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Abstract

We consider the problem of communication over a three user discrete memoryless interference channel (3−IC).

The current known coding techniques for communicating over an arbitrary 3−IC are based on message splitting,

superposition coding and binning using independent and identically distributed (iid) random codebooks. In this work,

we propose a new ensemble of codes - partitioned coset codes (PCC) - that possess an appropriate mix of empirical

and algebraic closure properties. We develop coding techniques that exploit algebraic closure property of PCC to

enable efficient communication over 3−IC. We analyze the performance of the proposed coding technique to derive

an achievable rate region for the general discrete 3−IC. Additive and non-additive examples are identified for which

the derived achievable rate region is the capacity, and moreover, strictly larger than current known largest achievable

rate regions based on iid random codebooks.

I. INTRODUCTION

An interference channel (IC) is a model for communication between multiple transmitter receiver (Tx-Rx) pairs

that share a common communication medium. Each transmitter wishes to communicate specific information to it’s

corresponding receiver. Since the Tx-Rx pairs share a common communication medium, every user’s transmission

causes interference to every other user. Communication over an IC is therefore facilitated by a coding technique

that manages interference efficiently, in addition to combating channel noise.

The quest for designing an efficient coding technique for managing interference was initiated in the context of

an IC with two Tx-Rx pairs [1] [2] [3], henceforth referred to as 2−IC. Over a 2−IC, the source of interference

is the transmission of the lone interfering transmitter. Based on his findings in [4], Carleial proposed the technique

in which each receiver decodes a part of the signal sent by the interfering transmitter. To enable this, Carleial

employed superposition coding [5] [6]. Each transmitter splits it’s message and transmission into two parts - public

and private. Cloud center and satellite codebooks encode the public and private parts of the message respectively. In

addition to both parts of the corresponding transmitter, each receiver decodes the public part, i.e., the cloud center

codeword, of the interfering transmitter.
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In characterizing the performance of his coding technique via random coding, Carleial employed, quite naturally,

random unstructured codebooks for each pair of cloud center and satellite codebooks. Moreover the two pairs were

statistically independent. Subsequently, Han and Kobayashi [7] strictly enlarged Carleial’s achievable rate region by

(i) replacing the successive decoder he employed by a more powerful joint decoder, and (ii) incorporating a time

sharing random variable. This coding technique is optimal under strong interference [4], [8]. El Gamal and Costa

[9] prove that this technique is optimal for a class of deterministic ICs. Recently Etkin, Tse and Wang [10] prove

that it is within 1 bit of the optimal for the Gaussian IC.

The above coding technique of message splitting via superposition coding and employing unstructured cloud

and satellite codebooks, henceforth referred to as CHK-technique, remains to be the best known coding technique

for communication over a 2−IC. The interfering transmitter’s transmission being the only source of interference,

decoding a part of the same amounts to decoding a part of the interference. This coding technique is in general

more efficient than either ignoring or decoding the entire interference. Whether the rate region proved achievable in

[7], henceforth referred to as the CHK rate region, is the capacity region of a 2−IC has remained a long standing

open problem in information theory.

In this article, we consider the problem of communicating over a three user interference channel (3−IC). In a

3−IC, transmission by two transmitters contribute to interference. The nature of interference over a 3−IC being

richer, we develop a technique based on coset codes built over finite fields and Abelian groups for interference

management. Coset codes are algebraically closed. The sum of any two codewords of a coset lies in another coset.

Moreover, two cosets of a group or linear code, when added result in another coset of the same code. As against to

adding two random codebooks whose codewords are statistically independent, we emphasize that the sum of two

random cosets of a random group or linear code yields a collection of the same size. This property of coset codes

behaving nicely under addition - a bivariate operation - is exploited for managing interference, wherein, interference

over a 3−IC is in general a compressive bivariate function of the signals sent by the two interfering transmitters.

The use of lattice codes [11], [12], [13] and interference alignment techniques [14] have been proposed for

efficient interference management over Gaussian ICs with three or more Tx-Rx pairs. Cadambe and Jafar [14]

propose the technique of interference alignment for the Gaussian IC and thereby harness the available of degrees

of freedom in an IC with several Tx-Rx pairs more efficiently. Jafarian and Vishwanath [11] propose an achievable

scheme for communicating over K−user Gaussian IC based on lattice codes and characterize it’s efficiency. Bresler,

Parekh and Tse [12] employ lattice codes to align interference and thereby characterize the capacity of Gaussian ICs

within a constant number of bits. While these works are restricted to additive ICs, the key contribution herein is the

development of a framework based on coset codes for efficient communication over an arbitrary discrete 3−IC. The

framework involves (i) a new ensemble of field and group coset codes - partitioned coset codes (PCC) - possessing

algebraic and empirical properties, coupled with (ii) efficient joint typicality based encoding and decoding rules that

exploit algebraic properties of PCC and moreover, enable us to achieve rates corresponding to arbitrary single-letter

distributions, (iii) mathematical tools and proof techniques to characterize the performance of the proposed coding

technique over arbitrary 3−ICs. This framework enables us to characterize PCC rate region - a new achievable rate
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region for an arbitrary discrete 3−IC. We demonstrate the utility of this framework by identifying additive as well

as non-additive 3−ICs for which the proposed technique enables efficient communication.

Conventionally, the random codebooks employed in characterizing achievable rate regions are unstructured and

independent, i.e., codewords of each random codebook, and the random codebooks themselves, are statistically

independent. Since our findings are based on a fundamentally different approach - use of statistically correlated

codes possessing algebraic closure properties - it is natural to enquire the need for the same. Indeed, one can

employ unstructured codes for communication over an arbitrary 3−IC and optimally stitch together all current

known relevant coding techniques - message splitting, binning and superposition - to derive the current known

largest achievable rate region for communication over an arbitrary 3−IC. How does this rate region, henceforth

referred to as USB−region, compare to the PCC rate region?

An important element of our findings is the strict sub-optimality of the USB−technique for communicating over

3−ICs, including non-additive instances. In particular, we identify (i) an additive 3−IC, and (ii) a non-additive

3−IC for which we analytically prove strict containment of the USB−region in it’s corresponding capacity region.

Moreover, for these 3−ICs the PCC rate region is the capacity region. This justifies the need for the framework

developed herein. The reader will now wonder whether PCC rate region strictly subsumes USB−region for an

arbitrary 3−IC.1

In addition to efficiently decoding a bivariate function of the two interfering transmissions, which the proposed

coding technique based on PCC accomplishes, it is necessary to enable receivers efficiently decode individual

parts of interfering transmissions. The coding technique based on statistically correlated PCC proposed herein, is

tuned to exploit the algebraic properties of coset codes in decoding a bivariate function - field addition or group

multiplication - of transmissions of the two interfering transmitters. Such a technique is strictly sub-optimal for the

purpose of decoding individual parts of interfering transmissions, when compared to the conventional technique

based on unstructured independent codes. This leads us to enhance the PCC coding technique by incorporating the

USB−technique. This enables us to characterize a new achievable rate region for an arbitrary discrete 3−IC that

contains PCC rate region and strictly enlarges the USB−region.

While our findings appear similar to the idea of interference alignment, we would like to reiterate the following

key elements. Our work provides a technique of aligning interference over arbitrary channels even while achieving

rates corresponding to non-uniform distributions.2 Example 3 illustrates the utility of this technique. We begin

with preliminaries - notation, definitions and the precise statement of the problem - in section II. In section III,

we provide a characterization of the CHK rate region for 2−IC. The first main finding of this article is the strict

sub-optimality of current known coding techniques based on unstructured codes for communication over 3−IC. In

order to present this finding, we characterize a sub-class of 3−IC’s called 3−to−1 IC (section II-B), and derive,

1A little thought will convince an alert reader, that is this were true, the PCC rate region should particularize or enlarge the CHK rate region

for a 2−IC. Indeed, this is not true, as will be indicated in the sequel.
2We note that the technique of interference alignment proposed by Cadambe and Jafar was studied in the context of Gaussian fading channels

and achieve rates corresponding Gaussian input distributions.
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in section III-B, an achievable rate region for the same, called USB−region, that employs current known coding

techniques based on unstructured codes. In section IV, we identify an additive 3−to−1 IC and propose a strategy

based on correlated linear codes that is analytically proven to strictly outperform USB−technique.

Our second main finding - a new achievable rate region for an arbitrary discrete 3−IC - is presented in three

pedagogical steps. In the first step, we employ PCC to manage interference seen by only one receiver. In the second

step, we employ PCC to manage interference seen by all three receivers. Finally, in the third step, we indicate how

a coding technique that incorporates both USB−region and PCC region can be developed for a general discrete

3−IC.

In this article, we develop coding techniques based on PCC built over finite fields and Abelian groups. Characteriz-

ing achievable rate regions for arbitrary 3−IC using statistically correlated codes endowed with algebraic properties,

is a paradigm shift from the conventional techniques (based on unstructured codes) employed in information theory.

The theory developed in this article contains several new elements. The rich structure of the finite field, and our

fair understanding of coset codes3 provides us with the right setting to convey some of the new elements in it’s

simplest setting. Employing coset codes built over general Abelian groups involves, thanks to it’s looser algebraic

structure, a whole new set of tools and ideas. These being fairly group theoretic, we develop the same in a separate

section. In section V, we develop PCC rate region by employing codes built over finite fields. Section VI contains

our exposition in the context of Abelian groups, i.e., characterization of PCC rate region based on codes built over

Abelian groups. While it is true that the PCC rate region using group codes contains PCC rate region based on

finite fields, the above subdivision provides a pedagogical development of the involved techniques. Moreover, it also

enables a reader unfamiliar with group theory to gather several of the key elements by a careful study of section

V.

In sections V-A, VI-C, we present the first step that describes all the new elements of our framework in a simple

setting. Here, we employ PCC built over finite fields, Abelian groups respectively, to manage interference seen by

only one receiver. For this step, we furnish a complete and elaborate proof of achievability. In the second step,

presented in section V-B, we employ PCC to manage interference seen by all three receivers. Finally, in section

V-C, we incorporate unstructured codes via USB−technique and PCC to derive an achievable rate region that is

strictly larger than USB−region.

Our third main finding is the identification of 3−IC’s for which the proposed framework outperforms all current

known coding techniques. In particular, we identify in section V-A, a non-additive 3−to−1 IC (Example 3) for which

USB−technique is strictly sub-optimal and moreover, the coding technique based on PCC is capacity achieving.

This example illustrates the central theme of this article - codes endowed with algebraic closure properties enable

efficient communication over arbitrary 3−IC’s not just additive, symmetric instances - and thereby justifies the

framework developed herein. We strengthen this claim by identifying in section VI-C 3−IC’s for which PCC codes

3While there has been several works that study performance of particular coset codes, a systematic information theoretic study of it’s

performance over an arbitrary instance of a multi-terminal channel has not been undertaken.
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built over Abelian groups achieve capacity, while all known coding techniques, including PCC codes built over

finite fields are sub-optimal. This illustrates the need to develop a fundamental theory of codes built over the various

algebraic objects.

II. PRELIMINARIES: NOTATION AND DEFINITIONS

A. Notation

• We let N,R denote the set of natural numbers and real numbers respectively. Calligraphic letters such as X ,Y

exclusively to denote finite sets.

• For K ∈ N, we let [K] : = {1, 2 · · · ,K}.

• In this article, we will need to define multiple objects, mostly triples, of the same type. In order to reduce

clutter, we use an underline to denote aggregates of objects of similar type. For example, (i) if Y1,Y2,Y3

denote (finite) sets, we let Y either denote the Cartesian product Y1 × Y2 × Y3 or abbreviate the collection

(Y1,Y2,Y3) of sets, the particular reference being clear from context, (ii) if yj ∈ Yj : j ∈ [3], we let y ∈ Y

abbreviate (y1, y2, y3) ∈ Y , (iii) if dj : Ynj →Mj : j ∈ [3] denote (decoding) maps, then we let d(yn) denote

(d1(yn1 ), d2(yn2 ), d3(yn3 )).

• If j ∈ {1, 2}, then j ∈ {1, 2} \ {j} is the other index.

• Unless otherwise mentioned, we let θ denote an integral power of a prime. Throughout, Fθ will denote the

finite field of cardinality θ.

• We employ the notion of typicality as in [15]. In particular, if U, V are random variables distributed with

respect to pUV , then Tη(U, V ) ∈ Un×Vn denotes the typical set with respect to pUV and deviation parameter

η. For any vn ∈ Vn, Tη(U |vn) = {un : (un, vn) ∈ Tη(U, V )} denotes the conditional typical set.

B. Definitions: 3−IC, 3−to−1IC, achievability, capacity region

A 3−IC consists of three finite input alphabet sets X1,X2,X3 and three finite output alphabet sets Y1,Y2,Y3. The

discrete time channel is (i) time invariant, i.e., the pmf of Y t : = (Y1t, Y2t, Y3t), the output at time t, conditioned

on Xt : = (X1t, X2t, X3t), the input at time t, is invariant with t, (ii) memoryless, i.e., conditioned on present

input Xt, the present output Y t is independent of past inputs X1, · · · , Xt−1, past outputs Y 1, · · · , Y t−1 and (iii)

used without feedback, i.e., encoders have no information of the symbols received by decoders. Let WY |X(y|x) =

WY1Y2Y3|X1X2X3
(y1, y2, y3|x1, x2, x2) denote probability of observing symbol yj ∈ Yj at output j, given xj ∈ Xj

is input by encoder j. Inputs are constrained with respect to bounded cost functions κj : Xj → [0,∞) : j ∈ [3].

The cost function is assumed additive, i.e., cost of transmitting vector xnj ∈ Xnj is κ̄nj (xnj ) : = 1
n

∑n
t=1 κj(xjt).

We refer to this 3−IC as (X ,Y,WY |X , κ).

Definition 1: A 3−IC code (n,M, e, d) consist of (i) index sets M1,M2,M3 of messages, (ii) encoder maps

ej :Mj → Xnj : j ∈ [3], and (iii) three decoder maps dj : Ynj →Mj : j ∈ [3].
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Definition 2: The error probability of a 3−IC code (n,M, e, d) conditioned on message triple (m1,m2,m3) ∈

M is

ξ(e, d|m) : = 1−
∑

yn:d(yn)=m

WY |X(yn|e1(m1), e2(m2), e3(m3)).

The average error probability of a 3−IC code (n,M, e, d) is ξ̄(e, d) : =
∑
m∈M

1
|M|ξ(e, d|m). Average cost per

symbol of transmitting message m ∈ M is τ(e|m) : =
(
κ̄nj (ej(mj)) : j ∈ [3]

)
and average cost per symbol of

3−IC code (n,M, e, d) is τ(e) : = 1
|M|

∑
m∈M τ(e|m).

Definition 3: A rate-cost sextuple (R1, R2, R3, τ1, τ2, τ3) ∈ [0,∞)6 is achievable if for every η > 0, there exists

N(η) ∈ N such that for all n > N(η), there exists a 3−IC code (n,M(n), e(n), d(n)) such that (i)
log |M(n)

j |
n ≥

Rj − η : j ∈ [3], (ii) ξ̄(e(n), d(n)) ≤ η, and (iii) average cost τ(e(n))j ≤ τj + η. The capacity region is C(τ) :

=
{
R ∈ R3 : (R, τ) is achievable

}
.

We now consider 3−to−1 IC, a class of 3−IC’s that was studied in [16]. 3−to−1 IC enables us to prove

strict sub-optimality of coding techniques based on unstructured codes. A 3−to−1 IC is a 3−IC wherein two

of the users enjoy interference free point-to-point links. Formally, a 3−IC (X ,Y,WY |X , τ) is a 3−to−1 IC if

(i) WY2|X (y2|x) : =
∑

(y1,y3)∈Y1×Y3
WY |X(y|x) is independent of (x1, x3) ∈ X1 × X3, and (ii) WY3|X (y3|x) :

=
∑

(y1,y2)∈Y1×Y2
WY |X(y|x) is independent of (x1, x2) ∈ X1 ×X2 for every collection of input output symbols

(x, y) ∈ X × Y . For a 3−to−1 IC, the channel transition probabilities factorize as

WY |X(y|x) = WY1|X(y1|x)WY2|X2
(y2|x2)WY3|X3

(y3|x3)

for some conditional pmfs WY1|X , WY2|X2
and WY3|X3

. We also note that X1X3−X2−Y2 and X1X2−X3−Y3

are Markov chains for any distribution pX1
pX2

pX3
WY |X .4

In the following section, we describe the coding technique of message splitting and superposition using unstruc-

tured codes, in the context of a 2−IC, and employ the same in deriving the USB−region for 3−to−1 IC.

III. MESSAGE SPLITTING AND SUPERPOSITION USING UNSTRUCTURED CODES

A. CHK-technique for 2−IC

Encoder j builds codebooks over two layers - public and private. The public layer contains a cloud center

codebook built over Wj . For each codeword in the cloud center codebook, a corresponding satellite codebook is

built over Xj . The satellite codebooks form the private layer. The user’s message is split into two parts - public

and private. The cloud center codeword is the codeword in the cloud center codebook indexed by the public part

of the message. In the satellite codebook corresponding to the cloud center codeword, the codeword indexed by the

private part of the message forms the satellite codeword. The satellite codeword is input on the channel. Decoder j

decodes into codebooks built over W1,W2 and Xj , i.e., the two cloud center codebooks and it’s satellite codebook.

4Any interference channel wherein only one of the users is subjected to interference is a 3−to−1 IC by a suitable permutation of the user

indices.
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A standard information theoretic analysis of probability of error yields an achievable rate region referred to herein

as CHK rate region for 2−IC.

Definition 4 and theorem 1 provide a characterization of rate pairs achievable using CHK-technique. We omit

restating the definitions analogous to definitions 1, 2, 3 for a 2−IC.

Definition 4: Let DHK(τ) denote the collection of pmfs pQW1W2X1X2Y1Y2
defined on Q×W1 ×W2 × X1 ×

X2 × Y1 × Y2, where Q,W1,W2 are finite sets of cardinality at most 7, |X1|+ 4, |X2|+ 4 respectively, such that

(i) pY |XW = WY |X , (ii) (W1, X1) is conditionally independent of (W2, X2) given Q, (iii) E {κj(Xj)} ≤ τj . For

pQWXY ∈ DHK(τ), let αHK(pQWXY ) denote the set of rate pairs (R1, R2) ∈ [0,∞]2 that satisfy

Rj < min {I(Xj ;Yj |QWj), I(Xj ;Yj |QW ) + I(WjXj ;Yj |QWj)} : j ∈ [2]

R1 +R2 < min

I(Xj ;Yj |QW ) + I(WjXj ;Yj |Q) : j ∈ [2],

2∑
j=1

I(WjXj ;Yj |QWj)


2Rj +Rj < I(Xj ;Yj |QW ) + I(WjXj ;Yj |QWj) + I(WjXj ;Yj |Q) : j ∈ [2]

and

αHK(τ) = cl

 ⋃
pQWXY ∈
DHK(τ)

αHK(pQWXY )

 .

Theorem 1: For 2−IC (X ,Y,WY |X , κ), αHK(τ) is achievable, i.e., αHK(τ) ⊆ C(τ).

Remark 1: Recently, several efforts [17], [18], [19] have yielded simplified descriptions [20] of αHK(τ). The

description stated above involving fewer auxiliary random variables and tighter bounds on their cardinalities is due

to Chong et. al. [17].

B. USB−technique for 3−to−1 IC

Before we consider the case of a 3−to−1 IC, it is appropriate to state how does one optimally stitch together

current known coding techniques - message splitting, superposition coding and precoding via binning - for com-

municating over 3−IC? Each encoder must make available parts of it’s transmission to each user it interferes with.

Specifically, encoder j splits it’s transmission into four parts - one public, two semi-private and one private. The

corresponding decoder j decodes all of these parts. The other two decoders, say i and k, for which encoder j’s

transmission is interference, decode the public part of user j’s transmission. The public part is decoded by all

receivers, and is therefore encoded using a cloud center codebook at the base layer. Moreover, each semi-private

part of encoder j’s transmission is decoded by exactly one among the decoders i and k. The semi-private parts

are encoded at the intermediate level using one codebook each. These codebooks, referred to as semi-satellite

codebooks, are conditionally coded over the cloud center codebook. The semi-satellite codebooks are precoded for

each other via binning. The private part is encoded at the top layer using a satellite codebook. The satellite codebook

is conditionally coded over the cloud center and semi-satellite codebooks. Each decoder decodes the seven parts

using a joint typicality decoder. Finally, the encoders and decoders share a time sharing sequence to enable them
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synchronize the choice of codebooks at each symbol interval. We henceforth refer to the above coding technique

as the USB−technique.

One can characterize USB−region - an achievable rate region corresponding to the above coding technique - via

random coding. Indeed, such a characterization is quite involved. Since our objective is to illustrate sub-optimality

of USB−technique, it suffices to obtain a characterization of USB−region for 3−to−1 ICs.

For the case of 3−to−1 IC, user 1’s transmission does not cause interference to users 2 and 3, and therefore will

not need it to split it’s message. This can be proved using the Markov chains X1X3−X2−Y2 and X1X2−X3−Y3.

Moreover, transmission of user 2 does not interfere with user 3’s reception and vice versa. Therefore, users 2 and

3 will only need to split their messages into two parts - a private part and a semi-private part that is decoded by

user 1. We now describe this coding technique.

Since encoder 1’s transmission does not cause interference to any of the other users, it employs a simple point-

to-point (PTP) encoder. Specifically, encoder 1 builds a single codebook (xn1 (m1) : m1 ∈ M1) of rate T1 over

X1 and the codeword indexed by the message is input on the channel. The operations of encoder 2 and 3 are

identical. Moreover, since their transmissions cause interference only to user 1, their operations are identical to that

of a generic encoder of a 2−IC. In anticipation of a generalization to 3−IC , we employ an alternate notation and

therefore describe operation of encoder 2.

Encoder 2 splits it’s message M2 ∈M2 into two parts - semi-private and private. We let message (i) M21 ∈M21

of rate L2 denote it’s semi-private part and (ii) M2X ∈ M2X of rate T2 denote it’s private part. A single semi-

private layer codebook (un2 (m21) : m21 ∈ M21) is built over U2. For each message m21 ∈ M21, a codebook

(xn2 (m21,m2X) : m2X ∈ M2X) is built over X2. The codebooks over X2 form the private layer. The codeword

xn2 (M21,M2X) corresponding to message M2 = (M21,M2X) is input on the channel.

Decoders 2 and 3 enjoying interference free reception perform simple PTP joint typical decoding into the

corresponding pair of semi-private and private codebooks. Decoder 1 looks for all messages m̂1 ∈ M1 for which

there exists a pair (un2 (m̂21), un3 (m̂31)) such that (xn1 (m̂1), un2 (m̂21), un3 (m̂31), Y n1 ) is jointly typical, where Y n1

is the vector received by decoder 1. If there is exactly, one such message m̂1 ∈ M1, this is declared as decoded

message of user 1. Otherwise, an error is signaled.

A typical information theoretic analysis of probability of decoding error yields the USB−region for 3−to−1 IC.

For the sake of completeness, we provide the details. A well versed reader may skip over to the characterization

provided in definition 5 and theorem 2. Let Q, taking values over the finite alphabet Q, denote the time sharing

random variable. Let pQ be a pmf on Q and qn ∈ Qn denote a sequence picked according to
∏n
t=1 pQ. qn

is revealed to the encoders and decoders. The distribution induced on the ensemble of codebooks is such that,

conditioned on the time sharing sequence qn, the three collections of codebooks, one corresponding to each user,5

are mutually independent. Let pQpX1|QpU2X2|QpU3X3|QWY |X be a pmf on Q×U2×U3×X ×Y . The codewords

in X1−codebook are independent and identically distributed according to
∏n
t=1 pX1|Q(·|qt). The codewords in user

5Here, the collection of user j’s codebooks refers to the entire collection of codebooks employed by encoder j.
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2’s semi-private codebook are independent and identically distributed according to
∏n
t=1 pU2|Q(·|qt). Conditioned

on the entire U2−codebook, codewords (xn2 (m21,m2X) : m2X ∈M2X) in the private codebook corresponding to

semi-private message mU
21 are independent and identically distributed according to

∏n
t=1 pX2|U2Q(·|(un2 (mU

21))t, qt).

