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Abstract— We study the two-channel multiple descriptions
problem for an i.i.d source, with feed-forward to one or both
side-decoders. We derive a single-letter achievable rate-region
that strictly includes the best known rate-region for multiple de-
scriptions without feed-forward. In point-to-point source coding,
feed-forward does not improve the rate-distortion function of a
discrete memoryless source. In contrast, we provide an example
to show that our region can be strictly smaller than the optimal
region without feed-forward. The proof of the result uses a block-
Markov superposition source coding strategy.

I. I NTRODUCTION

Consider a communication network in which we wish to
compress a streaming source of data into packets at one node
and transmit them to another node. Assume there is a chance
that a packet might be lost and never reaches its destination.
So we compress each block of data simultaneously into two
different packets and send them through different routes. We
get a good reconstruction on reception of either packet, butwe
would like a better reconstruction if both packets are received;
in other words, the packets need to refine one another. How
should we compress the source into two different descriptions?
This, in essence, is the multiple descriptions problem, first
posed by Gersho, Ozarow, Witsenhausen and others.

The multiple descriptions set-up is shown in Figure 1. In the
standard problem, bothS1 and S2 are open.X = {Xn}∞n=1

is a source with known distribution. The encoder encodes
each block of source samples in two different ways: decoder
1 receivesR1 bits/sample and produces reconstructionX̂1.
Similarly, decoder2 receivesR2 bits/sample and produces
X̂2. Decoder0 receives the fullR1 + R2 bits and produces
reconstructionX̂0. Assume suitable distortion measures have
been defined for all decoders; letD1, D2, D0 denote the
average distortions with which decoders1, 2 and 0 are able
to reconstruct the source. The problem is to determine the set
of all quintuples(R1, R2, D1, D2, D0) that are achievable in
the usual Shannon sense. This problem has been studied in
several notable papers, including [1]–[10]. In this paper,we
study multiple descriptions source coding with feed-forward.

To explain the notion of feed-forward in simple terms, let
us first consider the point-to-point case. In the usual fixed-rate
lossy source coding problem, there is a sourceX that has to
be reconstructed with some distortionD. The encoder takes

This work was supported by NSF Grant ITR-0427385 and Grant (CA-
REER) CCF-0448115.

Encoder

Decoder 1

Decoder 2

Decoder 0

R 1

R 2

X

X 1

X 2

X 0

^

^

^

Delay
S1

Delay
S2

Fig. 1. The multiple descriptions problem

a block of, say,N source samples and maps it to an index
in a codebook. The decoder uses this index to reconstruct
the N source samples. In source coding with feed-forward,
the encoder works in a similar fashion and sends an index
to the decoder. The decoder generates the reconstructions
sequentially: in order to reconstruct each source sample, the
decoder has access to the indexandsome past source samples.
Let Xn, X̂n denote the source and reconstruction samples at
time n, respectively. If the source samples are available with a
delayk after the index is sent, the decoder has knowledge of
the index plus the source samples until timen− k to produce
X̂n. We call this set-up feed-forward with delayk.

The notion of feed-forward is applicable to multi-terminal
problems as well. Figure 1 shows a multiple descriptions
system with feed-forward. Assume that switchS1 is closed
and the source samples are sequentially available with a delay
k after the indices are sent. To generateX̂1n, decoder1 has
knowledge of the index in a codebook (of rateR1) plus the
source samples until timen − k. A similar situation occurs
for decoder2 when S2 is closed. In this paper, we study
the rate vs. distortion trade-offs- the achievable quintuples
(R1, R2, D1, D2, D0) - when one or both ofS1 and S2 are
closed.

Source coding with feed-forward is relevant in many dif-
ferent settings. The problem was motivated and studied from
a communications perspective in [11]–[13], as a variant of
source coding with side information. For example, consider
the source to be a field that needs to compressed and com-
municated from one node to another in a network. This field
(e.g. a seismic or acoustic field) could propagate through the



medium at a slow rate and become available at one or more
decoding nodes as side-information with some delay.

