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Abstract—A new coding scheme for the distributed source
coding problem for general discrete memoryless sources is
presented. The scheme involves a two-layered coding strategy,
the first layer code is of constant finite block-length whereas the
second layer contains codes of block-length approaching infinity.
It is argued that small block-length codes preserve correlations
between sources more efficiently, while suffering rate-loss in a
point-to-point compression perspective. Consequently, there is
a sweet-spot for the length of the code. An achievable rate-
distortion region is characterized using single-letter distributions.
It is shown that this region strictly contains previous known
achievable rate-distortion regions for the distributed source
coding problem.

I. INTRODUCTION

Due to the inherent difficulty in characterization of funda-

mental limits of reliable communication, most of the works

in information theory have considered the analysis of large

block-length codes, without any constraints on memory and

computational complexity. This allows operating in the realm

of the laws of large numbers and thus significantly simplifies

the analysis. However, coding theory deals with codes with

short block-lengths with computationally efficient encoding

and decoding algorithms. While there is interest in application

of such small-length communications strategies, it is largely

assumed that performance improves when the block-length

increases. This turns out to be not true in certain coding

schemes used in distributed source coding as discussed below.

The two user distributed source-coding problem is de-

picted in figure 1. Two correlated discrete-memoryless-sources

(DMS) are fed to the encoders. Each encoder compresses its

respective source and transmits the compressed version to the

decoder. The decoder reconstructs each of the sources with

respect to a distortion criterion.There has been a substantial

effort to derive the optimal RD region for this set-up, however

the region has been characterized only in special cases [2], [3].

The best known inner bound to the optimal rate-distortion

(RD) region for distributed coding of two correlated sources is

the Berger-Tung (BT) bound [4]. The BT bound is based on a

coding strategy called quantize and bin. In this strategy the two

sources are quantized using two independent, infinite length

random vector quantizers and the quantizers are binned to
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Fig. 1. The two-user distributed source coding problem

reduce the transmission rate. The independent quantization ap-

proach leads to the so-called long Markov chain. The Markov

chain implies that conditioned on the sources, the single-letter

distribution of the quantized versions of the sources decom-

pose into the product of conditional marginal distributions.

In [5] it was pointed out that in the presence of common

components, further correlation can be induced between the

quantized versions, in other words the Markov chain can

be relaxed using the common component (CC). Based on

this observation the authors in [5] propose a coding scheme

which outperforms the BT strategy in the presence of common

components, but reduces to the latter in their absence. The

CC achievable RD region shrinks discontinuously in source

probability distribution as common components are replaced

with highly correlated components. From the continuity of

the optimal RD region, it was proved in [5] that the CC

scheme is also sub-optimal since it is discontinuous. Hence the

optimal RD region strictly contains the CC region, however it

was not clear how to achieve points outside of the CC rate-

distortion region. Toward improving the CC bound, we used

two identical random quantizers instead of two independent

ones. We found [1] that when applied to the binary-one-help-

one (BOHO) example of [5], as the block-length is increased,

the performance improves initially, reaches a plateau, and then

decreases after that. So the best performance is achieved when

the length of the code is at some finite value. Based on this

observation, a coding strategy was proposed for the BOHO

example which improves the CC achievable RD region.

The main difficulty in analyzing finite block-length coding

strategies is that in the absence of simplifying theorems such

as laws of large numbers, the resulting characterizations of

achievable inner bounds are in terms of multi-letter prob-
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Fig. 2. Quantization noises become independent at large block-length

ability distributions. This makes the computation of such

inner bounds very complex. In this paper we first present a

coding scheme for the distributed source coding problem in the

general discrete, memoryless setting. The scheme utilizes both

small-length codes and codes with block-length approaching

infinity. A multi-letter characterization of the rate-distortion

region achievable using this scheme is given, and it is shown

that there is an approximating single-letter characterization

for the inner bound. We prove that the resulting inner bound

outperforms the previous known coding schemes for this

communication setting.

The rest of the paper is organized as follows: In section

II, we explain the intuitive reason behind our coding scheme.

Section III includes the new coding strategy and the resulting

RD region. Section IV concludes the paper.

