 
abstraction’s power and versatility, but they’re not without 
barriers to adoption: some are research prototypes, others 
are buried in appliance-like commercial products, and the 
two newest implementations are complex but not yet thoroughly 
tested [4, 5]. The world needs a FAMS implementation that is 
efficient enough for serious use yet simple enough to audit easily.

Simple and Efficient Crash Consistency
Our efficient yet very simple new userspace implementation of 
failure-atomic msync() makes two compromises: it restricts our 
choice of file system, and its interface is fussier than classic FAMS.

The library implementation below is called famus_snap 
(“failure-atomic msync() in userspace via snapshots”). It runs on 
file systems that allow multiple files to share physical storage, 
e.g., Btrfs, XFS, and OCFS2 (optionally accessed over a network 
via NFSv4.2 or CIFS). The interesting work happens in function 
famus_snap_sync(), which uses ioctl(FICLONE) to create a new 
snapshot that shares storage with the backing file. A copy-on-
write mechanism ensures that subsequent modifications to one 
file do not affect the other. 

The interfaces of both the mmap() and msync() analogs require 
the caller to supply a file descriptor for an empty write-only 
snapshot file. When these functions return successfully, the 
snapshot file contains the current state of the backing file and 
is read-only. Whereas post-crash recovery in classic FAMS uses 
the backing file, recovery in famus_snap replaces the backing 
file with the most recent readable snapshot file. As a side effect, 
famus_snap gives us data versioning for free: every snapshot is a 
version of the backing file, which may be retained indefinitely or 
deleted to reclaim storage resources.

#define _POSIX_C_SOURCE 200809L

#include <stddef.h>

#include <unistd.h>

#include <linux/fs.h>

#include <sys/ioctl.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/types.h>

#include “famus_snap.h”

static int rwperm(mode_t m, unsigned int r, unsigned int w) {

   return (!!(m & S_IRUSR) == r) && (!!(m & S_IWUSR) == w);

}



www.usenix.org	   WI N T ER 20 19   VO L .  4 4 ,  N O.  4  33

PROGRAMMING
Good Old-Fashioned Persistent Memory

#define  L __LINE__

#define RL return L  /* indicates where error occurs */

/* We must fsync() backing file twice to ensure that snapshot

    data are durable before success indicator (file permission)

    becomes durable. We’re not using fallocate() to reserve

    space for worst-case scenario in which backing file and

    snapshot file diverge completely, because that could defeat

    the reflink sharing that makes snapshots efficient; read

    “man ioctl_ficlone”. The “ioctl(FICLONE)” works only on

    reflink-enabled file systems, e.g., Btrfs, XFS, OCFS2. */

int famus_snap_sync(fd_t bfd, fd_t snapfd, fd_t dirfd) {

  struct stat sb;

  if (0 != fstat(snapfd, &sb))           	 RL;

  if (! rwperm(sb.st_mode, 0, 1))        	 RL;

  if (0 != ioctl(snapfd, FICLONE, bfd))  	 RL;

  if (0 != fsync(snapfd))                	 RL;

  if (0 != fchmod(snapfd, S_IRUSR))      	 RL;

  if (0 != fstat(snapfd, &sb))           	 RL;  /* paranoia */

  if (! rwperm(sb.st_mode, 1, 0))        	 RL;  /* paranoia */

  if (0 != fsync(snapfd))                	 RL;

  if (0 < dirfd && 0 != fsync(dirfd))    	 RL;

  if (0 != close(snapfd))                	 RL;

  return 0;

}

#define RN return NULL

void * famus_snap_map(void * addr, size_t * plen, int flags,

                              fd_t bfd, fd_t snapfd, fd_t dirfd,

                              int * status) {

  struct stat sb;  void *a;  int prot = PROT_READ | PROT_WRITE;

  if (NULL == status) 	 {                 RN; }

  if (NULL == plen)	 { *status = L; RN; }

  if (0 == (flags & MAP_SHARED)) 	 { *status = L; RN; }

  if (0 != fstat(bfd, &sb))	 { *status = L; RN; }

  *plen = (size_t)sb.st_size;

  a = mmap(addr, *plen, prot, flags, bfd, 0);

  if (MAP_FAILED == a)	 { *status = L; RN; }

  if (NULL == a) {

    if (0 != munmap(a, *plen))	   *status = L;

    else 	   *status = L;

    RN;

  }

  if (0 != (*status = famus_snap_sync(bfd, snapfd, dirfd))) {

    if (0 != munmap(a, *plen))           *status = L;

    RN;

  }

  return a;

}

The full source code for famus_snap is available at [3]. It 
requires a reflink-capable file system such as Btrfs, XFS, or 
OCFS2. If you’re eager to run famus_snap but you don’t have  
such a file system handy, consider installing one within a file on 
some other file system; just run the following commands as root :

# truncate --size 512m XFSfile

# mkfs.xfs -m crc=1 -m reflink=1 XFSfile

# mkdir XFSmountpoint

# mount -o loop XFSfile XFSmountpoint

# xfs_info XFSmountpoint

# cd XFSmountpoint

  [run famus_snap test...]

Streamlined Implementation
The famus_snap library above is a reasonably efficient way to 
implement failure-atomic msync() in userspace. However, with 
an in-kernel implementation like the prototype posted by Chris-
toph Hellwig [1], similar semantics can be implemented more 
efficiently by taking advantage of the mechanisms that the XFS 
file system uses to implement the reflink system call.

In that case the existing code path to allocate new blocks and 
write them out of place when overwriting data is used indepen-
dently of the B-tree tracking reference counts for blocks shared 
after using the ref link system call. In this case in addition to 
the actual block allocation, only the special records that ensure 
that the blocks are cleaned up when recovering from an unclean 
shutdown are required. This ensures the overhead of the write is 
similar to that for extending a file or filling a hole, but the extra 
overhead for manipulating block reference counts is avoided. 

Conclusion
Persistent memory programming on conventional hardware is 
possible, thanks to mmap() and a few tricks that don’t get as much 
attention as they deserve. Regardless of whether conventional 
hardware or newfangled NVM is available, the great advantage 
of the p-mem style of programming is simplicity—readers skepti-
cal on this point are invited to re-write the persistent linked 
list program above using, e.g., a relational database or key-value 
store for persistence.

For crash-tolerant applications, failure-atomic msync() provides 
precisely the right fortified semantics for mmap()-based p-mem 
programming. The new FAMS implementation presented in 
this article is concise, clear, and thus easy for readers to audit 
because it leverages efficient file snapshotting from userspace. 
Christoph Hellwig’s implementation in XFS achieves greater 
efficiency by avoiding unnecessary work. Until NVM supplants 
DRAM, FAMS can support crash-safe p-mem programming on 
conventional hardware.
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