Source coding with feed-forward is also related closely to
prediction. In fact, it was first considered in the context of
competitive prediction in [14]. The problem of choosing the
best predictor of a random process from an exponentially large
class of predictors is equivalent to the source coding problem
with feed-forward. The following problem is another example
that motivates our study of multiple descriptions with feed-
forward. There are four agents Alice, Bob, Carol and Dave.
Alice has access to an equiprobable binary source; Bob, Carol
and Dave are interested in reconstructing the source sequence.
Dave needs perfect reconstruction, while Bob and Carol each
want to reconstruct with the fraction of their errors being
at mostd. Accordingly, Bob and Carol agree to buy some
information from Alice separately, and Dave agrees to buy the
information available to both Bob and Carol. Further assume
that after Bob, Carol and Dave reconstruct each source sample,
Alice reveals to Carol (but not to Bob and Dave) whether
she made an error or not. The minimum rates of information
that Alice would have to supply to Bob and Carol under this
scenario is the multiple description rate-distortion region with
feed-forward to Carol only. Using our results, we show in
Section III that the partial feed-forward in the above example
(i.e., to Carol only) allows information rates smaller thanthe
best possible rates without feed-forward.

In [11], a simple multiple-description coding scheme was
presented for i.i.d. Gaussian sources with feed-forward toall
decoders (0,1 and 2) with delay k = 1. The coding scheme
was shown to achieve the optimal rate-distortion region for
the i.i.d Gaussian source with feed-forward. In this paper,we
present an achievable rate-region for any discrete memoryless
source with arbitrary feed-forward delayk, when one or both
of S1 andS2 are closed. In point-to-point source coding, feed-
forward does not improve the rate-distortion function of a
discrete memoryless source. Our results show that for multiple
descriptions, the rate-distortion region can be strictly smaller
with feed-forward.

II. PROBLEM STATEMENT AND MAIN RESULTS

Consider a discrete memoryless sourceX with finite alpha-
betX . We assume that the source samplesXn, n = 1, 2, . . .
are independent and identically distributed (i.i.d) according to
a probability mass functionPX(x). Let X̂0, X̂1, X̂2 denote the
finite reconstruction spaces of decoder0,1 and2, respectively.
Each reconstruction has an associated single letter distortion
measure:

dm : X × X̂m → R, m = 0, 1, 2.

The distortion onN−length sequences is the average of the
per-letter distortion. For allxN ∈ XN , x̂N ∈ X̂N ,

dm(xN , x̂N
m) ,

1

N

N∑

n=1

dm(xn, x̂mn), m = 0, 1, 2.

A. Feed-forward to only one decoder

Without loss of generality assumeS1 is open andS2 is
closed in Figure 1.

Definition 1: An (N, 2NR1 , 2NR2) multiple description
code with delayk feed-forward of block lengthN and rateR
consists of:

1) Encoder mappings

em : XN → {1, . . . , 2NRm}, m = 1, 2 (1)

2) Mappings for decoders0 and1

g0 : {1, . . . , 2NR1} × {1, . . . , 2NR2} → X̂N
0

g1 : {1, . . . , 2NR1} → X̂N
1

(2)

3) A sequence of mappings for decoder2 1

g2n : {1, . . . , 2NR2} × Xn−k → X̂2, n = 1, . . . , N.
(3)

The encoder maps eachN -length source sequence to a pair
of indices in in{1, . . . , 2NR1}×{1, . . . , 2NR2}. The decoders
receive their respective indices. In addition, to reconstruct the
nth sample, decoder2 has access to the source samples until
time (n−k). Achievable rates are defined in the usual Shannon
sense.

Definition 2: (R1, R2) is an achievable rate pair for dis-
tortion (D0, D1, D2) if there exists a sequence, indexed by
N , of (N, 2NR1 , 2NR2) multiple description codes with feed-
forward delayk, such that for sufficiently largeN ,

Edm(XN , X̂N
m ) ≤ Dm, m = 0, 1, 2. (4)

The rate distortion regionR(D0, D1, D2) is the closure of the
set of achievable rate pairs for distortion(D0, D1, D2).