II. BINARY-ONE-HELP ONE EXAMPLE

In [1] quantization of two highly correlated BSS’s using

the same randomly generated code was considered. More

specifically, let X be a BSS, and E be a Be(ε) random

variable. Define the sources as X1 = X and X2 = X+E. We

took a randomly chosen n-length quantizer Q and quantized

Xn
1 and Xn

2 . As the length of the quantizer approaches infinity,

the quantization noises become independent; this happens

irrespective of the value of ε. The intuitive reason is that

as the quantizer length increases, most of the vectors are

concentrated on the edges of the Voronoi regions. Hence

as the length goes to infinity, with high probability the two

source vectors fall into two different quantization regions.

Since codewords are pairwise independent, the quantization

noises become independent. This is illustrated in figure 2.

Independent quantization noises prevent encoders from refin-

ing each other’s quantizations. When the sources are exactly

equal (i.e. common components), the quantizations would also

be equal. We argue that the discontinuity in the CC scheme

is caused by the discontinuity in the correlation between

quantization noises. This implies application of small-length

quantizers is beneficial since they preserve correlation between

the sources, however there is also a rate-loss associated with

using small-length quantizers. The evidence suggests that the

existence of a trade-off between avoiding rate-loss and preserv-

ing correlation. It was shown that there is a sweet-spot for the

length of the quantizer where the trade-off is optimized. Based

on these observations a new coding scheme for the special

case of BOHO problem was presented. The scheme uses two

layers of codes, the first layer consists of a codebook with

finite length (i.e. the codeword length is not taken to infinity),

and the second codebook has large block-length. In this coding

strategy the encoders apply the finite-length quantizer in first

layer to quantize the highly correlated components of the

sources, and these quantizations are transmitted to the decoder.

Since the compressed sequences are highly correlated, the

encoders are able to cooperate in transmitting them. In the

next step, the CC scheme is applied while considering the

previous quantizations as side information completely known

at the decoder and partially known at each encoder.

III. THE NEW CODING STRATEGY

Let X1 and X2 be two correlated DMS’s. Assume there

exist functions f1 : X1 → Z and f2 : X2 → Z , such that

P (f1(X1) �= f2(X2)) ≤ ε′, ε′ ∈ (0, 0.5). Here Xi and Z are

the underlying alphabets for Xi and Z. Let ε = 1 − (1 −
ε′)n. Also define Si = fi(Xi), i ∈ {1, 2}. The next theorem

presents the main result of this paper:

Theorem 1: The following RD vectors are achievable:

R1 ≥ I(X1;U1|U2W ) + En,ε + 2|X1||U1| log( p1
p1 − ε

)

R2 ≥ I(X2;U2|U1W ) + 2En,ε + 2|X2||U2| log( p2
p2 − ε

)

R1 +R2 ≥ I(X1X2;U1U2W ) + 3En,ε

+ 2|X1||U1| log( p1
p1 − ε

) + θn

Di ≥ E{di
(
hi(U1, U2,W ), Xi

)}
For every distribution PX1,X2,W,U1,U2

satisfying the following

constraints:

1)U1 ↔ (X1,W )↔ (X2,W )↔ U2

2)W ↔ S1 ↔ (X1, X2)

3)pi > ε, i = 1, 2

Also pi and En,ε are defined as follows:

p1 = min
x1,w,u1,u2

({PU1|X1,W,U2
}, {PU1|W,U2

})
p2 = min

x2,w,u1,u2

({PU2|X2,W,U1
}, {PU2|W,U1

})

En,ε =
h(ε)

n
+ ε log |W|

In the above formulas, θn is a sequence approaching 0 which

can be bounded for a given PS,W . Also Ui and W are the

alphabets for Ui and W .

Remark 1: The above RD region reduces to the CC region

when ε = 0 (i.e when S1 = S2). Also if S1 and S2 are taken

to be trivial, the bound reduces to the BT region.

Remark 2: As n becomes larger, ε increases, which in turn

causes En,ε to increase. On the other hand, θn is a decreasing



function of n. This illustrates the trade-off between rate-loss

due to application of small block-length codes θn, and the

gains from preservation of correlation between the sources

En,ε.