The distribution induced on user 3’s codebook is analogous to that of user 2 and a description is therefore omitted.

We now average probability of decoding error over the ensemble of codebooks. The probability of either decoder

2 or 3 decoding erroneously decays exponentially if

Lj + Tj < I(UjXj ;Yj |Q) and Tj < I(Xj ;Yj |Q,Uj) : j = 2, 3.

The probability of decoder 1 decoding erroneously decays exponentially if

T1 < I(X1;U2, U3, Y1|Q), L2 + T1 < I(U2X1;U3Y1|Q), L3 + T1 < I(U3X1;U2Y1|Q), and

L2 + L3 + T1 < I(U2U3X1;Y1|Q).

Incorporating non-negativity constraints, Tj ≥ 0 : j ∈ [3], Lj ≥ 0 : j = 2, 3, substituting R1, R2, R3 for T1, L2 +

T2, L3 + T3 respectively, and eliminating all variables except Rj : j ∈ [3] using the technique of Fourier-Motzkin

yields the following achievable rate region.

Definition 5: Let Du(τ) denote the collection of pmfs pQU2U3XY defined onQ×U2×U3×X×Y , whereQ,U2,U3

are finite sets, such that (i) pY |XU2U3Q = WY |X , (ii) the triplet X1, (U2, X2) and (U3, X3) are conditionally mutually

independent given Q, (iii) E {κj(Xj)} ≤ τj : j ∈ [3]. For pQU2U3XY ∈ Du(τ), let αu(pQU2U3XY ) denote the set

of rate triples (R1, R2, R3) ∈ [0,∞)3 that satisfy

0 ≤ R1 < I(X1;Y1|Q,U2, U3), 0 ≤ Rj < I(UjXj ;Yj |Q) : j = 2, 3 (1)

R1 +R2 < I(U2X1;Y1|QU3) + I(X2;Y2|QU2), R1 +R3 < I(U3X1;Y1|QU2) + I(X3;Y3|QU3)

R1 +R2 +R3 < I(U2U3X1;Y1|Q) + I(X2;Y2|QU2) + I(X3;Y3|QU3), (2)

and

αu(τ) = cl

 ⋃
pQU2U3XY

∈ Du(τ)

αu(pQU2U3XY )

 .

Theorem 2: For 3−to−1 IC (X ,Y,WY |X , κ), αu(τ) is achievable, i.e., αu(τ) ⊆ C(τ).

The reader will also recognize that αu(τ) is also achievable over an arbitrary 3−IC.6 This is stated below.

Theorem 3: For 3−IC (X ,Y,WY |X , κ), αu(τ) is achievable, i.e., αu(τ) ⊆ C(τ).

IV. STRICT SUB-OPTIMALITY OF USB−REGION FOR 3−TO−1 IC

This section contains our first main finding of this article - strict sub-optimality of USB−technique. In particular,

we identify a binary additive 3−to−1 IC for which we prove strict sub-optimality of USB−technique. We begin

with the description of the 3−to−1 IC.

6Unless the 3−IC (X ,Y,WY |X , κ) is a 3−to−1IC, αu(τ) is not it’s USB−region.
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Fig. 1. A binary additive 3−to−1 IC described in example 1.

Example 1: Consider a binary additive 3−to−1 IC illustrated in figure 1 with Xj = Yj = {0, 1} : j ∈ [3]

with channel transition probabilities WY |X(y|x) = BSCδ1(y1|x1 ⊕ x2 ⊕ x3)BSCδ2(y2|x2)BSCδ3(y3|x3), where

BSCη(0|1) = BSCη(1|0) = 1−BSCη(0|0) = 1−BSCη(1|1) = η denotes the transition probabilities of a BSC

with cross over probability η ∈ [0, 1
2 ]. Inputs of users 2 and 3 are not costed, i.e., κj(0) = κj(1) = 0 for j = 2, 3.

User 1’s input is constrained with respect to a Hamming cost function, i.e., κ1(x) = x for x ∈ {0, 1} to an average

cost of τ ∈ (0, 1
2 ) per symbol. Let C(τ) denote the capacity region of this 3−to−1 IC.

Clearly, C(τ) ⊆ β(τ, 1
2 ,

1
2 , δ), where

β(τ , δ) : =
{

(R1, R2, R3) ∈ [0,∞)3 : Rj ≤ hb(δj ∗ τj)− hb(δj) : j = 1, 2, 3
}
. (3)

Let us focus on achievability. We begin with a few simple observations for the above channel. Let us begin with

the assumption δ : = δ2 = δ3. As illustrated in figure 1, users 2 and 3 enjoy interference free unconstrained binary

symmetric channels (BSC) with cross over probability δ = δ2 = δ3. They can therefore communicate at their

respective capacities 1−hb(δ). Constrained to average Hamming weight of τ , user 1 cannot hope to achieve a rate

larger than hb(τ ∗ δ1)−hb(δ1).7 What is the maximum rate achievable by user 1 while users 2 and 3 communicate

at their respective capacities?

User 1 cannot hope to achieve rate hb(τ ∗δ1)−hb(δ1) and decode the pair of codewords transmitted by user 2 and

3 if hb(τ ∗ δ1)−hb(δ1) + 2(1−hb(δ)) > 1−hb(δ1) or equivalently 1 +hb(τ ∗ δ1) > 2hb(δ). Under this condition,

USB−technique forces decoder 1 to be contented to decoding univariate components - represented through semi-

private random variables U2, U3 - of user 2 and 3’s transmissions. We state that as long as the univariate components

leave residual uncertainty in the interfering signal, i.e., H(X2 ⊕X3|U2, U3) > 0, the rate achievable by user 1 is

strictly smaller than it’s maximum hb(τ ∗δ1)−hb(δ1).8 This claim and the strict sub-optimality of USB−technique

is stated in theorem 4.

7If receiver 1 is provided with the codewords transmitted by users 2 and 3, the effective channel it sees is a BSC with cross over probability

δ1.
8An informed reader will be able to reason this by relating this situation to a PTP channel with partial state observed at the receiver.
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We now describe a simple linear coding technique that enables user 1 achieve it’s maximum rate hb(τ∗δ1)−hb(δ1)

even under the condition 1 + hb(τ ∗ δ1) > 2hb(δ)! Let us assume τ ∗ δ1 ≤ δ. We choose a linear code, or a coset

thereof, that achieves the capacity of a BSC with cross over probability δ. We equip users 2 and 3 with the same

code, thereby constraining the sum of their transmitted codewords to this linear code, or a coset thereof, of rate

1 − hb(δ). Since τ ∗ δ1 ≤ δ, decode 1 can first decode the interfering signal - sum of codewords transmitted by

encoders 2 and 3 - treating the rest as noise, peel it off, and then decode the desired signal. User 1 can therefore

achieve it’s maximum rate hb(τ ∗ δ1)− hb(δ1) if τ ∗ δ1 ≤ δ.

In theorem 4, we prove that if 1+hb(δ1∗τ) > hb(δ2)+hb(δ3), then (hb(τ ∗δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) /∈

αu(τ). We therefore conclude in corollary 1 that if τ, δ1, δ2, δ3 are such that 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3) and

min {δ2, δ3} ≥ δ1 ∗ τ , then USB−technique is strictly suboptimal for the 3−to−1 IC presented in example 1.

Theorem 4: Consider the 3−to−1 IC described in example 1. If τ ∗δ1 ≤ min {δ2, δ3}, then C(τ) = β(τ, 1
2 ,

1
2 , δ),

where β(τ , δ) is given by (3). If hb(δ2)+hb(δ3) < 1+hb(τ ∗δ1), then (hb(τ ∗δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) /∈

αu(τ, 0, 0).

Proof: We only need to prove the second statement. If H(Xj |Q,Uj) = 0 for j = 2, 3, then the upper

bound in (2) reduces to R1 + R2 + R3 ≤ I(X2X3X1;Y1|Q) ≤ 1 − hb(δ1). From the hypothesis, we have

hb(τ ∗ δ1)− hb(δ1) + 1− hb(δ2) + 1− hb(δ3) > 1− hb(δ1) which violates the above upper bound and hence the

theorem statement is true.

Henceforth, we assume H(Xj |Q,Uj) > 0 for j = 2 or j = 3. Let us assume j, j are distinct elements in {2, 3}

and H(Xj |Q,Uj) > 0. Since (U2, X2) and (U3, X3) are conditionally independent given Q, we have

0 < H(Xj |Q,Uj) = H(Xj |Xj , Q, U2, U3) = H(X2 ⊕X3|Xj , Q, U2, U3) ≤ H(X2 ⊕X3|Q,U2U3).

The univariate components U2, U3 leave residual uncertainty in the interfering signal and imply the existence of a

q̃∗ = (q∗, u∗2, u
∗
3) ∈ Q̃ : = Q × U2 × U3 for which H(X2 ⊕X3|(Q,U2U3) = q̃∗) > 0. Under this condition, we

prove that the upper bound (1) on R1 is strictly smaller than hb(τ ∗ δ1) − hb(δ1). Towards that end, we prove a

simple observation based on strict concavity of binary entropy function.

Lemma 1: If Zj : j ∈ [3] are binary random variables such that (i) H(Z1) ≥ H(Z2), (ii) Z3 is independent of

(Z1, Z2), then H(Z1) −H(Z2) ≥ |H(Z1 ⊕ Z3) −H(Z2 ⊕ Z3)|. Moreover, if H(Z1) > H(Z2) and H(Z3) > 0,

then the inequality is strict, i.e., H(Z1)−H(Z2) > |H(Z1 ⊕ Z3)−H(Z2 ⊕ Z3)|.

Proof: Note that, if either H(Z1) = H(Z2) or H(Z3) = 0, then H(Z1)−H(Z2) = H(Z1⊕Z3)−H(Z2⊕Z3).

We therefore assume H(Z1) > H(Z2) and H(Z3) > 0 and prove the case of strict inequality. For j ∈ [3], let{
pZj (0), pZj (1)

}
= {δj , 1− δj} with δj ∈ [0, 1

2 ], δ3 > 0. Define f : [0, 1
2 ]→ [0, 1] as f(t) = hb(δ1 ∗t)−hb(δ2 ∗t).

It suffices to prove f(0) > f(δ3). By the Taylor series, f(δ3) = f(0) + δ3f
′(ζ) for some ζ ∈ [0, δ3] and therefore

it suffices to prove f ′(t) < 0 for t ∈ (0, 1
2 ].

It may be verified that

f ′(t) = (1− 2δ1) log
1− δ̄1
δ̄1

− (1− 2δ2) log
1− δ̄2
δ̄2

, where δ̄j = δj + t(1− 2δj) : j ∈ [2].



12

Note that (i) 0 ≤ (1 − 2δ1) < (1 − 2δ2) ≤ 1, (ii) δ̄j ≤ δj + 1
2 (1 − 2δj) ≤ 1

2 , (iii) since δ1 > δ2 and t ≤ 1
2 ,

δ̄1 − δ̄2 = (δ1 − δ2)(1 − 2t) ≥ 0. We therefore have 0 ≤ δ̄2 ≤ δ̄1 ≤ 1
2 and thus log 1−δ̄2

δ̄2
≥ log 1−δ̄1

δ̄1
. Combining

this with the first observation, we conclude (1 − 2δ2) log 1−δ̄2
δ̄2

> (1 − 2δ1) log 1−δ̄1
δ̄1

which implies f ′(t) < 0 for

t ∈ (0, 1
2 ].

We are now equipped to work with the upper bound (1) on R1. Denoting Q̃ : = (Q,U2, U3) and a generic element

q̃ : = (q, u2, u3) ∈ Q̃ : = Q× U2 × U3, we observe that

I(X1;Y1|Q̃) =
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕X2 ⊕X3|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(N1 ⊕X2 ⊕X3|Q̃ = q̃) (4)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕X2 ⊕X3|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1 ⊕X2 ⊕X3|Q̃ = q̃)

<
∑
q̃

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1|Q̃ = q̃) =
∑
q

pQ(q)H(X1 ⊕N1|Q = q)− hb(δ1) (5)

=
∑
q

pQ(q)hb(pX1|Q(1|q) ∗ δ1)− hb(δ1) ≤ hb(EQ
{
pX1|Q(1|q) ∗ δ1

}
)− hb(δ1) ≤ hb(τ ∗ δ1)− hb(δ1), (6)

where (i) (4) follows from independence of (N1, X2, X3) and X1 conditioned on realization of Q, (ii) (5) follows

from the existence of a q̃∗ ∈ Q̃ for which H(X2 ⊕ X3|Q̃ = q̃∗) > 0 and substituting pX1⊕N1|Q̃(·|q̃∗) for pZ1
,

pN1|Q̃(·|q̃∗) for pZ2 and pX2⊕X3|Q̃(·|q̃∗) for pZ3 in lemma 1, and noting that pX1⊕N1|Q̃(1|q̃∗) > pN1|Q̃(1|q∗), (iii)

the first inequality in (6) follows from Jensen’s inequality and the second follows from the cost constraint that any

test channel in Du(τ, 0, 0) must satisfy.

Corollary 1: Consider the 3−to−1 IC in example 1 with δ = δ2 = δ3. If hb(τ ∗ δ1) ≤ hb(δ) < 1+hb(δ1∗τ)
2 , then

(hb(τ ∗ δ1)− hb(δ1), 1− hb(δ), 1− hb(δ)) /∈ αu(τ, 0, 0) but (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ), 1− hb(δ)) ∈ C(τ) and

thus αu(τ, 0, 0) 6= C(τ). In particular, if δ1 = 0.01 and δ2 ∈ (0.1325, 0.21), then αu( 1
8 , 0, 0) 6= C( 1

8 ).

Comparison with Bandemer and El Gamal [21] :- We refer the reader to [21, Section II.D] wherein the authors

propose an achievable rate region for the three user deterministic interference channel with noisy observations. To

avoid conflict in notation, we restate example 1 with a notation consistent with that employed in [21].

Example 2: Consider a binary additive 3−to−1 IC illustrated in figure 1 with Xj = Zj = {0, 1} : j ∈ [3]

with channel transition probabilities WZ|X(z|x) = BSCδ1(z1|x1 ⊕ x2 ⊕ x3)BSCδ2(z2|x2)BSCδ3(z3|x3). Inputs

of users 2 and 3 are not costed, i.e., κj(0) = κj(1) = 0 for j = 2, 3 and user 1’s input is constrained by a Hamming

cost function, i.e., κ1(x) = x for x ∈ {0, 1}.

Let us describe the above example using the notation employed in [21]. It maybe verified that X12, X13, X23, X32,

S2, S3 are trivial, Xj1 = Xj for j = 1, 2, 3, Y2 = X22 = X2, Y3 = X33 = X3, S1 = X21 ⊕X31, Y1 = X1 ⊕ S1,

Zj = Yj ⊕ Nj for j = 1, 2, 3. N1, N2, N3 are independent Bernoulli processes with P (N1 = 1) = δ1 and

P (Nj = 1) = δ for j = 2, 3. We now state the main elements in the argument that proves (hb(τ ∗ δ1)−hb(δ1), 1−

hb(δ2), 1−hb(δ3)) /∈ RID. Let (Q,X1, X2, X3) be such that (R1, 1−hb(δ2), 1−hb(δ3)) ∈ ∩3
k=1Rk(Q,X1, X2, X3).

It can be proved that pXj |Q(0|q) = pXj |Q(1|q) = 1
2 for every q ∈ Q and j = 2, 3 using standard information
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theoretic arguments9. We now employ the bound

R1 + min {R2 +H(X31|Q), R3 +H(X21|Q), R2 +R3, H(S1|Q)} ≤ I(X1, S1;Z1|Q) (7)

present in the description of R1(Q,X1, X2, X3). Clearly, the right hand side of (7) is 1 − hb(δ1). We also know

R2 + R3 ≤ min{R2 + H(X31|Q), R3 + H(X21|Q)}. If R2 + R3 ≤ H(S1|Q) = H(X21 ⊕ X31|Q) = H(X2 ⊕

X3|Q) = 1, then the above bound reduces to R1 + R2 + R3 ≤ 1 − hb(δ1). Therefore, if (2 − 2hb(δ)) ≤ 1,

or equivalently hb(δ) >
1
2 , we have R1 + R2 + R3 ≤ 1 − hb(δ1). Consider the choice δ1 = 0.01, τ = 1

8 and

δ = 0.15. We have hb(τ ∗ δ1) ≤ hb(δ) < 1+hb(δ1∗τ)
2 and therefore (2 − 2hb(δ)) + (hb(δ1 ∗ τ) − hb(δ1)) >

(1− hb(δ1 ∗ τ)) + (hb(δ1 ∗ τ)− hb(δ1)) = 1− hb(δ1) and moreover hb(δ) = 0.6098 > 1
2 . Therefore the rate triple

(hb(τ ∗ δ1)− hb(δ1), 1− hb(δ2), 1− hb(δ3)) /∈ RID but is achievable using linear codes.

V. ACHIEVABLE RATE REGION USING PCC BUILT OVER FINITE FIELDS

In this section we present our second main finding - a new achievable rate region for 3−IC - in the context of

finite fields. In other words, we propose a coding technique based on PCC built over finite fields. Characterizing

it’s information-theoretic performance enables us to derive an achievable rate region, henceforth referred to as

PCC-region.10 We derive PCC rate region in three pedagogical steps. In the first step, presented in section V-A,

we employ PCC to manage interference seen by only one of the receivers. This simplified setting aids the reader

recognize and absorb all the key elements of the framework proposed herein. For this step, we provide a complete

proof of achievability. In this section, we also identify a non-additive 3−to−1 IC (Example 3) for which we

analytically prove (i) strict sub-optimality of USB−technique and (ii) optimality of PCC rate region. This example

indeed illustrates the central theme of this article - codes endowed with algebraic closure properties enable efficient

communication over arbitrary general multi-terminal communication channels, not just additive, symmetric instances

- and thereby justifies the framework developed herein.

In the second step, presented in section V-B, we employ PCC to manage interference seen by every receiver and

thereby provide a characterization of PCC rate region. In the third step we provide a unification of PCC rate region

and USB− rate region along the lines of [22, Section VI].

A. Step I : Managing interference seen by one receiver using PCC built over fields

The linear coding technique proposed for example 1 seems to hinge on the additive nature of the channel therein.

One of our main contributions is in being able to generalize this technique to arbitrary channels. In this section,

we present our generalization in a simple setting that elaborates on the structure of the codebooks and captures all

the key elements.

9This can be proved by employing the bound Rj < I(Xj ;Zj |Sj , Q) involved in the description of Rj(Q,X1, X2, X3) for j = 2, 3 and

noting that Sj if trivial for these j.
10We employ the same terminology for the rate region achievable using PCC built over Abelian groups in section VI.
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Definition 6: Let Df (τ) denote the collection of distributions pQU2U3XY ∈ Du(τ) defined over Q×U2 ×U3 ×

X ×Y , where U2 = U3 is a finite field. For pQU2U3XY ∈ Df (τ), let α3-1
f (pQU2U3XY ) be defined as the set of rate

triples (R1, R2, R3) ∈ [0,∞)3 that satisfy

R1 < min{0, H(Uj |Q)−H(U2 ⊕ U3|QY1) : j = 2, 3}+ I(X1;U2 ⊕ U3, Y1|Q),

Rj < I(Uj , Xj ;Yj |Q) : j = 2, 3,

R1 +Rj < I(Xj ;Yj |QUj) + I(X1;U2 ⊕ U3, Y1|Q) +H(Uj |Q)−H(U2 ⊕ U3|QY1) : j = 2, 3,

and

α3-1
f (τ) = cocl

 ⋃
pQU2U3XY

∈
Df (τ)

α3-1
f (pQU2U3XY )

 .

Theorem 5: For 3−IC (X ,Y,WY |X , κ), α3-1
f (τ) is achievable, i.e., α3-1

f (τ) ⊆ C(τ).

Before we provide a proof, we describe the coding technique in a simplified setting that highlights the new elements

and indicates achievability of promised rates. Towards that end, consider a pmf pQU2U3XY ∈ Df (τ) with Q = φ11

and U2 = U3 = Fθ. Encoder 1 builds a single codebook C1 = (xn1 (m1) : m1 ∈ M1) of rate R1 over X1 and the

codeword indexed by the message is input on the channel.

The structure and encoding rules for users 2 and 3 are identical and we describe it using a generic index

j ∈ {2, 3}. As in section III-B, we employ a two layer - cloud center and satellite - code for user j and split

it’s message Mj ∈ Mj into two parts. Let (i) Mj1 ∈ Mj1 : = [θtj ] denote it’s semi-private part, and (ii)

MjX ∈ MjX : = [exp{nLj}] denote it’s private part. While in section III-B user 1 decoded the pair of cloud

center codewords, the first key difference we propose is that user 1 decode the sum of user 2 and 3 cloud center

codewords. Let a coset λj ⊆ Unj of a linear code λj ⊆ Unj denote user j’s cloud center codebook. In particular,

let gj ∈ U
sj×n
j denote generator matrix of λj and coset λj correspond to shift bnj ∈ Unj . We let the cloud center

codebooks of users’ 2 and 3 overlap, i.e., the larger of λ2, λ3 contains the other. For example, if sj2 ≤ sj3 , then

λj2 ⊆ λj3 . We therefore let gTj3 =
[
gTj2 gTj3/j2

]
.

Since codewords of a uniformly distributed coset code are uniformly distributed, we need to partition the coset

code λj into θtj bins to induce a non-uniform distribution over the auxiliary alphabet Uj . In particular, for each

codeword unj (asj ) : = asjgj ⊕ bnj , where asj ∈ Usjj , a binning function ij(a
sj ) ∈ [θtj ] is defined that indexes

the bin containing unj (asj ). We let cj1(mj1) = {asj ∈ Usjj : ij(a
sj ) = mj1} denote the set containing indices

corresponding to message mj1.

The structure of the cloud center codebook plays an important role and we formalize the same through the

following definition.

Definition 7: A coset code λ is completely specified by the generator matrix g ∈ Fk×nθ and a bias vector

bnj ∈ Fnθ . Consider a partition of λ into θl bins. Each codeword akg ⊕ bn is assigned an index i(ak) ∈ [θl]. This

11Since the time sharing random variable Q is employed in a standard way, we choose to omit the same in this description.



15

coset code λ with it’s partitions is referred to as partitioned coset code (PCC) (n, k, l, g, bn, i) or succinctly as an

(n, k, l) PCC. For each m ∈ [θl], let c(m) : =
{
ak ∈ Fkθ : i(ak) = m

}
.

User j’th satellite codebook Cj , built over Xj , consists of exp{nLj} bins, one for each private message mjX ∈

MjX : = [exp{nLj}]. Let (xnj (mjX , bjX) ∈ Xnj : bjX ∈ cjX : = [exp{nKj}]) denote bin correspond-

ing to message mjX ∈ MjX . Having received message Mj = (Mj1,MjX), the encoder identifies all pairs

(unj (asj ), xnj (MjX , bjX)) of jointly typical codewords with (asj , bjX) ∈ cj1(Mj1) × cjX . If it finds one or more

such pairs, one of them is chosen and the corresponding satellite codeword is fed as input on the channel. Otherwise,

an error is declared.

We now describe the decoding rule. Predictably, the decoding rules of users 2 and 3 are identical and we

describe this through a generic index j ∈ {2, 3}. Decoder j identifies all (m̂j1, m̂jX) for which there exists

(asj , bjX) ∈ cj1(m̂j1)× cjX such that (unj (asj ), xnj (m̂jX , bjX), Y nj ) is jointly typical with respect to pnUjXj ,Yj . If

there is exactly one such pair (m̂j1, m̂jX), this is declared as the message of user j. Otherwise an error is signaled.

