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Abstract—Online optimization allows the continuous re-
structuring and adaptation of an executing application using
live information about its execution environment. The further
advancement of performance monitoring hardware presents
new opportunities for online optimization techniques. While
managed runtime environments lend themselves nicely to online
and dynamic optimizations, such techniques remain difficult to
successfully achieve at the binary level. Binary level Dynamic
optimizers introduce virtual layers which at the binary level
produces overhead that is often prohibitive. Another challenge
comes from the lack of source level information that can
significantly aid optimization.

In this paper we present a new static/dynamic collabo-
rative approach to online optimization that takes advantage
of the strength of static optimization and the adaptive na-
ture of dynamic optimization techniques. We call this hybrid
optimization framework Scenario Based Optimization (SBO).
Statically we multiversion and specialize functions for different
dynamic scenarios that can be identified by monitoring micro-
architectural events. Using these events to infer the current
scenario, we dynamically reroute execution to the relevant
code tuned to that scenario. We have implemented our static
SBO infrastructure in GCC 4.3.1 and designed our Dynamic
Introspection Engine using the Perfmon2 infrastructure. To
demonstrate the effectiveness of our Scenario Based Optimiza-
tion framework we have designed an SBO optimization we call
the Online Aiding and Abetting of Aggressive Optimizations
(OAAAO). Using SPEC2006 this optimization shows a speedup
of 7% to 10% for a number of benchmarks and in our best
case (h264ref) a 17% speedup over native execution compiled
at the -O2 optimization level.

I. INTRODUCTION

Dynamic and online optimizations enable applications

to dynamically reorganize and restructure the stream of

instructions seen by the underlying architecture while ex-

ecuting. This allows the application to optimize itself based

on the nature of its dynamic input, its resulting execution

path, and its micro-architectural events. In addition, with

the proliferation of multicore and manycore architectures,

the set of programs running simultaneously alongside the

executing application can also have an impact. This impact

most often results from the added pressure on the system

resources of the execution environment. Dynamic and online

optimizations can also take advantage of these circumstances

to improve the structure of the execution streams of a

number of applications to reduce contention for resources.

Because of the ever-changing nature of execution contexts,

runtime optimization approaches can take advantage of these

opportunities while static approaches simply can not.

Underlying hardware design is also evolving. Most pro-

cessor architectures have begun, and are continuing, to

add performance monitoring hardware (PMH) structures

with increasing complexity [9], [25], [2]. These structures

allow software systems to count and monitor the micro-

architectural events of a chip, most commonly with negligi-

ble overhead. Performance monitoring hardware has been

used for profiling, feedback directed optimization, appli-

cation characterization, workload characterization, etc [1],

[7], [25], [18]. In addition to these applications, the infor-

mation provide by PMH presents a valuable opportunity

to online optimization systems. Performance monitoring

hardware provides real-time, and accurate descriptions of

the execution context of an application or the entire system.

An online optimization system can use these structures to

collect fine grain, accurate information with low overhead to

steer the restructuring of an applications execution stream.

Although previous work investigates this path, much of the

work that has been done either applies to managed runtime

systems, proposes new hardware, or is focused on narrower

problems such as optimization space pruning and iterative

optimization [25], [1], [18], [19], [14], [15]. In this work

we design a general framework for taking full advantage of

the performance monitoring hardware of todays systems and

source level information about the application to design new

static/dynamic collaborative online optimizations for native

binaries.

While managed runtime environments are well suited for

dynamic and online optimizations, discovering and applying

such optimizations at the binary level has proved to be quite

difficult [17], [4], [3]. This can be attributed to two factors:

a lack of source level information, and added overhead.

Many binary-level dynamic optimization frameworks do

binary to binary transformations without source level in-

formation [3], [20], [26], [22]. This greatly limits the op-

timization opportunities available. The second challenge to



Global MemoryApplication Binary

Func Scenario 1 Scenario 2

foo 0x4C12 0x4F16

bar 0x5208 0x7244

main

foo_ver1

foo_ver2

bar_ver1

bar_ver2

Version Index Table

Active

foo (0x20) 0x4C12

bar (0x24) 0x5208

Binary

init_sbo

0x4C12

0x4F16

0x5208

0x7244

#tramp. to foo:
load r1, (0x20)
call r1 call to foo

Dynamic 
Introspection Engine

GCC 4.3.1
SBO Enabled

Perfmon2

Figure 1. This is the main diagram of Scenario Based Optimizations.

binary-level online optimization is the fact that continuous

monitoring and some form of analysis are required. This

requirement adds further demand on system resources. When

dealing with native binaries, this cost can impact application

performance, sometimes causing the overhead introduced by

the online optimization to be greater than the benefit of the

optimization itself.