Remark 3: Note that finding the achievable rate-distortion

region involves sweeping over all possible choices of f1 and

f2. However log( p1

p1−ε ) increases as f1 and f2 become less

correlated (i.e. as ε increases). This suggests choosing highly

correlated functions gives larger achievable regions.

Remark 4: The above inner bound is not symmetric with

respect to the two encoders, one can symmetrize the region

by swapping the indices for encoders 1 and 2 in the theorem

and taking the union of the two resulting regions.

To prove theorem 1, an achievable RD region using finite-

length coding schemes is derived, then it is shown that the

region contains the inner bound in the theorem.

Let W1 be a random variable with alphabet W1. Take

an arbitrary probability distribution PS1,W1 . Also let I be

a random variable uniformly distributed on {1, 2, 3, ..., n}.
Consider Qn, an n-length quantizer which quantizes Sn

1 to

Wn
1 such that:

PS1(I),W1(I) =
1

n

∑

i∈[1:n]
PS1(i),W1(i) = PS1,W1

.

By random coding arguments Qn exists with rate Rn =
IPS1,W1

(S1;W1) + θn, where θn can be bounded given the

distribution PS1,W1
and approaches 0 as n goes to infinity

[6]. Let Wn
2 = Qn(S

n
2 ). W

n
2 can be perceived as the second

encoder’s “estimate” of Wn
1 . We have:

PXn
1 ,Xn

2 ,Wn
1 ,Wn

2
=

∑

sn1 ,s
n
2

PXn
1 ,Xn

2 |Sn
1 ,Sn

2
PSn

1 ,Sn
2 ,Wn

1 ,Wn
2

Define PX1,X2,W1,W2
= PX1(I),X2(I),W1(I),W2(I). Also

define P as the set of all probability distributions

on X1, X2,W1,W2, U1, U2 such that PX1,X2,W1,W2 is

produced by the above process and U1 and U2 satisfy

U1 ↔ (X1,W1) ↔ (X2,W2) ↔ U2. The ensuing theorem

states the n-letter achievable bound for the new coding

strategy.

Theorem 2: RD vectors satisfying the following bounds are

achievable:

R1 ≥ I(X1;U1|U2W1W2) + En,ε

R2 ≥ I(X2;U2|U1W1W2) + En,ε

R1 +R2 ≥ I(W1;S1) + I(X1;U1|W1,W2)+

I(X2;U2|W1,W2)− I(U1;U2|W1W2) + θn + En,ε

Di ≥ E{di
(
hi(U1, U2,W1,W2), Xi

)}
For every probability distribution PX1,X2,W1,W2,U1,U2 chosen

form P . Here hi : W1 × W2 × U1 × U2 → Xi are the

reconstruction functions at the decoder.

Remark 5: Qn completely determines PX1,X2,W1,W2
, also

from the Markov chain PU1|X1,W1
, PU2|X2,W2

and Qn fix

the induced joint probability distribution PX1,X2,W1,W2,U1,U2
.

Hence determining the RD region given in theorem 2 involves

taking the union of RD vectors satisfying the above bounds

for some given fi, hi, Qn, PU1|X1,W1
and PU2|X2,W2

.

Proof: First we present a summary of the proof. Fix

fi, hi, Qn, PU1|X1,W and PU2|X2,W2
. Using Qn the en-

coders quantize Sn
i to Wn

i . From random coding arguments,

if multiple realizations of Wn
1 ’s are available at the de-

coder, encoder 2 can transmit the corresponding sequence

of Wn
2 ’s using rate at most 1

nH(Wn
2 |Wn

1 ). So the en-

coders transmit the sequences of Wi’s with sum-rate less

than Rn+
1
nmax{H(Wn

2 |Wn
1 ), H(Wn

1 |Wn
2 )}. Since Si’s are

highly correlated, the vectors Sn
i are almost always equal.

Consequently the quantizations Wn
i are almost always equal,

and using this the term 1
nmax{H(Wn

2 |Wn
1 ), H(Wn

1 |Wn
2 )}

can be bounded. In the next step (Wi, Xi) is transformed into

a DMS by applying the interleaving method explained in [1].

The rest of the problem can be viewed as distributed source

coding with sources (Wi, Xi) and side-information (W1,W2)
available at the decoder. A more rigorous proof is presented

next.

