
www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  29

PROGRAMMINGGood Old-Fashioned Persistent Memory
T E R E N C E K E L L Y

Terence Kelly studied computer science at
Princeton and the University of Michigan,
earning his PhD at the latter in 2002. He then
spent 14 years at Hewlett-Packard Labora–
tories. During his final five years at HPL, he
developed software support for non-volatile
memory. Kelly now teaches and evangelizes
the persistent memory style of programming.
His publications are listed at http://ai.eecs
.umich.edu/~tpkelly/. tpkelly@eecs.umich.edu

Byte-addressable non-volatile memory (NVM)—Intel Optane—is now
shipping in volume. Today’s NVM offers performance between that of
DRAM memory and flash storage [2, 7] and can be accessed via either

storage or memory interfaces [8]. The latter offers the prospect of radically
simplifying application software by allowing direct manipulation of persis-
tent data via CPU instructions (LOAD and STORE), thus offering an alterna-
tive to traditional persistence technologies such as relational databases and
key-value stores. Industrial adoption of NVM and its corresponding style of
programming is growing [9].

Given the excitement surrounding novel NVM hardware, now is a good time to remind our-
selves that it has long been possible to implement a software abstraction of persistent memory
(“p-mem”) on conventional hardware—ordinary volatile DRAM and block-addressed durable
storage devices. The corresponding “p-mem style of programming” resembles the style that
NVM invites, and supports similar simplifications, but doesn’t require special NVM hardware.

This article illustrates p-mem programming on conventional hardware with C code for
UNIX-like operating systems; all code is available at [3]. Spoiler alert: the basic technique is
to lay out application data in memory-mapped files, with help from a few easy tricks and pat-
terns. Because conventional mmap() doesn’t guarantee data integrity in the face of failures,
crash consistency requires extra support. The right crash consistency mechanism for p-mem
programming on conventional hardware is failure-atomic msync() (FAMS) [6], and this
article presents a concise new implementation of FAMS.

A Persistent Linked List
The C program below prepends words from stdin to a persistent singly linked list. It relies on
a bare-bones persistent memory library, pmem, presented later. Notice that the list node data
structure’s next field is not a conventional pointer but rather an offset—specifically a pmo_t
(“persistent memory offset type”), defined as a uintptr_t in pmem.h. Under the hood, pmem
computes offsets relative to the base address where persistent data are mapped, which may
vary on different runs of the program. Offsets allow data structures to be relocatable, which
improves portability and facilitates sharing persistent data between different applications.
The alternative of non-relocatable persistent data offers different tradeoffs and is beyond the
scope of this article; see [5] for a discussion.

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include “pmem.h”

typedef struct {
 pmo_t next;
 char string[];
} node_t;

#define NP(o) ((node_t *)pmem_o2p(o))

30    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

PROGRAMMING
Good Old-Fashioned Persistent Memory

int main(int argc, char *argv[]) {

 int r;

 char buf[100]; /* harmonize with scanf() below */

 pmo_t head, t;

 if (2 != argc) {

 fprintf(stderr, "usage: %s pmemfile\n", argv[0]);

 return 1;

 }

 if (0 != (r = pmem_map(argv[1]))) {

 fprintf(stderr, “pmem_map() failed: %d\n”, r);

 return 2;

 }

 head = pmem_get_root();

 while (1 == scanf(" %99s", buf)) {

 if (0 == strcmp("[dump]", buf))

 for (t = head; 0 != t; t = NP(t)->next)

 printf("%s\n", NP(t)->string);

 else {

 t = pmem_alloc(sizeof(node_t) + 1 + strlen(buf));

 if (0 == t) {

 fprintf(stderr, "pmem_alloc() failed\n");

 return 3;

 }

 strcpy(NP(t)->string, buf);

 NP(t)->next = head;

 head = t;

 pmem_set_root(head);

 }

 }

 return 0;