In this work we present a new framework for binary-level

online optimizations that addresses both of these challenges,

in addition to inspiring a new way to think about compile-

time optimization. We call this new paradigm Scenario

Based Optimization (SBO). SBO is a hybrid static/dynamic

approach to optimization whose strength lies in the co-

design between compiler and dynamic engine. A scenario

can be described simply as an occurrence or set of occur-

rences in our execution environment. For example, as our

application runs, a possible scenario could be that another

program is launched on a neighboring core that causes

thrashing between the two programs. Another example sce-

nario may be the buses on-chip are oversubscribed. These

scenarios will affect application performance and can occur

at anytime or not at all.

Figure 1 shows an overview of our framework. The phi-

losophy of Scenario Based Optimization is centered around

the idea that code within an application can be optimized

and tuned differently for particular dynamic scenarios. This

is accomplished at function-level through multiversioning.

A version for a function is statically generated by the com-

piler and specialized to each anticipated scenario. During

runtime, scenarios are identified via a dynamic engine that

uses performance monitoring hardware. When a scenario

is identified, execution is dynamically rerouted to execute

the appropriate version of the code. We have designed

and implemented our Static Scenario Based Multiversioning

(SSBM) in GCC 4.3.1. Our accompanying Dynamic Intro-

spection Engine (DIE) is implemented as a library that hooks

into both our SBO enabled binary and Perfmon2, an API

to the performance monitoring hardware of the underlying

architecture.

To demonstrate the potential we have designed and imple-

mented a scenario based optimization called the Online Aid-

ing and Abetting of Aggressive Optimizations (OAAAO).

Many optimizations may improve performance in some

cases and degrade performance in others. We call these

optimizations aggressive. This type of optimization may

benefit from an adaptive online optimization approach. If we

can detect the scenarios where aggressive optimizations are

beneficial, we can exploit that knowledge dynamically. We

show that, using our SBO framework, we can infer whether

we are in a scenario that makes aggressive optimizations

beneficial or not and reroute execution accordingly. Using

the SPEC2006 benchmark suite, we show a performance

boost ranging from 7%-8% for a number of benchmarks

and up to 17% for h264ref.

In the next section we will discuss the static side of SBO.

In Section III we discuss SBO’s dynamic component. We

then move on to discuss our Online Aiding and Abetting of

Aggressive Optimization in Section IV. We present results

in Section V. In Section VI we discuss related works. And

finally in Section VII we discuss future work and conclude.

II. STATIC SCENARIO BASED OPTIMIZATIONS

One of the major key insights of Scenario Based Op-

timizations is the fact that compiler writers can statically

predict the possible runtime scenarios an application may

face. This compiler writer can then discover and invent



new optimizations that take advantage of static compile-

time optimization techniques and dynamic monitoring and

execution routing to enact online policies. In this section we

discuss the static aspects of the Scenario Based Optimization

framework.

A. Philosophy

The underlying premise to SBO is that the benefit from an

optimization may depend heavily on the execution context of

the optimized code. The execution context of an application

is always changing. Even when the same application routines

are being executed and re-executed, the environment is being

affected by may factors such as interrupts, tasks on neighbor-

ing cores, the demand on the memory bus, and many others.

It is well known that code optimizations provide different

benefits in different execution environments [28]. Therefore,

these varying and ever changing execution contexts provide

a unique opportunity.

The challenge is however that, traditionally at compile

time there is only one opportunity to produce optimized

code. Static compiler optimizations are tuned conservatively

to be effective in all scenarios. When compilation is done,

the optimization decisions are rigid, regardless of its exe-

cution environment or application phase changes. This is

exactly what the Scenario Based Optimization framework

aims to solve. To retain all of the capabilities of static

compilation, SBO uses function level multiversioning to

enable static compilation to achieve runtime flexibility.

B. Function Level Multiversioning

Function level multiversioning is an inter-procedural code

transformation that has proven quite useful by prior work [6],

[14], [15]. Within our SBO framework it provides a useful

mechanism for generating the specialized versions of a func-

tion that target different scenarios. For SBO we extend this

mechanism to provide an interface between the static binary

and the dynamic introspection component. This is necessary

to allow the dynamic component to reroute execution as the

application is running.

