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Abstract— A new rate region is presented for a very general
framework of distributed source coding where the decoder is
interested in lossy reconstruction of an arbitrary function of
the sources. The coding scheme involves vector quantization
of the sources followed by “correlated” binning. Nested linear
codes are used for quantization and binning as against the more
prevalent random codes. Our rate region recovers many known
rate regions in distributed source coding while unifying them
under the same general framework.

I. INTRODUCTION

A large number of problems in multi-user information
theory fall under the general setup of distributed source
coding. The most general framework for a distributed source
coding problem consists of a set of encoders which observe
different components of a correlated vector source and com-
municate their quantized observations to a central decoder
through a rate-constrained noiseless communication link. The
decoder is interested in reconstructing a function of these
observations to within some distortion as measured by a
fidelity criterion. Such a formulation finds wide applications
in many areas of communications such as sensor networks
and distributed computing. In this work, we present an
achievable rate region for this problem and demonstrate a
coding scheme that achieves this rate region.

The novelty of our approach lies in an unified treatment
to the problem that works for any arbitrary function that the
decoder is interested in reconstructing. Further, our approach
relies on the use of nested linear codes for encoding. The
binning operation of the encoders are done in a “correlated”
manner as dictated by these structured codes. This use of
“structured quantization followed by correlated binning” is
in contrast to the more prevalent “quantization using random
codes followed by independent binning” in distributed source
coding. We present a novel algebraic structure called the
digit plane field which enables the decomposition of the
source into its constituent “digits” which are then encoded
sequentially. This approach unifies several known results in
distributed source coding such as the Slepian-Wolf problem
[1], Korner-Marton problem [2], Wyner-Ziv problem [3],
Berger-Tung problem [4], under a single framework while
recovering their respective rate regions.

The organization of the paper is as follows. In Section
II, we formally define the problem. We motivate our coding
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scheme with some illustrative examples in Section III. We
present some relevant definitions in Section IV and introduce
nested linear codes in Section V. The main coding theorem
and its proof are presented in Section VI. Some comments
about the coding theorem are presented in Section VII which
concludes the paper.

A brief overview of the notation used in the paper is given
below. Random variables are denoted by capital letters such
as X,Y etc. The alphabet over which a discrete random vari-
able X takes values will be indicated by X . The cardinality
of a discrete set X is denoted by |X |. For a random variable
X , the set of all n-length ε-typical sequences are denoted
by An

ε (X) or simply A(X). For a pair of jointly distributed
random variables X,Y with distribution P (X,Y ), the set
of all n-length yn-sequences jointly typical with a given xn

sequence is denoted by the set A(xn). The finite field of size
p is denoted by Fp.

II. FORMAL PROBLEM STATEMENT

Consider a pair of discrete random variables (X,Y )
with joint distribution pXY (x, y). Let the alphabets of the
random variables X and Y be X and Y respectively.
The source sequence (Xn, Y n) is independent over time
and has the product distribution

∏n
i=1 pXY (xi, yi). Let

F : X × Y → Z be the function the decoder is interested
in reconstructing. Let d : Z × Z → R+ be an additive
distortion measure. A transmission system with parameters
(n, θ1, θ2,∆) is defined by the set of mappings f1 : Xn →
{1, . . . , θ1}, f2 : Yn → {1, . . . , θ2}, g : {1, . . . , θ1} ×
{1, . . . , θ2} → Zn such that the following constraint is
satisfied : E(d(F (Xn, Y n), g(f1(Xn), f2(Y n)))) ≤ ∆. We
say that a tuple (R1, R2, D) is achievable if ∀ε > 0, ∃ for all
sufficiently large n, a transmission system exists with param-
eters (n, θ1, θ2,∆) such that 1

n log θi ≤ Ri + ε for i = 1, 2
and ∆ ≤ D + ε. The performance limit is given by the
optimal rate-distortion region which is defined as the set of
all achievable tuples (R1, R2, D).