}

Function pmem_map() maps a given persistent data file into
memory, initializing persistent heap metadata within the file
if necessary. Unlike conventional mmap(), pmem_map() returns
an error code rather than the address where the file has been
mapped. Clients of pmem (i.e., code that uses pmem) neither know
nor care about persistent data addresses—that’s the whole point
of relocatability. Clients allocate from a persistent heap in the
file via pmem_alloc(), which returns offsets rather than con-
ventional malloc()’s pointers. Finally, the pmem library embeds
a root offset within the persistent data file. Clients must ensure
that all persistent data are reachable from the root by calling
pmem_set_root(). This allows the client to obtain an entry
point into persistent data structures via pmem_get_root() on
subsequent executions. Our list example program maintains the
invariant that the root offset is always the head of the persistent
linked list.

Function pmem_o2p() converts offsets to conventional pointers,
which macro NP casts to a list-node pointer. Clients of pmem
need offset-to-pointer conversions for accessing the innards of

application-defined data structures. However, the pmem library
doesn’t support pointer-to-offset conversions because well-
designed applications don’t need them: clients’ persistent data
structures should contain only offsets returned by pmem_alloc()
(or offsets derived therefrom), never pointers; only offsets are
encountered when traversing persistent data.

The shell commands below demonstrate that our program’s
list is indeed persistent. truncate creates a new sparse back-
ing file whose size is a multiple of the system page size. We run
list twice, feeding it different words and dumping the list. The
second dump shows that the words entered on the first run have
persisted.

% truncate -s 409600 list.bf

% echo ‘wun too [dump]’ | ./list list.bf

too

wun

% echo ‘free fore [dump]’ | ./list list.bf

fore

free

too

wun

Persistent memory programming based on memory-mapped
files is much more versatile and powerful than the brief exam-
ples above would suggest. In particular, retrofitting persistence
onto legacy software that was not designed for persistence can
be remarkably easy, and the rules governing multithreaded
p-mem are straightforward [5].

Library Internals
The pmem library interfaces used above admit a succinct no-frills
implementation, shown below. There’s nothing arcane going on;
much of the code simply checks internal consistency and catches
corner-case errors, syscall failures, and client misuse. The library
often returns line numbers where errors occur rather than errno-
like codes (“use the Source, Luke”), and the persistent heap sup-
ports a p-mem allocator but no corresponding free().

The pmem library defines a header structure (pmh_s) that will
occupy the first few machine words of the backing file that
contains persistent data. The header contains allocator book-
keeping information and the root offset described above. The
library stores in static external variables e_base and e_len,
respectively, the address at which the backing file is mapped
and the size of the backing file.

Library function pmem_map() invokes conventional mmap()
to map a specified backing file into the caller’s address space;
at most one such mapping at a time is supported. Function
pmem_unmap() removes mappings; pmem_alloc() allocates
persistent memory; and the paired pmem_[get|set]_root()’
functions provide access to the root offset.

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  31

PROGRAMMING
Good Old-Fashioned Persistent Memory

Again, the pmem library is intentionally Spartan. It serves merely
to remind us that a few dozen lines of code suffice to support
rudimentary persistent memory programming on conventional
hardware.

#include <assert.h>

#include <fcntl.h>

#include <stdint.h>

#include <stddef.h>

#include <unistd.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/types.h>

#include "pmem.h"

static_assert(sizeof(pmo_t) == sizeof(void *), /* C11 */

 "offsets & pointers incompatible");

typedef struct { /* header of backing file & in-memory image */

 pmo_t avail, end, /* allocator bookkeeping */

 root; /* live data must be reachable from root */

} pmh_s; /* “persistent memory header structure” */

static pmh_s * e_base; /* start address of in-memory image */

static size_t e_len; /* length of in-memory image */

#define UNIT (_Alignof(max_align_t)) /* C11 */

#define ALIGNED(o) (0 == (o) % UNIT)