Our main result is the following theorem.
Theorem 1:A quintuple (R1, R2, D0, D1, D2) is achiev-

able - with delayk feed-forward to decoder2 only- if there
exist random variablesU, X̂1, X̂2, X̂0 jointly distributed with
the sourceX such that

R1 > I(X ; X̂1U)

R2 > I(X ; X̂2|U) + max{0, R1 − I(XX̂2; X̂1|U)}
R1 + R2 > I(X ; X̂1U) + I(X ; X̂2|U) + I(X ; X̂0|X̂1X̂2U)

+ I(X̂1; X̂2|XU) + max {0, R1 − I(XX̂2; X̂1|U)}
Edm(X ; X̂m) ≤ Dm, m = 0, 1, 2

The proof of the theorem is given in Section IV. Notice
that the rate-region specified by the theorem does not depend
on the feed-forward delayk, i.e., the region is achievable
for any finite delay k. We can compare the rate region
with the achievable rates for multiple descriptions without
feed-forward. The multiple descriptions rate-distortionregion
(without feed-forward) is known only for certain special cases
(see [1], [3], [4], [7]). The best known achievable region for a
general i.i.d source is due to Zhang and Berger [5] which we
reproduce below in a slightly modified, but equivalent, form.

1It is understood that forn ≤ k, Xn−k is the empty set.



Theorem 2 ( [5]): A quintuple (R1, R2, D0, D1, D2) is
achievable (without feed-forward) if there exist random vari-
ablesU, X̂1, X̂2, X̂0 jointly distributed with the sourceX such
that

R1 > I(X ; X̂1U)

R2 > I(X ; X̂2U)

R1 + R2 > I(X ; X̂1U) + I(X ; X̂2U) + I(X ; X̂0|X̂1X̂2U)

+ I(X̂1; X̂2|XU)

Edm(X ; X̂m) ≤ Dm, m = 0, 1, 2
To see that the rate region of Theorem 1 represents an

improvement the no-feed-forward case, consider any set of
random variablesU, X̂1, X̂2, X̂0 jointly distributed with X .
SetR1 = I(X ; X̂1U) + ǫ for some smallǫ > 0. We can have
one of two situations:

1) I(X ; X̂1U) + ǫ ≤ I(XX̂2; X̂1|U).
In this case, Theorem 1 tells us that

R2 = I(XX̂1; X̂2|U) + I(X ; X̂0|X̂1X̂2U) + ǫ

is achievable. This represents a savings ofI(U ; X)
bits/sample over the minimumR2 without feed-forward
(specified by Theorem 2).

2) I(X ; X̂1U) + ǫ > I(XX̂2; X̂1|U).
From Theorem 1,

R2 = I(XX̂1; X̂2|U) + I(X ; X̂0|X̂1X̂2U)

+ [I(X ; U) − I(X̂2; X̂1|XU)] + ǫ

is achievable, a savings ofI(X̂2; X̂1|XU) bits/sample
over the no-feed-forward case.

Of course, the potential savings in rate may be greater since
we have only presented an achievable rate region. The coding
strategy in [5] first quantizes the block of source samplesXN

to UN , which is sent to all the decoders. Decoders0, 1, 2 then
produce their reconstructions conditioned onUN . The coding
strategy in Theorem 1 uses the feed-forward to decoders1 and
2 to conveyUN ‘cheaply’ to all decoders.

B. Feed-forward to both decoders1 and 2

Switches S1 and S2 in Figure 1 areboth closed. An
(N, 2NR1 , 2NR2) multiple description code with delayk feed-
forward is defined in the same way as the previous subsection,
except that the decoder mappings are modified. The mapping
defining decoder0 is given by

g0 : {1, . . . , 2NR1} × {1, . . . , 2NR2} → X̂N
0 (5)

We have a sequence of mappings for decoders1 and2

gmn : {1, . . . , 2NR2}×Xn−k → X̂m, n = 1, . . . , N, m = 1, 2.
(6)

In addition to the index, both decoders1 and2 have access to
the source samples until time (n − k).

Achievable rates are defined in the usual Shannon sense as
before. Clearly, the region of Theorem 1 is achievable. The
rate region obtained by switching the roles ofR1 and R2 in
Theorem 1 is also achievable. Thus, taking the convex hull

of the union of these two rate-regions yields a possibly larger
rate-region.

We now present an example to show that the rate-region
with feed-forward to only one decoder can be strictly greater
than the optimal no feed-forward rate-distortion region.