Codebook Generation: Three codebooks are used for the

quantization. Cn is the underlying codebook for Qn. The other

two codebooks Cm
i , are constructed by choosing each of their

elements from Ui based on distribution PUi . C
m
i have rates

I(Xi,Wi;Ui)+λm where λm → 0. Let Qi,m be the quantizers

associated with these codebooks. Each of the codebooks Cm
i

are randomly binned at rate I(Xi;Ui|W1,W2) − ri, where

r1 + r2 = I(U1;U2|W1,W2). Given t ∈ [0, 1], randomly and

uniformly bin the space of all vectors W tnm ∈ Wtnm with

rate En,ε, and define B1 as the binning function. Also bin

the space of all vectors W (1−t)nm using the same rate, let

B2 be the binning function. Finally choose m permutations

πj , j ∈ [1 : m] randomly and uniformly from the set of all

n-length permutations Sn.

Encoding: Communication is carried out over blocks of

length mn. Denote the source sequence in one block as the

matrix Xi(1 :m, 1:n). The ith encoder calculates Wi(j, 1:n) =
Qn(Si(j, 1 : n)) for all j. The encoder wishes to utilize the

codebooks Cm
i for quantizing (Xi,Wi), however the source

(Xi,Wi) is not a DMS since Wi is produced by a finite-length

quantizer. To overcome this difficulty we use the method

explained in [1]. Let X̃i(j, 1 :n) = πj(X(j, 1 :n)), define W̃i

in the same manner. As shown in [1], (X̃i, W̃i)(1 :m, l) would

behave like a DMS with probability distribution PXi,Wi
. Each

encoder calculates Ũi(1 :m, l) = Qi,m((X̃i, W̃i)(1 :m, l)). For

rows (1 : tm), the first encoder transmits W1(j, 1:n) while the

second encoder sends the bin index B1(W2(1 : tm, 1 : n)).
For the rest of the rows encoder 1 sends the bin index

B2(W1(tm+ 1:m, 1:n)) while encoder 2 sends W2(j, 1:n).
In other words the encoders time-share between two strategies.

In the first strategy encoder 1 transmits W1 while encoder 2

only sends the bin number for the sequence of W2, in the

second strategy the encoders reverse roles. For every column

l, the ith encoder also sends the bin index of Ũi(1 :m, l) in



Cm
i . The resulting rates are:

R1 = tRn + (1− t)En,ε + I(X1;U1|W1W2)− r1

R2 = (1− t)Rn + tEn,ε + I(X2;U2|W1W2)− r2.

If we prove that the above rates are achievable, the proof is

complete, since they include both corner points of the region

in theorem 2.

Decoding: The decoder first decodes Wi(1 :m, 1 : n). For

elements (1 : tm, 1 : n), W tmn
1 are available, while only the

bin index of W tmn
2 is available. Since m is going to infinity,

by random coding arguments W tmn
2 is losslessly recovered as

long the binning rate is more than 1
nH(Wn

2 |Wn
1 ). By lemma 1

in the appendix we have 1
nH(Wn

2 |Wn
1 ) ≤ En,ε. By the same

argument (W1,W2) are recovered losslessly for the rest of the

rows.

The bin size for each vector Ũ1(1 :m, l) is:

I(X1,W1;U1)− I(X1;U1|W1,W2) + r1

= I(X1,W1,W2;U1)− I(X1;U1|W1,W2) + r1

= I(W1,W2;U1) + r1

The long Markov chain is used in the second equation. By the

same calculations the bin size for Ũ2 is I(W1,W2;U2) + r2.

Using typicality arguments one can show that for these bin

sizes, there is only one pair (U1, U2)(1 :m, l), jointly typical

with (W1,W2)(1 : m, l). Due to space limitations we only

present a summary of the proof. The decoder first creates

two ambiguity sets Li from the sequences of Ui(1 : m, l)’s
in the corresponding bins. Each of these sets contains all

sequences Ui(1 : m, l) in the bin, which are typical with

(W1,W2)(1 :m, l). There is roughly one such sequence in each

2mI(W1,W2;Ui) vectors. So the size of Li is close to 2mri . The

decoder finds a pair of vectors in the two ambiguity sets which

are typical with each other. Since all these vectors are typical

with W1 and W2, as long as r1 + r2 ≤ I(U1;U2|W1,W2)
there is no more than one pair (U1, U2)(1 :m, l) typical with

respect to PU1,U2|W1,W2
. This completes the proof.