#define ALIGN(o) do { while(! ALIGNED(o)) (o)++; } while (0)

/* Backing file and its in-memory image consist of a header (of

 type pmh_s above), a heap (nearly everything else), and final

 padding (one UNIT). Padding at the high end eliminates an

 awkward corner case. A root offset must “point” within the

 heap. Other offsets (e.g., “end”) may point one byte beyond

 heap, analogous to C rule for pointers (N1570 Sec 6.5.6). */

#define VALID(o) \

 (0 == (o) || (sizeof *e_base <= (o) && (o) <= e_len - UNIT))

#define VALID_ROOT(o) \

 (0 == (o) || (sizeof *e_base <= (o) && (o) < e_len - UNIT))

#define SANITY_CHECKS 	 \

 do { 	 \

 assert((NULL == e_base && 0 == e_len) ||	 \

 (NULL != e_base && 0 != e_len));	 \

 assert(NULL == e_base ||	 \

 (ALIGNED(e_base->avail) && ALIGNED(e_base->end)	 \

 && VALID(e_base->avail) && VALID(e_base->end)	 \

 && VALID_ROOT(e_base->root)));	 \

 } while (0)

void * pmem_o2p(pmo_t o) { /* convert offset to pointer */

 assert(VALID(o));

 return 0 == o ? NULL : (char *)e_base + o;

}

#define P2O(p) ((pmo_t)((char *)(p) - (char *)e_base))

#define RL return __LINE__ /* indicates where error occurs */

int pmem_map(const char * const file) {

 int fd, prot = PROT_READ | PROT_WRITE, flag = MAP_SHARED;

 long int pgsz; struct stat sb; size_t s; pmh_s *t;

 SANITY_CHECKS;

 if (NULL != e_base) /* limit: one mapping at a time */	 RL;

 if (1 > (pgsz = sysconf(_SC_PAGESIZE))) 	 RL;

 if (UNIT > (size_t)pgsz) 	 RL;

 if (0 > (fd = open(file, O_RDWR))) 	 RL;

 if (0 != fstat(fd, &sb)) 	 RL;

 if (10 * UNIT + sizeof *t > (s = (size_t)sb.st_size)) 	 RL;

 if (0 != s % (unsigned long)pgsz) 	 RL;

 if (MAP_FAILED ==

 (t = (pmh_s *)mmap(NULL, s, prot, flag, fd, 0))) {

 if (0 != close(fd)) /* don’t leak fds ... */ 	 RL;

 else 	 RL; }

 if (0 != close(fd)) {

 if (0 != munmap(t, s)) /* ... or memory either */ 	 RL;

 else 	 RL; }

 /* file must be either new or already initialized: */

 if (! ((0 == t->avail && 0 == t->end && 0 == t->root)

 || (0 != t->avail && 0 != t->end))) 	 RL;

 if (! (ALIGNED(t->avail) && ALIGNED(t->end))) 	 RL;

 e_base = t;

 e_len = s;

 if (! (VALID(t->avail) && VALID(t->end)

 && VALID_ROOT(t->root))) 	 RL;

 if (0 == t->avail) { /* initialize persistent heap */

 t->avail = P2O(1 + t);

 ALIGN(t->avail);

 t->end = P2O((char *)t + s - UNIT);

 t->root  = 0;

 }

 else /* previously initialized; check size: */

 if (t->end != P2O((char *)t + s - UNIT)) 	 RL;

 SANITY_CHECKS;

 return 0;

}

pmo_t pmem_alloc(size_t n) { /* “bump-pointer” allocator */

 pmo_t r;

 SANITY_CHECKS;

 assert(NULL != e_base);

 if (0 == n 	 || /* ask 0, get 0 */

 e_base->avail >= e_base->end 	|| /* out of p-mem */

 e_base->avail > ~(pmo_t)0 - n 	|| /* “+n” overflows */

 e_base->avail + n > e_base->end) /* <n bytes left */

 return 0;

 r = e_base->avail;

 e_base->avail += n;