III. E XAMPLE

Consider an i.i.d binary sourceX with pmf PX(0) =
PX(1) = 1/2. The reconstruction spaces are all binary
and the distortion measures are Hamming, i.e.,d(x, x̂m) =
δx=x̂m

, m = 0, 1, 2. Suppose decoders1 and 2 want to
reconstructX with distortiond, while decoder0, needs error-
free reconstruction. We want to characterize the function

rsum(d) , inf{R1 + R2 : (R1, R2, 0, d, d) ∈ R}. (7)

A lower bound torsum(d) without feed-forward was obtained
in [5, Theorem3, Section VIII] 2:

rsum(d)no−ff ≥ 2 − h

(
4d + 1 −

√
12d2 − 4d + 1

2

)
. (8)

Assume only decoder2 gets feed-forward with delayk.
In our problem, this means thatk time units after decoder2
reconstructs a sample, it is told whether that reconstruction
was correct or not. LetU be a binary-valued random variable
and fix the conditional distributionPU,X̂1,X̂2,X̂0|X

as

PU|X · PX̂1,X̂2|XU · PX̂0|XUX̂1X̂2

where

• PU|X : Fix a parameterD0 and define

PU|X(0|0) = PU|X(1|1) = 1 − D0

PU|X(0|1) = PU|X(1|0) = D0.
(9)

• PX̂1,X̂2|XU : WhenU andX agree, both deocders1 and
2 produce correct reconstructions.

PX̂1,X̂2|XU (00|00) = PX̂1,X̂2|XU (00|00) = 1 (10)

WhenU andX disagree, at least one of them produces
the correct reconstruction, according to:

PX̂1,X̂2|XU (01|01) = PX̂1,X̂2|XU (10|01) = d/D0

PX̂1,X̂2|XU (00|01) = 1 − 2d/D0

PX̂1,X̂2|XU (01|10) = PX̂1,X̂2|XU (10|10) = d/D0

PX̂1,X̂2|XU (11|10) = 1 − 2d/D0

(11)

• PX̂0|XUX̂1X̂2
: X̂0 is a function of(U, X̂1, X̂2).

X̂0 =






0 if (X̂1 = X̂2 = 0)

1 if (X̂1 = X̂2 = 1)

1 − U if (X̂1 6= X̂2)

(12)

It is easy to check that this joint distribution achieves the
distortion triple (D1 = d, D2 = d, D0 = 0). Using this
joint distribution in Theorem 1, we can obtain an achievable

2There is a typo in the statement of Theorem3 in [5]. The correct version
(given here) can be obtained from the proof of that theorem.
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Fig. 2. (a) Zhang-Berger lower bound onrsum(d) without FF, (b)
Achievable sum-rate with feed-forward to one decoder ,(c) Rate-distortion
lower bound onrsum(d) with FF.

rate-region when only decoder2 receives feed-forward. The
relevant information quantities are calculated below, with h(.)
used to denote the binary entropy function.

I(X ; U) = H(U) − H(U |X) = 1 − h(D0).

I(X̂2; X̂1|XU) = H(X̂2|XU)− H(X̂1|X̂2XU)

= D0h(
d

D0
) − D0

(
1 − d

D0

)
h(

d

D0 − d
).

I(X ; X̂2|U) = I(X ; X̂1|U) = H(X̂1|U) − H(X̂1|UX)

= h(D0 − d) − D0h(
d

D0
).

I(X ; X̂0|X̂1X̂2U) = 0.
(13)

(13) contains all the expressions required to compute the rate-
region of Theorem 1. For eachd, we can fix the valueD0 to
yield the best rate-constraint. Hence we obtain an achievable
upper bound torsum(d) in (7) with feed-forward to only
one decoder. This is plotted in graph(b) in Figure 2 for
distortionsd ≥ 0.08. Graph (a) is the Zhang-Berger lower
bound (8) torsum(d) without feed-forward. We see that for
all the distortions considered, we do better than the optimal
no feed-forward rate with feed-forward to one decoder . Since
decoders1 and 2 produce reconstructions with distortiond,
R1 and R2 have to each be greater than the Shannon rate-
distortion functionR(d) = 1−h(d). This is true both with and
without feed-forward. Thus a simple lower bound torsum(d)
with feed-forward is

rsum(d) > 2(1 − h(d)),

which is plotted in graph(c) of Figure 2.
Of particular interest is the case when the sum rateR1 +