One important consideration is that we cannot have multi-

ple versions of every function in our application binary. This

would cause an unacceptable amount of code growth, which

would limit the applicability of SBO and ultimately have a

negative impact on application performance. Therefore we

must limit the number of functions we multiversion to only

the hottest functions in the application.

1) Profiling: To efficiently multiversion our application

we take advantage of some basic profiling. Profiling can

provide some information about the runtime behavior of an

application and has proven to be very useful for determining

the hottest code in an application [9], [18], [19]. There-

fore, our SBO framework uses simple profiling provided

by GCC’s GProf to identify the hottest functions of our

application.
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Figure 2. This graph shows the percent of execution time spent executing
of the Top 5 hottest functions.

Across the SPEC2006 benchmarks, the top 2 to 8 func-

tions most often covers the vast majority of the dynamically

executed instructions. In Figure 2 we show the dynamic

instruction coverage of the top 5 functions in the SPEC2006

benchmarks. This data was collected using GProf. As the

graph shows, just the top 5 hottest functions can cover a

significant portion of an applications execution, many times

over 90%. Benchmarks such as gcc have less coverage be-

cause there are more distinct phases, however in benchmarks

such as hmmer, libquantum, and lbm almost all execution is

covered by the top 5 hot functions.

In Section V we show that multiversioning these top

functions lead to a very slight amount of code growth.

2) Online Version Switching: To successfully achieve

Scenario Based Optimizations we must provide an interface

between the statically generated versions and the dynamic

engine. This interface allows the dynamic engine to hook

into the executing binary and reroute the execution via

reseting the active versions of the functions. To accomplish

this we have explored two designs.

We call the first design the alternate versioning scheme

and the second the n-version versioning scheme. While

both techniques require the use of a trampoline as the

multiplexing mechanism there are differences. Figure 3 show

the alternate version scheme. This scheme allows for a

default and alternate version of a particular function. With

the alternate version scheme there is a single global switch

that the dynamic component interfaces to control which

version the application uses. With this scheme the entire

binary either executes the default versions for all multiver-

sioned functions or the alternative version. This provides a

simple abstraction that a compiler writer can use to design

Scenario Based Optimizations that do not require too much

complexity.

Figure 4 shows the n-version versioning scheme. This

scheme allows for any number of versions for any function.

A global mapping table is maintained in memory for each
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Figure 3. Alternate Versioning scheme
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Figure 4. N-Version Versioning Scheme

function. Instead of a global switch, each call to a multiver-

sioned function becomes an indirect call. During execution,

the target address of the call is controlled by the dynamic

component and any combination of versions can be active at

anytime. This allows for much more complex SBO heuristics

where multiple scenarios can occur at the same time.

C. Infrastructure: Technical Details

We have implemented our compile-time SBO infrastruc-

ture as a new pass in the GCC 4.3.1 compiler. The passes

within GCC can be broken into four parts. First, there are

the parsing passes where the text of the source code are

processed. Second, we have the gimplification passes where

GCC generates its Gimple intermediate representation on

which optimizations can occur. Third, we have tree-SSA

passes that optimize high level Gimple IR. Finally, we have

the RTL passes where low level optimizations and code

generation occurs.

Our new SBO pass has been placed right after GCC’s

earliest IR is generated as the first inter-procedural pass.

This allows for maximum flexibility for compiler writers

to design how the SBO function versions can be configured.

For example, a function can be annotated to disable or enable

any of the optimizations in later passes.

To specify which functions are to be multiversioned

we have added a new command-line option to GCC,

-fmultiver_funcs=. For example, if the functions

foo and bar are to be multiversioned, invoking gcc

with the command gcc -fmultiver_funcs=foo,bar

test.c accomplishes this.

Internally GCC provides a function and call graph cloning

routine that is used or inter-procedural constant propagation.

SBO uses this routine to clone the internal function data

structures as many times as needed. We take the original

function and rewrite its internals. This function now be-

comes a trampoline that the SBO dynamic component can

manipulate via shared memory hooks. The way this new

trampoline functions depends on whether we are using the

alternate scheme or the n-version scheme.

For the alternate scheme we simply inject basic blocks

into the function’s head using GCC’s internal basic block

writing APIs. The logic of the injected Gimple basic blocks

first checks a global, if it is set the calling parameters are

then passed on to the alternate version and it is called using

a direct call. Any values returned from the alternate version

are then passed on to the original call site. If the global is

not set we execute the default function code. The dynamic

component controls this trampoline via this global.