III. MOTIVATION FOR THE CODING SCHEME

In this section, we present a sketch of the ideas involved
in our coding scheme by demonstrating it for the simple
case when the sources are binary. A formal exposition of the
coding scheme will follow later in Section VI.



A. Lossless Reconstruction of the Modulo-2 Sum of Binary
Sources

The problem of reconstructing the modulo-2 sum of binary
sources was studied in [2] where an ingenious coding scheme
involving linear codes was presented. This coding scheme
can be understood as follows. It is well known [7] that linear
codes can be used to losslessly compress a source down to
its entropy. Formally, for any discrete memoryless source Z
with distribution pZ(z), there exists a k×n binary matrix A
with k

n ≤ H(Z)+ε and a function ψ such that P (ψ(Azn) 6=
zn) < ε for all sufficiently large n.

Let Z = X ⊕2 Y be the modulo-2 sum of the binary
sources X and Y . Let the matrix A be as described above.
The X and Y encoders transmit s1 = Axn and s2 =
Ayn respectively at rates (H(Z),H(Z)). The decoder, upon
receiving s1 and s2, computes ψ(s1 ⊕2 s2) = ψ(Axn ⊕2

Ayn) = ψ(Azn). By the above mentioned property of ψ(·),
this equals zn with high probability. Thus, the rate pair
(H(Z),H(Z)) is achievable. This coding strategy shall be
referred to as the Korner-Marton coding scheme from here
on.

The crucial part played by linear codes in this coding
scheme is noteworthy. Had there been a centralized encoder
with access to xn and yn, the coding scheme would be
to compute zn = xn ⊕2 y

n first and then compress it
using any method known to achieve the entropy bound.
Because the encoding is linear, it enables the decoder to use
the distributive nature of the linear code over the modulo-
2 operation to compute s1 ⊕2 s2 = Azn. Thus, from
the decoder’s perspective, there is no distinction between
this distributed coding scheme and a centralized scheme
involving a linear code. Also, in contrast to the usual norm
in information theory, there is no known random coding
scheme that approaches the performance of this linear coding
scheme.

More generally, a sum rate of 2H(X ⊕q Y ) can be
achieved for the reconstruction of the sum of the two sources
Z = X ⊕q Y in any finite field Fq [5]. If the source
statistics is such that H(Z) > H(X), then clearly it is
better to compress X at a rate H(X). Thus, the Korner-
Marton coding scheme achieves the rate pair (R1, R2) with
R1 ≥ min{H(X),H(Z)} and R2 ≥ min{H(Y ),H(Z)}.

B. Lossless Reconstruction of the Sources

The classical result of Slepian and Wolf [1] states that it
is possible to reconstruct the sources X and Y noiselessly
at the decoder with a sum rate of R1 + R2 = H(X,Y ).
As was shown in [6], the Slepian-Wolf bound is achievable
using linear codes. Here, we present another linear coding
scheme similar to the one in the previous subsection.

We begin by making the observation that reconstructing
the function Z = (X,Y ) can be thought of as reconstructing
a linear function in the field F4. This equivalence is demon-
strated below. Let the elements of F4 be {00, 01, 10, 11}. The
addition operation in F4 is simply bitwise XOR addition of

(a) Z̃1 = X̃1⊕2Ỹ1

⊕2 0 1
0 0 1
0 0 1

(b) Z̃2 = X̃2 ⊕2

Ỹ2

⊕2 0 0
0 0 0
1 1 1

TABLE I
DIGIT DECOMPOSITION OF Z̃ = X̃ ⊕4 Ỹ

the component bits. Define the mappings

X̃ =
{

00 if X = 0
01 if X = 1 Ỹ =

{
00 if Y = 0
10 if Y = 1 (1)

Clearly, reconstructing (X,Y ) losslessly is equivalent to
reconstructing the function Z̃ = X̃ ⊕4 Ỹ losslessly. The
next observation is that elements in F4 can be represented
as two dimensional vectors whose components are in F2.
Let the first and second bits of X̃ be denoted by X̃1 and X̃2

respectively. The same notation holds for Ỹ and Z̃ as well.
Then, we have the decomposition of the vector function Z̃ as
Z̃i = X̃i⊕2 Ỹi for i = 1, 2. This decomposition is illustrated
in Table I.