R2 = 1. This is the case ofno excess rateto the central
decoder [4]. SettingD0 = 0.25945, Theorem1 tells us that
(R1 = 0.5, R2 = 0.5) is achievable ford = 0.12 with feed-
forward to one decoder. In comparison, it was shown in [15]
that with rates of (0.5,0.5) and no feed-forward, the minimum
achievable distortion at each side-decoder is(

√
2 − 1)/2 =

0.207.
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Fig. 3. Codebooks for decoders1 and2

IV. PROOF OFTHEOREM 1

Assume delayk feed-forward, i.e. each source sample is
available at the decoderN + k time units after it is available
to the encoder (N will be a measure of block-length in the
block-Markov coding scheme). First fix the joint distribution

PX(x) · PU,X̂1,X̂2,X̂0|X
(u, x̂1, x̂2, x̂0|x).

For the sake of brevity, we will often drop the subscripts in
the distributions and use only the arguments. Upper-case letters
will be used for random variables and lower-case letters for
their realizations. Vectors will be denoted in bold letters.

To prove the theorem, we shall use the properties
of strongly ǫ-typical sequences [16]. Length-N/2 vectors
xN/2, x̂

N/2
1 , x̂

N/2
2 are said to be jointly typical if their joint

type (composition) is approximatelyPX,X̂1,X̂2
. The set of

all jointly ǫ-typical tuples(XN/2, X̂
N/2
1 , X̂

N/2
2 ) is denoted

Tǫ(X, X̂1, X̂2). Similar definitions of typicality hold for other
joint and conditional distributions.

We divide the source sequence in a large number of
blocks, sayB, with each block containingN2 source symbols.
To exploit the feed-forward, we shall use a block-Markov
superposition strategy [17], [18] spanning adjacent blocks.
The ideas of non-random binning and restricted encoding,
introduced in [18], will be used in the proof. The block-
Markov coding scheme is described in detail below.

Random Coding: Let M0 = 2
N

2
R0 , M1 = 2

N

2
R1 and

M
′

2 = 2
N

2
R

′

2 . ChooseU(1), . . . ,U(M0) independently ac-
cording to a uniform distribution over the setTǫ(U) of all the
ǫ-typical N/2-vectorsU. For eachU(i), choose a codebook
X̂

i
1(1), . . . , X̂i

1(M1) of N/2-vectors, independently according
to a uniform distribution over the setTǫ(X̂1|U(i)). Similarly
chooseX̂i

2(1), . . . , X̂i
2(M

′

2) from Tǫ(X̂2|U(i)).
Partition eachX̂i

1 codebook intoM0 disjoint cells, so that
each cell hasM1/M0 elements (we assume for simplicity
that M1/M0 is an integer). One simple way to partition the
codebook is shown in Figure 3.

Encoding: We consider encoding of a source sequence
x spanningB blocks, each block containingN/2 source
symbols. We denote thebth block byxb, b = 1, . . . B. Thus

x = [x1, x2, . . . , xBN/2] = [x1x2 . . .xB ].

Broadly speaking, there is a ‘cloud center’ub for each block
b, conditioned on which reconstructionŝx1b and x̂2b are
produced at decoders1 and2.

• Step0: Setu1 = U(1).



TABLE I

T IME-LINE OF OBSERVATIONS AT ENCODER AND DECODER WITH FEED-FORWARD WITH k = 1

Time instant 1 . . . N/2 . . . 2N/2 . . . N(b + 1)/2 · BN/2
Source X1 . . . XN/2 . . . X2N/2 . . . XN(b+1)/2 · XBN/2

Encoder (w11, w21) (w1b, w2b) (w1B−1, w2B−1)
FF at decoder - - - - - X1 . . . . . . XbN/2 . . .
Reconstruction x̂11, x̂21 x̂1b, x̂2b x̂1B−1, x̂2B−1

• Stepb (b = 1, . . . , B − 1): Assumeub is known to be
equal toU(i). Encodexb as follows. Observe the next
length-N/2 block xb+1 and find aj ∈ {1, . . . , M0} such
that (xb+1,U(j)) ∈ Tǫ(X,U). Set

ub+1 = U(j).