Decoder 1 constructs the sum λ2⊕λ3 : =
{
un2 ⊕ un3 : unj ∈ λj , j = 2, 3

}
of the cloud center codebooks. Having

received Y n1 , it looks for all potential message m̂1 for which there exists a un⊕ ∈ λ2⊕λ3 such that (un⊕, x
n
1 (m̂1), Y n1 )

is jointly typical with respect to pU2⊕U3,X1,Y1 . If it finds exactly one such message m̂1, it declares this as the decoded

message of user 1. Otherwise, it declares an error.

We characterize the performance of the proposed coding technique in the following proof by averaging over the

ensemble of codebooks. Since the distribution induced on the codebooks is such that codebooks of users 2 and 3

are statistically correlated and moreover, contain correlated codewords, this involves new elements.

Proof: Let pQU2U3XY ∈ Df (τ), R ∈ α3-1
f (pQU2U3XY ) and η̃ > 0. Let us assume U2 = U3 = Fθ is the

finite field of size θ. For each n ∈ N sufficiently large, we prove existence of a 3−IC code (n,M , e, d) for which
log Mk

n ≥ Rk − η̃, τk(ek) ≤ τk + η̃ for k ∈ [3] and ξ(e, d) ≤ η̃.

Taking a cue from the above coding technique, we begin with an alternative characterization of α3-1
f (pQU2U3XY )

in terms of the parameters of the code.

Definition 8: Consider pQU2U3XY ∈ Df (τ) and let Fθ : = U2 = U3. Let α̃3-1
f (pQU2U3XY ) be defined as the set

of rate triples (R1, R2, R3) ∈ [0,∞)3 for which ∪
δ>0
S(R, pQU2U3XY , δ) is non-empty, where S(R, pQU2U3XY , δ)

is defined as the collection of vectors (S2, T2,K2, L2, S3, T3,K3, L3) ∈ [0,∞)8 that satisfy

Rj = Tj + Lj , Kj > δ, (Sj − Tj) > log θ −H(Uj |Q) + δ,

(Sj − Tj) +Kj > log θ +H(Xj |Q)−H(Uj , Xj |Q) + δ

Tj > δ, Lj > δ, Kj + Lj < I(Xj ;Yj , Uj |Q)− δ, Sj < log θ −H(Uj |Xj , Yj , Q)− δ,

Sj +Kj + Lj < log θ +H(Xj |Q)−H(Uj , Xj |Yj , Q)− δ, R1 < I(X1;Y1, U2 ⊕ U3|Q)− δ

R1 + Sj < log θ +H(X1|Q)−H(X1, U2 ⊕ U3|Y1, Q)− δ

for j = 2, 3.

Lemma 2: α̃3-1
f (pQU2U3XY ) = α3-1

f (pQU2U3XY ).
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Proof: The proof follows by substituting Rj = Tj + Lj in the bounds characterizing S(R, pQU2U3XY ) and

eliminating Sj , Tj ,Kj , Lj : j = 2, 3 via the technique of Fourier Motzkin. The resulting characterization will be

that of α3-1
f (pQU2U3XY ). The presence of strict inequalities in the bounds characterizing α3-1

f (pQU2U3XY ) and

S(R, pQU2U3XY , δ) enables one to prove ∪
δ>0
S(R, pQU2U3XY , δ) is non-empty for every R ∈ α3-1

f (pQU2U3XY ).

Lemma 7 provides us with δ > 0 and parameters (Sj , Tj ,Kj , Lj , : j = 2, 3) ∈ S(R, pQU2U3X,Y , δ) of the code

whose existence we seek to prove. Define η = 1
2d

min{δ, η̃}, where d ∈ N will be specified in due course. Let qn ∈

Tη(Q) denote the time sharing sequence. User 1’s code contains exp{nR1} codewords (xn1 (m1) ∈ Xn1 : m1 ∈M1),

where M1 : = [exp{nR1}]. For j ∈ {2, 3}, user j’th cloud center codebook λj is the PCC (n, sj , tj , gj , b
n
j , ij)

built over Unj = Fnθ where sj : =
nSj
log θ and tj : =

nTj
log θ . We refer the reader to the coding technique described

prior to the proof for the definitions of unj (asj ) and cj1(mj1). The PCCs overlap, and without loss of generality,

we assume s2 ≤ s3 and therefore gT3 = [gT2 gT3/2].

We now specify encoding rules. Encoder 1 feeds codeword xn1 (M1) indexed by the message as input. For j = 2, 3,

encoder j populates

Lj(Mj) : = {(unj (asj ), xnj (MjX , bjX)) ∈ T2η(Uj , Xj |qn) : (asj , bjX) ∈ cj1(Mj1)× cjX}.

If Lj(Mj) is non-empty, one of these pairs is chosen. Otherwise, one pair from λj × Cj is chosen. Let (Unj (Asj ),

Xn
j (MjX , BjX)) denote the chosen pair. Xn

j (MjX , BjX) is fed as input on the channel.

Decoder 1 constructs the sum λ2 ⊕ λ3 : =
{
un2 ⊕ un3 : unj ∈ λj , j = 2, 3

}
of the cloud center codebooks. Let

un⊕(as3) : = as3g3⊕ bn2 ⊕ bn3 denote a generic codeword in λ2⊕λ3. Note that λ2⊕λ3 =
{
un⊕(as3) : as3 ∈ Us33

}
.12

Having received Y n1 , it looks for all potential message m̂1 for which there exists a as3 ∈ Us33 such that (qn, un⊕(as3),

xn1 (m̂1), Y n1 ) ∈ T2η1(Q,U2 ⊕ U3, X1, Y1)13. If it finds exactly one such message m̂1, it declares this as decoded

message of user 1. Otherwise, it declares an error.

For j ∈ {2, 3}, decoder j identifies all (m̂j1, m̂jX) for which there exists (asj , bjX) ∈ cj1(m̂j1)× cjX such that

(qn, unj (asj ), xnj (m̂jX , bjX), Y nj ) ∈ T2η1(Q,Uj , Xj , Yj), where Y nj is the received vector. If there is exactly one

such pair (m̂j1, m̂jX), this is declared as message of user j . Otherwise an error is signaled.

The above encoding and decoding rules map every quintuple of codes (C1, λ2, λ3, C2, C3) into a corresponding

3−IC code (n,M, e, d) of rate log |M1|
n = R1,

log |Mj |
n =

tj
n log θ + Lj = Tj + Lj = Rj : j ∈ {2, 3}, thus

characterizing an ensemble of 3−IC codes, one for each n ∈ N. We average error probability over this ensemble

of 3−IC codes by letting (i) the codewords of C1 : = (Xn
1 (m1) : m1 ∈ M1), generator matrices G2, G3/2

14,

bias vectors Bn1 , B
n
2 , bin indices (Ij(a

sj ) : asj ∈ Usjj ) : j = 2, 3 and codewords of Cj = (Xn
j (mjX , bjX) :

(mjX , bjX) ∈MjX×cjX) : j = 2, 3 be mutually independent, (ii) the codewords of Cj : j = 1, 2, 3 are identically

distributed according to
∏n
t=1 pXj |Q(·|qt), (iii) generator matrices Gj1 , Gj2/j1 , bias vectors Bn1 , B

n
2 , bin indices

12Here we have used the assumption s2 ≤ s3. In general, if sj1 ≤ sj2 , we have λ2 ⊕ λ3 =
{
un⊕(a

sj2 ) : asj2 ∈ U
sj2
j2

}
, where

un⊕(a
sj2 ) : = asj2 gj2 ⊕ bn2 ⊕ bn3 denotes a generic codeword.

13The choice for η1 is indicated at the end of the proof.
14Recall, that we have assumed s2 ≤ s3.
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(Ij(a
sj ) : asj ∈ Usjj ) : j = 2, 3 be uniformly distributed over their respective range spaces. We denote the random

partitioned coset code (n, sj , tj , Gj , B
n
j , Ij) of user j as Λj and let (i) Unj (asj ) : = asjGj ⊕Bnj denote a generic

random codeword in Λj , (ii) Un⊕(as3) : = as3G3 ⊕ Bn2 ⊕ Bn3 denote a generic codeword in Λ2 ⊕ Λ3, and (iii)

Cj1(Mj1) = {asj ∈ Usjj : Ij(a
sj ) = Mj1} denote the random collection of indices corresponding to message Mj1.

We now proceed towards deriving an upper bound on the probability of error. Towards that end, we begin with

a characterization of error events. Let

ε11 : = {(qn, Xn
1 (M1)) /∈ T2η(Q,X1)}

ε1j : =
⋂

(asj ,bjX)∈
Cj1(Mj1)×cjX

{
(qn, Unj (asj ), Xn

j (MjX , bjX)) /∈ T2η(Q,Uj , Xj)
}
, for j = 2, 3

ε2 : = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X)) /∈ Tη1(Q,U2, U3, X)} (8)

ε3 : = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X), Y n) /∈ T2η1(Q,X1, U2, U3, X, Y )}(9)

ε41 : =
⋃

m̂1 6=M1

⋃
as3∈Us33

{
(qn, Un⊕(as3), Xn

1 (m̂1), Y n1 ) ∈ T2η1(Q,U2 ⊕ U3, X1, Y1)
}

ε4j : =
⋃

m̂j 6=Mj

⋃
asj∈

Cj1(m̂j1)

⋃
bjX∈cjX

{
(qn, Unj (asj ), Xn

j (m̂jX , bjX), Y nj ) ∈ T2η1(Q,Uj , Vj , Yj)
}

for j = 2, 3.

Note that ε : =
3⋃
j=1

(ε1j ∪ ε2 ∪ ε3 ∪ ε4j) contains the error event. We derive an upper bound on the probability

of this event by partitioning it appropriately. The following events will aid us identify such a partition. Define

εl : = εl2 ∪ εl3 , where

εlj : = {φj(qn,Mj) < Lj(n)} , and φj(qn,Mj) : =
∑

(asj ,bjX)∈
Cj1(Mj1)×cjX

1{(qn,Unj (asj ),Xnj (MjX ,bjX))∈T2η(Q,Uj ,Xj)}.

Lj(n) is half of the expected number of jointly typical pairs in the indexed pair of bins.15 For sufficiently large

n, we prove Lj(n) > 2. For such an n, ε1j ⊆ εlj : j = 2, 3. Since, we can choose n sufficiently large, we

will henceforth assume ε1j ⊆ εlj : j = 2, 3. It therefore suffices to derive upper bounds on P (ε11), P (εlj ) : j =

2, 3, P (ε̃c1 ∩ ε2), P ((ε̃1 ∪ ε2)c ∩ ε3), P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε4j) : j = 1, 2, 3 where ε̃1 : = ε11 ∪ εl = ε11 ∪ εl2 ∪ εl3 .

Upper bound on P (ε11) :– By conditional frequency typicality, for sufficiently large n, P (ε11) ≤ η
32 .

Upper bound on P (εlj ) :– Using a second moment method similar to that employed in [15, Appendix A], we

derive an upper bound on P (εlj ) in appendix A. In particular, we prove

P (ε1j) ≤ 12 exp {−n (δ − 32η)} (10)

for sufficiently large n. In deriving the above upper bound, we employed, among others, the bounds

Kj > δ > 0, (Sj − Tj)− [log θ −H(Uj |Q)] > δ > 0

(Sj − Tj) +Kj − [log θ +H(Xj |Q)−H(Uj , Xj |Q)] > δ > 0.

15Since the precise value of Lj(n) is necessary only in the derivation of the upper bound, it is provided in appendix A.
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Upper bounds on P (ε̃c1 ∩ ε2), P ((ε̃1 ∪ ε2)c ∩ ε3) :– These events are related to the following two events. (i)

The codewords chosen by the distributed encoders are not jointly typical, and (ii) the channel produces a triple of

outputs that is not jointly typical with the chosen and input codewords. In deriving upper bounds on P (ε̃c1 ∩ ε2),

P ((ε̃1 ∪ ε2)c ∩ ε3), we employ (i) conditional mutual independence of the triplet X1, (Uj , Xj) : j = 2, 3 given Q

and (ii) the Markov chain (Uj : j = 2, 3)−X − Y . For a technique based on unstructured and independent codes,

the analysis of this event is quite standard. However, since our coding technique relies on codewords chosen from

statistically correlated codebooks, we present the steps in deriving an upper bound in appendix B. In particular, we

prove that for sufficiently large n,

P (ε̃c1 ∩ ε2) + P ((ε̃1 ∪ ε2)c ∩ ε3) ≤ 2 exp{−n(n2µη2
1 − 32η)}+

η

32
. (11)

Upper bound on P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) :– In appendix C, we prove

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp {−n [δ − 28η1 − 12η]} (12)

for sufficiently large n. In deriving (12), we employed, among others, the bounds

log θ +H(X1|Q)−H(X1, U2 ⊕ U3|Y1, Q)− (R1 + max{S2, S3}) > δ > 0, I(X1;Y1, U2 ⊕ U3|Q)−R1 > δ > 0.

Upper bound on P ((ε̃1 ∪ ε3)c ∩ ε4j) :– In appendix D, we prove

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε4j) ≤ 10 exp {−n (δ − (9η + 16η1))} (13)

for sufficiently large n. In deriving (13), we employed, among others, the bounds

(log θ −H(Uj |Xj , Yj , Q))− Sj > δ > 0, (log θ +H(Xj |Q)−H(Uj , Xj |Yj , Q))− (Sj +Kj) > δ > 0,

I(X1;Y1, U2 ⊕ U3|Q)−R1 > δ > 0, (I(Xj ;Uj , Yj |Q))− (Kj + Lj) > δ > 0,

(log θ +H(Xj |Q)−H(Xj , Uj |Yj , Q))− (Kj + Lj + Sj) > δ > 0.

We now collect the derived upper bounds. From (10), (11), (12) and (13), we have

P (
3
∪
j=1

(ε1j ∪ ε3j ∪ ε4j)) ≤
η

32
+ 24 exp {−n (δ − 32η)}+ 2 exp{−n(n2µη2

1 − 32η)}+
η

32

+4 exp {−n [δ − 28η1 − 12η]}+ 20 exp {−n (δ − (9η + 16η1))}

The reader may recall that we need η = 1
2d

min{η̃, δ} and that η1 ≥ 4η for the above bounds to hold. The reader

may verify that, by choosing d sufficiently large, one can choose η and η1 ≥ 4η such that the upper bound above

decays exponentially. This completes the derivation of an upper bound on the probability of error.

We only need to argue that the chosen input codewords satisfy the cost constraint. For sufficiently large n,

we have proved that the chosen input codewords are jointly typical with respect to pQU2U3XY , a distribution that

satisfies E {κj(Xj)} ≤ τj . Using standard typicality arguments and finiteness of max {κk(xk) : xk ∈ Xk : k ∈ [3]},

it is straight forward to show that the average cost of the codeword input by encoder j is close to τj per symbol.
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Fig. 2. A binary 3−to−1 IC described in example 3.

The coding technique proposed in the proof of theorem 5 is indeed a generalization of that proposed for example

1, and moreover capacity achieving for the same. We formalize this through the following corollary.

Corollary 2: For the 3−to−1 IC in example 1, if τ ∗ δ1 < min{δ2, δ3}, then α3−1
f (τ, 1

2 ,
1
2 ) = C(τ).

It can be verified that β(τ, 1
2 ,

1
2 , δ) = α3−1

f (pQU2U3XY ) where P (Uj = Xj = 0) = P (Uj = Xj = 1) = 1
2 ,

P (X1 = 1) = τ and Q = φ, the empty set, where β(τ , δ) is given in (3).

In the sequel, we illustrate through an example the central claim of this article that utility of codes endowed with

algebraic structure, and in particular coset codes, are not restricted to particular symmetric and additive problems.

Furthermore, this example establishes the need (i) to achieve rates corresponding to non-uniform distributions which

is accomplished via the technique of binning, (ii) to build coset codes over larger fields, and (iii) to analyze decoding

of sums of transmitted codewords over arbitrary channels which hinges on typical set decoding.

Example 3: Consider a binary 3−to−1 IC illustrated in figure 2 with Xj = Yj = {0, 1} : j ∈ [3] with channel

transition probabilities WY |X(y|x) = BSCδ1(y1|x1 ⊕ (x2 ∨ x3))BSCδ2(y2|x2)BSCδ3(y3|x3), where ∨ denotes

logical OR.16 Users’ inputs are constrained with respect to a Hamming cost function, i.e., κj(x) = x for x ∈ {0, 1}.

Assume user jth input is constrained to an average cost per symbol of τj ∈ (0, 1
2 ).

We begin by stating the conditions for sub-optimality of USB−technique.

Lemma 3: Consider example 3 with δ : = δ2 = δ3 ∈ (0, 1
2 ) and τ : = τ2 = τ3 ∈ (0, 1

2 ). Let β : = δ1 ∗ (2τ −τ2).

The rate triple (hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) /∈ αu(τ) if

hb(τ1 ∗ δ1)− hb(δ1) + 2(hb(τ ∗ δ)− hb(δ)) > hb(τ1(1− β) + (1− τ1)β)− hb(δ1) (14)

In particular, if (14) is true, αu(τ) ( β(τ , δ), where β(τ , δ) is defined in (3).

Please refer to appendix E for a proof. We now derive conditions under which α3−1
f (τ1, τ, τ) = C(τ1, τ, τ). Clearly,

C(τ1, τ, τ) ⊆ β(τ , δ) where τ = (τ1, τ, τ) and δ = (δ1, δ, δ). It therefore suffices to derive conditions under which

(hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) ∈ α3-1
f (τ1, τ, τ).

16BSC(·|·) has been defined in example 1.
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Lemma 4: Consider example 3 with δ : = δ2 = δ3 ∈ (0, 1
2 ) and τ : = τ2 = τ3 ∈ (0, 1

2 ). Let β : = δ1 ∗ (2τ −τ2).

The rate triple (hb(τ1 ∗ δ1) − hb(δ1), hb(τ ∗ δ) − hb(δ), hb(τ ∗ δ) − hb(δ)) ∈ α3-1
f (τ1, τ, τ) i.e., achievable using

coset codes, if,

hb(τ ∗ δ)− hb(δ) ≤ θ, (15)

where θ = hb(τ)−hb((1−τ)2)−(2τ−τ2)hb(
τ2

2τ−τ2 )−hb(τ1∗δ1)+hb(τ1∗β). We therefore have α3−1
f (τ1, τ, τ) =

C(τ1, τ, τ) if (15) holds.

Proof: The proof only involves identifying the appropriate test channel pQU2U3XY ∈ D3−1
f (τ1, τ, τ). Let Q = φ

be empty, U2 = U3 = {0, 1, 2}. Let pX1
(1) = 1 − pX1

(0) = τ1. Let pUjXj (0, 0) = 1 − pUjXj (1, 1) = 1 − τ and

therefore P (Uj = 2) = P (Xj 6= Uj) = 0 for j = 2, 3. It is easily verified that pQU2U3XY ∈ D3−1
f (τ1, τ, τ), i.e, in

particular respects the cost constraints.

The choice of this test channel, particularly the ternary field, is motivated by H(X2 ∨X3|U2 ⊕3 U3) = 0. The

decoder 1 can reconstruct the interfering pattern after having decoded the ternary sum of the codewords. It maybe

verified that for this test channel pQU2U3XY , α3-1
f (pQU2U3XY ) is defined as the set of rate triples (R1, R2, R3) ∈

[0,∞)3 that satisfy

R1 < min {0, θ}+ hb(τ1 ∗ δ1)− hb(δ1), Rj < hb(τ ∗ δ)− hb(δ) : j = 2, 3

R1 +Rj < hb(τ1 ∗ δ1)− hb(δ1) + θ, (16)

where θ = hb(τ)−hb((1− τ)2)− (2τ − τ2)hb(
τ2

2τ−τ2 )−hb(τ1 ∗δ1)+hb(τ1(1−β)+(1− τ1)β) is as defined in the

statement of the lemma. Clearly, (hb(τ1 ∗ δ1)−hb(δ1), hb(τ ∗ δ)−hb(δ), hb(τ ∗ δ)−hb(δ)) ∈ cocl(α3-1
f (pU2U3XY ))

if (15) is satisfied.

Conditions (14) and (15) are not mutually exclusive. It maybe verified that the choice τ1 = 1
90 , τ = 0.15,

δ1 = 0.01 and δ = 0.067 satisfies both conditions thereby establishing the utility of structured codes for examples

well beyond particular additive ones.

A skeptical reader will wonder whether the utility of PCC hinges on the additive multiple access channel (MAC)

Y1 = X1 ⊕ (X2 ∨X3)⊕N1. The following example provides conclusive evidence that this is indeed not the case.

Example 4: Consider a binary 3−to−1 IC illustrated in figure 3 with Xj = Yj = {0, 1} : j ∈ [3] with channel

transition probabilities WY |X(y|x) = MAC(y1|x1, x2 ∨ x3)BSCδ(y2|x2)BSCδ(y3|x3), where MAC(0|0, 0) =

0.989,MAC(0|0, 1) = 0.01,MAC(0|1, 0) = 0.02,MAC(0|1, 1) = 0.993 and MAC(0|b, c) + MAC(1|b, c) = 1

for each (b, c) ∈ {0, 1}2. Users’ inputs are constrained with respect to a Hamming cost function, i.e., κj(x) = x for

x ∈ {0, 1}. Assume user jth input is constrained to an average cost per symbol of τj ∈ (0, 1
2 ), where τ : = τ2 = τ3.
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Fig. 3. A binary 3−to−1 IC described in example 4.

Our study of example 4 closely mimics that of example 3. In particular, we derive conditions under which C∗ :

= (C1, hb(τ ∗ δ))− hb(δ), hb(τ ∗ δ))− hb(δ)) ∈ α3−1
f (τ) and C∗ /∈ αu(τ), where τ : = (τ1, τ, τ),

C1 : = sup
pXY ∈D(τ)

I(X1;Y1|X2 ∨X3), (17)

D(τ) : =

 pXY is a pmf on X × Y such that (i) pY |X = WY |X is the channel transition probabilities

of example 4, (ii) pX = pX1
pX2

pX2
, pXj (1) = τ for j = 2, 3 and (iii) pX1

(1) ≤ τ1

 .(18)

By strict concavity of I(X1;Y1|X2 ∨X3) in pX1
, and the compactness of D(τ), there exists a unique p∗XY with

respect to which I(X1;Y1|X2 ∨X3) = C1. We are now set to state the conditions under which C∗ /∈ αu(τ).

Lemma 5: Consider example 4 and let C∗, C1,D(τ), p∗XY be defined as above. If

C1 + 2(hb(τ ∗ δ)− hb(δ)) = I(X1;Y1|X2 ∨X3) + 2(hb(τ ∗ δ)− hb(δ)) > I(X;Y1), (19)

where the mutual information terms I(X1;Y1|X2 ∨X3), I(X;Y1) are evaluated with respect to p∗XY , then C∗ /∈

αu(τ).

The reader will recognize that above lemma is the counterpart of lemma 3 for example 4. We provide a (sketch of

the) proof in appendix F.

Lemma 6: Consider example 4 C1, p
∗
XY be as defined above. If hb(τ2)+(1−τ2)hb(

(1−τ)2

1−τ2 )+H(Y1|X2∨X3)−

H(Y1) ≤ min{H(X2|Y2)H(X3|Y3)}, where the entropies are evaluated with respect to p∗XY , then (C1, hb(δ ∗ τ)−

hb(δ), hb(δ ∗ τ)− hb(δ)) ∈ α3−1
f (τ).

Proof: As in proof of lemma 4, we identify an appropriate test channel pQU2U3XY ∈ Df (τ) for which

(C1, hb(δ ∗ τ) − hb(δ), hb(δ ∗ τ) − hb(δ)) ∈ α3−1
f (pQU2U3XY ). Let Q = φ be empty, U2 = U3 = {0, 1, 2}. Let

pX = p∗X . Let pUjXj (0, 0) = 1− pUjXj (1, 1) = 1− τ and therefore P (Uj = 2) = P (Xj 6= Uj) = 0 for j = 2, 3.