Encoding the vector function Z̃ directly using the Korner-
Marton coding scheme would entail a sum rate of R1 +
R2 = min{H(X,Y ),H(X)} + min{H(X,Y ),H(Y )} =
H(X) + H(Y ) which is more than the sum rate dictated
by the Slepian-Wolf bound. Instead, we encode the scalar
components (digit planes) of the function Z̃ sequentially
using the Korner-Marton scheme.

Suppose the first digit plane Z̃1 is encoded first. Clearly,
the Korner-Marton scheme can be used to encode the first
digit plane Z̃1. The rate pair (R11, R21) achieved by the
scheme is given by

R11 ≥ min{H(Z̃1),H(X̃1)} = H(X̃1) = 0 (2)

R21 ≥ min{H(Z̃1),H(Ỹ1)} = H(Z̃1) (3)

It is straightforward to extend the Korner-Marton coding
scheme to the case where decoder has available to it some
side information. Since Z̃1 is available as side information
at the decoder, the rates needed to encode the second digit
plane Z̃2 are

R12 ≥ min{H(Z̃2 | Z̃1),H(X̃2 | Z̃1)} = H(Z̃2 | Z̃1) (4)

R22 ≥ min{H(Z̃2 | Z̃1),H(Ỹ2 | Z̃1)} = H(Ỹ2 | Z̃1) = 0
(5)

Thus, the overall rate pair needed to reconstruct the
sources losslessly is R1 = H(Z̃2 | Z̃1) = H(X̃2 | Ỹ1) and
R2 = R21 +R22 = H(Z̃1) = H(Ỹ1). The sum rate for this
scheme is R1 +R2 = H(X̃2, Ỹ1) = H(X,Y ) thus equaling
the Slepian-Wolf bound.

C. Digit Plane Fields

The coding schemes in Sections III-A and III-B both
use the same coding strategy, namely the Korner-Marton
coding scheme applied sequentially to the digit planes of
the function. They differ in the finite field in which the
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strategy is employed. This suggests a coding strategy for
an arbitrary function F (X,Y ) where we first “embed” the
function in a suitable finite field and then code its digit plane
decomposition sequentially.

Before we expand on this idea, we note that a finite
structure less rigorous than a finite field would suffice for
such a coding strategy. Note that the only property of the
finite field F4 that was used in the above encoding scheme is
the field addition operation. More precisely, the fact that the
digit planes of the addition operation ⊕4 could be expressed
as finite field addition over F2 was the only property of the
finite field that was used in encoding. Since encoding is done
at the digit plane level, it suffices if the finite structure that the
function is embedded in can be decomposed into digit planes
which are finite fields in themselves. We shall call such
finite structures as digit plane fields (DPF). For example,
the addition operation on a DPF of size 6 can be defined as
follows. Since 6 is factorized as 2×3, the elements of DPF(6)
are vectors of length 2, the first component of which is
binary and the second is ternary. Addition is done component
wise with the first component added in F2 and the second
component added in F3. A formal definition of DPF(s) shall
be provided later. Note that, the addition operation in the
DPF structure reduces to that of a finite field in the case
when the size of the DPF is a prime or a prime power.

D. Lossy Reconstruction of F (X,Y )
While there are more straightforward ways of achieving

the Slepian-Wolf bound than the method outlined in Section
III-B, our encoding scheme has the advantage of putting the
Korner-Marton coding scheme and the Slepian-Wolf coding
scheme under the same framework. The ideas used in these
two examples can be abstracted and generalized for the case
of an arbitrary function F (X,Y ). The coding strategy would
be as follows: Quantize the sources X and Y to auxiliary
variables U and V . Let G(U, V ) , E(F (X,Y ) | U, V )
be the best estimate of the function F given the quantized
sources U and V . Reconstruct the function G(U, V ) loss-
lessly by a coding scheme similar to the one outlined in
Section III-B.

