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Abstract—We present an achievable rate region for the general
three user discrete broadcast channel (DBC), based on coset
codes. We identify an example of a three user DBC for which the
proposed achievable rate region strictly enlarges that obtained
by a natural extension of Marton’s [1] rate region. As a step
towards deriving the achievable rate region for the general three
user DBC, we characterize and derive an achievable rate region
for a new class - 3−to−1 DBC- of broadcast channels of which
the aforementioned is an example.

I. PROBLEM STATEMENT AND CONTRIBUTIONS

The problem of characterizing the capacity region of a
broadcast channel (BC) was formulated [2] in 1972. Superpo-
sition [3] and binning [1] together yield the currently known
largest achievable (Marton’s) rate region. The question of it’s
optimality has since remained open.

Recently, there has been renewed interest [4] in settling
this question. Gohari and Anantharam [5] have proved com-
putability of Marton’s rate region and identified a class of two
user discrete BCs (2-DBC) for which Marton’s [1] rate region
when computed is strictly smaller than the tightest known
outer bound [6]. On the other hand, Weingarten, Steinberg and
Shamai [7] have proved Marton’s binning (dirty paper coding
(DPC)[8] in this context) to be optimal for Gaussian MIMO
BC with any number of receivers, and thereby characterized
capacity region for the particular class of Gaussian vector BCs.

In this article, we derive an achievable rate region for
the general three user discrete BC (3-DBC) based on coset
codes and thereby strictly enlarge the currently known largest
achievable rate region1. A key element of our findings is the
identification of a novel 3-DBC for which Marton’s coding
technique is strictly sub-optimal. We begin by describing the
essential aspects of our findings.

II. THE CENTRAL IDEA

The central aspect of a coding technique designed for a
BC is interference management. The two coding techniques
- superposition and binning - exemplify two known ways
of tacking interference. Superposition enables each user to
decode a univariate component of the other user’s signal
and thus subtract it off. Binning enables the encoder counter

1The largest known achievable rate region for 3-DBC is the natural
extension of Marton’s rate region for 2-DBC. When referred to in the context
of 3-DBC, Marton’s rate region refers to this natural extension.

each user’s interfering signal not decoded by the other by
precoding for the same. Except for particular cases, the most
popular being DPC, precoding results in a rate loss, and is
therefore less efficient than decoding the interfering signal at
the decoder. The presence of a rate loss motivates each decoder
to decode as large a part of interference as possible.2

In a 3-BC, reception at each receiver is plagued, in general,
by a bivariate function of signals intended for the other
users. It is therefore natural to enable each user decode the
relevant bivariate interfering component, not just univariate
components of the other two user’s signals. Does the extension
of Marton’s coding decode a bivariate interfering component
of the other user’s signals, and if yes, how? Traditional un-
structured coding, on which Marton’s technique is based does
not enable decoding a bivariate component of signals without
decoding the arguments in their entirety. The latter strategy is
in general inefficient. In the sequel, we lend credence to this
statement by referring to the gamut of related problems.

Aptly describing this phenomenon, the problem of recon-
structing mod-2 sum of distributed binary sources [9] exempli-
fies the limitations of traditional unstructured coding.3 More
recently, other problem instances [10], [11], [12] have been
identified, wherein the need to decode a bivariate function has
been efficiently met by employing structured codebooks. The
coding technique proposed herein is based on the framework
developed in [10] and in particular reminiscent of that pro-
posed in [12] for the three user interference channel.

How do structured codes enable decode the bivariate in-
terference component more efficiently? This is best described
by the use of linear codes in decoding the sum interference
component. Let us assume that codebooks of users 2 and 3
are built over the the binary field F2 and the sum of user 2
and 3 codewords is the interference component at receiver 1.
If user 2 and 3 build independent codebooks of rate R2 and
R3 respectively, the range of interference patterns has rate
R2+R3. Enabling user 1 decode the sum interference pattern
constrains the sum R2 +R3. Instead if codebooks of users 2

2For the Gaussian case, there is no rate loss. Thus the encoder can precode
all the interference. Indeed, the optimal strategy does not require any user to
decode a part of signal not intended for it. This explains why lattices are not
necessary to achieve capacity of Gaussian vector BC.

