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Abstract—We study the two-channel multiple descriptions sy D;,"ay _______________
problem for an i.i.d source, with feed-forward to one or both : v
side-decoders. We derive a single-letter achievable rategion 5 ' —>Ql

that strictly includes the best known rate-region for multiple de-
scriptions without feed-forward. In point-to-point source coding,

: -pomn . : R
fe_ed-forward does not improve the rate-dlstortlon_functlm of a X3 Encoder - >|pecoder 0 |—>>2
discrete memoryless source. In contrast, we provide an exagte H R

to show that our region can be strictly smaller than the optinal :
region without feed-forward. The proof of the result uses a ock- : - .
Markov superposition source coding strategy. ' X ;-D‘*“der2 >X,

I. INTRODUCTION eeeees jpelay_.-

Consider a communication network in which we wish to
compress a streaming source of data into packets at one node Fig. 1. The multiple descriptions problem
and transmit them to another node. Assume there is a chance

that a packet might be lost and never reaches its destinatigny|ock of, say,N source samples and maps it to an index

So we compress each block of data simultaneously into tWp 5 codebook. The decoder uses this index to reconstruct

different packets and send them through different routes. Me N source samples. In source coding with feed-forward,

get a good reconstruction on reception of either packetweut the encoder works in a similar fashion and sends an index

would like a better reconstruction if both packets are i o the decoder. The decoder generates the reconstructions

in other words, the packets need to refine one another. Hawquentially: in order to reconstruct each source samiée, t

should we compress the source into two different descnipfo decoder has access to the inded some past source samples.

This, in essence, is the multiple descriptions problemt firggt X,,, X,, denote the source and reconstruction samples at

posed by Gersho, Ozarow, Witsenhausen and others. time n, respectively. If the source samples are available with a
The multiple descriptions set-up is shown in Figure 1. In thgejay 1 after the index is sent, the decoder has knowledge of

standard problem, both; and.S; are openX = {X.}72; the index plus the source samples until time & to produce

is a source with known distribution. The encoder encodg@n_ We call this set-up feed-forward with delay

each block of source samples in two different ways: decoderthe notion of feed-forward is applicable to multi-terminal

1 receivesf?; bits/sample and produces reconstructiin. proplems as well. Figure 1 shows a multiple descriptions

Similarly, decoder2 receivesR, bits/sample and producessystem with feed-forward. Assume that switéh is closed

X». Decoder0 receives the full?, + R bits and produces ang the source samples are sequentially available withay del

reconstructionX,. Assume suitable distortion measures have after the indices are sent. To generate,, decoderl has

been defined for all decoders; lé?y, Dz, Dy denote the ynowiledge of the index in a codebook (of ra) plus the
average distortions with which decoders2 and 0 are able goyrce samples until time — k. A similar situation occurs

to reconstruct the source. The problem is to determine the & gecoder2 when S is closed. In this paper, we study
of all quintuples(R:, Ry, D1, D», Do) that are achievable in the rate vs. distortion trade-offs- the achievable quitesip
the usual Shannon sense. This problem has been studlequlw Rs, D1, D2, Dy) - when one or both of5; and S, are
several notable papers, including [1]-[10]. In this papeg, c|osed.
study multiple descriptions source coding wit-h feed-fova  ggrce coding with feed-forward is relevant in many dif-
To explain the notion of feed-forward in simple terms, leforent settings. The problem was motivated and studied from
us first consider t_he point-to-point case. In the usual fised- 5 ommunications perspective in [11]-[13], as a variant of
lossy source coding problem, there is a souktehat has 10 gqyrce coding with side information. For example, consider
be reconstructed with some distortidnh The encoder takes yna source to be a field that needs to compressed and com-
This work was supported by NSF Grant ITR-0427385 and Graw- (C municatec_l fro_m one nod_e tQ another in a network. This field
REER) CCF-0448115. (e.g. a seismic or acoustic field) could propagate through th



medium at a slow rate and become available at one or make Feed-forward to only one decoder

decoding nodes as side-information with some delay. Without loss of generality assumg, is open andS, is
Source coding with feed-forward is also related closely {9gsed in Figure 1.