We shall use nested linear codes to effect this quantization.
Nested linear codes arise naturally in the area of distributed
source coding and require that the fine code be a “good”
source code and the coarse code be a “good” channel code
for appropriate notions of goodness. We use a series of nested
lattice codes, one for each digit plane, over appropriate finite
fields for quantization. For instance, if the first digit plane of
G(U, V ) is the finite field Fp1

, then we need nested linear
codes over Fp1

that encode the sources X and Y to Ũ1 and
Ṽ1 respectively. The quantization operation is also carried
out sequentially, i.e., the digits Ũ2 and Ṽ2 are conditionally
encoded given Ũ1, Ṽ1 and so on.

The steps involved in the overall coding scheme can be
detailed as follows: Let U, V be discrete random variables
over the alphabet U ,V respectively. Choose the joint density
P (X,Y, U, V ) = P (X,Y )P (U |X)P (V |Y ) satisfying the
Markov chain U −X−Y −V . Let G(U, V ) = E(F (X,Y ) |

U, V ). Embed the function G(U, V ) in DPF(s) for some
s. Decompose G(U, V ) into its constituent digit planes.
Suppose the bth digit plane is the finite field Fpb

. Quantize
the sources (Xn, Y n) into digits (Ũb, Ṽb) using the digits
(Ũ b−1

1 , Ṽ b−1
1 ) as side information. The details of the quan-

tization procedure are detailed later. Encode Z̃b = Ũb⊕pb
Ṽb

using the Korner-Marton encoding scheme.

IV. DEFINITIONS

The intuitive ideas behind Digit plane fields and embed-
ding of functions in them as outlined in Section III are made
precise in the following series of definitions. First, we define
the finite algebraic structure that we termed Digit plane field
in Section III-C.

Definition 1: Suppose s can be factorized as s =∏k
i=1 p

ei
i , p1 < · · · < pk. Let Ω(s) =

∑k
i=1 ei. The

finite structure DPF(s) is the set X along with an addition
operation ⊕s. The elements of X are the set of Ω(s)-
tuples {0, 1, . . . , p1 − 1}e1 × · · · × {0, 1, . . . , pk − 1}ek with
A×B denoting the Cartesian product of sets A and B. Let
x, y ∈ DPF(s) and let z = x ⊕s y. The addition operation
⊕s is then defined for j = 1, . . . , k as

zj = (xj + yj) mod pl for
l−1∑
i=1

ei + 1 ≤ j ≤
l∑

i=1

ei (6)

Suppose a random variable X takes values over the set
X with cardinality |X | = s. One can think of X as taking
values in the set DPF(s). Let s =

∏k
i=1 p

ei
i . Denote the bth

digit of X as Xb. For 1 ≤ b ≤ Ω(s), let m be such that∑m−1
i=1 ei + 1 ≤ b ≤

∑m
i=1 ei. Then define ρs(b) , pm. In

words, Fpm
is the finite field over which the digit Ub takes

its value. We now make the idea of embedding of a function
in a digit plane field precise.

Definition 2: A bivariate function F (X,Y ) is said to be
embeddable in DPF(s) if there exists bijective functions
S

(s)
X : X → DPF(s), S(s)

Y : Y → DPF(s) and a function
S

(s)
F : DPF(s) → Z such that S(s)

F (S(s)
X (x) ⊕s S

(s)
Y (y)) =

F (x, y) for all(x, y) ∈ X × Y with pXY (x, y) > 0. If the
function F (X,Y ) is indeed embeddable in DPF(s), it is
denoted as F (X,Y ) ⊂ DPF(s).

Our general coding scheme is similar in spirit to the
Slepian-Wolf coding scheme outlined in Section III-B in that
coding is done one digit of the sources at a time. In the most
general case, coding takes place one digit plane of the digit
plane field at a time. The following definition makes precise
the idea of a digit plane.