3Even after three decades, we are unaware of an unstructured coding
technique that achieves rates promised by Körner and Marton.
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Fig. 1. 3-DBC with octonary input and binary outputs (Example 1).

and 3 are sub-codes of a common linear code, then enabling
user 1 to decode the sum will only constrain max {R2, R3}.

In the following section, we identify a 3-DBC that makes
concrete our remarks in this section.

III. A THREE USER BROADCAST CHANNEL

Example 1: Consider the 3-DBC depicted in figure 1. Let
the input alphabet X = X1 × X2 × X3 be a triple Cartesian
product of the binary field X1 = X2 = X3 = F2 and
the output alphabets Y1 = Y2 = Y3 = F2 be binary
fields. If X = X1X2X3 denote the three binary digits
input to the channel, then the outputs are Y1 = X1 ⊕
X2 ⊕ X3 ⊕ N1, Y2 = X2 ⊕ N2 and Y3 = X3 ⊕ N3,
where (i) N1, N2, N3 are independent binary random variables
with P (Nj = 1) = δj ∈ (0, 12 ) and (ii) (N1, N2, N3) is
independent of the input X . The binary digit X1 is con-
strained to an average Hamming weight of τ ∈ (0, 12 ). In
other words, κ(x1x2x3) = 1{x1=1} and the average cost of
input is constrained to τ ∈ (0, 12 ). The channel transition
probabilities of this 3-DBC are WY |X(y1, y2, y3|x1x2x3) =
BSCδ1(y1|x1⊕x2⊕x3)BSCδ2(y2|x2)BSCδ3(y3|x3), where
δj ∈ (0, 12 ) : j = 1, 2, 3, BSCη(1|0) = BSCη(0|1) =
1 − BSCη(0|0) = 1 − BSCη(1|1) = η for any η ∈ (0, 12 )
and the cost function κ(x1x2x3) = 1{x1=1}.
We begin with some observations for the above channel. Users
2 and 3 see interference free point to point links from the input.
It is therefore possible to communicate to them simultaneously
at their point to point capacities using any point to point
channel codes achieving their respective capacities. For the
purpose of this discussion, let us assume δ : = δ2 = δ3. This
enables us employ the same capacity achieving code of rate
1 − hb(δ) for both users 2 and 3. What about user 1? Three
observations are in order. Firstly, if users 2 and 3 are being fed
at their respective point to point capacities, then information
can be pumped to user 1 only through the first binary digit,
henceforth referred to as X1. In this case, we recognize that
the sum of user 2 and 3’s transmissions interferes at receiver
1. Thirdly, the first binary digit X1 is costed, and therefore
cannot cancel the interference caused by users 2 and 3.

Since average Hamming weight of X1 is restricted to τ ,
X1⊕N1 is restricted to an average Hamming weight of τ ∗δ1.
If the rates of users 2 and 3 are sufficiently small, receiver 1
can attempt to decode codewords transmitted to users 2 and
3, cancel the interference and decode the desired codeword.
This will require 2− 2hb(δ) ≤ 1− hb(δ1 ∗ τ) or equivalently
1+hb(δ1∗τ)

2 ≤ hb(δ). What if this were not the case?

In the case 1+hb(δ1∗τ)
2 > hb(δ), we are left with two

choices. The first choice is to enable decoder 1 decode as
large a part of each user 2 and 3’s transmissions as possible
and precode for the rest of the uncertainty in the interference.
The second choice is to attempt decoding the sum of user
2 and 3’s codewords, instead of the pair. Marton’s coding
technique is forced to take the first choice which results in
it’s sub-optimality.4 Theorem 1 in conjunction with lemma 1
characterize this sub-optimality. We refer the reader to [13] for
a proof. Following theorem 1, we pursue the second choice
using linear codes.

Theorem 1: Consider the 3-DBC in example 1. If 2hb(δ) <
1+hb(δ1 ∗ τ), then (hb(τ ∗ δ1)−hb(δ1), 1−hb(δ), 1−hb(δ))
is not achievable using Marton’s coding technique for this 3-
DBC.