32    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

PROGRAMMING
Good Old-Fashioned Persistent Memory

 ALIGN(e_base->avail);

 SANITY_CHECKS;

 return r;

}

int pmem_unmap(void) {

 SANITY_CHECKS;

 if (NULL == e_base) RL;

 if (0 != munmap(e_base, e_len)) RL;

 e_base = NULL;

 e_len = 0;

 return 0;

}

void pmem_set_root(pmo_t o) {

 SANITY_CHECKS;

 assert(NULL != e_base && VALID_ROOT(o));

 e_base->root = o;

}

pmo_t pmem_get_root(void) {

 SANITY_CHECKS;

 assert(NULL != e_base);

 return e_base->root;

}

Crashes and Data Integrity
Could a full-featured incarnation of the pmem library be suitable
for serious purposes? Yes, for applications that always perform
an orderly shutdown. However, pmem is inadequate for applica-
tions that must tolerate sudden crashes, e.g., power outages, OS
kernel panics, and application software crashes. Why? Because
pmem creates shared file-backed memory mappings with conven-
tional mmap(), which cannot prevent crashes from corrupting the
backing file. One fundamental problem is that the OS may write
modified memory pages down to the backing file at any time and
in any order, regardless of if/when msync() is called. Another
problem is that if msync() is called, the changes it makes to the
backing file are not atomic with respect to failure. The state of
the backing file following a crash is therefore indeterminate.

Failure-atomic msync() (FAMS) solves this problem by
strengthening the semantics of conventional mmap() / msync().
FAMS guarantees that the backing file always reflects the most
recent successful msync(), regardless of failures [6]. The FAMS
abstraction is the ideal foundation for crash-tolerant persistent
memory programming on conventional hardware. It has been
implemented in the Linux kernel, in file systems, and in user-
space libraries; at least six FAMS implementations exist, two of
which are in commercial products [5]. FAMS has the attractive
property that underlying durable storage is a freely configurable
placeholder: “durability” for a FAMS-based p-mem program can
mean anything from a single hard disk to a RAID array or geo-
replicated cloud storage. Furthermore, FAMS is easy to reason

about because it merely restricts the behavior of well-understood
standard interfaces: FAMS guarantees behavior that is possible
(but, sadly, unlikely) in conventional mmap() / msync().

Existing FAMS implementations have demonstrated the
abstraction’s power and versatility, but they’re not without
barriers to adoption: some are research prototypes, others
are buried in appliance-like commercial products, and the
two newest implementations are complex but not yet thoroughly
tested [4, 5]. The world needs a FAMS implementation that is
efficient enough for serious use yet simple enough to audit easily.

Simple and Efficient Crash Consistency
Our efficient yet very simple new userspace implementation of
failure-atomic msync() makes two compromises: it restricts our
choice of file system, and its interface is fussier than classic FAMS.

The library implementation below is called famus_snap
(“failure-atomic msync() in userspace via snapshots”). It runs on
file systems that allow multiple files to share physical storage,
e.g., Btrfs, XFS, and OCFS2 (optionally accessed over a network
via NFSv4.2 or CIFS). The interesting work happens in function
famus_snap_sync(), which uses ioctl(FICLONE) to create a new
snapshot that shares storage with the backing file. A copy-on-
write mechanism ensures that subsequent modifications to one
file do not affect the other.

The interfaces of both the mmap() and msync() analogs require
the caller to supply a file descriptor for an empty write-only
snapshot file. When these functions return successfully, the
snapshot file contains the current state of the backing file and
is read-only. Whereas post-crash recovery in classic FAMS uses
the backing file, recovery in famus_snap replaces the backing
file with the most recent readable snapshot file. As a side effect,
famus_snap gives us data versioning for free: every snapshot is a
version of the backing file, which may be retained indefinitely or
deleted to reclaim storage resources.