From remark 3, calculation of the RD region in the theorem

requires taking union over all possible n-length quantizers.

This renders the characterization practically incomputable. The

next proof shows that the RD region in theorem 1 is contained

in the one in theorem 2, so it is achievable using the finite-

length coding scheme.

Proof: First we eliminate W2 from the inequalities. Re-

stricting the reconstruction functions to only use W1, U1, U2

results in an achievable inner bound. In the next step, W2 is

removed from the mutual information terms:

I(X1;U1|U2,W1,W2)

= H(U1|U2,W1,W2)−H(U1|X1,W1, U2)

≤ I(U1;X1|W1, U2)

Also:

I(X2;U2|U1,W1,W2)

≤ I(X2;W2, U2|W1, U1)

≤ I(X2;U2|W1, U1) +H(W2|W1)

≤ I(X2;U2|W1, U1) + En,ε

W2 in the terms I(X1;U1|W1,W2) and I(X2;U2|W1,W2) in

the sum-rate bound can be removed using the same method.

For I(U1;U2|W1,W2) an upper-bound is necessary:

I(U1;U2|W1,W2)

≥ I(U1;U2|W1)−H(W2|W1)

≥ I(U1;U2|W1)− En,ε

It is straightforward to show I(W1;S1) = I(W1;X1). So far

we have the following inner bound:

R1 ≥ I(X1;U1|W1, U2) + En,ε

R2 ≥ I(X2;U2|W1, U1) + 2En,ε

R1 +R2 ≥ I(W1;X1) + 3En,ε + I(X1;U1|W1)

+ I(X2;U2|W1)− I(U1;U2|W1) + θn

Di ≥ E{di
(
hi(U1, U2,W1), Xi

)}
Qn is still playing a role in the calculation of the RD

region by determining PX1,X2,W1,W2 , which in turn affects

PU2|X1,X2,W1
. Lemma 2 in the appendix provides the means

to eliminate this dependency on Qn. The lemma shows that

for every probability distribution in theorem 1, there is a

probability distribution in theorem 2, for which the above

bounds are well-approximated when calculated using one of

the distributions instead of the other. Hence we can provide an

inner bound for the above rates by considering the distributions

from the first theorem and bounding the estimation error using

lemma 2. Applying the estimation bounds gives the region

presented in theorem 1.

Finally, we show that the RD region in theorem 1 strictly

contains the CC rate-distortion region.

Theorem 3: For the BOHO problem in [1], the RD region

in theorem 2 achieves points outside of the CC rate-distortion

region.

Proof: Take U1 = φ, U2 = Z + X + W + Nδ0 and

W = X +Nε +Nδ , where Nδ is Be(δ),Nδ0 is Be(δ0), and

the quantization noises are independent of the sources and each

other. The reconstruction function is U2+W = X+Z+Nδ0 .

Consider the corner point where encoder 1 is transmitting W
by itself and encoder 2 is binning its correlated quantization at

rate En,ε. The resulting RD vector approaches (R1, R2, D) =
(1 − hb(δ), hb(p ∗ δ) − hb(δ0), δ0) as ε′ → 0 and n → ∞.

In [5] it was shown that these RD vectors are not achievable

by the CC scheme when ε′ �= 0. By the same argument as in

[1], it can be proved that there exist n and ε′ for which the

resulting rates are not achievable by the CC scheme.

There can be highly correlated components between the

sources given W1 and W2. In this case, there must be several



finite-length codebooks super-imposed on each other, one for

each of the highly correlated components. The inner bound

presented here can be extended to include these new layers.

IV. CONCLUSION

A new coding scheme for the distributed source coding

problem was presented. The scheme used a combination of

finite length and large block-length codes. The application of

finite length quantizers was justified by showing that they

preserve correlation between sources more efficiently. The

achievable region for the coding scheme was derived. A single-

letter characterization of an inner bound to the achievable

region was presented. It was shown the inner bound strictly

contains previous known achievable RD regions.