For the n-version scheme we always trampoline out of

the original function similarly to the case where the global

is set in the alternate version. The primary difference is,

with the n-version scheme, the function call is an indirect.

The dynamic component controls this trampoline by writing

the address of the target function in the address location the

indirect call uses. The global variable and tables that are

required to provide the interface to dynamic component are

all injected into the binary through this SBO pass.

Finally, this pass injects one basic block into the head

of the main function of the application. This basic block is

composed of a single call to init_sbo. This call initializes

and launches the dynamic component. The dynamic compo-

nent is implemented as a library and contains the body to

the init_sbo call. Any application compiled with SBO

enabled must be linked with SBO’s dynamic component.

III. THE DYNAMIC INTROSPECTION ENGINE

The dynamic component is responsible for monitoring

the execution context of the application and detect when

a scenario may have begun. If this occurs the dynamic

component is responsible for re-routing execution to only

include the code best suited for the detected scenario.

A. Performance Monitoring

We take advantage of performance monitoring hardware

to continually identify the current execution context of our

host application. By using performance monitoring hardware

we are able to collect this information about the execution

environment while incurring negligible overhead. There are



/ / i n i t s b o i s c a l l e d a t a p p l i c a t i o n s t a r t u p

void i n i t s b o ( )
{

/ / i n i t i a l i z e per fo rmance c o u n t e r s

s e t u p p e r f o r m a n c e c o u n t e r s ( ) ;

/ / l a u c h t h e c o u n t e r s

s t a r t c o u n t i n g ( ) ;

/ / s t a r t t h e t i m e r i n t e r r u p t

l a u c h t i m e r i n t e r r u p t ( ) ;
}

/ / when t h e i n t e r r u p t i s thrown we ha nd l e i t he re

void i n t e r r u p t h a n d l e r ( )
{

/ / s t o p t h e c o u n t e r s , c o l l e c t t h e i n f o r m a t i o n

s t o p c o u n t e r s ( ) ;
r e a d c o u n t e r s ( ) ;

/ / do t h e a n a l y s i s r e q u i r e d by

/ / t h e s c e n a r i o d e t e c t i o n h e u r i s t i c

d o a n a l y s i s ( ) ;

/ / s w i t c h t h e a c t i v e v e r s i o n s o f f u n c t i o n s i n

/ / our a p p l i c a t i o n t o match t h e d e t e c t e d s c e n a r i o

r e r o u t e e x e c u t i o n ( ) ;

/ / s t a r t t h e c o u n t e r s aga in a f t e r r e s e t i n g them

s t a r t c o u n t e r s ( ) ;

/ / l a un c h t h e t i m e r

l a u c h t i m e r i n t e r r u p t ( ) ;
}

Figure 5. This is pseudo code for the general dynamic introspection
component of SBO.

a number of APIs available for taking advantage of perfor-

mance monitoring hardware including OProfile, PAPI, and

Perfmon among others.

We have chosen to use Perfmon2 [13] for the design and

implementation of our dynamic introspection engine. The

goal of the Perfmon2 project is to design and implement

a general, standard Linux interface to architectural perfor-

mance monitoring hardware. In addition to the kernel work,

Stephane Eranian and the other Perfmon2 developers have

also implemented user-level libraries and tools to facilitate

development with Perfmon2. Perfmon2 supports most ma-

jor architectures including core/core2, amd64, itanium, and

powerpc. For these reasons we selected to build our dynamic

infrastructure on Perfmon2.

B. Periodic Probing

One thing to keep in mind is the dynamic component

is modular and flexible. SBO statically generates binaries

with specialized versions of hot functions and provides

hooks for the dynamic component. The dynamic component

can then use any heuristic to reroute execution via control

through these hooks. How the dynamic component monitors

execution is entirely up to the optimization designer and can

vary in any way.

That being said our SBO infrastructure has a default

design for the dynamic component. It is shown in Fig-

ure 5. To detect whether a scenario is occurring, SBO’s

dynamic component uses a timer interrupt approach. The

dynamic component includes an init_sbo routine that

is called once when the host application begins. When the

init_sbo routine is called, performance counters are setup

and the timer interrupt is started. When the timer interrupt

has triggered, the interrupt handler executes. As shown in

Figure ?? the counters are then stopped and read. Next,

the scenario detection code executes. If a target scenario is

detected, the dynamic engine will reconfigure the executing

binary to execute the function versions tuned to that scenario.