#define _POSIX_C_SOURCE 200809L

#include <stddef.h>

#include <unistd.h>

#include <linux/fs.h>

#include <sys/ioctl.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/types.h>

#include “famus_snap.h”

static int rwperm(mode_t m, unsigned int r, unsigned int w) {

 return (!!(m & S_IRUSR) == r) && (!!(m & S_IWUSR) == w);

}

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  33

PROGRAMMING
Good Old-Fashioned Persistent Memory

#define L __LINE__

#define RL return L /* indicates where error occurs */

/* We must fsync() backing file twice to ensure that snapshot

 data are durable before success indicator (file permission)

 becomes durable. We’re not using fallocate() to reserve

 space for worst-case scenario in which backing file and

 snapshot file diverge completely, because that could defeat

 the reflink sharing that makes snapshots efficient; read

 “man ioctl_ficlone”. The “ioctl(FICLONE)” works only on

 reflink-enabled file systems, e.g., Btrfs, XFS, OCFS2. */

int famus_snap_sync(fd_t bfd, fd_t snapfd, fd_t dirfd) {

 struct stat sb;

 if (0 != fstat(snapfd, &sb)) 	 RL;

 if (! rwperm(sb.st_mode, 0, 1)) 	 RL;

 if (0 != ioctl(snapfd, FICLONE, bfd)) 	 RL;

 if (0 != fsync(snapfd)) 	 RL;

 if (0 != fchmod(snapfd, S_IRUSR)) 	 RL;

 if (0 != fstat(snapfd, &sb)) 	 RL; /* paranoia */

 if (! rwperm(sb.st_mode, 1, 0)) 	 RL; /* paranoia */

 if (0 != fsync(snapfd)) 	 RL;

 if (0 < dirfd && 0 != fsync(dirfd)) 	 RL;

 if (0 != close(snapfd)) 	 RL;

 return 0;

}

#define RN return NULL

void * famus_snap_map(void * addr, size_t * plen, int flags,

 fd_t bfd, fd_t snapfd, fd_t dirfd,

 int * status) {

 struct stat sb; void *a; int prot = PROT_READ | PROT_WRITE;

 if (NULL == status) 	 { RN; }

 if (NULL == plen)	 { *status = L; RN; }

 if (0 == (flags & MAP_SHARED)) 	 { *status = L; RN; }

 if (0 != fstat(bfd, &sb))	 { *status = L; RN; }

 *plen = (size_t)sb.st_size;

 a = mmap(addr, *plen, prot, flags, bfd, 0);

 if (MAP_FAILED == a)	 { *status = L; RN; }

 if (NULL == a) {

 if (0 != munmap(a, *plen))	 *status = L;

 else 	 *status = L;

 RN;

 }

 if (0 != (*status = famus_snap_sync(bfd, snapfd, dirfd))) {

 if (0 != munmap(a, *plen)) *status = L;

 RN;

 }

 return a;

}

The full source code for famus_snap is available at [3]. It
requires a reflink-capable file system such as Btrfs, XFS, or
OCFS2. If you’re eager to run famus_snap but you don’t have
such a file system handy, consider installing one within a file on
some other file system; just run the following commands as root :

truncate --size 512m XFSfile

mkfs.xfs -m crc=1 -m reflink=1 XFSfile

mkdir XFSmountpoint

mount -o loop XFSfile XFSmountpoint

xfs_info XFSmountpoint

cd XFSmountpoint

 [run famus_snap test...]

Streamlined Implementation
The famus_snap library above is a reasonably efficient way to
implement failure-atomic msync() in userspace. However, with
an in-kernel implementation like the prototype posted by Chris-
toph Hellwig [1], similar semantics can be implemented more
efficiently by taking advantage of the mechanisms that the XFS
file system uses to implement the reflink system call.