Definition 3: Suppose the function F (X,Y ) is embed-
dable in DPF(s). Let x(i), 1 ≤ i ≤ |X | denote the ith
letter of the X alphabet. y(j) is similarly defined. Let s =∏k

i=1 p
ei
i and Ω(s) ,

∑k
i=1 ei. Let ρs(b) = pm for some

1 ≤ b ≤ Ω(s). Let x̃(i) , S
(s)
X (x(i)) and ỹ(j) , S

(s)
Y (y(j)).

Then the bth digit plane is defined as the p×p matrix Db with
its (i, j)th element Db(i, j) = x̃(i)b ⊕pm ỹ(j)b where ⊕pm

represents addition modulo-pm. Let D = {D1, . . . , DΩ(s)}
be the set of digit planes.
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V. GOOD NESTED LINEAR CODES

Nested codes occur naturally in problems of distributed
source coding. Their usefulness in structured approaches to
various problems have been demonstrated in [8], [9]. In
distributed source coding problems, we often need one of the
components of a nested code to be a good source code while
the other one to be a good channel code. We shall define in
this section the various notions of “goodness” associated with
a linear code.

An n-dimensional linear code C over the space Fn
p is a

collection of codewords that form a linear subspace of Fn
p .

Every linear code C has associated with it a k × n parity
check matrix H which completely defines the linear code as
C , {xn : Hxn = 0n}.

Definition 4: A nested linear code (C1, C2) is a pair of
linear codes such that every codeword in the codebook C2 is
also a codeword in C1, i.e., C2 ⊂ C1. Their associated parity
check matrices are the k1 × n matrix H1 and the k2 × n
matrix H2. They are related to each other as H1 = J · H2

for some k1 × k2 matrix J .
The code C1 is called the fine linear code while C2 is
called the coarse linear code. When nested linear codes
are employed in distributed source coding, typically the
coset leaders of C2 in C1 are employed as codewords. In
such a case, the rate of the nested lattice code would be
n−1(k2 − k1) log p bits when the codebooks are over the
linear space Fn

p .
We define the notion of “goodness” associated with a

linear code below.
Definition 5: A nested linear code (C1, C2) is said to be

good if both C1 and C2 are good linear source and channel
codes. The notion of source and channel coding goodness is
as below.

A linear code C is called a good source code for the
distribution P (X)P (U | X) with side information S if for
any jointly typical source and side information sequence
(xn, sn) and any ε > 0, the following holds true for
sufficiently large dimension n :

P (∃un ∈ C : (xn, un, sn) ∈ A(X,U, S)) ≥ 1− ε. (7)

for any (xn, sn) ∈ A(X,S). It can be shown that the
dimensions of the associated parity check matrix H of a good
linear source code C satisfies k

n log q ≤ H(U |X,S)− ε1.
A linear code C is called a good channel code for the

additive noise channel with noise distribution P (Z) with
side information S if for any jointly typical sequences
(zn, sn) and ε > 0, the following holds for sufficiently large
dimension n :

P (∃z̃n : z̃n 6= zn, (z̃n, sn) ∈ A(Z, S),Hz̃n = Hzn) ≤ ε
(8)

where H is the parity check matrix associated with the linear
code C. It can be shown that the dimensions of H of a
good linear channel code C satisfies k

n log q ≥ H(Z|S)+ ε1.
Associated with such a good linear channel code would be a
decoding function ψ(·, ·) such that P (ψ(Hzn, sn) = zn) ≥
1− ε.

The proof of the existence of good nested linear codes and
bounds on the dimensions of their associated parity check
matrices are omitted.

VI. THE CODING THEOREM

Suppose we are given discrete random variables X and
Y which are jointly distributed according to p(x, y). The
sources are observed by separate encoders which commu-
nicate quantized versions of their observations to a central
decoder. The decoder is interested in reconstructing the
function F (X,Y ) to within some distortion D.