The counters are then reset and the timer launched again.

This interrupt driven periodic probing execution pattern

executes continually as the application is running. The

overhead of such a technique is determined by the frequency

of the probing. The amount of runtime overhead incurred by

our probing technique depends on two factors: the frequency

of interrupts, and the complexity of the analysis due to those

interrupts. These two factors are determined by the nature

of the optimization hosted by our SBO framework. Using

our default design for the Dynamic Introspection Engine,

this overhead is negligible. For example the overhead of the

optimization presented in the next section causes a slowdown

of less than 0.5%.

IV. ONLINE AIDING AND ABETTING OF AGGRESSIVE

OPTIMIZATIONS : AN SBO APPROACH

To demonstrate the usefulness of our Scenario Based

Optimization Framework we have designed an optimization

we call Online Aiding and Abetting of Aggressive Opti-

mizations (OAAAO). The key premise comes from the fact

that many optimizations show benefit in some cases and

a degradation in others [28]. We call these optimization

aggressive optimizations. The intuition is that we should be

able to detect the scenarios where aggressive optimizations

are beneficial or not.

A. Motivation: Win Some, Loose Some

Aggressive optimization may increase performance in

some contexts and decrease performance in others. For our

OAAAO approach we have identified two such optimiza-

tions, software cache prefetching and loop unrolling. These

optimization heuristics, both found in GCC 4.3.1 as optional

optimizations, both improve performance in some cases and

degrade performance in others.

Figure 6 shows the impact these optimizations have on

performance for 12 of the SPEC2006 benchmarks. These

experiments were run on the Core 2 Quad 6600 running

Linux 2.6.25. This graph show the speed up that results from

applying either or both of these optimizations.

With notable exception of lbm, in most cases, software

prefetching has a negative impact on performance. This is



O2+Pref+Unroll

  −15%

  −10%

  −5%

  0%

  5%

  10%

4
3

3
.m

il
c

4
4

4
.n

am
d

4
5

3
.p

o
v

ra
y

4
7

0
.l

b
m

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

3
.a

st
ar

av
er

ag
e

S
p

ee
d

 U
p

 o
v

er
 N

at
iv

e 
(−

O
2

)

The Ups and Downs of Aggressive Optimizations

O2+Pref

O2+Unroll

Figure 6. This graph shows the speedup in execution time when aggressive
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actionlearning

phase 1 phase 3phase 2

(T1) (T1) (T2)

Figure 7. This represents the three phase execution approach of OAAAO.

most likely due to the already present hardware prefetching

structures on the Core 2. If the hardware prefetching is

already doing the work, having the explicit prefetch in-

structions simply adds an extra burden to the architecture.

We can clear see that software prefetching is an aggressive

optimization. While software prefetching improves lbm’s

performance by 8%, in the case of hmmer, the degradation

due to adding the software prefetching is over 15%.

Loop unrolling is also an aggressive optimization, here

also we see a performance improvement in some cases and

a degradation in others. Note that both software prefetching

and loop unrolling degrades much more severely when

applied individually and less so when applied together.

This must come from some interaction with its micro-

architectural environment.

This observation brings us to our hypothesis: Using Sce-

nario Based Optimizations we should be able to improve the

performance of these aggressive optimizations. Using the

dynamic introspection engine we should be able to detect

the scenarios when aggressive optimizations are improving

or degrading performance. We can then reroute execution

accordingly.

B. Three Phase Execution

For the design and implementation of OAAAO, we use the

alternate versioning scheme. Statically we generate code for

two scenarios. Firstly we generate code for the scenario that

void c a t c h a l a r m ( i n t sig num )
{

i n t i ;
/ / s t o p and read t h e c o u n t e r s

pfm stop ( c t x f d ) ;
pfm read pmds ( c t x f d , pd , i n p . p f p e v e n t c o u n t ) ;