In that case the existing code path to allocate new blocks and
write them out of place when overwriting data is used indepen-
dently of the B-tree tracking reference counts for blocks shared
after using the ref link system call. In this case in addition to
the actual block allocation, only the special records that ensure
that the blocks are cleaned up when recovering from an unclean
shutdown are required. This ensures the overhead of the write is
similar to that for extending a file or filling a hole, but the extra
overhead for manipulating block reference counts is avoided.

Conclusion
Persistent memory programming on conventional hardware is
possible, thanks to mmap() and a few tricks that don’t get as much
attention as they deserve. Regardless of whether conventional
hardware or newfangled NVM is available, the great advantage
of the p-mem style of programming is simplicity—readers skepti-
cal on this point are invited to re-write the persistent linked
list program above using, e.g., a relational database or key-value
store for persistence.

For crash-tolerant applications, failure-atomic msync() provides
precisely the right fortified semantics for mmap()-based p-mem
programming. The new FAMS implementation presented in
this article is concise, clear, and thus easy for readers to audit
because it leverages efficient file snapshotting from userspace.
Christoph Hellwig’s implementation in XFS achieves greater
efficiency by avoiding unnecessary work. Until NVM supplants
DRAM, FAMS can support crash-safe p-mem programming on
conventional hardware.

34    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

PROGRAMMING
Good Old-Fashioned Persistent Memory

Acknowledgments
Christoph Hellwig reviewed the snapshot-based implementation
of failure-atomic msync(), suggested the procedure for creating a
quick XFS installation within a different file system, provided a
description of his FAMS implementation for XFS, and supplied
information about reflink-capable file systems.

References
[1] C. Hellwig, “Failure Atomic Writes for File Systems and
Block Devices”: https://lwn.net/Articles/715918/.

[2] J. Izraelevitz, J. Yang, L. Zhang, A. Memaripour, Y. J. Soh,
S. R. Dulloor, J. Zhao, J. Kim, X. Liu, Z. Wang, Y. Xu, S.
Swanson, “Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module,” April 2019: https://
arxiv.org/abs​/1903.05714v1.pdf.

[3] T. Kelly, Example code to accompany this article: https://​
www.usenix.org/sites/default/files/kelly_code.tgz.

[4] T. Kelly, “famus: Failure-Atomic msync() in User Space”:
http://web.eecs.umich.edu/~tpkelly/famus/.

[5] T. Kelly, “Persistent Memory Programming on Conven-
tional Hardware,” ACM Queue, vol. 17, no. 4, July/August 2019:
https://queue.acm.org/detail.cfm?id=3358957.

[6] S. Park, T. Kelly, K. Shen, “Failure-Atomic msync(),” in
Proceedings of the 8th ACM European Conference on Com-
puter Systems (EuroSys ’13), pp. 225–238: https://dl.acm.org​
/citation.cfm?id=2465374.

[7] I. B. Peng, M. B. Gokhale, E. W. Green, “System Evaluation
of the Intel Optane Byte-addressable NVM,” International
Symposium on Memory Systems (MemSys), Sept. 2019:
https://memsys.io/.

[8] A. Rudoff, “Persistent Memory Programming,” ;login:, vol.
42, no. 2, Summer 2017: https://www.usenix.org/system/files​
/login/articles/login_summer17_07_rudoff.pdf.

[9] S. Swanson (organizer), Persistent Programming in Real
Life (PIRL) [conference], 2019: https://pirl.nvsl.io/.

https://lwn.net/Articles/715918/
https://arxiv.org/abs/1903.05714v1.pdf
https://arxiv.org/abs/1903.05714v1.pdf
https://www.usenix.org/sites/default/files/kelly_code.tgz
https://www.usenix.org/sites/default/files/kelly_code.tgz
http://web.eecs.umich.edu/~tpkelly/famus/
https://queue.acm.org/detail.cfm?id=3358957
https://dl.acm.org/citation.cfm?id=2465374
https://dl.acm.org/citation.cfm?id=2465374
https://memsys.io/
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
https://pirl.nvsl.io/