Since linear codes achieve capacity of binary symmetric
channels, there exists a single linear code, or a coset thereof,
of rate 1− hb(δ) that achieves capacity of both user 2 and 3
channels. Let us employ this linear code for communicating to
users 2 and 3. The code being linear or affine, the collection of
sums of all possible pairs of codewords is restricted to a coset
of rate 1−hb(δ). This suggests that decoder 1 decode the sum
of user 2 and 3 codewords. Indeed, if 1−hb(δ) ≤ 1−hb(τ∗δ1),
or equivalently τ ∗ δ1 ≤ δ, then user 1 can first decode the
interference, peel it off, and then go on to decode the desired
signal. Under this case, a rate hb(τ ∗δ1)−hb(δ1) is achievable
for user 1 even while communicating independent information
at rate 1−hb(δ) for both users 2 and 3. We have therefore pro-
posed a coding technique based on linear codes that achieves
the rate triple (hb(τ ∗ δ1) − hb(δ1), 1 − hb(δ), 1 − hb(δ)) if
τ ∗ δ1 ≤ δ = δ2 = δ3. These arguments are summarized in the
following lemma.

Lemma 1: Consider the 3-DBC in example 1. If τ ∗ δ1 ≤
δ = δ2 = δ3, then (hb(τ ∗δ1)−hb(δ1), 1−hb(δ), 1−hb(δ)) ∈
C(τ).
We emphasize the import of theorem 1 and lemma 1 in the
following corollary.

Corollary 1: Consider the 3-DBC in example 1 with δ =
δ2 = δ3. If hb(τ ∗ δ1) ≤ hb(δ) <

1+hb(δ1∗τ)
2 , then (hb(τ ∗

δ1) − hb(δ1), 1 − hb(δ), 1 − hb(δ)) is not achievable using
Marton’s coding technique. However, (hb(τ ∗δ1)−hb(δ1), 1−
hb(δ), 1− hb(δ)) ∈ C(τ) and thus Marton’s coding technique
when extended to the case of three users is strictly sub-optimal.
In particular, if δ1 = 0.01 and δ2 ∈ (0.1325, 0.21), then C( 18 )
is not achievable using Marton’s coding technique.

We refer the reader to [13] for a study of the case δ2 6= δ3.

IV. DEFINITIONS: 3-DBC AND 3−TO−1 DBC

The main emphasis in this article is to build on the
phenomenon exemplified by example 1 and propose a more

4Since X1 is costed, precoding results in a rate loss, i.e., in terms
of rate achieved, the technique of precoding is in general inferior to the
technique of decoding interference. This motivates a preference for decoding
the interference as against to precoding. However, for the Gaussian case,
precoding suffers no rate loss. This is the precise reason for dirty paper coding
being optimal for vector Gaussian BCs [7].



efficient strategy for communicating over an arbitrary 3-DBC.5

The rest of the article is therefore aimed at presenting an
achievable rate region for general 3-DBC based on coset codes.
In this section, we characterize 3−to−1 DBC which provides
an ideal pedagogical step in presenting our rate region. We
begin by defining a general 3-DBC.

A 3-DBC consists of a finite input alphabet set X and three
finite output alphabet sets Y1,Y2,Y3. The discrete time chan-
nel is time invariant, memoryless, and used without feedback.
Let WY |X(y|x) =WY1Y2Y3|X(y1, y2, y3|x) denote probability
of observing y ∈ Y at the respective outputs conditioned on
x ∈ X being input. The input is constrained with respect to
an additive cost function κ : X → [0,∞). We refer to this
3-DBC as (X ,Y,WY |X , κ). We refer the reader to [1] for
relevant standard definitions of a BC. In this article, we restrict
attention to communicating private messages to the users
and let C(WY |X , κ, τ) : = cl

{
R ∈ R3 : (R, τ) is achievable

}
denote the (private message) capacity region of 3-DBC
(X ,Y,WY |X , κ) when constrained to average cost of τ . We
let C(τ) abbreviate C(WY |X , κ, τ) when the 3-DBC is clear
from context.