/ / e x e c u t e t h e code f o r c u r r e n t phase

/ / and move t o t h e n e x t phase

i f ( phase ==0) {
phase =1;
v e r 1 s t a t = v e r 2 s t a t =0 ;

m v v e r s i o n s w i t c h =0;
}
e l s e i f ( phase ==1) {

phase =2;
v e r 1 s t a t =pd [ 0 ] . r e g v a l u e ;

m v v e r s i o n s w i t c h =1;
}
e l s e i f ( phase ==2) {

phase =0;
v e r 2 s t a t =pd [ 0 ] . r e g v a l u e ;
i f ( v e r 1 s t a t >v e r 2 s t a t )

m v v e r s i o n s w i t c h =0;
}

/ / c l e a r and r e s t a r t c o u n t e r s

f o r ( i =0 ; i < i n p . p f p e v e n t c o u n t ; i ++) {
pd [ i ] . r e g v a l u e =0;

}

pfm wri te pmds ( c t x f d , pd , i n p . p f p e v e n t c o u n t ) ;
p f m s t a r t ( c t x f d , NULL ) ;

/ / l a un c h t h e t i m e r f o r n e x t s i g n a l

i f ( phase ==0) a l a rm ( 1 0 ) ;
e l s e a la rm ( 1 ) ;
/ / r e n t e r e x e c u t i n g a p p l i c a t i o n

}

Figure 8. This is the core three phase code to the dynamic component of
the OAAAO algorithm.

aggressive optimizations would degrade performance. This

is a function without software prefetching or loop unrolling;

we call this the non-aggressive version. For the scenario

that aggressive optimizations would improve performance,

we generate a function that has software prefetching and

loop unrolling; we call this the aggressive version.

The dynamic component of our OAAAO approach en-

forces three phases. Figure 7 shows our three phase design.

The first two phases compose the learning and monitoring

part of OAAAO, the third phase composes the action part

of OAAAO. During execution these phases continually loop

until the host application terminates.

Figure 8 shows the pseudo code of our design. During

the first phase we set the active version for the binary to

non-aggressive. The dynamic engine then starts the counters

to look at the absolute number of instructions retired. The

application then executes for T1 time. The number of in-

structions that successfully executed are then saved. During

the second phase we set the active version for the binary



to aggressive. We then do the same; we record the number

of instructions that executed for this T1 time. Before the

third phase begins we compare the number of instructions

retired for both phases 1 and 2. We select the version with

the highest number of instructions retired to be executed

in the third phase which lasts for T2 time. Essentially

we are selecting the version that has exhibited the lower

average CPI for T1 time. This ad-hoc performance metric

conveys whether the scenario is well suited for aggressive

optimization. After T2 seconds of executing the winning

version we enter phase one and restart the process.

We have chosen 1 second for our T1 in phases 1 and 2

to allow enough time to allow execution to enter the hot

functions. We do not want to base or decision on code

that executes outside these hot functions. We have chosen

10 seconds for our T2 in phase 3 because we want to

have the dynamic component re-learn at a rate that keeps

the intuition accurate, while allowing sufficient benefit to

warrant the analysis. We have arrived at these particular

parameters for our heuristic from hand tuning although one

can imagine using more adaptive heuristics. We reserve

further investigation into a self tuning approach and other

heuristics for future work.

In the next section we present the results of our OAAAO

SBO approach.

V. RESULTS

In this section we present the data for a number of

experiments evaluating the effectiveness of our OAAAO

optimization built on our Scenario Based Optimization

framework. The goals of our OAAAO optimizations is to

eliminate the degradations of aggressive optimization while

reaping the benefits. We also hypothesized that we would be

able to exceed the potential benefits of applying and using

aggressive optimizations statically.

All of our experiments were performed on a machine with

the Intel Core 2 Quad 6600 architecture and 2gb of ram. We

used a selection of benchmarks from the SPEC2006 v1.1

suite and ran them on their reference inputs to completion.

We used the GCC 4.3.1 compiler to compile these bench-

marks. The benchmarks were all compiled with optimization

level -O2, and tuned to the Core 2 architecture (compiler

option -march=core2). All experiments were run on Ubuntu

Linux Kernel 2.6.25 patched with Perfmon2.

A. Execution Time

Figure 9 shows the impact on execution time when ap-

plying aggressive optimizations with and without the Online

Aiding and Abetting of Aggressive Optimizations. The data

shown in this graph has been normalized to the baseline,

optimization level -O2. Anything greater than 100% marker

shows a degradation anything lower than this marker shows

a speedup.