If no suchj is found, setub+1 = U(1).
So we now haveub = U(i),ub+1 = U(j). Pick
(w1b, w

′

2b) ∈ {1, . . . , M1} × {1, . . . , M
′

2} such that
(xb,ub, X̂

i
1(w1b), X̂

i
2(w

′

2b)) ∈ Tǫ(X,U, X̂1, X̂2) and
X̂

i
1(w

′

2b) belongs to thejth cell of theX̂
i
1 codebook. If

no such(w1b, w
′

2b) is found, setw1b to a random index
in the jth cell of theX̂

i
1 codebook, and similarly setw

′

2b

to a random index in thêXi
2 codebook.

Note that we performrestricted encoding, i.e., we do not
search for reconstructions in the entirêXi

1 codebook-
instead, we restrict ourselves to one cell within the
codebook. As explained in the sequel, restricted encoding
enables decoder2 to take advantage of the feed-forward.
Decoders1 and2 will receive w1b andw

′

2b, respectively
and produce reconstructionŝx1b and x̂2b. Later, decoder
2 learnsxb precisely through feed-forward and tries to
decodêx1b using the knowledge of(xb, x̂2b). To facilitate
this, the encoder might need to send some extra bits to
decoder2 in addition to w

′

2b. These extra bits sent to
decoder2 are represented as an additional indexw

′′

2b

from an appropriately chosen codebook of rate2R
′′

2
N/2 .

The total rateR2 sent to decoder2 is thusR
′

2 + R
′′

2 . In
summary, the encoder sendsw1b to decoder1, (w

′

2b, w
′′

2b)
to decoder2 and (w1b, w

′

2b, w
′′

2b) to decoder0.
• StepB: AssumeuB = U(i). Setj = 1 and do encoding

as in previous steps: pick(w1b, w
′

2b) ∈ {1, . . . , M1} ×
{1, . . . , M

′

2} such that (xb,ub, X̂
i
1(w1b), X̂

i
2(w

′

2b)) ∈
Tǫ(X,U, X̂1, X̂2) and X̂

i
1(w1b) is in the first cell of the

X̂
i
1 codebook.

Decoding: Since there is a growing amount of information
available at the decoder (due to feed-forward), the time-line of
observations at the encoder and decoder is important. Recall
that a source sample is available to the decoderN + k time
units after it is produced. The time-line of various events at
the encoder and decoder withk = 1 is shown in Table I.

• Stepb (b = 1, 2, . . . , B): At time instant(b + 1)N/2,
w1b, (w

′

2b, w
′′

2b), (w1b, w
′

2b, w
′′

2b) are received by the de-
coders1, 2, 0, respectively. As described in the sequel,
ub = U(i) has been decoded in the previous step just
before time(b+1)N/2. Therefore, the appropriate code-
booksX̂i

1, X̂
i
2 are used and reconstructionsx̂1b, x̂2b, x̂0b

are produced usingw1b, w
′

2b and(w1b, w
′

2b), respectively.
By time instant(b + 2)N/2, decoder2 has received the
first b N/2-blocks of source samplesx1, . . . ,xb through
feed-forward3. Decoder2 now decodes the reconstruc-
tion of decoder1- it tries to find x̂1b from theX̂

i
1 code-

book such that(xb,ub, x̂1b, x̂2b) ∈ Tǫ(X,U, X̂1, X̂2). If
there is more than onêx1b satisfying the condition,w

′′

2b

resolves the list. The cell numberj∗ of x̂1b determines
ub+1 = U(j∗). Thus by time instant(b+2)N/2, all three
decoders have decodedub+1.

Probability of Error: For our coding strategy, we will
declare an error in blockb (b = 1, . . . , B) if one or more
of the following events occur.

1) EventE1: The source vectorxb is not a typical sequence
with respect toPX .

2) E2: The encoder cannot findj ∈ {1, . . . , M0} such that
U(j) is jointly typical with xb+1.

3) E3: Assumingub = U(i),ub+1 = U(j), the encoder
cannot find a(x̂1b, x̂2b) such that(x, x̂1b, x̂2b,ub) is
jointly typical and x̂1b is in thejth cell of its codebook.