A 3-DBC (X ,Y,WY |X) is a 3-to-1 DBC if X =
X1 × X2 × X3 is a Cartesian product of three alphabet
sets such that WY2|X(y2|(x1, x2, x3)) = WY2|X2

(y2|x2) and
WY3|X(y3|(x1, x2, x3)) =WY3|X3

(y3|x3). Note that transition
probabilities WY1,Y2,Y3|X of a 3-to-1 DBC can be denoted
as WY1,Y2,Y3|X1X2X3

. Since users 2 and 3 enjoy interference
free point to point links, the corresponding receivers need to
decode only signals intended for them. Therefore, there is (i)
no component of the signal transmitted that is decoded by all
receivers and (ii) no components of the signal transmitted that
is decoded by users 2 and 3.

V. ACHIEVABLE RATE REGION FOR 3−TO−1 DBC USING
COSET CODES

In this section, we present the first step in deriving an
achievable rate region for the general 3-DBC using coset codes
[14]. In particular, we restrict attention to 3−to−1 DBCs
and derive an achievable rate region for this class using the
ensemble of coset codes. The coding technique we propose is
a generalization of the simple linear coding strategy proposed
for example 1. The reader may wish to revisit the same.

A. Decoding sum of codewords using coset codes : A new
achievable rate region for 3−to−1 DBC

The essential aspect of the linear coding strategy proposed
for example 1 is that users 2 and 3 employ a code that
is closed under addition, the linear code being the simplest
such example. Since linear codes only achieve symmetric
capacity, we are forced to bin codewords from a larger
linear code in order to find codewords that are typical with
respect to a nonuniform distribution. This is akin to binning

5Just as Gelfand’s ingenious coding technique for the Blackwell channel
is a particular instance of Marton’s binning, we believe strategies based on
linear and nested linear codes such as [9] point to a general theory based on
structured codes. We therefore emphasize the need to build on these examples.

for channels with state information, wherein exp {nI(U ;S)}
codewords, each picked according to

∏n
t=1 pT , are chosen for

each message in order to find a codeword in Tδ(U |sn) jointly
typical with state sequence sn. We now generalize the coding
technique proposed for example 1.

Consider auxiliary alphabet sets V1,U21,U31 where U21 =
U31 = Fq be the finite field of cardinality q and let
pV1U21U31XY be a pmf on V1 × U21 × U31 × X × Y . For
j = 2, 3, let λj ⊆ Unj1 be coset of a linear code λj ⊆ Fnq
of rate Sj1 + Tj1. The linear codes are contained in one
another, i.e., if Sj11 + Tj11 ≤ Sj22 + Tj22, then λj1 ⊆ λj2 .
Codewords of λj are partitioned independently and uniformly
into exp {nTj} bins. A codebook C1 of rate K1 + L1 is
built over V1. The codewords of C1 are independently and
uniformly partitioned into exp {nL1} bins. Messages of users
1, 2, 3 at rates L1, T21, T31 is used to index a bins in C1, λ2, λ3
respectively. The encoder looks for a jointly typical triple,
with respect to pV1U21U31 , of codewords in the indexed triple
of bins. Following a second moment method similar to that
employed in [14], it can be proved that the encoder finds at
least one jointly typical triple if

S21 ≥ log q −H(U21), S31 ≥ log q −H(U31),K1 ≥ 0 (1)
S21 + S31 ≥ 2 log q −H(U21)−H(U31) + I(U21;U31) (2)

Sj1 +K1 ≥ log q −H(Uj1) + I(Uj1;V1) : j = 2, 3 (3)
3∑
j=2

Sj1 +K1 ≥ 2 log q −
3∑
j=2

H(Uj1) + I(U21;U31;V1). (4)

Having chosen one such jointly typical triple, say
V n1 , U

n
21, U

n
31, it generates a vector Xn according to∏n

t=1 pX|V1U21U31
(·|V n1 , Un21, Un31). This is fed as input to the

channel.
Decoders 2 and 3 perform a standard point to point channel

decoding. It can be proved by following the technique similar
to [14, Proof of Theorem 1] that if

Sj1 + Tj1 ≤ log q −H(Uj1|Yj) : j = 2, 3 (5)

then probability of decoding error at decoders 2 and 3 can be
made arbitrarily small for sufficiently large n.