It is easily verified that pQU2U3XY ∈ D3−1
f (τ), i.e, in particular respects the cost constraints.

It maybe verified that the hypothesis hb(τ2) + (1 − τ2)hb(
(1−τ)2

1−τ2 ) + H(Y1|X2 ∨ X3) − H(Y1) = H(U2 ⊕3

U3) + H(Y1|X2 ∨X3) −H(Y1) = H(U2 ⊕3 U3) + H(Y1|U2 ⊕3 U3) −H(Y1) = H(U2 ⊕3 U3|Y1). we therefore

have H(U2 ⊕3 U3|Y1) ≤ min{H(X2|Y2)H(X3|Y3)}. This implies (i) H(Uj) ≥ H(U2 ⊕ U3|Y1) and (ii) H(Uj)−
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H(U2 ⊕ U3|Y1) ≥ H(Uj) −H(Uj |Yj) = I(Uj ;Yj) = I(Xj ;Yj) = hb. Employing these in bounds characterizing

α3−1
f (pQU2U3XY ) and the marginal pXY = p∗XY , it can be verified that (C1, hb(δ ∗ τ)−hb(δ), hb(δ ∗ τ)−hb(δ)) ∈

α3−1
f (pQU2U3XY ).

For example 4, with τ1 = 0.01, τ = τ2 = τ3 = 0.1525, δ = 0.067, the conditions stated in lemma 5 and 6 hold

simultaneously. For this channel, p∗X1
(1) = 0.99,

C1 + 2(hb(τ ∗ δ)− hb(δ))− I(X;Y1) = 0.0048,

and

min{H(X2|Y2)H(X3|Y3)} − [hb(τ
2) + (1− τ2)hb(

(1− τ)2

1− τ2
) +H(Y1|X2 ∨X3)−H(Y1)] = 0.0031.

A note on our choice of the MAC X1, X2 ∨X3 − Y1 is in order. The reader will recognize the MAC being ‘quite

close’ to the additive scenario Y1 = X1 ⊕ (X2 ∨ X3) ⊕ N1 studied in example 3. In order for coset codes to

outperform unstructured codes, we do not need the MAC to be so ‘close’ to the additive MAC. The need for the

MAC to be ‘so close’ is a consequence of our desire to provide an analytical proof for strict sub-optimality of

unstructured codes. Note that since we (i) do not resort to outer bounds, (ii) wish to provide analytical upper bounds

to the rates achievable using unstructured codes, and (iii) cannot compute any of the associated rates in a reasonable

time, we demand the MAC to be such that coset codes achieve the maximum possible rate for user 1, with users 2

and 3 constrained to achieve their PTP capacities,17 and unstructured codes to be strictly sub-optimal. This justifies

the ‘closeness’ of the considered MAC to an additive MAC. Finally, the above documented findings indicate that

if structured codes yield gains for particular additive scenarios, then one can reason out the presence of such gains

for ‘close’ non-additive scenarios simply by appealing to the continuity of rate regions in the channel parameters.

B. Step II: PCC rate region for a general discrete 3−IC using codes built over finite fields

In this section, we employ PCC to manage interference seen by every receiver. In the sequel, we describe the

coding technique and provide a characterization of the corresponding achievable rate region. In the interest of

brevity, we omit the proof of achievability. All the non-trivial and new elements of such a proof have been detailed

in the proof of theorem 5.

User j splits it’s message Mj of rate Rj = Lj + Tji + Tjk into three parts (MU
ji ,M

U
jk,M

X
j ), where i, j, k are

distinct indices in {1, 2, 3}. Let Uji = Fθi ,Ujk = Fθk be finite fields. Let λji ⊆ Unji denote an (n, sji, tji) PCC and

λjk ⊆ Unjk denote an (n, sjk, tjk) PCC. If we let Sji : =
sji
n log θi, Tji : =

tji
n log θi and Sjk : =

sjk
n log θk, Tjk :

=
tjk
n log θk then recall that λji, λjk are coset codes of rates Sji, Sjk partitioned into exp{nTji}, exp{nTjk} bins

respectively. Observe that cosets λji and λki are built over the same finite field Fθi . To enable contain the range

17Note that we are demanding the channel to permit user 1 communicate at a rate as though he knew all of the non-linear interference.

Moreover, we are employing linear codes to decode the non-linear interference efficiently.
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the sum of these cosets, the larger of λji, λki contains the other. A codebook Cj of rate Kj +Lj is built over Xj .

Codewords of Cj are partitioned into exp {nLj} bins.

MU
ji ,M

U
jk and MX

j index bins in λji, λjk and Cj respectively. Encoder looks for a triplet of codewords from the

indexed bins that are jointly typical with respect to a pmf pUjiUjkXj defined on Uji×Ujk×Xj . The corresponding

codeword chosen from Cj is input on the channel.

Decoder j receives Y nj and looks for all triples (unji, u
n
jk, x

n
j ) of codewords in λji × λjk × Cj for which there

exists a un⊕ ∈ (λij ⊕λkj) such that (un⊕, u
n
ji, u

n
jk, x

n
j , Y

n
j ) are jointly typical with respect to pUij⊕Ukj ,Uji,Ujk,Xj ,Yj .

If it finds all such triples in a unique triple of bins, the corresponding triple of bin indices is declared as decoded

message of user j. Otherwise, an error is declared.

In order to characterize an achievable rate region, we average the performance of the above coding technique via

random coding. The distribution induced on the ensemble of codebooks is a simple generalization of that employed

in proof of theorem 5. In particular, the codewords of Cj are chosen independently according to
n∏
t=1

pXj |Q(·|qt),

where qn is an appropriately chosen time sharing sequence. The three pairs (Λ12,Λ32), (Λ21,Λ31), (Λ13,Λ23) of

random PCC are mutually independent. Within each such pair, (i) the generator matrix of the smaller PCC is obtained

by choosing each of it’s rows uniformly and independently, and (ii) the generator matrix of the larger is obtained

by appending the generator matrix of the smaller with an appropriately chosen number mutually independent and

uniformly distributed rows. All the vectors specifying the coset shifts are chosen independently and uniformly.

Moreover, partitioning of all codes into their bins is effected uniformly and independently.18 Deriving an upper

bound on the average probability of error of this random collection of codebooks coupled with the above coding

technique yields the following rate region.

Definition 9: Let Df (τ) denote the collection of probability mass functions (pQUXY ) defined on Q×U×X ×Y ,

where

1) Q is an arbitrary finite set,

2) Uij = Fθj 19 for each 1 ≤ i, j ≤ 3, and U : = U12 × U13 × U21 × U23 × U31 × U32,

3) U : = (U12, U13, U21, U23, U31, U32),

such that (i) the three quadruples (U12, U13, X1), (U23, U21, X2) and (U31, U32, X3) are conditionally mutually

independent given Q, (ii) pY |XUQ = pY |X = WY |X , (iii) E {κj(Xj)} ≤ τj for j = 1, 2, 3.

For pQUXY ∈ Df (τ), let αf (pQUXY ) be defined as the set of rate triples (R1, R2, R3) ∈ [0,∞)3 for which

there exists nonnegative numbers Sij : ij ∈ {12, 13, 21, 23, 31, 32} , Tjk : jk ∈ {12, 13, 21, 23, 31, 32} ,Kj : j ∈

{1, 2, 3} , Lj : j ∈ {1, 2, 3} that satisfy R1 = T12 + T13 + L1, R2 = T21 + T23 + L2, R3 = T31 + T32 + L3 and

SAj − TAj +Kj >
∑
aj∈Aj

log |Uaj |+H(Xj |Q)−H(UAj , Xj |Q), (20)

SAj − TAj >
∑
aj∈Aj

log |Uaj | −H(UAj |Q), (21)

18The reader is encouraged to confirm that the distribution induced herein is a simple generalization of that employed in proof of theorem 5.
19Recall Fθj is the finite field of cardinality θj .
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SAj <
∑
a∈Aj

log |Ua| −H(UAj |Q,UAcj , Uij ⊕ Ukj , Xj , Yj)

SAj + Sij <
∑
a∈Aj

log |Ua|+ log θj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Xj , Yj)

SAj + Skj <
∑
a∈Aj

log |Ua|+ log θj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Xj , Yj)

SAj +Kj + Lj <
∑
a∈Aj

log |Ua|+H(Xj)−H(UAj , Xj |Q,UAcj , Uij ⊕ Ukj , Yj)

SAj +Kj + Lj + Sij <
∑
a∈Aj

log |Ua|+ log θj +H(Xj)−H(UAj , Xj , Uij ⊕ Ukj |Q,UAcj , Yj)

SAj +Kj + Lj + Skj <
∑
a∈Aj

log |Ua|+ log θj +H(Xj)−H(UAj , Xj , Uij ⊕ Ukj |Q,UAcj , Yj),

(22)

for every Aj ⊆ {ji, jk} with distinct indices i, j, k in {1, 2, 3}, where SAj : =
∑
aj∈Aj Saj , UAj = (Uaj : aj ∈

Aj). Let

αf (τ) = cocl

 ⋃
pQUXY ∈
Df (τ)

αf (pQUXY )

 .

Theorem 6: For 3-IC (X ,Y,WY |X , κ), αf (τ) is achievable, i.e., αf (τ) ⊆ C(τ).

Since all the non-trivial elements of this proof are captured in the proof of theorem 5, and is only more involved

in notation, we omit the same.

The above coding technique presents an approach to simultaneously manage interference at all of the receivers.

It is natural to question whether the use of structured codes to manage interference comes at a cost of respective

individual communication. We now provide a simple generalization of example 1 that requires managing interference

at two receivers. In contrast to [13], wherein the benefit of interference alignment can be exploited at all receivers,

channels equipped with finite alphabets present a fundamental trade-off in managing interference and enabling

individual respective communication.

Example 5: Consider a binary additive 3−to−1 IC illustrated in figure 4 with Xj = Yj = {0, 1} : j ∈ [3] with

channel transition probabilities WY |X(y|x) = BSCδ1(y1|x1 ⊕ x2 ⊕ x3)BSCδ2(y2|x2 ⊕ x3)BSCδ3(y3|x3). Inputs

of users 2 and 3 are not costed, i.e., κj(0) = κj(1) = 0 for j = 2, 3. User 1’s input is constrained with respect to

a Hamming cost function, i.e., κ1(x) = x for x ∈ {0, 1} to an average cost of τ ∈ (0, 1
2 ) per symbol. Let C(τ)

denote the capacity region of this 3−to−1 IC.

In order to illustrate the trade-off, let us consider the case δ : = δ2 = δ3 is arbitrarily close to, but greater than

τ ∗ δ1. For example, one can choose δ1 = 0.01, τ = 1
8 and δ = 0.1326. If receiver 1 desires communication at

hb(δ1 ∗ τ)− hb(δ1), it needs to decode X2⊕X3. To satisfy user 1’s desire, users 2 and 3 have two options. Either

employ codes of rates R2 and R3 such that R2 + R3 < 1 − hb(δ1 ∗ τ), or employ cosets of the same code with

a hope to boost individual rates. In the latter case, user 2 is hampered by the interference caused to it by user 3.

While we do not provide a detailed analysis, we encourage the reader to contrast this to the Gaussian IC studied in
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X3

Y1
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Fig. 4. A binary additive 3−to−1 IC described in example 5.

WY1Y2Y3|X1X2X3

W1 V12 V13 U12 U13     X1

W2 V21 V23 U21 U23     X2

W3 V31 V32 U31 U32     X3

Y1   W1 W2 W3 V21 V31 U21U31 V12 V13 U12 U13 X1

Y2   W1 W2 W3 V12 V32 U12U32 V21 V23 U21 U23 X2

Y3   W1 W2 W3 V13 V23 U13U23 V31 V32 U31 U32 X3

Fig. 5. Collection of random variables associated with coding technique that incorporates unstructured and partitioned coset codes

[13], wherein the richness of the real field enables each receiver to exploit the benefits of alignment. We conjecture

an inherent trade-off in the ability to manage interference over finite valued channels using coset codes, and enable

individual respective communication.

C. Step III: Enlarging the PCC rate region using unstructured codes

Let us describe a coding technique that unifies both unstructured and partitioned coset codes. We follow the

approach of Ahlswede and Han [22, Section VI]. Refer to figure 5 for an illustration of the random variables

involved. Each user splits it’s message into 5 parts. The W−random variable is decoded by all users. In addition,

each user decodes a univariate component of the message of the other users. This is represented by the random

variable V . Furthermore, it decodes a bivariate interference component denoted using U . Lastly, each decoder

decodes all parts of its intended message. As was done by Han and Kobayashi [7], this achievable rate region can

be enlarged through the use of a time sharing random variable. Clearly, a description of the above rate region

is involved. In the sequel, we illustrate the key elements via a simplified achievable rate region. In particular, we

employ PCC and unstructured codes to manage interference seen by only one receiver, say receiver 1 and state the

corresponding achievable rate region. We begin with a description of the same.

Definition 10: Consider a 3−IC (X ,Y,WY |X , κ). Let Duf (τ) denote the collection of distributions pQU2V2U3V3XY

defined over Q×U2 ×V2 ×U3 ×V3 ×X ×Y , where U2 = U3 is a finite field and V2 and V3 are finite sets, such

that (i) pY |XU2V2U3V3
= WY |X , (ii) X1, (U2, V2, X2) and (U3, V3, X3) are conditionally independent given Q, (iii)
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E{κj(Xj)} ≤ τj for j = 1, 2, 3. For pQU2V2U3V3XY ∈ Duf (τ), let α3-1
uf (pQU2V2U3V3XY ) be defined as the set of

rate triples (R1, R2, R3) ∈ [0,∞)3 for which Suf (pQU2V2U3V3XY , R) is non-empty, where Suf (pQU2V2U3V3XY , R)

is defined as the vectors (Sj1, Tj1, Sj2, Tj2, Lj : j = 2, 3) ∈ [0,∞)10 that satisfy

Sj2 − Tj2 > log θ −H(Uj |Vj , Q), Rj = Tj1 + Tj2 + Lj : j = 2, 3 (23)

Lj+Sj2< log θ−H(Uj |Vj , Q)+I(Uj , Xj ;Yj |Vj , Q), Tj1+Lj<I(Uj ;Vj |Q)+I(Vj , Xj ;Yj |Uj , Q) :j = 2, 3, (24)

Lj < I(Xj ;Yj |Uj , Vj , Q), Tj1 + Sj2 + Lj < log θ −H(Uj |Vj , Q) + I(Uj , Vj , Xj ;Yj |Q) : j = 2, 3 (25)

R1<I(X1;Y1, V2, V3, U2 ⊕ U3|Q), R1+Sj2< log θ −H(U2 ⊕ U3|Q)+I(X1, U2 ⊕ U3;V2, V3, Y1|Q) :j=2, 3(26)

R1 + Tj1 < I(X1, Vj ;Vj , U2 ⊕ U3, Y1|Q) : j = 2, 3, T21 + T31 +R1 < I(V2, V3, X1;U2 ⊕ U3, Y1|Q)

R1 + Tj1 + Sk2 < log θ −H(U2 ⊕ U3|Vj , Q) + I(X1, Vj , U2 ⊕ U3;Vj , Y1|Q) : j = 2, 3 and k = 2, 3 (27)

T21 + T31 + Sj2 +R1 < log θ −H(U2 ⊕ U3|X1, V2, V3, Q) + I(X1, V2, V3, U2 ⊕ U3;Y1|Q) (28)

where θ = |U2| = |U3|. Let

α3-1
uf (τ) = cocl

 ⋃
pQU2V2U3V3XY

∈
Duf (τ)

α3-1
uf (pQU2V2U3V3XY )

 .

Theorem 7: For 3−IC (X ,Y,WY |X , κ), α3-1
uf (τ) is achievable, i.e., α3-1

uf (τ) ⊆ C(τ).

We provide a brief sketch of achievability. For simplicity, user 1 builds an unstructured independent code of rate

R1 over X1 by choosing codewords independently and identically according to pnX1
. For j = 2, 3, user j builds

three random codebooks - one each over Vj ,Uj ,Xj respectively. An unstructured and independent codebook of

rate Tj1 is built over Vj by choosing codewords independently and identically according to pnVj . A random PCC

(n,
nSj2
log θ ,

nTj2
log θ , Gj , B

n
j , Ij), denoted Λj , is built over Uj . As before the PCC’s of users 2 and 3 overlap, i.e., if

j1 ≤ j2, then gTj2 = [gTj1 g
T
j2/j1

]. Consider a codeword in Vj−codebook and a bin in the PCC. For every such pair,

a random unstructured independent codebook is constructed over Xj .

User jth message is split into three parts - univariate part, bivariate part and private part. The univariate part

indexes a codeword, say V nj (MjV ) in Vj−codebook. The bivariate part indexes a bin in the PCC. A codeword,

say Unj (MjU ) is chosen in the indexed bin such that (V nj (MjV ), Unj (MjU )) is jointly typical according to the

probability distribution pQVjUj , the marginal of pQU2V2U3V3XY ∈ Duf (τ) in question. The codewords of the

codebook built over Xj , corresponding to (MjV ,MjU ), are independently and identically distributed according to

pnXj |VjUj (·|V
n
j (MjV ), Unj (MjU )). The private part MjX indexes a codeword in this codebook. This codeword is

input on the channel by user j. User 1 inputs the codeword from it’s X1−codebook that is indexed by it’s message.

It can be verified that the inequality in (23) ensures users 2 and 3 find jointly typical triples of codewords.

Users 2 and 3 employ a simple point-to-point decoding technique. However, note that the codebook over Xj is

conditionally built. Therefore, an error in decoding the correct Uj− or Vj−codeword is interpreted as an error even

in decoding the Xj−codeword. It can be verified that (24), (25) ensure the probability of decoding error at receiver

j decays exponentially with block length n.
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Fig. 6. A 3−IC with univariate and bivariate interference components.

User 1 constructs the sum codebook Λ2 ⊕Λ3 : = {un2 ⊕ un3 : unj ∈ Λj : j = 2, 3} and decodes into V2,V3,Λ2 ⊕

Λ3,X1 codebooks. In particular it looks for a quadruple of codewords in these codebooks that are jointly typical

with the received vector Y n1 according to pQV2,V3,U2⊕U3|Y1
. It can be verified that (26) - (28) imply the probability

of decoding error at receiver 1 decays exponentially with block length.

Example 6: We briefly describe an example wherein the above coding technique can yield larger achievable rate

regions than ones based exclusively either on PCC or on unstructured based codes. Consider the 3−IC depicted

in figure 6. For each j = 1, 2, 3, the input alphabet Xj =
3
×
k=1
Xjk and output alphabet is Yj =

3
×
k=1
Yjk where

Xjk = Yjk = {0, 1}. Essentially, each user can input three binary digits on the channel and each receiver observes

three binary digits per channel use. Let Xjk : k = 1, 2, 3 denote the three binary digits input by transmitter j and

Yjk : k = 1, 2, 3 denote the three digits observed by receiver j. Figure 6 depicts the input-output relationship. Let

us also assume the Bernoulli noise processes Njk : j = 1, 2, 3, k = 1, 2, 3 are mutually independent. Users 2 and 3

enjoy complete free point-to-point links for each of the digits. They are only constrained by noise that is modeled

by the corresponding Bernoulli noise processes. Receiver 1’s digit Y11 experiences bivariate interference. It’s 2nd

the 3rd digits experience univariate interferences.20 The reader will recognize the need for receiver 1 to decode

univariate and bivariate parts of user 2 and 3’s transmissions. The above coding technique enables the same.

We conclude this section with a discussion, wherein, we employ the notion of common information to argue,

more fundamentally, the need to decode bivariate interference components. Let us view the above coding technique

from the perspective of common information in the sense of Gacs, Körner and Witsenhausen [23] [24]. Let K(A;B)

denote the common information of two random variables A and B. Let X̃j denote the collection of random variables

decoded at decoder j. The CHK scheme for 2-IC can be interpreted as inducing non-trivial common information

between X̃1 and X̃2, and K(X̃1; X̃2) = H(W1,W2). The question that comes next is how to extend common

20The IC depicted in figure 6 can be used to model a scenario wherein Tx-Rx pair 1 is assigned frequency bands around carrier frequencies

f1, f2, f3, Tx-Rx pair 2 is assigned frequency bands around carrier frequencies f1, f2, f4, Tx-Rx pair 3 is assigned frequency bands around

carrier frequencies f1, f3, f5 respectively. If the powers transmitted by users 2 and 3 are large, then user 1 does not cause any appreciable

interference to users 2 and 3. The interference caused by transmissions of Txs 2 and 3 on each other in frequency band around f1 has been

ignored by this model.
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information to 3 random variables? We can consider the following vector as the common information among three

random variables A, B and C:

[K(A;B;C),K(A;B),K(B;C),K(C;A)],

where K(A;B;C) is defined in a natural way. We refer to this as univariate common information as they are

characterized using univariate function of the random variables. The USB−technique induces non-trivial univariate

common information among X̃1, X̃2 and X̃3, and

K(X̃1; X̃2; X̃3) = H(W1,W2,W3), K(X̃j ; X̃k) = H(Vkj , Vjk).

The common information captured via univariate functions can be enhanced with the following components

captured via bivariate functions. Define

K̃(A,B;C) := sup
h1,g3

inf
f1,f2,g1,g2

{
H(V3|V1, V2) : V1=f1(A)=g1(C),V2=f2(B)=g2(C),V3=h(A,B)=g3(C) where f1:A→V,

f2:B→V,gi:C→V:i=1,2,h:A×B→V are maps into a finite set V

}
.

We define common information among three random variables as a seven-dimensional vector as follows:

[K(A;B;C),K(A;B),K(B;C),K(C;A), K̃(A,B;C), K̃(B,C;A), K̃(C,A;B)].

We refer to the last three components as bivariate common information. Note that the USB−technique induces

trivial bivariate common information among X̃1, X̃2 and X̃3. The PCC technique induces non-trivial bivariate

common information among them, and K̃(X̃i, X̃j ; X̃k) = H(Uik ⊕ Ujk) for all i 6= j 6= k.

VI. STEP IV: ACHIEVABLE RATE REGION USING PCC BUILT OVER ABELIAN GROUPS

In this section, we present PCC scheme using codes built on Abelian groups. The rate region we get can be

interpreted as the algebraic extension of that given in theorem 5.

A. Preliminaries about groups

For an Abelian group G, let P(G) denote the set of all distinct primes which divide |G| and for a prime p ∈ P(G)

let Sp(G) be the corresponding Sylow subgroup of G. It is known [25, Theorem 3.3.1] that any Abelian group G

can be decomposed as a direct sum of its Sylow subgroups in the following manner

G =
⊕

p∈P(G)

Sp(G) (29)

Furthermore, each Sylow subgroup Sp(G) can be decomposed into Zpr groups as follows:

Sp(G) ∼=
⊕

r∈Rp(G)

ZMp,r

pr (30)

where Rp(G) ⊆ Z+ and for r ∈ Rp(G), Mp,r is a positive integer. Note that ZMp,r

pr is defined as the direct sum of

the ring Zpr with itself for Mp,r times. Combining equations (29) and (30), we can represent any Abelian group

as follows:

G ∼=
⊕

p∈P(G)

⊕
r∈Rp(G)

ZMp,r

pr =
⊕

p∈P(G)

⊕
r∈Rp(G)

Mp,r⊕
m=1

Z(m)
pr (31)
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where Z(m)
pr is called the mth Zpr ring of G or the (p, r,m)th ring of G. Equivalently, this can be written as follows

G ∼=
⊕

(p,r,m)∈G(G)

Z(m)
pr

where G(G) ⊆ P× Z+ × Z+ is defined as:

G(G) = {(p, r,m) ∈ P× Z+ × Z+|p ∈ P(G), r ∈ Rp(G),m ∈ {1, 2, · · · ,Mp,r}}

This implies that any element a of the Abelian group can be regarded as a vector whose components are indexed

by (p, r,m) ∈ G(G) and whose (p, r,m)th component ap,r,m takes values from the ring Zpr . With a slight abuse

of notation, we represent an element a of G as

a =
⊕

(p,r,m)∈G(G)

ap,r,m

For example let G = Z5
3 ⊕ Z3

4 ⊕ Z8. Then we have P(G) = {2, 3}, R2(G) = {2, 3}, R3(G) = {1}, M2,2 = 3,

M2,3 = 1, M3,1 = 5, and

G(G) = {(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3, 1), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 1, 4), (3, 1, 5)}.