prediction. In fact, it was first considered in the context of peafinition 1: An (N,2NE1 9NR2) multiple  description

competitive prediction in [14]. The problem of choosing the,qe with delayk feed-forward of block lengthV and rateR

best predictor of a random process from an exponentialfjelar. ,nsists of:

class of predictors is equivalent to the source coding jerbl

with feed-forward. The following problem is another exampl

that motivates our study of multiple descriptions with feed em XN = {1,... 2NEmY m=1,2 (1)

forward. There are four agents Alice, Bob, Carol and Dave.

Alice has access to an equiprobable binary source; Bob,| Caro2) Mappings for decoders and1

and Dave are interested in reconstructing the source segquen o {1, oNRY 1 oNRay ??év

1) Encoder mappings

Dave needs perfect reconstruction, while Bob and Carol each N v (2)
want to reconstruct with the fraction of their errors being g1:{L,...,20 "} = X

at mostd. Accordingly, Bob and Carol agree to buy some .

information from Alice separately, and Dave agrees to bay th 3) A sequence of mappings for decodet

information available to both Bob and Carol. Further assume gon  {1,..., 2NR2} w Xk _ ;?27 n=1,...,N.
that after Bob, Carol and Dave reconstruct each source sampl (3)
Alice reveals to Carol (but not to Bob and Dave) whetheFhe encoder maps eadk-length source sequence to a pair
she made an error or not. The minimum rates of informati@f indices in in{1,...,2N%} x {1,...,2N%2}, The decoders

that Alice would have to supply to Bob and Carol under thigeceive their respective indices. In addition, to recarcttthe
scenario is the multiple description rate-distortion oggwith nth sample, decoder has access to the source samples until
feed-forward to Carol only. Using our results, we show itime (n— k). Achievable rates are defined in the usual Shannon
Section Il that the partial feed-forward in the above ex@mpsense.

(i.e., to Carol only) allows information rates smaller the Definition 2: (R;, R2) is an achievable rate pair for dis-
best possible rates without feed-forward. tortion (Dy, D1, D5) if there exists a sequence, indexed by
In [11], a simple multiple-description coding scheme wag/, of (IV, 2V 2NEz) multiple description codes with feed-

presented for i.i.d. Gaussian sources with feed-forwardllto forward delayk, such that for sufficiently largéy,
decoders({,1 and 2) with delay k¥ = 1. The coding scheme N oN
was shown to achieve the optimal rate-distortion region for Edp (X7, X)) < Dy m =0, 1,2. (4)

the i.i.d Gaussi_an source with feed-forward_. In this paper, The rate distortion regioi(Do, D1, D») is the closure of the
present an achievable rate-region for any discrete meeEBYl ot of achievable rate pairs for distortiéfo, Dy, Ds).
source with arbitrary feed-forward deléy when one or both Our main result is the following theorem

of S; andS; are closed. In point-to-point source coding, feed- Theorem 1:A quintuple (Ri, Ro, Do, D1, Ds) is achiev-

forward does not improve the rate-distortion function of g\ \4ith delayk feed-forward to decodez only- if there
discrete memoryless source. Our results show that for pheilti exist random variable®, X,, X, X, jointly distributed with
descriptions, the rate-distortion region can be strictheler . courcex such that

with feed-forward. .
Ry > I(X; X U)

II. PROBLEM STATEMENT AND MAIN RESULTS Ry > I(X;X2|U) + max{0, R, — I(XXQ;X1|U)}
Consider a discrete memoryless souitavith finite alpha- R1 + Ro > I(X; X1U) + I(X; X2|U) + I(X; Xo| X1 X2U)
bet X. We assume that the source samplgs n =1,2,... + I(X1; X2|XU) + max {0, Ry — I(X X2; X1|U)}

are independent and identically distributed (i.i.d) adaug to
a probability mass functiof’x (x). Let A, X1, X> denote the
finite reconstruction spaces of decoéer and2, respectively.
Each reconstruction has an associated single letter tiistor
measure:

Edp(X; X)) < Dy, m=0,1,2
The proof of the theorem is given in Section IV. Notice
that the rate-region specified by the theorem does not depend
on the feed-forward delay:, i.e., the region is achievable
for any finite delayk. We can compare the rate region
Ay X x Xy — R, m=0,1,2. with the achievable ra_tes for m_uIt_ipIe descri_ption_s vyithou
feed-forward. The multiple descriptions rate-distorti@gion
The distortion onN—length sequences is the average of trevithout feed-forward) is known only for certain speciabea
per-letter distortion. For att™ € XN &N € XN, (see [1], [3], [4], [7]). The best known achievable region &
general i.i.d source is due to Zhang and Berger [5] which we
N : . = ;
1 reproduce below in a slightly modified, but equivalent, form
Ay (2, 0) & <= D dn (T, Emn), M =0,1,2,
n=1 1t is understood that fon < k, X™~F is the empty set.



Theorem 2 ( [5]): A quintuple (Ri, Re, Do, D1, D) is of the union of these two rate-regions yields a possiblydarg
achievable (without feed-forward) if there exist randomiva rate-region.
ablesU, X1, X2, Xg jointly distributed with the sourc& such We now present an example to show that the rate-region

that with feed-forward to only one decoder can be strictly greate
Ry > I(X; XlU) than the optimal no feed-forward rate-distortion region.
Ry > I(X; X,U) I1l. EXAMPLE
Ry + Ry > I(X; X1U) + I(X; XoU) + I(X; Xo| X1 XoU) Consider an i.i.d binary sourc& with pmf Px(0) =
(%0 K| XU) Px(1) = 1/2. The reconstruction spaces are all binary
4 br22 and the distortion measures are Hamming, i€z, 2,,) =
Edm(X; Xpm) < D, =0,1,2 So—s, s = 0,1,2. Suppose decoders and 2 want to

To see that the rate region of Theorem 1 represents l%’&onstructX with distortiond, while decodef, needs error-

improvement the no-feed-forward case, consider any setfa reconstruction. We want to characterize the function
random variabled/, Xl,Xg,Xo jointly distributed with X.

SetR; = I(X; X,U) + ¢ for some smalk > 0. We can have Tsum(d) £ inf{Ry + Ry : (R1,R2,0,d,d) e R}. (7)

one of two situations: A lower bound tor,, (d) without feed-forward was obtained

1) I(X; X1U) + € < I(X Xo; X4 |U). in [5, Theorem3, Section VIII] 2:
In this case, Theorem 1 tells us that
PN FORRDSRN 4d+1—+12d? —4d + 1
Ry = I(X X1; Xo|U) 4+ I(X; Xo| X1 XoU) + € Tsum(@)no—ypr =22 —h < ) ) . (8)

is achievable. This represents a savingsoU; X)
bits/sample over the minimuriR; without feed-forward
(specified by Theorem 2).

2) I(X; X,U) + € > I(X Xy X1|U).
From Theorem 1,

+[I(X;U) = I(Xo; X1 | XU)] + €

Assume only decode? gets feed-forward with delay:.
In our problem, this means thattime units after decodet
reconstructs a sample, it is told whether that reconstracti
was correct or not. Lel/ be a binary-valued random variable

and fix the conditional d|str|but|onPU X1, X, Xo|x @S

Puix - P, ,1xv - Pxoxvx, %
where

is achievable, a savings df( X»; X1|XU) bits/sample Pyx: Fix a parameteD, and define

over the no-feed-forward case.
Of course, the potential savings in rate may be greater since Pyix(0[0) = Pyix(1]1) = 1 = Do ©)
we have only presented an achievable rate region. The coding Pyx(0]1) = Py x(1]0) =
strategy in [5] first quantizes the block of source sampié5
to UY, which is sent to all the decoders. Decoders, 2 then
produce their reconstructions conditioned@f. The coding
strategy in Theorem 1 uses the feed-forward to decodarsi Pg. %, 1xv(00]00) = Py ¢ +;(00[00) =1 (10)
2 to conveyU”" ‘cheaply’ to all decoders.