Having received Y n1 , decoder 1 looks for all code-
words vn1 ∈ C1 for which there exists a codeword
un2⊕3 ∈ (λ2 ⊕ λ3) such that (vn1 , u

n
2⊕3, Y

n
1 ) are jointly

typical with respect to pU21⊕U3,V1,Y1
. Here (λ2 ⊕ λ3) :

=
{
vn2 ⊕ vn3 : vnj ∈ λnj : j = 2, 3

}
.6 If all such codewords

in C1 belong to a unique bin, the corresponding bin index
is declared as the decoded message. Again following the
technique similar to [14, Proof of Theorem 1], it can be proved,
that if

KL1 ≤ H(V1)−H(V1|U21 ⊕ U31, Y1) (6)
KL1 + STj1 ≤ log q +H(V1)−H(V1, U21 ⊕ U31|Y1) (7)

for j = 2, 3, where KL1 : = K1+L1, STj1 = Sj1+Tj1, then
probability of decoding error at decoders 1 falls exponentially.

6Recall that structure of λ2, λ3 contains cardinality of (λ2 ⊕ λ3). In
particular |(λ2 ⊕ λ3)| ≤ exp {min {S21 + T21, S31 + T31}}



Since L1, T21, T31 denotes rate achievable by users 1, 2, 3
respectively, eliminating K1, S21, S31 from the set of equa-
tions (1)-(7) yields an achievable rate region. The following
definition and theorem provide a precise mathematical char-
acterization of this achievable rate region.

Definition 1: Let D1(WY |X , κ, τ) denote the collection of
pmf’s pU21U31V1XY defined on U21 × U31 × V1 × X × Y ,
where (i) U21 = U31 = Fq is the finite field of cardinality
q, V1 is a finite set, (ii) pY |XV1U = pY |X = WY |X , and
(iii) E {κ(X)} ≤ τ . For pUV1XY ∈ D1(WY |X , κ, τ), let
β1(pUV1XY ) be defined as the set of triples (R1, R2, R3) that
satisfy

0 ≤ R1 ≤ I(V1;S , Y1), 0 ≤ Rj ≤ I(Uj1;Yj) : j = 2, 3

R1 +Rj ≤ H(V1Uj1)−H(V1,S |Y1) : j = 2, 3

R1 +Rj ≤ H(V1Uj1)−H(Uj1|Yj)−H(V1|S , Y1) : j = 2, 3

R2 +R3 ≤ I(U21;Y2) + I(U31;Y3)− I(U21;U31),
3∑
k=1

Rk ≤H(U21U31V1)−H(V1,S |Y1)−max
{
H(U21|Y2)
H(U31|Y3)

}
3∑
k=1

Rk ≤H(U21U31V1)−H(V1|S , Y1)−
3∑
k=2

H(Uk1|Yk)

R1 +

3∑
k=1

Rk ≤ H(V1) +H(U21U31V1)−2H(V1,S |Y1)

where S : = U21 ⊕ U31. Define

β1(WY |X , κ, τ) = cocl

 ⋃
pUV1XY

∈D1(WY |X ,κ,τ)

β1(pUV1XY )

 .

Theorem 2: For a 3-DBC (X ,Y,WY |X , κ),
β1(WY |X , κ, τ) ⊆ C(WY |X , κ, τ).
We refer the reader to [13] for an outline of the proof. The
key elements of the proof is the interplay of joint typical
encoding and decoding with correlated codebooks.7 Indeed,
codebooks being cosets of a common linear code are correlated
and moreover, it’s codewords are correlated. The analysis of
error events contain several new elements.

For example 1, if τ ∗ δ1 ≤ min {δ2, δ3}, then (hb(τ ∗
δ1) − hb(δ1), 1 − hb(δ2), 1 − hb(δ3)) ∈ β1(τ). Indeed,
it can be verified that if τ ∗ δ1 ≤ min {δ2, δ3}, then
(hb(τ ∗ δ1)− hb(δ1), 1− hb(δ2), 1− hb(δ3)) ∈ β1(pUV1XY ),
where pUV1X = pV1pU21pU311{X1=V1}1{X2=U21}1{X3=U31},
pU21(1) = pU31(1) =

1
2 and pV1(1) = τ .