Let the X and Y quantizer outputs be indicated by the dis-
crete random variables U and V respectively. Let their cardi-
nalities be |U| = α, |V| = β. Let P denote the family of joint
distributions P (X,Y, U, V ) that satisfy P (X,Y, U, V ) =
P (X,Y )P (U |X)P (V |Y ). Define G(U, V ) , E(F (X,Y ) |
U, V ). Let S , {s : |G| ≤ s ≤ αβ,G(U, V ) ⊂ DPF(s)}. For
s ∈ S, let Ũ = S

(s)
U (U) and Ṽ = S

(s)
V (V ) where S(s)

U (·) and
S

(s)
V (·) are as given in Definition 2. For a given s ∈ S, let
πs : {1, . . . ,Ω(s)} → {1, . . . ,Ω(s)} be a permutation. The
permutation πs can be thought of as determining the order in
which the digit planes get encoded and decoded. Let the set
Πs(b), 1 ≤ b ≤ Ω(s) be defined as Πs(b) = {k : πs(k) < b}.
The set Πs(b) contains the indices of all the digit planes that
get encoded before the bth stage. With these definitions, an
achievable rate region for the problem is presented below.

Theorem 1: For a given source (X,Y ), define the region
RDin as

RDin ,
⋃

U,V∈P
s∈S,πs

(R1, R2) : R1 ≥
Ω(s)∑
b=1

min
{
R

(1)
1b , R

(2)
1b

}

R2 ≥
Ω(s)∑
b=1

min
{
R

(1)
2b , R

(2)
2b

}
, D ≥ d(F (X,Y ), G(U, V ))


where R

(1)
1b = H

(
Ũπs(b) | Z̃Πs(b)

)
and R

(2)
1b =

H
(
Z̃πs(b) | Z̃Πs(b)

)
− H

(
Ũπs(b) | X, Z̃Πs(b)

)
. R

(1)
2b and

R
(2)
2b are similarly defined with (Y, V ) replacing (X,U).

Then, any (R1, R2, D) ∈ RD∗in is achievable where ∗

denotes convex closure.
Proof: Since the encoders don’t communicate with each

other, it is necessary to impose the Markov chains V −Y −X
and Y −X−U on the joint distribution P (X,Y, U, V ). The
family P contains all distributions that satisfy these Markov
chains. Fix such a joint distribution. It can be shown that
any function G(U, V ) can be embedded in DPF(αβ) and
hence the set S is non-empty. In what follows, fix s ∈ S.
The encoding operation of the X and Y encoders proceeds
in Ω(s) steps with each step producing one digit of Ũ and
Ṽ respectively.

Let ρs(πs(b)) , pm. Then, Fpm
is the finite field over

which the digits Ũπs(b) and Ṽπs(b) take their values. Note
that, while decoding the bth digit plane, the decoder has
access to the previous digit planes Z̃Πs(b) which can be
used as side information. The encoders have two encoding
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options available at the bth stage. They can either encode the
digits Ũπs(b), Ṽπs(b) directly or encode in such a way that the
decoder is able to reconstruct Z̃πs(b) directly. The former can
be carried out using any of the standard techniques of entropy
coding and can be accomplished with rates

R
(1)
1b = H(Ũπs(b) | Z̃Π(b)), R

(1)
2b = H(Ṽπs(b) | Z̃Π(b)) (9)

The encoding scheme to accomplish the latter is as follows.
We shall use a pair of good nested linear codes (C11b, C2b)
and (C12b, C2b) to encode Z̃πs(b). Let the corresponding
parity check matrices of these codes be H11b,H12b and
H2b respectively. Let the dimensionality of these matrices
be k11b×n, k12b×n, k2b×n respectively. These codebooks
are all over the linear space Fn

p where p = ρs(πs(b)). We
need C11b to be a good source code for the distribution
P (X)P (Ũπs(b) | X) with side information Z̃Πs(b) , C12b to
be a good source code for the distribution P (Y )P (Ṽπs(b) |
Y ) with side information Z̃Πs(b) and C2b to be a good channel
code for the additive noise channel with noise distribution
P (Z̃πs(b)) and side information Z̃Πs(b) .