For two elements a, b ∈ G, we have

a+ b =
⊕

(p,r,m)∈G(G)

ap,r,m +pr bp,r,m

where + denotes the group operation and +pr denotes addition mod-pr. Let [·]p,r,m denote the (p, r,m)th component

of it’s argument.

Let IG:p,r,m ∈ G be a generator for the group which is isomorphic to the (p, r,m)th ring of G. Then we have

a =

(G)︷︸︸︷∑
(p,r,m)∈G(G)

ap,r,mIG:p,r,m (32)

where the summations are done with respect to the group operation and the multiplication ap,r,mIG:p,r,m is by

definition the summation (with respect to the group operation) of IG:p,r,m to itself for ap,r,m times. In other words,

ap,r,mIG:p,r,m is the short hand notation for

ap,r,mIG:p,r,m =

(G)︷︸︸︷∑
i∈{1,··· ,ap,r,m}

IG:p,r,m

where the summation is the group operation.

B. The Group Mutual Information

We will need to define information theoretic quantities in relation to groups. Define

Q(G) = {(p, r)|p ∈ P(G), r ∈ Rp(G)} (33)

We denote vectors θ̂, w and θ, whose components are indexed by (p, r) ∈ Q(G), by (θ̂p,r)(p,r)∈Q(G), (wp,r)(p,r)∈Q(G)

and (θp,r)(p,r)∈Q(G) respectively. Let w be a probability distribution on Q(G).
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For θ̂, define a vector

θθθ(θ̂) =

 min
(q,s)∈Q(G)

q=p

|r − s|+ + θ̂q,s


(p,r)∈Q(G)

and let

Θ =
{
θθθ(θ̂)|(θ̂q,s)(q,s)∈Q(G) : 0 ≤ θ̂q,s ≤ s

}
This set corresponds to a collection of subgroups of G which appear in the expression for the achievable rates. In

other words, certain subgroups of the group become important in the achievable rate region when we are confined

to use Abelian group codes. For θ ∈ Θ, define

ωθ =

∑
(p,r)∈Q(G)

θp,rwp,r log p

∑
(p,r)∈Q(G)

rwp,r log p

and let Hθ be a subgroup of G defined as

Hθ =
⊕

(p,r,m)∈G(G)

pθp,rZ(m)
pr . (34)

We give an example in the sequel.

Let X and Y be two random variables with X taking values over G and let [X]θ = X + Hθ be the random

variable taking values from the cosets of Hθ in G that contains X . Let w be a probability distribution on Q(G).

We define the source coding group mutual information between X and Y as

SGw (X;Y ) = H(X)− log |G|+ max
θ∈Θ
θ 6=000

1

ωθ
[log |G : Hθ| −H([X]θ|Y )]

where 000 is a vector whose components are indexed by (p, r) ∈ Q(G) and whose (p, r)th component is equal to 0,

and G : Hθ is the quotient group. We define the channel coding group mutual information between X and Y as

CGw (X;Y ) = H(X)− log |G|+ min
θ∈Θ
θ 6=rrr

1

1− ωθ
[log |Hθ| −H(X|[X]θ, Y )] (35)

where rrr is a vector whose components are indexed by (p, r) ∈ Q(G) and whose (p, r)th component is equal to r.

For example, let G = Z2 × Z8 × Z3. In this case, we have P(G) = {2, 3}, R2(G) = {1, 3}, R3(G) = {1}

and Q(G) = {(2, 1, (2, 3), (3, 1))}. The vectors w, θ̂ and θ are represented by w = (w2,1, w2,3, w3,1), θ̂ =

(θ̂2,1, θ̂2,3, θ̂3,1) and θ = (θ2,1, θ2,3, θ3,1) and the function θθθ(·) is given by

θθθ(θ̂) =
(

min(θ̂2,1, θ̂2,3),min(2 + θ̂2,1, θ̂2,3), θ̂3,1

)
The set Θ turns out to be equal to

Θ =
{

(0,0,0), (0,0,1), (0,1,0), (0,1,1), (0,2,0), (0,2,1), (1,1,0), (1,1,1), (1,2,0), (1,2,1), (1,3,0), (1,3,1)
}

and we have 000 = (0, 0, 0) and rrr = (1, 3, 1). For θ = (1, 1, 0), we have ωθ =
w2,1+w2,3

w2,1+3w2,3+w3,1 log 3 and Hθ =

0× 2Z8 ×Z3. so that the random variable [X]θ takes values from the set of cosets
{
{0} × 2Z8 ×Z3, {0} × (1 +
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2Z8) × Z3, {1} × 2Z8 × Z3, {1} × (1 + 2Z8) × Z3

}
. Furthermore, for this choice of θ, we have |Hθ| = 4 and

|G : Hθ| = 12.

When G is cyclic, i.e., G = Zpr , then w = 1 and it can be shown that

SGw (X;Y ) = H(X)− min
1≤θ≤r

r

θ
H([X]θ|Y ), CGw (X;Y ) = H(X)− max

0≤θ≤(r−1)

r

r − θ
H(X|[X]θ, Y ),

where Hθ = pθZpr . When G is a primary field, i.e., G = Zp, then it follows that

SGw (X;Y ) = I(X;Y ) = CGw (X;Y )

C. Managing interference seen by one receiver using PCC built over Abelian groups

In this section, we employ PCC built over Abelian groups to manage interference seen by only receiver 1. As

the reader might have guessed, receiver 1 decodes the group sum of codewords chosen by receivers 2 and 3. In the

following, we characterize an achievable rate region using codes built over groups.

Definition 11: Let Dg(τ) denote the collection of pairs consisting of a distribution pQU2U3XY defined over

Q × U2 × U3 × X × Y , where U2 = U3 is an Abelian group G, and a distribution w on Q(G) satisfying the

following conditions: (i) pY |X = WY |X , (ii) X1, (U2, X2) and (U3, X3) are conditionally mutually independent

given Q and (iii) E{κj(Xj)} ≤ τj : j ∈ [3] and (iv) I(Xj ;Yj |Uj) +CGw (Uj ;Yj)−SGw (Uj ; 0) ≥ 0 for j = 2, 3. For

(pQU2U3XY , w) ∈ Dg(τ), let α3-1
g (pQU2U3XY , w) be defined as the set of rate triples (R1, R2, R3) ∈ [0,∞)3 that

satisfy

R1 < I(X1;Y1|QZ)−H(Z|Q) + min{H(Z|Q), H(Uj |Q) + CGw (Z;Y1|Q)− SGw (Uj ; 0|Q) : j = 2, 3}

Rj < I(Xj ;Yj |QUj) + CGw (Uj ;Yj |Q) : j = 2, 3,

R1 +Rj < I(X1;Y1|QZ) + CGw (Z;Y1|Q) +H(Uj |Q)−H(Z|Q) + I(Xj ;Yj |QUj)

+ min{0, CGw (Uj ;Yj |Q)− SGw (Uj ; 0|Q)} : j = 2, 3,

where Z = U2 ⊕ U3, and

α3-1
g (τ) = cocl

 ⋃
(pQU2U3XY

,w)∈Dg(τ)

α3-1
g (pXY )

 .

Theorem 8: For 3−IC (X ,Y,WY |X , κ), the set α3-1
g (τ) is achievable, i.e., α3-1

g (τ) ⊆ C(τ).

We provide an illustration of the main arguments of the proof without giving complete details. In view of our

detailed proof of theorem 5, the interested reader can fill in the details. We begin with an alternate characterization

of α3-1
g (pXY ) in terms of the parameters of the code.

Definition 12: Consider (pQU2U3XY , w) ∈ Dg(τ) and let G : = U2 = U3. Let α̃3-1
g (pQU2U3XY , w) be de-

fined as the set of rate triples (R1, R2, R3) ∈ [0,∞)3 for which ∪
δ>0
S̃(R, pQU2U3XY , w, δ) is non-empty, where

S̃(R, pQU2U3XY , w, δ) is defined as the collection of vectors (S2, T2,K2, L2, S3, T3,K3, L3, Rg) ∈ [0,∞)9 that
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satisfy

Rj = Tj + Lj , Kj > δ, (Sj − Tj) > log |G| −H(Uj |Q) + δ,

(Sj − Tj) +Kj > log |G|+H(Xj |Q)−H(Uj , Xj |Q) + δ, Rg > Sj + δ

Sj > SGw (Uj ; 0|Q) + log |G| −H(Uj |Q) + δ,

Tj > δ, Lj > δ, Kj + Lj < I(Xj ;Yj , Uj |Q)− δ, Sj < log |G|+ CGw (Uj ;XjYj |Q)−H(Uj |Q)− δ,

Sj +Kj + Lj < log |G|+ I(Xj ;YjUj |Q) + CGw (Uj ;Yj |Q)−H(Uj |Q)− δ, R1 < I(X1;Y1, Z|Q)− δ

R1 +Rg < log |G|+ I(X1;Y1|ZQ) + CGw (Z;Y1|Q)−H(Z|Q)− δ

for j = 2, 3, where Z = U2 ⊕ U3.

Lemma 7: α̃3-1
g (pQU2U3XY , w) = α3-1

g (pQU2U3XY , w).

Proof: The proof follows from Fourier-Motzkin elimination.

Having obtained the parameters of the codes, we now describe the coding technique. Choose the parameters

(R1, S2, T2,K2, L2, S3, T3,K3, L3, Rg) ∈ [0,∞)10. The coding technique is exactly the same as that considered

in the case of finite fields and is given in the proof of Theorem 5, The main exception is that the PCCs are built

on the abelian group G. Instead of constructing vector spaces of Fn, we construct subgroups of Gn. The cloud

center codebook λj of user j is characterized as follows. Let

J2 =
⊕

(p,r)∈Q(G)

Zs2wp,rpr , J3 =
⊕

(p,r)∈Q(G)

Zs3wp,rpr ,

for two positive integers s2 and s3.

J =
⊕

(p,r)∈Q(G)

Zswp,rpr

Note that Jj ≤ J for j = 2, 3. Let φ be a homomorphism from J into Gn. Let φj be the restriction of φ to Jj for

j = 2, 3. It is shown in [26, Equation 11] that φ has the following representation

φ(a) =
⊕

(p,r,m)∈G(Gn)

(Zpr )︷︸︸︷∑
(q,s,l)∈G(J)

a(q,s,l)g(q,s,l)→(p,r,m)

where g(q,s,l)→(p,r,m) = 0 for p 6= q and g(q,s,l)→(p,r,m) is uniformly distributed over p|r−s|
+Zpr for p = q. The

code λj is given by φj(Jj)⊕ bnj , where bnj is a bias vector in Gn. For a given choice of w, Rg, S2 and S3, choose

s2, s3 and s such that

s2 =
nS2∑

(p,r)∈Q(G) rwp,r log p
s3 =

nS3∑
(p,r)∈Q(G) rwp,r log p

, s =
nRg∑

(p,r)∈Q(G) rwp,r log p

Note that
1

n
log |J | = s

n

∑
(p,r)∈Q(G)

rwp,r log p,

and |Jj | can be expressed in terms of sj similarly. In summary, we have

1

n
log J = Rg,

1

n
log Jj = Sj : j = 2, 3.



33

The binning functions ij are defined analogously: ij : Jj → |G|tj , where tj = nTj , for j = 2, 3. The encoding

and decoding operations are defined analogously. This implies that |M1| = 2nR1 , |Mj1| = |G|tj for j = 2, 3. The

homomorphism and the bias vectors are chosen independently and with uniform probability over their ranges.

For any a, ã ∈ J , and (q, s, l) ∈ G(J) , let θ̂q,s,l ∈ {1, 2, . . . , s} be such that

ãq,s,l − aq,s,l ∈ qθ̂q,s,lZqs\qθ̂q,s,l+1Zqs .

and any (p, r) ∈ Q(G), define

θp,r(a, ã) = min
(p,s,l)∈G(J)

|r − s|+ + θ̂q,s,l.

Define for any a ∈ J , and any θ = (θp,r)(p,r)∈Q(G),

TJ,θ(a) = {ã ∈ J : ∀(p, r) ∈ Q(G),θp,r(a, ã) = θp,r}.

It can be shown that the expected value of the probability of all the error events over the ensemble approach

zero as the block length increases if the parameters of the code belong to α̃3-1
g (pQU2U3XY , w). For conciseness, in

the following, we give proofs of the elements in this argument that are new as compared to the analysis done in

the case of fields.

Upper bound on P (εl2):- Given a message m2 that indexes the bin in the cloud center codebook, define

ψ2(m21) =
∑
a∈J2

∑
u2∈T2η(U2)

1{φ(a)+B2=u2,i2(a)=m2}

We have

E {ψ2(m21)} =
∑
a∈J2

∑
u2∈T2η(U2|Q)

P (φ(a) +B2 = u2, I2(a) = m2)

=
∑
a∈J2

∑
u2∈T2η(U2|Q)

1

|G|n
· 1

|G|t2
=
|J2| · |T2η(U2|Q)|
|G|n ·Gt2

and

E
{
ψ2(m21)2

}
=
∑
a,ã∈J2

∑
u2,ũ2∈T2η(U2|Q)

P (φ(a) +B2 = u2, φ(ã) +B2 = ũ2, I2(a) = m2, I2(ã) = m2)

=
∑
θ∈Θ

∑
a∈J2

∑
ã∈TJ2,θ(a)

∑
u2∈Tn2η(U2|Q)

∑
ũ2∈Tn2η(U2|Q)

ũ2∈u2+Hnθ

1

|G|n
· 1

|Hθ|n
· P (I2(a) = m2, I2(ã) = m2)

=
∑
a∈J2

∑
u2∈Tn2η(U2|Q)

1

|G|n
· 1

Gt2

+
∑
θ∈Θ
θ 6=rrr

∑
a∈J2

∑
ã∈TJ2,θ(a)

∑
u2∈Tn2η(U2|Q)

∑
ũ2∈Tn2η(U2|Q)

ũ2∈u2+Hnθ

1

|G|n
· 1

|Hθ|n
· 1

Gt2

≤
|J2| · |Tn2η(U2|Q)|
|G|n ·Gt2

+
∑
θ∈Θ
θ 6=rrr

∑
a∈J2

|TJ2,θ(a)| · |Tn2η(U2|Q)| ·
∣∣Tn2η(U2|Q) ∩ (u2 +Hn

θ )
∣∣

|G|n · |Hθ|n ·Gt2
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where, rrr is a vector whose components are indexed by (p, r) ∈ Q(G) and whose (p, r)th component is equal to r.

Using [26, Lemma IX.2], we get

Var
{
ψ2(m21)2

}
≤
|J2| · |Tn2η2(U2|Q)|
|G|n ·Gt2

+
∑
θ∈Θ

θ 6=000,θ 6=rrr

∑
a∈J2

|TJ2,θ(a)| · 2n[H(U2Q)+η]2n[H(U2|[U2]θQ)+η]

|G|n · |Hθ|n ·Gt2

Here, 000 is a vector whose components are indexed by (p, r) ∈ Q(G) and whose (p, r)th component is equal to 0.

We have

Var
{
ψ2(m21)2

}
E2(ψ2(m21))

≤ |G|n ·Gt2
|J2| · 2n[H(U2|Q)−η]

+
∑
θ∈Θ

θ 6=000,θ 6=rrr

∑
a∈J2

|G|n · |TJ2,θ(a)| · 2n[H(U2|[U2]θQ)+η]

|Hθ|n · 2n[H(U2|Q)−η]

Note that |J2| = 2n(S2), |G|
n

|Hθ|n = |G : Hθ|n, and using [26, Lemma IX.2] we have |TJ2,θ(a)| ≤ 2n(1−wθ)(S2 log |G|+η3).

In order for the probability of error to go to zero, we require

(S2 − T2) > log |G| −H(U2|Q)

S2 > max
θ∈Θ
θ 6=000

1

ωθ
[log |G : Hθ| −H([U2]θ|Q)],

which is equivalent to (S2 − T2) > log |G| −H(U2|Q), and S2 > SGw (U2; 0|Q).

Upper bound on P ((ε11 ∪ εl2 ∪ εl3 ∪ ε2 ∪ ε3)c ∩ ε41): This probability can be decomposed into two parts: (i) the

first, P1, is the probability of the event that Xn
1 and Un2 +Un3 are both decoded incorrectly and (ii) the second, P2,

is the probability of the event that Xn
1 is decoded incorrectly but Un2 +Un3 is decoded correctly. A vanishing upper

bound on the second part can be obtained in a way that is analogous to the case of fields if R1 < I(X1;Y1|Z). In

the following we provide an upper bound only on the first part. For simplicity, let us assume that Q is trivial.

P1≤
1

|M1|
∑
m1

∑
x1∈T2η2

(X1)

1{Xn1 (m1)=x1}
1

|G|t2
∑
m21

1

|G|t3
∑
m31

∑
u2∈Tn2η2 (U2)

2

E{ψ2(m21)}
∑

u3∈Tn2η2 (U3)

2

E{ψ3(m31)}∑
y1∈Yn1

pnY1|X1,U2,U3
(y1|x1, u2, u3)2−2nη4

∑
m̃1 6=m1

∑
a∈J2,b∈J3

1{φ(a)+B2=u2,φ(b)+B3=u3,i2(a)=m21,i3(b)=m31}

∑
(x̃1,z̃)∈T4η4 (X1,Z|y1)

z̃ 6=z

1{x̃1=Xn1 (m̃1)}1{∃ã,b̃∈J:φ(ã)+B2+φ(b̃)+B3=z̃}

Using the condition z 6= z̃, note that the event {∃ã, b̃ ∈ J : φ(ã) + B2 + φ(b̃) + B3 = z̃} is equal to the event

{∃c̃ ∈ J : c 6= (a+ b), φ(c̃) +B2 +B3 = z̃}. Therefore, using the union bound, and decomposing the set J\(a+ b)
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into smaller parts, we get

E{P1}≤
1

|M1|
∑
m1

∑
x1∈T2η2

(X1)

2−2nη4

|T2η2(X1)|G|t2 ||G|t3
∑
m2,m3

∑
u2∈Tn2η2 (U2)

u3∈Tn2η2 (U3)

4

E(ψ2(m21))E(ψ3(m31))

∑
y1∈Yn1

pnY1|X1,U2,U2
(y1|x1, u2, u3)

∑
m̃1 6=m1

∑
a∈J2,b∈J3

∑
θ∈Θ
θ 6=rrr

∑
(x̃1,z̃)∈T2η4

(X1,Z|y1)
z̃ 6=z

∑
c̃∈Tθ(a+b)

1

|G|n|G|t2 |G|t3

· 1

|T2η2(X1)|
· P (φ(a+ b) +B2 +B3 = u2 + u3, φ(c̃) +B2 +B3 = z̃)

≤
∑
θ∈Θ
θ 6=rrr

∑
a∈J2

∑
b∈J3

2−2η42nR1 · 2n[H(X1|Z,Y1)+η] · 2n[H(Z|[Z]θY1)+η] · |TJ,θ(a+ b)|
|J2||J3|2n[H(X1)−η] · |Hn

θ |

Using [26, Lemma IX.2], note that |TJ,θ(a+ b)| ≤ 2n(1−ωθ)Rg . Therefore, in order for the probability of error to

go to zero, it suffices to have

R1 + (1− ωθ)Rg < I(X1;Y1|Z) + log |Hθ| −H(Z|[Z]θY1)

for θ 6= rrr. For optimum weights {wp,r}(p,r)∈Q(G), the condition R1 +Rg < I(X1;Y1|Z) +CGw (Z;Y1) + log |G| −

H(Z) implies

Rg < (I(X1;Y1|Z)−R1) + min
θ∈Θ
θ 6=rrr

1

1− ωθ
[log |Hθ| −H(Z|[Z]θY1)]

(a)
= min

θ∈Θ
θ 6=rrr

1

1− ωθ
[I(X1;Y1|Z)−R1] + min

θ∈Θ
θ 6=rrr

1

1− ωθ
[log |Hθ| −H(Z|[Z]θY1)]

≤ min
θ∈Θ
θ 6=rrr

1

1− ωθ
[I(X1;Y1|Z)−R1 + log |Hθ| −H(Z|[Z]θY1)]

which is the desired condition. In the above equations, (a) follows since the maximum of 1 − ωθ is attained for

θ = 000 and is equal to 1.

Similarly, one can show that the probability of decoding error at decoder 2 and 3 can be made to go to zero for

all sufficiently large n if the code parameters are chosen accordingly.

We have thus proved the bounds provided in definition (12) suffice to drive the probability of incorrect decoding

exponentially down to 0. We now illustrate the need to build codes over appropriate algebraic objects to enable

interference management. In other words, we provide an example where codes built over groups outperform

unstructured codes as well as codes built over finite fields.21

Example 7: Consider a quaternary 3−to−1 IC with input and output alphabets Xj = Yj = Z4 = {0, 1, 2, 3}

being the Abelian group of cardinality 4. Let ⊕4 denote the group operation, i.e., addition mod−4 in Z4. The

channel transition probabilities are described through the relation Y1 = X1 ⊕4 X2 ⊕4 X3 ⊕4 N1, Yj = Xj ⊕4 Nj

21While, we do not provide a proof of the statement that codes built over groups outperform PCC built over finite fields, this can be recognized

through standard arguments.
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for j = 2, 3 such that (i) N1, N2, N3 are independent random variables taking values in Z4 with

P (Nj = nj) =

 1− δj if nj = 0

δj
3 otherwise

for j = 1, 2, 3.

It can be verified that the channel transition probabilities are given by WY |X(y|x) = QSCδ1(y1|x1 ⊕4 x2 ⊕4

x3)QSCδ2(y2|x2)QSCδ3(y3|x3), where for any η ∈ [0, 1],

QSCη(a|b) : =

 1− η if a	4 b = 0

η
3 otherwise

Inputs X2, X3 of users 2 and 3 are not costed, i.e., κj(xj) = 0 for j = 2, 3 and any xj ∈ Xj , whereas κ1(x1) = 1

if x1 ∈ {1, 2, 3} and κ1(0) = 0. User 1’s input is constrained to a average cost of τ per symbol.

The reader will recognize that the 3−to−1 IC described in example 7 is analogous to that in example 1 with the

binary field replaced by Abelian group Z4. Our objective here is to illustrate the utility of building codes over

Abelian groups. In particular, we prove codes over Abelian groups outperform unstructured codes and coset codes

over finite fields.

For simplicity, let us henceforth assume δ2 = δ3 = δ. Since users 2 and 3 enjoy interference free point-to-point

links, they could communicate at their respective capacities even using PCC built on Z4. This can be seen by

choosing Uj = Xj and putting a uniform distribution on Xj for j = 2, 3, and evaluating the corresponding group

capacity as follows:

CGw (Xj ;Yj) = min{I(Xj ;Yj), 2I(Xj ;Yj |[Xj ]1)}

= min{2− hb(δ)− δ log2(3), 2 + 2hb(2δ/3)− 2hb(δ)− 2δ log2(3)} = 2− hb(δ)− δ log2(3), (36)

where the last equality follows from the concavity of entropy. In the sequel, we constrain users 2 and 3 to achieve

their respective PTP capacities. In particular, we let Xj to be uniformly distributed over Xj for j = 2, 3.

Clearly, user 1 can achieve a rate not greater than C∗ : = sup
pX1

:pX1
(1)≤τ

I(X1;Y1|X2 ⊕4 X3). In the sequel, we

state the conditions under which R1 < C∗. Our approach is similar to that in section IV.