Let us revisit the coding technique proposed herein. Observe
that (i) user 1 decodes a sum of the entire codewords/signals
transmitted to users 2 and 3 and (ii) users 2 and 3 decode only
their respective codewords. This technique may be enhanced
in the following way. User 1 can decode the sum of one com-
ponent of user 2 and 3 signals. In other words, we may include

7While particular decoding rules such as syndrome decoding of linear codes
can achieve capacity of particular channels such as binary symmetric, we will
need to employ typical decoding to achieve capacity of arbitrary channels.

private codebooks for users 2 and 3. We refer the reader to
[13, Section V.B] for a description of this enhancement for
3−to−1 DBC. While, we omit this pedagogical step in here,
the achievable rate region presented in the following section
subsumes this enlarged achievable rate region for a general
3−to−1 DBC.

VI. ACHIEVABLE RATE REGION FOR GENERAL 3-DBC
BASED ON COSET CODES

In section V-A, only user 1 decoded a bivariate interference
component. Users 2 and 3 only decoded from their respective
codebooks. This maybe sufficient if only user 1 is subjected to
interference, as in 3−to−1 BC. In general, each user would
attempt to decode a bivariate interference component of the
other user signals. Consider the following generalization.

User j splits it’s message Mj into three (MU
ji ,M

U
jk,M

V
j ),

where i, j, k are distinct indices in {1, 2, 3}. Let Uji =
Fqi ,Ujk = Fqk be finite fields and Vj an arbitrary finite
set. Let λji ⊆ Unji, λjk ⊆ Unjk denote cosets of linear codes
λji, λjk of rates Sji + Tji, Sjk + Tjk respectively. Note that
cosets λji and λki are built over the same finite field Fqi .
To enable contain range of sum of these cosets, the larger of
λji, λki contains the other. Codewords of λji and λjk are
independently and uniformly partitioned into exp{nTji} and
exp{nTjk} bins respectively. A codebook Cj of rate Kj +Lj
is built over Vj . Cj is similarly partitioned into exp{nLj} bins.
MU
ji ,M

U
jk and MV

j index bins in λji, λjk and Cj respec-
tively. The encoder looks for a collection of 9 codewords from
the indexed bins that are jointly typical with respect to a pmf
pUV defined on U ×V .8 Following a second moment method
similar to that employed in [14], it can be proved that the
encoder finds at least one jointly typical collection if

SA +KB ≥
∑
a∈A

log |Ua|+
∑
b∈B

H(Vb)−H(UA, VB) (8)

for all A ⊆ {12, 13, 21, 23, 31, 32} , B ⊆ {1, 2, 3}, where
SA =

∑
jk∈A Sjk, KB =

∑
b∈BKb, UA = (Ujk : jk ∈ A)

and VB = (Vb : b ∈ B). Having chosen one such jointly
typical collection, say (Un, V n), the encoder generates Xn

according to
∏n
t=1 pX|UV (·|U

n, V n) and inputs the same.
Decoder j receives Y nj and looks for all triples

(unji, u
n
jk, v

n
j ) of codewords in λji × λjk × Cj such that there

exists a unij⊕kj ∈ λij⊕λkj such that (unij⊕kj , u
n
ji, u

n
jk, v

n
j , Y

n
j )

is jointly typical with respect to pUij⊕Ukj ,Uji,Ujk,Vj ,Yj
. If all

such triples are in a unique triple of bins, the corresponding
triple of bin indices is declared as decoded message of user
j. Else an error is declared. Decoding is successful if

STAj
≤ Aj −H(UA|UAc ,Sj , Vj , Yj)

STAj
+ STij ≤ Aj + θj −H(UA,Sj |UAc , Vj , Yj)

STAj
+ STkj ≤ Aj + θj −H(UA,Sj |UAc , Vj , Yj)

STAj
+KLj ≤ Aj +H(Vj)−H(UA, Vj |UAc ,Sj , Yj)

STAj+KLj+STij ≤ Aj+θj+H(Vj)−H(
UA,Vj ,

Sj
|UAc ,Yj)

STAj+KLj+STkj ≤ Aj+θj+H(Vj)−H(
UA,Vj ,

Sj
|UAc ,Yj)