One of the major goals of OAAAO is to eliminate the

degradations incurred by aggressive optimizations. As the

data in figure 9 shows, only when OAAAO is applied we see

only performance improvements with exception of gobmk

where the degradations are effectively eliminated. In addition

to eliminating the degradations and leaving only perfor-

mance improvement, in the large majority of the benchmarks

the performance improvements significantly exceeds those

produced by any combination of aggressive optimization

without OAAAO. In 9 out of the 12 benchmarks presented

it exceeds the benefit of aggressive optimizations, in most

cases more than doubling the performance boost.

B. Effect of Dynamic Switching
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Figure 10. Here we show the benefit of using OAAAO to dynamically
select the right version for a scenario versus using only the code for either
scenario for the entire run.

One very important question that arises is whether there is

much switching occurring dynamically. If there is not much

dynamic switching going on, there may be no need to con-

tinually probe the counters and redo analysis. To address this

question we present Figure 10. Here we show the speedup

of having dynamic OAAAO approach adaptively switch

the active version between aggressive and non-aggressive

compared to only having one version execute for the duration

of application execution.

In Figure 10 the first bar shows OAAAO over only having

the non-aggressive version, the second bar shows having

OAAAO over having only the aggressive version. In this

figure we highlight the fact that only two benchmarks,

povray and libquantum, it is better to have the statically

assigned aggressive version.

C. Degradation Reversal

In Figure 11 we highlight one of the brightest contribu-

tions of OAAAO. That is the fact that OAAAO actually

makes loop unrolling and software prefetching show benefit

where it would otherwise not. In the benchmarks presented

in this figure, software prefetching and loop unrolling simply

does not work without OAAAO. Regardless of whether
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Figure 9. This is the execution time after applying the aggressive optimizations statically compared to applying the same optimizations using OAAAO.
(lower is better)
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Figure 11. This graph highlights the power of a Scenario Based dynamic
approach. These benchmarks all degrade or show no benefit when applying
aggressive optimizations statically.

they are applied individually or simultaneously they show

degradations. However when governed by OAAAO they

show significant improvements, going from degradations to

speedups.

D. Code Growth

As we designed our SBO framework careful attention

was paid to other types of overhead such as the impact

on code size. Scenario Based Optimizations requires the

duplication of functions, however it is not necessary to

multiversion every function. As mentioned in section II we

only multiversion the top 5 hottest functions.

Figure 12 shows the code growth due to the SBO frame-

work. This particular instance of SBO was configured with

the alternate version scheme used for OAAAO and includes
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Figure 12. Here we show what percentage of the binary is occupied
by code added by prefetching and unrolling in addition to that added by
OAAAO.

its complete implementation. The size of the added dynamic

component is included in these measurements. The first bar

shows the size of the original binary, the second bar shows

the size of the binary compiled with 2 versions of its top

5 hottest functions and the OAAAO dynamic component

linked in. We see that the final code size of the binary is

largely unaffected by SBO. This is due to the fact that the

increase in code size ranges from 3kb to a mere 12kb. For

many benchmarks the absolute sizes of the binary are in the

hundreds and thousands of kilobytes.

VI. RELATED WORK

There is a wealth of prior related work that primarily

comes from three areas of study. These areas include binary-

level dynamic optimization, applications of performance



monitoring hardware, and function cloning and multiversion-

ing.

A. Binary-Level Dynamic Optimization

There has been prior work employ binary-level dynamic

optimization techniques with limited success. One of the

seminal works that has inspired many future projects was

the work by Bala et al. [3] on Dynamo. Dynamo is a binary

to binary translator and dynamic optimizer that works at the

basic block and trace levels. Dynamo was one of the only

approaches of its class to achieve performance gains. This

has mostly been attributed to the intricacies of the PA-RISC

platform on which it was implemented. Attempts have been

made on other architectures and the results shown in the

Dynamo work has not yet been duplicated. Bruening et al.

reimplemented the Dynamo infrastructure for x86 with the

DynamoRio project [4] and was unable to achieve significant

improvement. A similar effort was made with the Strata [26]

infrastructure and was also unable to achieve performance

gains. One major challenge these three approaches face is

the added overhead from virtualizing the application and

maintaining control of the executing binary. In fact there

has been work focused on optimizing the dynamic optimizer

itself [17].

Other efforts have been made to achieve binary-level

dynamic optimization, most of which has focused on

cache prefetching. The work by Chilimbi et al. [10] used

bursty tracing to achieve profile sampling to enact complex

prefetching patterns. The Adore infrastructure has been used

by Lu et al. [18] to achieve dynamic software prefetching

via the use of helper threads and performance monitoring

hardware. A similar technique was also later applied to

SUN’s UltraSparc Architecture [19]. Zhang et al. proposed

Trident [27], a new dynamic optimizer framework that

requires new hardware support. This work shows promising

potential, but depends on new hardware to be developed.