APPENDIX

Lemma 1: Let S1 and S2 be two DMS’s such that P (S1 �=
S2) ≤ ε′ for some ε′ > 0. Also Let Wn

i = fi(S
n
i ) be n-letter

functions of Sn
i to alphabet Wn. Let ε = 1− (1− ε′)n. Then

the following are true:

1) P (Wn
1 �= Wn

2 ) ≤ ε

2) 1
nH(Wn

2 |Wn
1 ) ≤ h(ε)

n + ε log |W2|
Proof: 1)

P (Wn
1 = Wn

2 ) ≥ P (Sn
1 = Sn

2 ) = 1− ε

The first inequality is true since if Sn
1 = Sn

2 , then Wn
1 = Wn

2 .

2) Let 1A be the indicator function of event A. We have:

H(Wn
2 |Wn

1 ) = H(1{Wn
1 =Wn

2 },W
n
2 |Wn

1 )

≤ H(1{Wn
1 =Wn

2 }) +H(Wn
2 |Wn

1 , 1{Wn
1 =Wn

2 })

≤ hb(ε) + P (Wn
1 �= Wn

2 )H(Wn
2 |Wn

1 , 1{Wn
1 =Wn

2 } = 0)

≤ hb(ε) + P (Wn
1 �= Wn

2 )H(Wn
2 )

≤ hb(ε) + εn log |W2|.

Lemma 2: Consider a probability distribution

PX1,X2,W1,U1,U2
satisfying the Markov chains U1 ↔

(X1,W1) ↔ (X2,W1) ↔ U2 and W1 ↔ S1 ↔ (X1, X2),
where S1 and S2 are as defined previously. let PS1,W1

be

the marginal distribution of (S1,W1), take a quantizer Qn

from QPS,W
. Assume P ′X1,X2,W1,W2 is the probability

distribution induced by Qn. Let P ′U1|X1,W1
= PU1|X1,W1

and P ′U2|X2,W2
= PU2|X2,W1

. Define:

P ′X1,X2,W1,W2,U1,U2
= P ′X1,X2,W1,W2

P ′U1|X1,W1
P ′U2|X2,W2

.

The following hold:

1)P ′X1,X2,W1,U1,U2
=̇PX1,X2,W1,U1,U2

± ε

2)IP (X1;U1|W1, U2)=̇IP ′(X1;U1|W1, U2)

± 2|X1||U1| log ( p1
p1 − ε

)

3)IP (X2;U2|W2, U1)=̇IP ′(X2;U2|W2, U1)

± 2|X2||U2| log ( p2
p2 − ε

)

In the above equations, a=̇b± ε means a ∈ [b− ε, b+ ε]. Also

IP (A;B|C) denotes the mutual information with respect to

P .

Proof: 1)

P ′X1,X2,W1,U1,U2

=
∑

w2

P ′X1,X2,W1,W2,U1,U2

≥
∑

w2

1{W1=W2}P
′
X1,X2,W1,W2,U1,U2

=
∑

w2

1{W1=W2}P
′
X1,X2,W1,W2

PU1|X1,W1
PU2|X2,W1

= PU1|X1,W1
PU2|X2,W1

∑

w2

1{W1=W2}P
′
X1,X2,W1,W2

a≥ PU1|X1,W1
PU2|X2,W1

(PX1,X2,W1
− ε)

≥ PX1,X2,W1,U1,U2
− ε

Where part (a) results from the following:

PX1,X2,W1
= P ′X1,X2,W1

=
∑

w2

P ′X1,X2,W1,W2

≤
∑

w2

1{W1=W2}P
′
X1,X2,W1,W2

+ P (1W1 �=W2
).

Now we prove the other side of the inequality:

P ′X1,X2,W1,U1,U2

=
∑

w2

P ′X1,X2,W1,W2,U1,U2

≤
∑

w2

1W1=W2P
′
X1,X2,W1,W2,U1,U2 + ε

≤ PX1,X2,W1PU1|X1,W1
PU2|X1,W1

+ ε

= PX1,X2,W1,U1,U2 + ε.

2) and 3) follow from 1 in a straightforward manner by

expanding the mutual informations, the maximum difference

between the terms in the mutual informations is 2 log pi

pi−ε ,

for the sake of brevity we omit the proofs for these parts.
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