(9)

8U abbreviates U12U13U21U23U31U32.



where θj = log2 qj , Aj =
∑
a∈Aj

log |Ua|, Sj = Uij ⊕ Ukj
for every Aj ⊆ {ji, jk} with distinct indices i, j, k in {1, 2, 3},
STAj

: = SAj
+ TAj

, SAj
=
∑
a∈Aj

Sa, TAj
=
∑
a∈Aj

Ta,
STij : = Sij + Tij , STkj = Skj + Tkj , KLj = Kj + Lj .
Recognize that user j’s rate Rj = Tji+Tjk+Lj . We are now
equipped to state an achievable rate region for the general
3-DBC using nested coset codes.

Definition 2: Let Df (WY |X , κ, τ) denote the collection of
probability mass functions pUVXY defined on U × V ×
X × Y , where U : = (U12, U13, U21, U23, U31, U32), V :
= (V1, V2, V3), U : = U12×U13×U21×U23×U31×U32,V :
= V1 × V2 × V3,Uij = Fqj , the finite field of cardinality qj
for each 1 ≤ i, j ≤ 3, Ui is an arbitrary finite set such that (i)
pY |XV U = pY |X =WY |X , (ii) E {κ(X)} ≤ τ .

For pUVXY ∈ Df (WY |X , κ, τ), let βf (pUVXY ) is
defined as the set of rate triples (R1, R2, R3) ∈ [0,∞]3

for which there exists nonnegative numbers
Sij : ij ∈ {12, 13, 21, 23, 31, 32} , Tjk : jk ∈
{12, 13, 21, 23, 31, 32} ,Kj : j {1, 2, 3} , Lj : {1, 2, 3}
that satisfy (8)-(9) and R1 = T12 + T13 + L1, R2 =
T21 + T23 + L2, R3 = T31 + T32 + L3. Let

βf (WY |X , κ, τ) = cocl

 ⋃
pUV XY ∈

Df (WY |X ,κ,τ)

βf (pUVXY )

 .

Theorem 3: For 3-DBC (X ,Y,WY |X , κ), βf (WY |X , κ, τ)
is achievable, i.e., βf (WY |X , κ, τ) ⊆ C(WY |X , κ, τ).

VII. ENLARGING MARTON’S RATE REGION USING COSET
CODES

The natural question that arises is whether the achievable
rate region using coset codes contains Marton’s rate region.
It is our belief that coding techniques based on structured
codes do not substitute their counterparts based on traditional
unstructured independent codes, but enhance the same. Indeed,
the technique proposed in [9] is strictly inferior to unstructured
coding technique for certain source distributions.9

We therefore follow the approach of Ahlswede and Han [15,
Section VI] to build upon Marton’s rate region by gluing to it
the coding technique proposed herein.10 Indeed, a description
of the resulting rate region is quite involved and we spare the
reader of these details. The resulting coding technique will
involve each user decode a univariate component of every
other user’s transmission particularly set apart for it, and
furthermore decodes a bivariate component of the other two
user’s transmissions.11 A mathematical characterization of the
resulting achievable rate region can be derived using standard
techniques. The reader is referred to [16, Section VII] for an

9If X and Y are the distributed binary sources whose modulo−2 sum is to
be reconstructed at the decoder, then Körner and Marton technique is strictly
suboptimal if H(X ⊕ Y ) >

H(X,Y )
2

.
10This is akin to the use of superposition and binning in Marton’s coding.
11An informed and inquisitive reader may begin to see a relationship emerge

between the several layers of coding and common parts of a collection of
random variables. Please refer to [13, Section VIII] for a discussion.

illustration. For now, we conclude by stating that the resulting
achievable rate region contains and strictly enlarges Marton’s
rate region for the general 3-DBC.

VIII. CONCLUDING REMARKS

Structured codes enable decoding of bivariate interference
component more efficiently by containing range of the bivari-
ate function. In this article, we only exploited this property of
the simplest ensemble of structured codes - coset codes - that
contain the interference to an affine space, leaving sufficient
room for generalization using other algebraic structures. We
therefore envision an achievable rate region involving a union
over all algebraic objects pertaining to the several bivariate
functions.
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