Lemma 8: Consider the 3−to−1 IC described in example 7 with δ2 = δ3 = δ ∈ (0, 1
4 ), δ1 ∈ (0, 1

4 ) and τ < 3
4 .

If δ1, τ and δ are such that

C∗ + 2(2− hb(δ)− δ log2 3) > 2− hb(δ1)− δ1 log2 3, (37)

then the rate triple (C∗, 2− hb(δ)− δ log2 3, 2− hb(δ)− δ log2 3) /∈ αu(τ, 0, 0).

Proof: We first note that for any pQU2U3XY ∈ Du(τ, 0, 0) with H(Xj |Q,Uj) = 0 for j = 2, 3, we have

R1 + R2 + R3 < I(X;Y1) ≤ sup
pX1

pX2
pX3

I(X;Y1). This follows from substituting the corresponding quantities in

(2). It can be easily verified that sup
pX1

pX2
pX3

I(X;Y1) = 2 − hb(δ1) − δ1 log2 3 which is achieved for all those

distributions pX1
pX2

pX3
that ensure Y1 is uniformly distributed. Condition (37) therefore implies (C∗, 2−hb(δ)−

δ log2 3, 2−hb(δ)−δ log2 3) /∈ αu(pQU2U3XY ) if H(Xj |Q,Uj) = 0 for j = 2, 3. Hence either H(X2|Q,U2) > 0 or

H(X3|Q,U3) > 0. Assume H(Xj |Q,Uj) > 0 and {j, j} = {2, 3}. By the conditional independence of (U2, X2)
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and (U3, X3) given Q, we have 0 < H(Xj |Q,Uj) = H(Xj |Q,Uj , Uj , Xj) = H(Xj ⊕4 Xj |Q,Uj , Uj , Xj) =

H(X2 ⊕4 X3|Q,U2, U3, Xj) ≤ H(X2 ⊕4 X3|Q,U2, U3).

We only need to prove H(X2 ⊕4 X3|Q,U2, U3) > 0 implies I(X1;Y1|Q,U2, U3) < C∗. For this, we allude

to the proof of fifth claim in appendix F. Therein, we have proved an analogous statement for example 4. The

statement herein can be proved through an analogous sequence of steps and we let the reader fill in these details.

We now show that user 1 can achieve rate equal to C∗ exploiting the fact that user 2 and 3 use group codes. We

also derive the condition (37) in terms of parameters δ1, τ, δ. Note that the channel between X2 ⊕4 X3 and Y1 is

additive with noise given by X1⊕4N1. Let us choose pX1
(x1) = τ

3 for x1 ∈ {1, 2, 3}. The resulting distribution of

X1 ⊕4 N1 is given by pX1⊕4N1
(a) = β/3 for a ∈ {1, 2, 3}, where β = δ1 + τ − 4δ1τ

3 . Using concavity of entropy

once again, we get

CGw (X2 ⊕4 X3;Y ) = min{2− hb(β)− β log2(3), 2 + 2hb(2β/3)− 2hb(β)− 2β log2(3)} = 2− hb(β)− β log2(3).

(38)

Note that for δ1 ∈ (0, 1
4 ) and τ < 3

4 , using the fact that X1 and N1 are independent, we get β ∈ (0, 3
4 ).

Note also that 2 − hb(β) − β log2(3) is monotone decreasing for β ∈ (0, 3/4). Hence if β ≥ δ, the signal

X2 ⊕4 X3 can be decoded at decoder 1, and user 1 can communicate at the rate C∗. A simple calculation yields

C∗ = hb(β)+β log2 3−hb(δ1)−δ1 log2 3. In summary, under the following conditions: (i) δ, δ1 ∈ (0, 1
4 ), (ii) τ < 3

4 ,

(iii) equation (37), and (iv) β ≥ δ, all three users can achieve their respective capacities using PCCs built on Z4, but

the corresponding rates cannot be achieved using unstructured codes. It can be shown that there exists a non-empty

set of parameters (δ, δ1, τ) that satisfy these conditions. An example is given by δ = 1
8 , δ1 = τ = 3

4 −
√

30
8 .

APPENDIX A

UPPER BOUND ON P (εlj )

Recall

φj(q
n,Mj) : =

∑
asj∈Usj

∑
bjX∈cjX

1{Ij(asj )=Mj1,(qn,Unj (asj ),Xnj (MjX ,bjX))∈T2η(Q,Uj ,Xj)}, Lj(n) : =
1

2
E {φj(qn,Mj)}

and εlj = {φj(qn,Mj) < Lj(n)}. Employing Cheybyshev’s inequality, we have

P (εlj ) = P (φj(q
n,Mj) < Lj(n)) ≤ P (|φj(qn,Mj)− E{φj(qn,Mj)}| ≥

1

2
E{φj(qn,Mj)}) ≤

4Var{φj(qn,Mj)}
(E{φj(qn,Mj)})2 .
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Note that Var {φj(qn,Mj)} = T0 + T1 + T2 + T3 −T 2
0 , where

T0 =
∑

asj∈Usj

∑
bjX∈cjX

∑
(unj ,x

n
j )∈

T2η(Uj ,Xj |qn)

P
(
Ij(a

sj )=Mj1,U
n
j (asj )=unj

Xnj (MjX ,bjX)=xnj

)
= E{φj(qn,Mj)}, (39)

T1 =
∑

asj∈Usj

∑
bjX ,b̃jX∈cjX
bjX 6=b̃jX

∑
(unj ,x

n
j ),(unj ,x̃

n
j )∈

T2η(Uj ,Xj |qn)

P
(
Ij(a

sj )=Mj1,X
n
j (MjX ,bjX)=xnj ,

Unj (asj )=unj ,X
n
j (MjX ,b̃jX)=x̃nj

)
,

T2 =
∑

asj ,ãsj∈Usj
asj 6=ãsj

∑
bjX∈cjX

∑
(unj ,x

n
j ),(ũnj ,x

n
j )∈

T2η(Uj ,Xj |qn)

P
(
Ij(a

sj )=Mj1,Ij(ã
sj )=Mj1,U

n
j (asj )=unj ,

Xnj (MjX ,bjX)=xnj ,U
n
j (ãsj )=ũnj

)
,

T3 =
∑

asj ,ãsj∈Usj
asj 6=ãsj

∑
bjX ,b̃jX∈cjX
bjX 6=b̃jX

∑
(unj ,x

n
j ),(ũnj ,x̃

n
j )∈

T2η(Uj ,Xj |qn)

P
(
Ij(a

sj )=Mj1,X
n
j (MjX ,bjX)=xnj ,U

n
j (asj )=unj ,

Ij(ã
sj )=Mj1,X

n
j (MjX ,b̃jX)=x̃nj ,U

n
j (ãsj )=ũnj

)
.

The codewords of PCC Λj are pairwise independent [27, Theorem 6.2.1], and therefore

P
(
Ij(a

sj )=Mj1,X
n
j (MjX ,bjX)=xnj ,U

n
j (asj )=unj ,

Ij(ã
sj )=Mj1,X

n
j (MjX ,b̃jX)=x̃nj ,U

n
j (ãsj )=ũnj

)
= P

(
Ij(a

sj )=Mj1,U
n
j (asj )=unj

Xnj (MjX ,bjX)=xnj

)
P
(
Ij(ã

sj )=Mj1,U
n
j (ãsj )=ũnj ,

Xnj (MjX ,b̃jX)=x̃nj

)
.

It can be verified that T3 ≤ T 2
0 , and therefore, P (ε1j) ≤ 4T0+T1+T2

T 2
0

. For sufficiently large n, we employ upper

bounds on conditional probability and the number of conditional typical sequences to conclude

T0 ≥ exp {−nH(Xj |Q)− 4nη} |cjX ||T2η(Uj , Xj |qn)|
θtj+n−sj

(40)

T1 ≤ exp {−2nH(Xj |Q) + 8nη + nH(Xj |Uj , Q) + 8nη} |cjX |(|cjX | − 1)|T2η(Uj , Xj |qn)|
θtj+n−sj

T2 ≤ exp {−nH(Xj |Q) + 4nη + nH(Uj |XjQ) + 8nη} |cjX ||T2η(Uj , Xj |qn)|
θ2(tj+n−sj)

.

For sufficiently large n, exp{−4nη} ≤ exp{−nH(Uj , Xj |Q)}|T2η(Uj , Xj |qn)| ≤ exp{4nη}. Substituting Sj =

sj log θ
n , Tj =

tj log θ
n and |cjX | = exp{nKj}, it maybe verified that, for sufficiently large n,

P (ε1j) ≤ 4 exp {−n [Sj − Tj +Kj − (log θ +H(Xj |Q)−H(Uj , Xj |Q))− 8η]}+

4 exp {−n [Sj − Tj − (log θ −H(Uj |Q))− 28η]}+ 4 exp {−n [Kj − 32η]} .

Using the bounds on Sj , Tj and Kj as given in definition 12 in terms of δ, we have

P (ε1j) ≤ 12 exp {−n (δ − 32η)} (41)

for sufficiently large n. Before we conclude this appendix, let us confirm Lj(n) grows exponentially with n. This

would imply ε1j ⊆ εlj and therefore ε1j ∩ εclj = φ, the empty set. From (39), (40), we haven for sufficiently large

n,

Lj(n) =
1

2
E {φj(qn,Mj)} =

T0

2
≥ exp {−nH(Xj |Q)− 4nη} |cjX ||T2η(Uj , Xj |qn)|

2θtj+n−sj

≥ 1

2
exp {n [Sj − Tj +Kj − (log θ +H(Xj |Q)−H(Uj , Xj |Q))− 8η]} ≥ 1

2
exp {n [δ − 8η]} ,(42)

where, as before, we have employed Sj =
sj log θ
n , Tj =

tj log θ
n and |cjX | = exp{nKj}, the lower bounds on

|T2η(Uj , Xj |qn)| and the definition of δ.
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APPENDIX B

UPPER BOUNDS ON P (ε̃c1 ∩ ε2), P ((ε̃1 ∪ ε2)c ∩ ε3)

In the first step, we derive an upper bound on P (ε̃c1 ∩ ε2), where ε̃1 = ε1 ∪ εl, and

ε2 = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X)) /∈ Tη1(Q,U2, U3, X)} . (43)

was defined in (8). In the second step, we employ the result of conditional frequency typicality to provide an upper

bound on P ((ε1 ∪ εl2 ∪ εl3 ∪ ε2)c ∩ (ε31 ∪ ε32 ∪ ε33)).

As an astute reader might have guessed, the proof of first step will employ conditional independence of the triple

X1, (U2, X2), (U3, X3) given Q. The proof is non-trivial because of statistical dependence of the codebooks. We

begin with the definition

Θ(qn) : =

 (un2 , u
n
3 , x

n) ∈ Un2 × Un3 ×X
n : (qn, unj , x

n
j ) ∈ T2η(Q,Uj , Xj) : j = 2, 3

(qn, xn1 ) ∈ T2η(Q,X1), (qn, un2 , u
n
3 , x

n) /∈ Tη1(Q,U2, U3, X)

 .

Observe that

P (ε̃c1 ∩ ε2) =
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

P
(
Ij(A

sj )=Mj1,U
n
j (Asj )=unj ,X

n
j (MjX ,BjX)=xnj

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)}:j=2,3,Xn1 (M1)=xn1

)

=
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

P

 ⋃
as2∈Us22

⋃
as3∈Us33

⋃
b2X∈
c2X

⋃
b3X∈
c3X

{
Ij(a

sj )=Mj1,U
n
j (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,A

sj=asj

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)},BjX=bjX :j=2,3,Xn1 (M1)=xn1

}
≤

∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

∑
as2∈
Us22

∑
as3∈
Us33

∑
b2X∈
c2X

∑
b3X∈
c3X

P

(
Ij(a

sj )=Mj1,U
n
j (asj )=unj

Xnj (MjX ,bjX)=xnj ,2φj(q
n,Mj)≥

E{φj(qn,Mj)}:j=2,3,Xn1 (M1)=xn1

)
P

(
Asj=asj
BjX=bjX

:j=2,3

∣∣∣∣ Ij(a
sj )=Mj1,U

n
j (asj )=unj

Xnj (MjX ,bjX)=xnj ,2φj(q
n,Mj)≥

E{φj(qn,Mj)}:j=2,3,Xn1 (M1)=xn1

)

≤
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

∑
as2∈
Us22

∑
as3∈
Us33

∑
b2X∈
c2X

∑
b3X∈
c3X

P

(
Ij(a

sj )=Mj1,U
n
j (asj )=unj

Xnj (MjX ,bjX)=xnj :j=2,3

Xn1 (M1)=xn1

) 3∏
j=2

P
(
Asj=asj
BjX=bjX

∣∣∣ Ij(a
sj )=Mj1

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)}

)
. (44)

Let us now evaluate a generic term in the above sum (44). Since the codebooks C1, C2, C3,Λ2,Λ3 are mutually

independent, the probability of the event in question factors as

P
(
Unj (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,

Ij(a
sj )=Mj1:j=2,3,Xn1 (M1)=xn1

)
= P (Xn

1 (M1) = xn1 )P
(
Unj (asj )=unj ,

Ij(a
sj )=Mj1

: j = 2, 3
) 3∏
j=2

P (Xn
j (MjX , bjX) = xnj )

Furthermore, (i) mutual independence of Ij(asj ) : asj ∈ Usjj : j = 2, 3, G3, B
n
2 , B

n
3 , (ii) uniform distribution of

the indices Ij(asj ) : asj ∈ Usjj : j = 2, 3 and (iii) distribution of codewords in Cj : j = 1, 2, 3 imply

P
(
Unj (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,

Ij(a
sj )=Mj1:j=2,3,Xn1 (M1)=xn1

)
= P (Unj (asj ) = unj : j = 2, 3)

∏3
j=1

∏n
t=1 pXj |Q(xjt|qt)
θt2+t3

(45)

The following simple lemma enables us characterize P (Unj (asj ) = unj : j = 2, 3).

Lemma 9: Let s2, s3, n ∈ N be such that s2 ≤ s3. Let GT3 : = [GT2 GT3/2] ∈ Fs3×nθ be a random matrix

such that G2 ∈ Fs2×nθ and Bn2 , B
n
3 ∈ Fnθ be random vectors such that G3, B

n
2 , B

n
3 be mutually independent and
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uniformly distributed over their respective range spaces. For j = 2, 3 and any asj ∈ Fsjθ , let U(asj ) : = asjGj⊕Bnj
be a random vector in the corresponding coset. Then P (Unj (asj ) = unj : j = 2, 3) = 1

θ2n .

Proof: The proof follows from a simple counting argument. It maybe verified that for every g3 ∈ Fs3×nθ , there

exists a unique pair of vectors bn2 , b
n
3 ∈ Fnθ such that asjgj ⊕ bnj = unj for j = 2, 3. Therefore

|
{

(g3, b
n
2 , b

n
3 ) ∈ Fs3×nθ ×Fnθ ×Fnθ : asjgj ⊕ bnj = unj for j = 2, 3

}
| = θns3 .

Now employing the mutually independence and uniformly distribution of G3, B
n
2 , B

n
3 , we have the probability of

the event in question to be

|
{

(g3, b
n
2 , b

n
3 ) ∈ Fs3×nθ ×Fnθ ×Fnθ : asjgj ⊕ bnj = unj for j = 2, 3

}
|

|
{

(g3, bn2 , b
n
3 ) ∈ Fs3×nθ ×Fnθ ×Fnθ

}
|

=
θns3

θns3+2n
=

1

θ2n
.

We therefore have

P
(
Unj (asj )=unj ,X

n
j (MjX ,bjX)=xnj ,

Ij(a
sj )=Mj1:j=2,3,Xn1 (M1)=xn1

)
=

∏3
j=1

∏n
t=1 pXj |Q(xjt|qt)
θ2n+t2+t3

≤
∏n
t=1 pX1|Q(x1t|qt) exp {−nH(X2|Q)}

exp {−8nη + nH(X3|Q)} θ2n+t2+t3
(46)

Encoders 2 and 3 choose one among the jointly typical pairs uniformly at random. Hence,
3∏
j=2

P
(
Asj=asj
BjX=bjX

∣∣∣ Ij(a
sj )=Mj1

φj(q
n,Mj)≥ 1

2E{φj(q
n,Mj)}

)
≤ 4

E {φ2(qn,M2)}E {φ3(qn,M3)}
. (47)

It maybe verified from (39) that

2Lj(n) = E {φj(qn,Mj)} ≥ θsj−tj−n|cjX | exp {−n(H(Xj |Q) + 4η)} |T2η(Uj , Xj |qn)|. (48)

Substituting (48), (47) and (46) in (44), we have

P (ε̃c1 ∩ ε2) ≤
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

exp{n16η}
∏n
t=1 pX1|Q(x1t|qt)

|T2η(U2, X2|qn)||T2η(U3, X3|qn)|

≤
∑

(un2 ,u
n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1|Q(x1t|qt)
exp {24nη − nH(U3, X3|Q)}

exp {nH(U2, X2|Q)}
(49)

where the last inequality follows from lower bound on size of the conditional typical set. We now employ the lower

bound for conditional probability of jointly typical vectors. In particular,

exp {−nH(Uj , Xj |Q)− 4nη} ≤
n∏
t=1

pUj ,Xj |Q(ujt, xjt|qt) ≤ exp {−nH(Uj , Xj |Q) + 4nη} (50)

for any (un2 , u
n
3 , x

n) ∈ Θ(qn). Substituting lower bound (50) in (49), for n sufficiently large, we have

P (ε̃c1 ∩ ε2) ≤

 ∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1|Q(x1t|qt)
3∏
j=2

n∏
t=1

pUjXj |Q(ujtxjt|qt)

 exp {32nη}

≤

 ∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1U2X2U3X3|Q(x1t, u2t, x2t, u3t, x3t|qt)

 exp {32nη} , (51)
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where (51) follows from conditional mutual independence of the triple X1, (U2, X2) and (U3, X3) given Q. We

now employ the exponential upper bound due to Hoeffding [28], Sanov [29]. Under the condition η1 ≥ 4η, a

‘conditional version’ of Sanov’s lemma [29] guarantees∑
(un2 ,u

n
3 ,x

n)
∈Θ(qn)

n∏
t=1

pX1U2X2U3X3|Q(x1t, u2t, x2t, u3t, x3t|qt) ≤ 2 exp{−n3µη2
1} (52)

for sufficiently large n, to enable us conclude

P (ε̃c1 ∩ ε2) ≤ 2 exp{−n(n2µη2
1 − 32η)} (53)

for such an n.

This gets us to the second step where we seek an upper bound on P ((ε̃1 ∪ ε2)c ∩ ε3), where

ε3 = {(qn, Un2 (As2), Un3 (As3), Xn
1 (M1), Xn

2 (M2X , B2X), Xn
3 (M3X , B3X), Y n) /∈ T2η1(Q,X1, U2, U3, X, Y )}

(54)

was defined in (9). Deriving an upper bound on P ((ε̃1 ∪ ε2)c ∩ ε3) employs conditional frequency typicality and

the Markov chain (Q,U2, U3)−X − Y . In the sequel, we prove P (εc2 ∩ ε3) ≤ η
32 for sufficiently large n.

If

Θ(qn) : =

 (un2 , u
n
3 , x

n, yn) ∈ Un2 × Un3 ×X
n × Yn : (un2 , u

n
3 , x

n) ∈ Tη1(U2, U3, X|qn),

(un2 , u
n
3 , x

n, yn) /∈ T2η1(U2, U3, X, Y |qn)

 ,

then

P (εc2 ∩ ε3) =
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj ) = unj , X

n
j (MjX , BjX) = xnj : j = 2, 3, Xn

1 (M1) = xn1 , Y
n = yn

)

=
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

)
P
(
Y n = yn

∣∣∣Unj (Asj )=unj ,X
n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

)

=
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

) n∏
t=1

WY |X(y
t
|xt)

=
∑

(un2 ,u
n
3 ,x

n,yn)

∈Θ(qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

) n∏
t=1

pY |XU2U3
(y
t
|xt, u2t, u3t) (55)

≤
∑

(un2 ,u
n
3 ,x

n)∈
Tη1 (U2,U3,X|qn)

P
(
Unj (Asj )=unj ,X

n
1 (M1)=xn1 ,

Xnj (MjX ,BjX)=xnj :j=2,3,

) ∑
yn:yn /∈

T2η1
(Y |un2 ,u

n
3 ,x

n)

n∏
t=1

pY |XU2U3
(y
t
|xt, u2t, u3t), (56)

where (55) follows from the Markov chain (Q,U2, U3)−X − Y . Once again, the upper bound on the probability

of conditional typical set enables us to conclude∑
yn∈

T2η1 (Y |un2 ,u
n
3 ,x

n)

n∏
t=1

pY |XU2U3
(y
t
|xt, u2t, u3t) ≤

η

32

and therefore P (εc2 ∩ ε3) ≤ η
32 for sufficiently large n.
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APPENDIX C

AN UPPER BOUND ON P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41)

In this appendix, our objective is to derive an upper bound on P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41). Recall that ε̃1 = ε1 ∪ εl,

(ε1 ∪ ε2 ∪ ε3)c ∩ ε41 =
⋃

as3∈Us33

⋃
m̂1 6=M1

{(
Unj (Asj ):j=2,3,Xn1 (M1),

Xnj (MjX ,BjX),:j=2,3,Y n1

)
∈T̂ (qn),

(
Un⊕(as3 ),Y n1
Xn1 (m̂1)

)
∈T4η1

(U2⊕U3,Y1,X1|qn)

}
.

where

T̂ (qn) : =
{

(un2 ,u
n
3 ,x

n,yn1 )∈
Un2 ×U

n
3 ×X

n×Yn1
:

(un2 ,u
n
3 ,x

n,yn1 )∈T2η1
(U2,U3,X,Y1|qn),(un2 ,u

n
3 ,x

n)∈Tη1 (U2,U3,X|qn)

(unj ,x
n
j )∈T2η(Uj ,Xj |qn):j=2,3,xn1∈T2η(X1|qn)

}
.

Employing the union bound, we have

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤
∑
âs3∈
Us33

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

∑
(ûn,x̂n1 )∈

T4η1
(U2⊕U3,X1|yn1 ,q

n)

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

Ij(A
sj )=Mj1,X

n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
. (57)

We evaluate a generic term in the above sum. Defining S (âs3) : = {(as2 , as3) ∈ Us22 × U
s3
3 : as20s+ ⊕ as3 6= âs3},

where s+ : = s3 − s2, S c(âs3) : = (Us22 × U
s3
3 ) \S (âs3), and

E : =

{
Xnj (mjX ,bjX)=xnj ,U

n
j (asj )=unj ,Mj=mj

Ij(a
sj )=mj1X

n
1 (m1)=xn1 ,U⊕(âs3 )=ûn,

Xn1 (m̂1)=x̂n1 ,M1=m1:j=2,3,

}
we have

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

Ij(A
sj )=Mj1,X

n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
=
∑
m2,m3

∑
b2X ,b3X

∑
(as2 ,as3 )
∈S (âs3 )

P
(
E ∩ εcl ∩

{
Y n1 =yn1 ,A

sj=asj

BjX=bjX :j=2,3

})

+
∑
m2,m3

∑
b2X ,b3X

∑
(as2 ,as3 )
∈S c(âs3 )

P
(
E ∩ εcl ∩

{
Y n1 =yn1 ,A

sj=asj

BjX=bjX :j=2,3

})
(58)

Note that

P
(
Y n1 = yn1

∣∣∣E ∩ εcl ∩ { Asj=asj
BjX=bjX :j=2,3

})
= Wn

Y1|X(yn1 |xn), (59)

P
(
E ∩ εcl ∩

{
Asj=asj

BjX=bjX :j=2,3

})
= P (E)P

(
Asj=asj

BjX=bjX :j=2,3

∣∣∣E ∩ εcl) = P (E) 1
L2(n)L3(n) (60)

Moreover, for (un2 , u
n
3 , x

n
1 , x

n
2 , x

n
3 , y

n
1 ) ∈ T̂ (qn), (ûn, x̂n1 ) ∈ T4η1(U2 ⊕ U3, X1|yn1 , qn), we have

P (E) ≤


P (Mj=mj :j=2,3,M1=m1)

θ3n+t2+t3 exp{n(H(X1|Q)+
∑3
j=1H(Xj |Q)−20η1)} if (as2 , as3) ∈ S (âs3),

P (MjX=mjX :j=2,3,M1=m1)Wn
Y1|X

(yn1 |x
n)1{ûn=un2⊕u

n
3 }

θ2n+t2+t3 exp{n(H(X1|Q)+
∑3
j=1H(Xj |Q)−20η1)} if (as2 , as3) ∈ S c(âs3)

(61)

In deriving the above upper bounds, we have used the upper bound on conditional probability of jointly typical

sequences. We have also employed independence of (triple in the former and pair in the latter) codewords in the

coset code. Substituting (59), (60) and (61), in (58), we have

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

Ij(A
sj )=Mj1,X

n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
≤

θs2−t2P (M1=m1)Wn
Y1|X

(yn1 |x
n)|c2X ||c3X |

θ2n+t3 exp{n(H(X1|Q)+
∑3
j=1H(Xj |Q)−20η1)}

[
θs3

θn + 1{ûn=un2⊕un3 }
]

L2(n)L3(n)
. (62)

Our next step is to substitute (62) in (57). Let us restate (57) below as (63) for ease of reference.