The encoding scheme used by the X-encoder to encode
the bth digit plane, 1 ≤ b ≤ Ω(s) is detailed below. The
X-encoder looks for a typical sequence ũn

πs(b) ∈ C11b such
that it is jointly typical with the source sequence xn and
the previous encoder output digits ũn

Πs(b). If it finds at least
one such sequence, it chooses one of these sequences and
transmits the syndrome Sxb , H2bũπs(b) to the decoder. If
it finds no such sequence, it declares an encoding error. The
operation of the Y -encoder is similar. Since C11b and C12b

are good linear source codes for the appropriate distributions,
the probability of encoding error goes to 0 provided the di-
mensions of the corresponding parity check matrices satisfy
the bound given in Definition 5.

Let ψb(·, ·) be the decoder corresponding to the good
linear channel code C2b. The decoder action is described by
the following series of equations. The decoder receives the
syndromes Sxb and Syb.

ˆ̃Zπs(b) = ψb

(
Sxb ⊕p Syb, Z̃Πs(b)

)
= ψb

(
H2bũπs(b) ⊕p H2bṽπs(b), Z̃Πs(b)

)
= ψb

(
H2b

(
ũπs(b) ⊕p ṽπs(b)

)
, Z̃Πs(b)

)
= ψb

(
H2bz̃πs(b), Z̃Πs(b)

)
(a)
= z̃πs(b)

where (a) holds with high probability since C2b is a good
channel code for the noise distribution P (Z̃πs(b)) with side
information Z̃Πs(b).

The rate expended by the X-encoder at the bth stage can
be calculated as follows. Since C11b is a good source code for
the distribution P (X)P (Ũπs(b) | X) with side information
Z̃Πs(b), we have that the dimensions of the parity check ma-
trix H11b satisfy k11b

n log p ≤ H
(
Ũπs(b) | X, Z̃Πs(b)

)
− ε1.

A similar bound holds for the dimensions of H12b. Since C2b

is a good channel code for P (Z̃πs(b)) with side information
Z̃Πs(b), the dimensions of the parity check matrix H2b satisfy

k2b

n log p ≥ H
(
Z̃πs(b) | Z̃Πs(b)

)
+ ε2. The rate of the nested

linear code in bits would be R1 = n−1(k2b − k11b) log p.
Therefore

R
(2)
1b ≥ H

(
Z̃πs(b) | Z̃Πs(b)

)
−H

(
Ũπs(b) | X, Z̃Πs(b)

)
+ε1+ε2

(10)
At the bth stage, the X-encoder uses that scheme that offers
the lower rate of the two options available to it. Thus,
combining equations (9) and (10), the rate R1b of the X-
encoder at the bth stage is R1b = min

{
R

(1)
1b , R

(2)
1b

}
. The

rate of the Y -encoder at the bth stage is similarly given.
Summing over the Ω(s) stages of encoding gives us the rate
region claimed in Theorem 1. Clearly, the distortion achieved
by this scheme is Ed(F (X,Y ), G(U, V )).

VII. COMMENTS AND CONCLUSION

It is worth noting that the rate region presented in Theorem
1 is not computable as presented since there are no bounds on
the cardinalities of the auxiliary random variables U and V .
However, the theorem is still useful since it presents a unified
framework using which many known results of distributed
source coding can be rederived. For instance, in the lossless
encoding of binary sources, the coding scheme of Section VI
recovers the Korner-Marton rate region [2] when the function
under consideration is F (X,Y ) = X ⊕2 Y and the Slepian-
Wolf rate region [1] when the function is F (X,Y ) = (X,Y ).
This approach can be easily extended for the case of a vector
source with more than two components.

We have presented a coding scheme for the general
problem of distributed source coding in this paper. This
approach unifies many different problems in the area under
the same framework while recovering their rate regions. The
scheme makes use of structured nested linear codes for vector
quantization and binning.
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