4) E4: Decoder2 is unable to decodêx1b correctly with
knowledge of(xb, x̂2b) andw

′′

2b.

The probability of error for blockb is

Peb = P (E1 ∪ E2 ∪ E3 ∪ E4).

Consider anyǫ > 0. We can bound the probability of each
each event for largeN as follows. For largeN/2, with high
probability xb is typical with respect toPX . Thus,P (E1) <
ǫ/4.

For b = 1, . . . , B−1 and largeN/2, there exists a codebook
{U(j), j ∈ {1, . . . , M0}} such that with high probability,
at least one codeword is jointly typical withxb+1 iff M0 >
2I(X;U)N/2. Hence for sufficiently largeN/2, P (E2) < ǫ/4
if

R0 > I(X ; U). (14)

To compute P (E3), we first note that givenub =
U(i),ub+1 = U(j), we need to find an̂x1b from the jth
cell of X̂i

1 codebook (a cell has2(R1−R0)N/2 codewords) and

an x̂2b from theX̂
i
2 codebook (2R

′

2
N/2 codewords) such that

(x̂1b, x̂2b) ∈ Tǫ(X̂1, X̂2|X,U). Using arguments similar to
the proof in [1], we can show that this is possible with high

3We can assumeN >> k, so that receivingN/2 − k source samples is
equivalent to receiving the entire block.



probability if

R1 − R0 > I(X ; X̂1|U)

R
′

2 > I(X ; X̂1|U)

R1 − R0 + R
′

2 > I(X ; X̂1|U) + I(X ; X̂2|U)

+ I(X̂1; X̂2|XU)

(15)

ThusP (E3) < ǫ/4 if (15) is satisfied.
Finally, to computeP (E4), we need to measure the un-

certainty of decoder2 about x̂1b when it knows(xb, x̂2b).
Assuming there was no encoding error, i.e.(E1 ∪E2 ∪ E3)

c,
theX̂1b chosen by the encoder is jointly typical with(xb, x̂2b).
The probability that another random̂X1b ∈ Tǫ(X̂1|U) is
jointly typical with a random pair(Xb, X̂2b) ∈ Tǫ(X, X̂2|U)

is approximately2−I(X̂1;XX̂2|U)N/2 for largeN/2. We condi-
tion onU throughout sinceub is known to all decoders. Thus
the number of other̂X1 codewords that are jointly typical with
the known pair(xb, x̂2b) is approximately

M1 · 2−I(X̂1;XX̂2|U)N/2 = 2(R1−I(X̂1;XX̂2|U))N/2 (16)

for large N/2. Thus if R1 > I(X̂1; XX̂2|U), w
′′

2b has to
resolve a list whose size is given by (16); otherwise there
is nothing to resolve. Hence we can haveP (E4) < ǫ/4 if the
rateR

′′

2 of the extra index satisfies

R
′′

2 > max{0, R1 − I(X̂1; XX̂2|U)} (17)

From the above arguments, using the union bound we have

Pbe < ǫ, b = 2, . . . , B. (18)

It should be noted here that in the first step, we arbitrarily set
u1 = U(1). In general,u1 will not be jointly typical with
x1. Consequently, for the first block aloneP (E2) = 1. Thus
if (14), (15) and (17) are satisfied, the average probabilityof
error over theB blocks can be expressed as

Pe =
1

B

B∑

b=1

Peb <
1

B
(1 + ǫ . . . + ǫ) =

1

B
+

(B − 1)ǫ

B
< 2ǫ

for large enoughB.
The central decoder0 can either producêX0b as a function

of (X̂1b, X̂2b), or X can be quantized to âX0 codebook
conditioned on the knowledge of decoder0. No extra bits
are needed in the first case. In the latter case, it can be
shown [1] that the extra rate needed by the central decoder
is I(X ; X̂0|X̂1, X̂2, U). This overhead needs to be shared
between the ratesR1 andR2. Note that the first situation is a
special case of the second sinceI(X ; X̂0|X̂1, X̂2, U) = 0 if
X̂0 is a function ofX̂1, X̂2.

We combine this shared overhead with the rates specified
by (14), (15) and (17), and recognize thatR2 = R

′

2 + R
′′

2 to
obtain the rate region of Theorem 1.
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