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤
∑
âs3∈
Us33

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

∑
(ûn,x̂n1 )∈

T4η1
(U2⊕U3,X1|yn1 ,q

n)

P

({
Xnj (MjX ,BjX)=xnj ,U

n
j (Asj )=unj

Ij(A
sj )=Mj1,X

n
1 (M1)=xn1 ,U⊕(âs3 )=ûn

Xn1 (m̂1)=x̂n1 ,Y
n
1 =yn1 ,M1=m1:j=2,3

}
∩ εcl

)
. (63)
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We do some spade work before we substitute (62) in (63). (62) is a sum of two terms. The first term is not

dependent on the arguments of the innermost summation in (63). By conditional frequency typicality lemma, for

sufficiently large n we have |T4η1(U2 ⊕ U3, X1|yn1 , qn)| ≤ exp {n(H(U2 ⊕ U3, X1|Y1, Q)) + 8η1}. Substituting

this upper bound, the summation in (63) corresponding to the first term in (62) is upper bounded by

T1 : =
∑
âs3

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

Wn
Y1|X(yn1 |xn)

L2(n)L3(n)

θs2+s3 |c2X ||c3X |P (M1 = m1) exp{n(H(U2 ⊕ U3, X1|Y1, Q))}

θ3n+t2+t3 exp
{
n(H(X1|Q) +

∑3
j=1H(Xj |Q)− 28η1)

} .

The indicator in the second term of (62) restricts the outermost summation in (63) to x̂n1 ∈ T4η1(X1|un2⊕un3 , yn1 , qn).

As earlier, note that the second term is independent of x̂n1 . Once again, employing the conditional frequency typicality

lemma, for sufficiently large n, |T4η1(X1|un2 ⊕un3 , yn1 , qn)| ≤ exp {n(H(X1|U2 ⊕ U3, Y1, Q) + 8η1)}. Substituting

this upper bound, the summation in (63) corresponding to the second term in (62) is upper bounded by

T2 : =
∑
âs3

∑
m1,m̂1
m̂1 6=m1

∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

Wn
Y1|X(yn1 |xn)

L2(n)L3(n)

θs2 |c2X ||c3X |P (M1 = m1) exp{n(H(X1|U2 ⊕ U3, Y1, Q))}

θ2n+t2+t3 exp
{
n(H(X1|Q) +

∑3
j=1H(Xj |Q)− 28η1)

} .

It can be verified that∑
(un2 ,u

n
3 ,x

n,yn1 )∈
T̂ (qn)

Wn
Y1|X(yn1 |xn) ≤ min{|T2η(U2, X2|qn)||T2η(U3, X3|qn)||T2η(X1|qn)|, |Tη1(U2, U3, X|qn)|}. (64)

Using (64) and lower bounds Lj(n) : j = 2, 3 from (48), we have

T1 ≤ 2
θs3 exp{−n(2H(X1|Q)− 8η −R1)}|T2η(X1|qn)|
θn exp{−n(H(U2 ⊕ U3, X1|Y1, Q) + 28η1)}

≤ 2
θs3 exp{−n(H(X1|Q)− 12η −R1)}

θn exp{−n(H(U2 ⊕ U3, X1|Y1, Q) + 28η1)}
,

where the last inequality above follows from upper bound on |T2η(X1|qn)|. An identical sequence of steps yields

T2 ≤ 2
exp{−n(H(X1|Q)− 28η1 −R1)}

exp{−n(H(X1|U2 ⊕ U3, Y1, Q) + 12η)}
.

for sufficiently large n. Substituting s3 log θ
n = S3, we have

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 2 exp{n(28η1 + 12η + S3 +R1 − log θ −H(X1|Q) +H(X1, U2 ⊕ U3|Y1, Q))}

+2 exp{n(28η1 + 12η +R1 − I(X1;U2 ⊕ U3, Y1|Q))}.

Employing the definition of δ, we have

P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp {−n [δ − 28η1 − 12η]} . (65)

for sufficiently large n.

APPENDIX D

AN UPPER BOUND ON P ((ε̃1 ∪ ε2 ∪ ε3)c ∩ ε4j)

While it seems that analysis of this event is similar to the error event over a point-to-point channel, and is therefore

straight forward, the structure of the code lends this considerable complexity. A few remarks are in order. Firstly, the

distribution induced on the codebooks does not lend the bins Cj1(mj1) : mj1 ∈Mj1 to be statistically independent.
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Secondly, since the cloud center and satellite codebooks are binned, the error event needs to be carefully partitioned

and analyzed separately.

In this appendix, we seek an upper bound on P ((ε̃1∪ε3)c∩ε4j) for j = 2, 3. Let (ε1∪ε3)c∩ε4j = ε14j∪ε24j∪ε34j ,

where

ε14j : =
⋃

m̂j1 6=Mj1

⋃
âsj∈U

sj
j

⋃
b̂jX∈cjX

{
(qn,Uj(â

sj ),Xj(MjX ,b̂jX),Y nj )∈T4η1 (Q,Uj ,Vj ,Yj), (qn,Uj(A
sj ),Xnj (MjX ,BjX))∈

T2η(Q,Uj ,Xj), Ij(â
sj )=m̂j1, (qn,Unj (Asj ),Xnj (MjX ,BjX),Y nj )∈T2η1

(Q,Uj ,Xj ,Yj)

}
,

ε24j : =
⋃

m̂jX 6=MjX

⋃
asj∈U

sj
j

⋃
bjX∈cjX

{
(qn,Uj(a

sj ),Xj(m̂jX ,bjX),Y nj )∈T4η1
(Q,Uj ,Vj ,Yj), (qn,Uj(A

sj ),Xnj (MjX ,BjX))∈
T2η(Q,Uj ,Xj),Ij(a

sj )=Mj1, (qn,Unj (Asj ),Xnj (MjX ,BjX),Y nj )∈T2η1 (Q,Uj ,Xj ,Yj)

}
,

ε34j : =
⋃
m̂j1 6=
Mj1

⋃
m̂jX 6=
MjX

⋃
asj∈U

sj
j

⋃
bjX∈cjX

{
(qn,Uj(a

sj ),Xj(m̂jX ,bjX),Y nj )∈T4η1 (Q,Uj ,Vj ,Yj), (qn,Uj(A
sj ),Xnj (MjX ,BjX))∈

T2η(Q,Uj ,Xj), Ij(a
sj )=m̂j1, (qn,Unj (Asj ),Xnj (MjX ,BjX),Y nj )∈T2η1

(Q,Uj ,Xj ,Yj)

}
.

The event of interest is εcl ∩ (ε14j ∪ ε24j ∪ ε34j). Since εclj ∩ (ε14j ∪ ε24j ∪ ε34j) contains the above error event, it suffices

to derive upper bounds on P (εclj ∩ ε
1
4j), P (εclj ∩ ε

2
4j), P (εclj ∩ ε

3
4j). We begin by studying P (εclj ∩ ε

1
4j). Defining,

T̃ (qn) : =
{

(unj , x
n
j , y

n
j ) ∈ T2η1(Uj , Xj , Yj |qn) : (unj , x

n
j ) ∈ T2η(Uj , Xj |qn)

}
, we have (66)

P (εclj ∩ ε
1
4j) = P

 ⋃
mj1,m̂j1∈Mj1

mj1 6=m̂j1

⋃
âsj

∈ U
sj
j

⋃
b̂jX
∈ cjX

⋃
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

⋃
(ûnj ,x̂

n
j )∈

T4η1
(Uj ,Xj |ynj ,q

n)

{
Uj(A

sj )=unj ,Uj(â
sj )=ûnj ,Mj1=mj1

Ij(A
sj )=mj1,Y

n
j =ynj ,Ij(â

sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

}
∩ εclj


≤

∑
mj1,m̂j1∈Mj1

mj1 6=m̂j1

∑
âsj

∈ U
sj
j

∑
b̂jX
∈ cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

∑
(ûnj ,x̂

n
j )∈

T4η1 (Uj ,Xj |ynj ,q
n)

P

({
Uj(A

sj )=unj ,Uj(â
sj )=ûnj ,Mj1=mj1

Ij(A
sj )=mj1,Y

n
j =ynj ,Ij(â

sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

}
∩ εclj

)
. (67)

We now consider two factors of generic term in the above summation. Since Xn
1 (M1), Xn

j (MjX , BjX) is indepen-

dent of the collection Uj(Asj ), Uj(âsj ),Mj1, Ij(A
sj ), Ij(â

sj ), Xn
j (MjX , BjX), Xn

j (MjX , b̂jX) for any (âsj , b̂jX),

and Y n1 − (Xn
1 (M1), Xn

j (MjX , BjX) : j = 2, 3)− (Uj(A
sj ), Uj(â

sj ),Mj1, Ij(A
sj ), Ij(â

sj ), Xn
j (MjX , b̂jX)) is a

Markov chain, we have

P

(
Y nj = ynj

∣∣∣∣∣ Uj(A
sj )=unj ,Uj(â

sj )=ûnj ,Mj1=mj1
φj(q

n,Mj)≥Lj(n),Ij(A
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

)
= P

(
Y nj = ynj |Xn

j (MjX , BjX) = xnj
)

=: θ̂
(
ynj |xnj

)
.

By the law of total probability, we have

P

(
Uj(A

sj )=unj ,Uj(â
sj )=ûnj ,Mj1=mj1

φj(q
n,Mj)≥Lj(n),Ij(A

sj )=mj1,Ij(â
sj )=m̂j1,

Xnj (MjX ,BjX)=xnj ,X
n
j (MjX ,b̂jX)=x̂nj

)
=
∑

mjX∈MjX

∑
asj∈U

sj
j

P

({
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj ,BjX=b̂jX

Asj=asj ,Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,b̂jX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
∩ εclj

)
+

+
∑

mjX∈MjX

∑
asj∈U

sj
j

∑
bjX∈cjX
bjX 6=b̂jX

P

({
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj ,BjX=bjX

Asj=asj ,Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
∩ εclj

)
.

Now recognize that a generic term of the sum in (67) is a product of the left hand sides of the above two identities.

Before we substitute the right hand sides of the above two identities in (67), we simplify the terms involved in the
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second identity (involving the two sums). Denoting

E1 : =

{
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj

Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
, we have,

P

({
Uj(a

sj )=unj ,Uj(â
sj )=ûnj ,Mj=mj ,BjX=bjX

Asj=asj ,Ij(a
sj )=mj1,Ij(â

sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂nj

}
∩ εclj

)
≤ P

(
E1
)
P
(
Asj=asj

BjX=bjX

∣∣∣E1 ∩ εclj
)

where,

P (E1) = P
(
Mj=mj ,Ij(a

sj )=mj1,Ij(â
sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂n

)
P
(
Unj (âsj )=ûnj
Uj(a

sj )=unj

)
, P

(
Asj=asj

BjX=bjX

∣∣∣E1 ∩ εclj
)

= 1
Lj(n) = 2

E{φj(qn,Mj)}(68)

Let us work with P (E1). If m̂j1 6= mj1 and âsj 6= asj , then

P
(
Mj=mj ,Ij(a

sj )=mj1,Ij(â
sj )=m̂j1,

Xnj (mjX ,bjX)=xnj ,X
n
j (mjX ,b̂jX)=x̂n

)
P
(
Unj (âsj )=ûnj
Uj(a

sj )=unj

)
≤


P (Mj=mj) exp{−n(2H(Xj |Q))}

θ2n+2tj exp{−n4η−n8η1}
if b̂jX 6= bjX

P (Mj=mj) exp{−n(H(Xj |Q))}
θ2n+2tj exp{−n4η} otherwise.

(69)

Substituting the above observations in (67), we have

P (εclj ∩ ε
1
4j) ≤

∑
mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX ,b̂jX
b̂jX 6=bjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
(ûnj ,x̂

n
j )∈

T4η1
(Uj ,Xj |ynj ,q

n)

P (Mj = mj) exp {−2nH(Xj |Q)}
θ2n+2tj exp{−n4η − n8η1}Lj(n)

+

+
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX∈cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
ûnj ∈

T4η1
(Uj |xnj ,y

n
j ,q

n)

P (Mj = mj) exp {−nH(Xj |Q)}
θ2n+2tj exp{−n4η}Lj(n)

.

We now employ the upper bound on cardinality of the conditional frequency typical sets T4η1(Uj , Xj |ynj , qn) and

T4η1(Uj |xnj , ynj , qn). For sufficiently large n,

|T4η1(Uj , Xj |ynj , qn)| ≤ exp {n(H(Uj , Xj |Yj , Q) + 8η1)} , |T4η1(Uj |xnj , ynj , qn)| ≤ exp {n(H(Uj |Xj , Yj , Q) + 8η1)} ,

for any (xnj , y
n
j , q

n) ∈ T2η1(Xj , Yj , Q). For such an n, we have

P (εclj ∩ ε
1
4j) ≤

∑
mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX ,b̂jX
b̂jX 6=bjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) P (Mj = mj) exp {−2nH(Xj |Q) + n16η1}
θ2n+2tj exp{−n4η − nH(Uj , Xj |Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX∈cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) P (Mj = mj) exp {−nH(Xj |Q) + 8nη1}
θ2n+2tj exp{−n4η − nH(Uj |Xj , Yj , Q)}Lj(n)

≤
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX ,b̂jX
b̂jX 6=bjX

∑
(unj ,x

n
j )∈

T2η(Uj ,Xj |qn)

P (Mj = mj) exp {−2nH(Xj |Q) + n16η1}
θ2n+2tj exp{−n4η − nH(Uj , Xj |Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂j1 6=mj1

∑
asj ,âsj

asj 6=âsj

∑
bjX∈cjX

∑
(unj ,x

n
j )∈

T2η(Uj ,Xj |qn)

P (Mj = mj) exp {−nH(Xj |Q) + 8nη1}
θ2n+2tj exp{−n4η − nH(Uj |Xj , Yj , Q)}Lj(n)

.

Substituting the lower bound for Lj(n) from (48) and noting that the terms in the summation do not depend on

the arguments of the sum, for n ≥ N11(η1), it can be verified that

P (εclj ∩ ε
1
4j) ≤ 2

θsj exp {−nH(Xj |Q) + 8nη1 + 4nη}
θn exp{−nH(Uj |Xj , Yj , Q)}

(
exp{−nH(Xj |Q) + 8nη1}

exp{−nH(Xj |Yj , Q)− nKj}
+ 1

)
.
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Finally, substituting sj log θ
n = Sj , δ, we have

P (εclj ∩ ε
1
4j) ≤ 2 exp{−n [(log θ −H(Uj |Xj , Yj , Q))− Sj − (8η1 + 4η)]}+

+ 2 exp{−n [(log θ +H(Xj |Q)−H(Uj , Xj |Yj , Q))− (Sj +Kj)− (16η1 + 4η)]}

≤ 4 exp{−n [δ − (16η1 + 8η)]} (70)

for sufficiently large n.

We follow a similar sequence of steps to derive an upper bound on P (ε24j). Defining T̃ (qn) as in (66), we have

P (εclj ∩ ε
2
4j) = P

 ⋃
mjX ,m̂jX∈MjX

m̂jX 6=mjX

⋃
âsj

∈U
sj
j

⋃
b̂jX
∈cjX

⋃
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

⋃
(ûnj ,x̂

n
j )∈

T4η1
(Uj ,Xj |ynj ,q

n)

{
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,Y
n
j =ynj

Ij(A
sj )=Ij(â

sj )=Mj1,MjX=mjX ,
Xnj (MjX ,BjX)=xnj ,Uj(A

sj )=unj

}
∩ εclj


≤

∑
mjX ,m̂jX∈MjX

m̂jX 6=mjX

∑
âsj

∈U
sj
j

∑
b̂jX
∈cjX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

∑
(ûnj ,x̂

n
j )∈

T4η1 (Uj ,Xj |ynj ,q
n)

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,Y
n
j =ynj

Ij(A
sj )=Ij(â

sj )=Mj1,MjX=mjX ,
Xnj (MjX ,BjX)=xnj ,Uj(A

sj )=unj

}
∩ εclj

)
(71)

We now consider two factors of a generic term in the above sum. Since Xn
1 (M1), Xn

j (MjX , BjX) is independent of

the collection Xn
j (m̂jX , b̂jX), Uj(â

sj ), Ij(A
sj ), Ij(â

sj ),MjX , X
n
j (MjX , BjX), Uj(A

sj ) for any (âsj , b̂jX) as long

as m̂jX 6= MjX , and Y n1 − (Xn
1 (M1), Xn

j (MjX , BjX) : j = 2, 3) − (Xn
j (m̂jX , b̂jX), Uj(â

sj ), Ij(A
sj ), Ij(â

sj ),

MjX , X
n
j (MjX , BjX), Uj(A

sj )) is a Markov chain, we have

P

(
Y nj = ynj

∣∣∣∣∣
{

Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â
sj )=ûnj

Ij(A
sj )=Ij(â

sj )=Mj1,MjX=mjX ,
Xnj (MjX ,BjX)=xnj ,Uj(A

sj )=unj

}
∩ εclj

)
= P

(
Y nj = ynj |Xn

j (MjX , BjX) = xnj
)

=: θ̂
(
ynj |xnj

)
.

By the law of total probability, we have

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj
Ij(A

sj )=Ij(â
sj )=Mj1,MjX=mjX ,

Xnj (MjX ,BjX)=xnj ,Uj(A
sj )=unj

}
∩ εclj

)
=

∑
mj1∈Mj1

∑
bjX∈cjX

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,A
sj=âsj

Ij(â
sj )=Mj1,Mj=mj ,BjX=bjX

Xnj (mjX ,bjX)=xnj ,Uj(â
sj )=unj

}
∩ εclj

)

+
∑

mj1∈Mj1

∑
bjX∈cjX

∑
asj∈U

sj
j

asj 6=âsj

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,A
sj=asj

Ij(a
sj )=Ij(â

sj )=Mj1,Mj=mj ,BjX=bjX
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

}
∩ εclj

)
.

Now recognize that a generic term of the sum in (71) is a product of the left hand sides of the above two identities.

Before we substitute the right hand sides of the above two identities in (71), we simplify the terms involved in the

second identity (involving the two sums). Denoting

E2 : =

{
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,

Ij(a
sj )=Ij(â

sj )=mj1,Mj=mj
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

}
, we have,

P

({
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,A
sj=asj

Ij(a
sj )=Ij(â

sj )=mj1,Mj=mj ,BjX=bjX
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

}
∩ εclj

)
≤ P (E2)P

(
Asj=asj

BjX=bjX

∣∣∣E2 ∩ εclj
)
,
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where P
(
Asj = asj , BjX = bjX |E2 ∩ εclj

)
= 1

Lj(n) . Let us now evaluate P (E2). For m̂jX 6= mjX , we have

P

(
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj ,

Ij(a
sj )=Ij(â

sj )=mj1,Mj=mj
Xnj (mjX ,bjX)=xnj ,Uj(a

sj )=unj

)
= P (Mj = mj)P

(
Xnj (m̂jX ,b̂jX)=x̂nj
Xnj (mjX ,bjX)=xnj

)
P
(
Uj(a

sj )=unj
Uj(â

sj )=ûnj

)
P
(
Ij(a

sj )=mj1
Ij(â

sj )=mj1

)

=


P (Mj=mj) exp{−2nH(Xj |Q)}

θn+tj exp{−4nη−8nη1}
if asj = âsj , unj = ûnj

P (Mj=mj) exp{−2nH(Xj |Q)}
θ2n+2tj exp{−4nη−8nη1}

if asj 6= âsj
.

Substituting the above observations in (71), we have

P (εclj ∩ ε
2
4j) ≤

∑
mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
x̂nj ∈

T4η1
(Xj |unj ,y

n
j ,q

n)

P (Mj = mj) exp {−2nH(Xj |Q)}
θn+tj exp{−n4η − n8η1}Lj(n)

+

+
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
(ûnj ,x̂

n
j )∈

T4η1
(Uj ,Xj |ynj ,q

n)

P (Mj = mj) exp {−2nH(Xj |Q)}
θ2n+2tj exp{−n4η − n8η1}Lj(n)

.

We now employ the upper bounds on |T4η1(Xj |unj , ynj , qn)| and |T4η1(Uj , Xj |ynj , qn)|. For sufficiently large n,

|T4η1(Xj |unj , ynj , qn)| ≤ exp {n(H(Xj |Uj , Yj , Q) + 8η1)} and |T4η1(Uj , Xj |ynj , qn)| ≤ exp {n(H(Uj , Xj |Yj , Q) + 8η1)}

for all (unj , y
n
j , q

n) ∈ T2η1(Uj , Yj , Q). For such an n, we have

P (εclj ∩ ε
2
4j) ≤

∑
mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) θ−n−tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η − n16η1 − nH(Xj |Uj , Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) θ−2n−2tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η − n16η1 − nH(Xj , Uj |Yj , Q)}Lj(n)

≤
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

∑
(unj ,x

n
j )∈

T2η(Uj ,Xj |qn)

θ−n−tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η − n16η1 − nH(Xj |Uj , Yj , Q)}Lj(n)

+

+
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

∑
(unj ,x

n
j )∈

T2η(Uj ,Xj |qn)

θ−2n−2tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η − n16η1 − nH(Xj , Uj |Yj , Q)}Lj(n)

.
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Substituting the lower bound for Lj(n) from (48), we have

P (εclj ∩ ε
2
4j) ≤ 2

∑
mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj∈
U
sj
j

P (Mj = mj) exp {−nH(Xj |Q) + n16η1}
θsj exp{−n8η − nH(Xj |Uj , Yj , Q)}|cjX |

+

+2
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

∑
asj ,âsj∈U

sj
j

asj 6=âsj

P (Mj = mj)θ
−sj exp {−nH(Xj |Q) + n16η1}

θn+tj exp{−n8η − nH(Xj , Uj |Yj , Q)}|cjX |

≤ 2
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

P (Mj = mj) exp {−nH(Xj |Q) + n16η1}
exp{−n8η − nH(Xj |Uj , Yj , Q)}|cjX |

+

+2
∑

mj∈Mj

∑
m̂jX 6=mjX

∑
bjX ,b̂jX
∈cjX

P (Mj = mj)θ
sj exp {−nH(Xj |Q) + n16η1}

θn+tj exp{−n8η − nH(Xj , Uj |Yj , Q)}|cjX |

≤ 2
∑

mj∈Mj

∑
m̂jX 6=mjX

P (Mj = mj) exp {−nH(Xj |Q) + n16η1}
exp{−n8η − nH(Xj |Uj , Yj , Q)− nKj}

+

+2
∑

mj∈Mj

∑
m̂jX 6=mjX

P (Mj = mj)θ
sj exp {−nH(Xj |Q) + n16η1}

θn+tj exp{−n8η − nH(Xj , Uj |Yj , Q)− nKj}

≤ 2
exp {−nH(Xj |Q) + nLj + nη1 + n16η1}
exp{−n8η − nH(Xj |Uj , Yj , Q)− nKj}

[
1 +

exp{nH(Uj |Yj , Q)}
θn+tj−sj

]
We have for sufficiently large n

P (εclj ∩ ε
2
4j) ≤ 2 exp {−n(I(Xj ;Uj , Yj |Q)−Kj − Lj − [9η1 + 16η1])}

+2 exp
{
−n
[(

log θ+H(Xj |Q)−
H(Xj ,Uj |Yj ,Q)

)
−
(

Kj+Lj+
(Sj−Tj) log θ

)
− [(9 + 16η1]

]}
≤ 4 exp {−n (δ − (9η + 16η1))} . (72)

We are left to study P (ε34j). Defining T̃ (qn) as in (66), and

E3 : =

{
Xnj (m̂jX ,b̂jX)=x̂nj ,Uj(â

sj )=ûnj
Ij(a

sj )=mj1,Ij(â
sj )=m̂j1

Xnj (mjX ,bjX)=xnj ,Uj(a
sj )=unj ,Mj=mj

}
(73)

the union bound yields

P (εclj ∩ ε
3
4j) ≤

∑
mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

∑
asj ,âsj

âsj 6=asj

∑
bjX ,b̂jX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

∑
(ûnj ,x̂

n
j )∈

T4η1 (Uj ,Xj |ynj ,q
n)

P
({

Asj=asj
Y nj =ynj ,BjX=bjX

}
∩ E3 ∩ εclj

)
(74)

As earlier, we consider a generic term in the above sum and simplify the same. Observe that

P
(
Y nj = ynj

∣∣∣{Asj=asj
BjX=bjX

}
∩ E3 ∩ εclj

)
= P

(
Y nj = ynj |Xn

j (MjX , BjX) = xnj
)

=: θ̂
(
ynj |xnj

)
,

P
({

Asj=asj
BjX=bjX

}
∩ E3 ∩ εclj

)
≤ P (E3)P

({
Asj=asj
BjX=bjX

}∣∣∣E3 ∩ εclj
)

≤ P (Mj = mj) exp{−2nH(Xj |Q)}
θ2n+2tj exp{−4nη − 8nη1}

1

Lj(n)
.