B. Profiling and Hardware Performance Monitors

Profiling has become the cornerstone for understanding

our applications behavior and can play an important part in

compiler optimizations as shown in the work by Chang et

al. [8]. This work introduces a compiler design to support

profile feedback directed compiler optimizations. The com-

piler executes the application on a number of canned inputs,

profiles it, and recompiles the application using this informa-

tion. This has lead to many new kinds of optimizations [23],

[24], [16]. However these compiler optimizations remain

rigid and thus aims to best fit the program’s entire execution

and does not allow accommodating particular scenarios the

application may encounter.

Performance counters has shown to be a great tool to

enable low overhead profiling of micro-architectural events.

Moreover, these hardware structures are becoming more

complex as is seen in the work by Dean et al. [12].

Azimi et al. presents a technique to use limited performance

counters to simultaneously profile numerous events via sam-

pling [2]. In recent work by Cavazos et al. [7] performance

counters and machine learning are used together to find

better compiler optimization settings for applications. These

performance counters are also being used for more than just

profiling. In the works by Chen et al. [9] and Mars et al. [21]

performance monitoring hardware are used to form dynamic

hot traces without slowing down the running application. We

also see performance counters used in Java VMs and JITs

to steer optimization in the works by Schneider et al. [25]

and Adl-Tabatabai et al. [1]

C. Function Cloning and Multiversioning

Function cloning and Multiversioning is an inter-

procedural code transformation that is used by a number

of optimizations. It was originally conceived for classic

optimizations such as inter-procedural constant propagation

(IPCP) [5]. It has also been been used by Carini et al.

for flow insensitive IPCP [6] and Cierniak et al. for inter-

procedural array remapping [11].

More recently it has been used in a number of works by

Fursin et al. as a mechanism to provide dynamic machine-

learning testbeds for evaluating optimization configurations

and performing online optimization space pruning [14], [15].

Our work contrasts Fursin’s in that instead of pruning the

optimization space using machine learning techniques, we

present a framework for the design of novel optimizations

techniques with a particular dynamic scenario in mind.

VII. FUTURE WORK AND CONCLUSION

A. Future Work

There is much future work we wish to investigate. As

this work focuses on the SBO framework, we plan to do

a thorough investigation and generalization of the OAAAO

technique in future work. We can further develop the three

phase and other heuristics. Currently our three phase heuris-

tic has rigid settings. We plan to look into developing a self

tuning OAAAO that can independently learn and respond

to individual slices of code. In addition, we wish to see if

what other heuristics are necessary for the OAAAO version

switching decision maker to target parallel applications. Sim-

ilarly, we can look at what other aggressive optimizations

can be applied OAAAO to. We also would like to do further

analysis and evaluation of the switching frequencies and the

limits of the opportunity of OAAAO.

Beyond this we also plan to extend the dynamic com-

ponent of SBO to run as a separate thread. This will

allow for monitoring at a finer grain as the host application

and the dynamic component can execute simultaneously in

addition to enabling more complex analyses. Lastly, we are

investigating other novel Scenario Based Optimizations.



B. Conclusion

In this work we have presented Scenario Based Opti-

mization, a new paradigm for using runtime information to

steer online optimizations. Our framework allows compiler-

writers to take advantage of the strengths of static compile-

time optimizations while focusing on the ever-changing

execution environment. In general, collecting and using

runtime information about an application’s execution envi-

ronment for dynamic optimizations at the binary-level has

proved difficult. However using this hybrid static/dynamic

collaborative optimization paradigm, compiler writers can

arrive at new, clever optimizations that would previously be

impossible. We have described the design and implemen-

tation of this framework and demonstrated its effectiveness

by designing a new SBO optimization: Online Aiding and

Abetting of Aggressive Optimizations.

This SBO optimization takes two traditional static opti-

mizations, cache prefetching and loop unrolling, restructures

them into reactive dynamic optimizations, and significantly

improves their usefulness. Moreover, in a number of cases

OAAAO turns degradations into speedups. OAAAO im-

proves performance in all benchmarks with exception to

gobmk where it breaks even. These performance boost

ranges from 4% to 11% in many cases, and is 17% for

h264ref.
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