Substituting the above observations in (74), we have

P (εclj ∩ ε
3
4j) ≤

∑
mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

∑
asj ,âsj

âsj 6=asj

∑
bjX ,b̂jX

∑
(unj ,x

n
j ,y

n
j )∈

T̃ (qn)

θ̂
(
ynj |xnj

) ∑
(ûnj ,x̂

n
j )∈

T4η1 (Uj ,Xj |ynj ,q
n)

P (Mj = mj) exp{−2nH(Xj |Q)}
θ2n+2tj exp{−4nη − 8nη1}Lj(n)

.
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There exists N15(η1) ∈ N such that for all n ≥ max {N12(η), N15(η1)}, we have

|T4η1(Uj , Xj |ynj , qn)| ≤ exp {n(H(Uj , Xj |Yj , Q) + 8η1)} for all (ynj , q
n) ∈ T2η1(Yj , Q)

and hence

P (εclj ∩ ε
3
4j) ≤

∑
mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

∑
asj ,âsj

âsj 6=asj

∑
bjX ,b̂jX

∑
(unj ,x

n
j )∈

T2η(Uj ,Xj |qn)

θ−2n−2tjP (Mj = mj) exp {−2nH(Xj |Q)}
exp{−n4η − n16η1 − nH(Xj , Uj |Yj , Q)}Lj(n)

≤ 2
∑

mj1,m̂j1
mj1 6=m̂j1

∑
mjX ,m̂jX
mjX 6=m̂jX

θsjP (Mj = mj) exp {−nH(Xj |Q) + n16η1}
θn+tj exp{−n8η − nH(Xj , Uj |Yj , Q)− nKj}

≤ 2
θsjP (Mj = mj) exp {−nH(Xj |Q) + n16η1 + nLj}
θn exp{−n8η − nH(Xj , Uj |Yj , Q)− nKj − nη1}

≤ 2 exp
{
−n
[(

log θ+H(Xj |Q)−
H(Xj ,Uj |Yj ,Q)

)
−
(
Kj+Lj+
Sj log θ

)
−
(

9η1+16η1
+ log θη1

)]}
≤ 2 exp {−n (δ − (9η + 16η1))} . (75)

We now collect all the upper bounds derived in (70), (72) and (75). For n ≥ max {N14(η), N16(η)}, we have

P ((ε̃1 ∪ ε3)c ∩ ε4j) ≤ 10 exp {−n (δ − (9η + 16η1))} (76)

APPENDIX E

PROOF OF LEMMA 3

We prove this by contradiction. Suppose (hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) ∈

cocl(α3-1
f (pQU2U3XY )) for some pQU2U3XY ∈ D3−1(τ1, τ, τ). In the sequel, we characterize such a pQU2U3XY and

employ the same to derive a contradiction. Our first claim is that pX2|Q(1|q) = pX3|Q(1|q) = τ for all q ∈ Q.

From (1) we have

Rj ≤ I(UjXj ;Yj |Q) = H(Yj |Q)−H(Yj |XjUjQ) = H(Yj |Q)− hb(δ) =
∑
q∈Q

pQ(q)H(Yj |Q = q)− hb(δ)

=
∑
q∈Q

pQ(q)H(Xj ⊕Nj |Q = q)− hb(δ) for j = 2, 3. (77)

If τq : = pXj |Q(1|q), then independence of the pair Nj and (Xj , Q) implies pXj⊕Nj |Q(1|q) = τq(1−δ)+(1−τq)δ =

τq(1− 2δ) + δ. Substituting the same in (77), we have

Rj ≤
∑
q∈Q

pQ(q)hb(τq(1− 2δ) + δ)− hb(δ) ≤ hb(
∑
q∈Q

pQ(q)[τq(1− 2δ) + δ])− hb(δ)

= hb([pXj (1)(1− 2δ) + δ])− hb(δ)

from Jensen’s inequality. Since pXj (1) ≤ τ < 1
2 , we have pXj (1)(1−2δ)+δ ≤ τ(1−2δ)+δ < 1

2 (1−2δ)+δ = 1
2 .22

The term hb([pXj (1)(1− 2δ) + δ]) is therefore strictly increasing in pXj (1) and is at most hb(τ ∗ δ).23 Moreover,

22Here we have used the positivity of (1− 2δ), or equivalently δ being in the range (0, 1
2
).

23This is consequence of pXj (1) ≤ τ .
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the condition for equality in Jensen’s inequality implies Rj = hb(τ ∗ δ)− hb(δ) if and only if pXj |Q(1|q) = τ for

all q ∈ Q that satisfies pQ(q) > 0. We have therefore proved our first claim.

Our second claim is an analogous statement for pX1|Q(1|q). In particular, our second claim is that pX1|Q(1|q) = τ1

for each q ∈ Q of positive probability. We begin with the upper bound on R1 in (1). As in proof of theorem 4, we

let Q̃ : = Q×U2×U3, q̃ = (q, u2, u3) ∈ Q̃ denote a generic element and Q̃ : = (Q,U2, U3). The steps we employ

in proving the second claim borrows steps from proof of theorem 4 and the proof of the first claim presented above.

Note that

R1 ≤ I(X1;Y1|Q̃) = H(Y1|Q̃)−H(Y1|Q̃X1)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
x1,q̃

pX1Q̃
(x1,q̃)H(N1 ⊕ (X2 ∨X3)|Q̃ = q̃) (78)

=
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1 ⊕ (X2 ∨X3)|Q̃ = q̃)

≤
∑
q̃

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1|Q̃ = q̃) =
∑
q

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)− hb(δ1)(79)

=
∑
q̃

pQ̃(q̃)hb(τ1q̃ ∗ δ1)− hb(δ1) ≤ hb(EQ̃[τ1q̃ ∗ δ1])− hb(δ1) = hb(pX1
(1) ∗ δ1)− hb(δ1), (80)

where (i) (79) follows from substituting pX1⊕N1|Q̃(·|q̃) for pZ1 , pN1|Q̃(·|q̃) for pZ2 and pX2∨X3|Q̃(·|q̃) for pZ3

in lemma 1, (iii) the first inequality in (80) follows from Jensen’s inequality. Since pX1(1) ≤ τ1 <
1
2 , we have

pX1
(1) ∗ δ1 = pX1

(1− δ1) + (1− pX1
(1))δ1 = pX1

(1)(1− 2δ1) + δ1 ≤ τ1(1− 2δ1) + δ1 ≤ 1
2 (1− 2δ1) + δ1 = 1

2 .

Therefore hb(pX1
(1)∗δ1) is increasing24 in pX1

(1) and is bounded above by hb(τ1 ∗δ1).25 Moreover, the condition

for equality in Jensen’s inequality implies R1 = hb(τ1 ∗ δ1)− hb(δ1) if and only if pX1|Q̃(1|q̃) = τ1 for all q̃ ∈ Q̃.

We have therefore proved our second claim.26

Our third claim is that either H(X2|Q,U2) > 0 or H(X3|Q,U3) > 0. Suppose not, i.e., H(X2|Q,U2) =

H(X3|Q,U3) = 0. In this case, the upper bound on R1 +R2 +R3 in (2) is

R1 +R2 +R3 ≤ I(X2, X3, X1;Y1|Q) = H(Y1|Q)−H(Y1|Q,X1, X2, X3)

= H(X1 ⊕ (X2 ∨X3)⊕N1|Q)−H(X1 ⊕ (X2 ∨X3)⊕N1|Q,X1, X2, X3)

= hb(τ1(1− β) + (1− τ1)β)− hb(δ1),

where the last equality follows from substituting pXj |Q : j = 1, 2, 3 derived in the earlier two claims.27 The

hypothesis (14) therefore precludes (hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) ∈ α3-1
f (pQU2U3XY )

if H(X2|Q,U2) = H(X3|Q,U3) = 0. This proves our third claim.

24This also employs the positivity of 1− 2δ1, or equivalently δ1 being in the range (0, 1
2
).

25This is consequence of pX1 (1) ≤ τ1.
26We have only proved pX1|QU2U3

(1|q, u2, u3 = τ1) for all (q, u2, u3) ∈ Q × U2 × U3 of positive probability. The claim now follows

from conditional independence of X1 and U2, U3 given Q.
27β : = (1− τ)2δ1 + (2τ − τ2)(1− δ1) is as defined in the statement of the lemma.
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Our fourth claim is H(X2 ∨ X3|Q,U2, U3) > 0. The proof of this claim rests on each of the earlier three

claims. Note that we have either H(X2|Q,U2) > 0 or H(X3|Q,U3) > 0. Without loss of generality, we assume

H(X2|Q,U2) > 0. We therefore have a u∗2 ∈ U2 such that pU2|Q(u∗2|q∗) > 0 and H(X2|U2 = u∗2, Q = q∗) > 0.

This implies pX2|U2Q(x2|u∗2, q∗) /∈ {0, 1} for each x2 ∈ {0, 1}.

Since pQ(q∗) > 0, from the first claim we have

0 < 1− τ = pX3|Q(0|q∗) =
∑
u3∈U3

pX3U3|Q(0, u3|q∗).

This guarantees existence of u∗3 ∈ U3 such that pX3U3|Q(0, u∗3|q∗) > 0. We therefore have pU3|Q(u∗3|q∗) > 0 and

1 ≥ pX3|U3Q(0|u∗3, q∗) > 0.

We have therefore identified (q∗, u∗2, u
∗
3) ∈ Q×U2×U3 such that pQ(q∗) > 0, pU2|Q(u∗2|q∗) > 0, pU3|Q(u∗3|q∗) >

0, pX2|U2Q(x2|u∗2, q∗) /∈ {0, 1} for each x2 ∈ {0, 1} and 1 ≥ pX3|U3Q(0|u∗3, q∗) > 0. By conditional independence

of the pairs (X2, U2) and (X3, U3) given Q, we also have pX2|U2U3Q(x2|u∗2, u∗3, q∗) /∈ {0, 1} for each x2 ∈ {0, 1}

and 1 ≥ pX3|U2U3Q(0|u∗2, u∗3, q∗) > 0. The reader may now verify pX2∨X3|U2U3Q(x|u∗2, u∗3, q∗) /∈ {0, 1} for each

x ∈ {0, 1}. Since pQU2U3(q∗, u∗2, u
∗
3) = pQ(q∗)pU2|Q(u∗2|q∗)pU3|Q(u∗3|q∗) > 0, we have proved the fourth claim.

Our fifth and final claim is R1 < hb(τ1 ∗ δ1) − hb(δ1). This follows from a sequence of steps employed in

proof of the second claim herein, or in the proof of theorem 4. Denoting Q̃ : = (Q,U2, U3) and a generic element

q̃ : = (q, u2, u3) ∈ Q̃ : = Q× U2 × U3, we observe that

R1 ≤ I(X1;Y1|Q̃) =
∑
q̃

pQ̃(q̃)H(X1 ⊕N1 ⊕ (X2 ∨X3)|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1 ⊕ (X2 ∨X3)|Q̃ = q̃)

<
∑
q̃

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)−
∑
q̃

pQ̃(q̃)H(N1|Q̃ = q̃) =
∑
q

pQ̃(q̃)H(X1 ⊕N1|Q̃ = q̃)− hb(δ1)(81)

=
∑
q̃

pQ̃(q̃)hb(τ1q̃ ∗ δ1)− hb(δ1) ≤ hb(EQ̃ {τ1q̃ ∗ δ1})− hb(δ1) = hb(pX1(1) ∗ δ1)− hb(δ1), (82)

where (i) (81) follows from existence of a q̃∗ ∈ Q̃ for which H(X2 ∨ X3|Q̃ = q̃∗) > 0 and substituting

pX1⊕N1|Q̃(·|q̃∗) for pZ1
, pN1|Q̃(·|q̃∗) for pZ2

and pX2∨X3|Q̃(·|q̃∗) for pZ3
in lemma 1, (iii) the first inequality in

(82) follows from Jensen’s inequality. Since pX1(1)∗ δ1 = pX1(1− δ1) + (1−pX1(1))δ1 = pX1(1)(1−2δ1) + δ1 ≤

τ1(1−2δ1) + δ1 ≤ 1
2 (1−2δ1) + δ1 = 1

2 . Therefore hb(pX1
(1)∗ δ1) is increasing28 in pX1

(1) and is bounded above

by hb(τ1 ∗ δ1). We therefore have R1 < hb(τ1 ∗ δ1)− hb(δ1).

APPENDIX F

PROOF OF LEMMA 5

The proof here closely mimics proof of lemma 3. In fact, we allude to appendix E to avoid restating certain

elements.

28This also employs the positivity of 1− 2δ1, or equivalently δ1 being in the range (0, 1
2
).
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We assume C∗ ∈ αu(τ), and derive a contradiction. Suppose C∗ ∈ cocl(αu(pQU2U3XY )) for some pQU2U3XY ∈

Du(τ)29. In the sequel, we characterize such a pQU2U3XY and employ the same to derive a contradiction. Our first

claim, as in appendix E, is pXj |Q(1|q) = τ for j = 2, 3 and every q ∈ Q. Since the corresponding arguments in

appendix E hold verbatim, we allude to the same for a proof of this claim. We conclude the triplet (Q,X1), X2, X3

to be mutually independent, and in particular X1, X2, X3 to be mutually independent. This enables us conclude

that for any pQU2U3XY ∈ Du(τ) for which C∗ ∈ cocl(αu(pQU2U3XY )), we have it’s corresponding marginal

pXY ∈ D(τ).

Our second claim is pX1|Q(1|q) = p∗X1
(1) for every q ∈ Q for which pQ(q) > 0. We begin with the upper bound

on R1 in (1). Denoting

I(pA|C(·|c); pB|A,C(·|·, c)) : = I(A;B|C = c) for any random variables A,B,C, we have,

I(X1;Y1|Q,U2, U3) ≤ I(X1;Y1|Q,X2 ∨X3) (83)

=
∑
s

pX2∨X3
(s)
∑
q

pQ|X2∨X3
(q|s)I

(
pX1|Q,X2∨X3

(·|q, s); pY1|X1Q,X2∨X3
(·|·, q, s)

)
=

∑
s

pX2∨X3
(s)
∑
q

pQ|X2∨X3
(q|s)I

(
pX1|Q,X2∨X3

(·|q, s); pY1|X1,X2∨X3
(·|·, s)

)
(84)

≤
∑
s

pX2∨X3(s)I

(∑
q

pQ|X2∨X3
(q|s)pX1|Q,X2∨X3

(·|q, s); pY1|X1,X2∨X3
(·|·, s)

)
(85)

=
∑
s

pX2∨X3
(s)I

(
pX1|X2∨X3

(·|s); pY1|X1,X2∨X3
(·|·, s)

)
= I(X1;Y1|X2 ∨X3) ≤ C1 (86)

where (i) (83) follows from the Markov chains (U2, U3)− (X2 ∨X3)−Y1 and (U2, U3)− (X1, X2 ∨X3)−Y1, (ii)

(84) follows from the Markov chain Q−X1, X2∨X3−Y1 resulting from the nature of the channel from the inputs

to Y1, (iii) (85) follows from Jensen’s inequality, and (iv) (86) follows from pXY ∈ D(τ) and definition of C1. The

strict concavity of I(pA(·); pB|A(·|·)) in pA(·) implies equality holds in (85) if and only if pX1|Q,X2∨X3
(1|q, s) =

pX1|Q(1|q) is invariant with q for every q ∈ Q for which pQ|X2∨X3
(q|s) = pQ(q) > 0.30 By the uniqueness of

p∗XY , and in particular p∗X1
, we conclude pX1|Q(1|q) = p∗X1

(1) for every q ∈ Q for which pQ(q) > 0.

Our first and second claims imply that if C∗ ∈ cocl(αu(pQU2U3XY )) for some pQU2U3XY ∈ Du(τ), then∑
q,u2,u3

pQU2U3X,Y (q, u2, u3, x, y) = p∗XY (x, y) ∈ D(τ), and furthermore, Q is independent of X . We therefore

reiterate that any entropy or mutual information terms involving random variables in X,Y , stated in the sequel, is

evaluated with respect to p∗XY .

Our third claim is that either H(X2|Q,U2) > 0 or H(X3|Q,U3) > 0. Suppose not, i.e., H(X2|Q,U2) =

H(X3|Q,U3) = 0. In this case, the upper bound on R1 +R2 +R3 = C1 + 2(hb(τ ∗ δ)− hb(δ)) in (2) is

R1 +R2 +R3 = C1 + 2(hb(τ ∗ δ)− hb(δ)) ≤ I(X2, X3, X1;Y1|Q) = I(X;Y1) (87)

29Recall τ : = (τ1, τ, τ).
30We have proved in our first claim Q and (X2, X3) are independent.
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where the last equality follows from independence of Q and X and thereby implying independence of Q and

(X,Y ). (87) contradicts the hypothesis (19) of the lemma.

Our fourth claim is H(X2 ∨ X3|Q,U2, U3) > 0. The proof of this claim is identical to the proof of the

corresponding claim in appendix E and the reader is alluded to the same. As a consequence of H(X2∨X3|Q̃) > 0,

where Q̃ : = (Q,U2, U3), there exists q̃∗ : = (q∗, u∗2, u
∗
3) ∈ Q̃ : = Q × U2 × U3 for which pQ̃(q̃∗) > 0 and

H(X2 ∨X3|Q̃ = q̃∗) > 0.

Our fifth claim and final claim is that H(X2 ∨ X3|Q,U2, U3) > 0 implies C1 < I(X1;Y1|X2 ∨ X3) thereby

contradicting the definition of C1 (17). The reader will recognize that our proof for the fifth claim in appendix E

cannot be employed here. We employ a more powerful technique that we will have opportunity to use in our study

of example 7. The upper bound (1) on R1 implies

C1 = R1 ≤ I(X1;Y1|Q̃) =
∑
q̃

pQ̃(q̃)I(pX1|Q̃(·|q̃); pY1|X1Q̃
(·|·, q̃))

=
∑
q̃

pQ̃(q̃)I

(
pX1|Q̃(·|q̃);

∑
s

pY1|X1,X2∨X3Q̃
(·|·, s, q̃)pX2∨X3|Q̃(s|q̃)

)

<
∑
q̃

pQ̃(q̃)
∑
s

pX2∨X3|Q̃(s|q̃)I
(
pX1|Q̃(·|q̃); pY1|X1,X2∨X3Q̃

(·|·, s, q̃)
)

(88)

=
∑
s,q̃

pQ̃,X2∨X3
(q̃, s)I(pX1

(·); pY1|X1,X2∨X3
(·|·, s)) (89)

=
∑
s,q̃

pQ̃,X2∨X3
(q̃, s)I(pX1|X2∨X3

(·|s); pY1|X1,X2∨X3
(·|·, s)) = I(X1;Y1|X2 ∨X3) ≤ C1, (90)

where (i) (88) follows from strict convexity of the mutual information in the conditional distribution (channel transi-

tion probabilities), the presence of q̃∗ ∈ Q̃ for which pX2∨X3|Q̃(·|q̃∗) is non-degenerate and pY1|X1,X2∨X3,Q̃
(·|·, s, q̃∗)

distinct, (ii) (89) follows from conditional independence of X1 and (U2, U3) given Q, the second claim above, and

the Markov chain Q̃−X1, X2∨X3−Y1 induced by the nature of the channel, and (iii) (90) follows from X1, X2, X3

being mutually independent, pXY ∈ D(τ) and the definition of C1. We have thus derived a contradiction C1 < C1.
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[23] P. Gács and J. Körner, “Common information is far less than mutual information,” Problems of Control and Information Theory, vol. 2,

no. 2, pp. 119–162, 1972.

[24] H. S. Witsenhausen, “On sequences of pairs of dependent random variables,” SIAM Journal of Applied Mathematics, vol. 28, no. 1, pp.

100–113, January 1975.

[25] M. Hall, The theory of groups. New York: Macmillan, 1959.

[26] A. Sahebi and S. Pradhan, “Abelian group codes for source coding and channel coding,” submitted to IEEE Trans. of Information theory,

April 2013, available at http://arxiv.org/abs/1305.1598.

[27] R. G. Gallager, Information Theory and Reliable Communication. New York: John Wiley & Sons, 1968.

[28] W. Hoeffding, “Asymptotically optimal tests for multinomial distributions,” Annals of Mathematical Statistics, vol. 36, no. 2, pp. 369–401,

1965.

[29] I. Sanov, “On the probability of large deviations of random variables,” Matematicheskii Sbornik, vol. 42(84), pp. 11–44, 1957, translated

by Dana E. A. Quade, Institute of Statistics, Mimeograph Series No. 192, March 1958, available at.


	I Introduction
	II Preliminaries: notation and definitions
	II-A Notation
	II-B Definitions: 3-IC, 3-to-1IC, achievability, capacity region

	III Message splitting and superposition using unstructured codes
	III-A CHK-technique for 2-IC
	III-B USB-technique for 3-to-1 IC

	IV Strict sub-optimality of USB-region for 3-to-1 IC
	V Achievable rate region using PCC built over finite fields
	V-A Step I : Managing interference seen by one receiver using PCC built over fields
	V-B Step II: PCC rate region for a general discrete 3-IC using codes built over finite fields
	V-C Step III: Enlarging the PCC rate region using unstructured codes

	VI Step IV: Achievable rate region using PCC built over Abelian groups
	VI-A Preliminaries about groups
	VI-B The Group Mutual Information
	VI-C Managing interference seen by one receiver using PCC built over Abelian groups

	Appendix A: Upper bound on P(lj)
	Appendix B: Upper bounds on P(1c2), P((1 2)c3)
	Appendix C: An upper bound on P((123)c41)
	Appendix D: An upper bound on P((123)c4j)
	Appendix E: Proof of lemma ??
	Appendix F: Proof of lemma ??
	References