Pg. %, xv- WhenU and X agree, both deocdeisand
2 produce correct reconstructions.

WhenU and X disagree, at least one of them produces
B. Feed-forward to both decodetsand 2 the correct reconstruction, according to:

Switches S; and S, in Figure 1 areboth closed. An Po (0101) = Py (10/01) = d/ Dy
(N, 2NEL 9N Ez) multiple description code with deldyfeed- X1, Xl XU X Xa | XU

forward is defined in the same way as the previous subsection, Px., Xz\XU(O()'Ol) =1-2d/Do (11)
except that the decoder mappings are modified. The mapping Py, %, xp(01110) = Py ¢ x;(10[10) = d/Dq
defining decodef is given by Py, Xg\XU(11|1O) —=1-2d/Dy
. NR NR vN ~ ~ ~
9o {1,,2 1} X {17,2 2}—>Xo (5) ° PX0|XUXX XO |Safunct|0n Of(U,Xl,XQ).
We have a sequence of mappTgs for decodeand 2 0 if (X1 . )
g ni{l,...,2NR2}><Xn_k—>Xm,nzla-"aNa m:112 X(): 1 if (X1:X2:1) (12)
(6) 1-U i (X; # Xa)

In addition to the index, both decodersand2 have access to
the source samples until time ¢ k).

Achievable rates are defined in the usual Shannon sens
before. Clearly, the region of Theorem 1 is achievable. T

rate region (_)btamed by_ SWItChlng the rOIG_SBf and Rs in 2There is a typo in the statement of Theor8rn [5]. The correct version
Theorem 1 is also achievable. Thus, taking the convex hgiven here) can be obtained from the proof of that theorem.

It is easy to check that this joint distribution achieves the
éiggomon triple (D1 = d,Ds = d,Dy = 0). Using this
IJI%mt distribution in Theorem 1, we can obtain an achievable
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Distorion  of each side decoder Assume delayk feed-forward, i.e. each source sample is
available at the decode¥ + k time units after it is available
Fig. 2. (a) Zhang-Berger lower bound omsum(d) without FF, (b) to the encoder ¥ will be a measure of block-length in the

Achievable sum-rate with feed-forward to one decodét), Rate-distortion block-Markov coding scheme). First fix the joint distritmrii
lower bound onrsym (d) with FF.

Px(x) - Py g, %, %o x (U 1, 82, Zo| ).
rate-region when only decod@rreceives feed-forward. The
relevant information quantities are calculated belowhwii.)
used to denote the binary entropy function.

For the sake of brevity, we will often drop the subscripts in
the distributions and use only the arguments. Upper-césede
will be used for random variables and lower-case letters for

I(X;U)=H(U)—-HU|X)=1-h(Dy). their realizations. Vectors will be denoted in bold letters
I(Xy; X1|XU) = H(Xo|XU) — H(X,|XoXU) To prove the theorem, we shall use the properties
d d d of strongly e-typical sequences [16]. Length/2 vectors
= Doh(-) — Dy (1 - D—) (5—) aN/2 N2 3N/2 are said to be jointly typical if their joint
R 0 0 0 type (composition) is approximatel’y ¢ ¢ . The set of
I(X; X|U) = I(X; Xu|U) = H(X|U) - H(X|UX) all jointly e-typical tuples (xN/2 XN2 X N72) s denoted
= h(Dy — d) — Doh(i). T.(X, X1, X2). Similar definitions of typicality hold for other
o Do joint and conditional distributions.
I(X; Xo| X1 X2U) = 0. We divide the source sequence in a large number of

(13)  blocks, sayB, with each block containing’ source symbols.

(13) contains all the expressions required to compute tige raTO exploit the feed-forward, we shall use a block-Markov

region of Theorem 1. For eaeh we can fix the valueD, to superposition strategy [17], [18] spanning adjacent béock
; ' ; : 0 The ideas of non-random binning and restricted encoding,
yield the best rate-constraint. Hence we obtain an achievab

: . i introduced in [18], will be used in the proof. The block-
upper bound tors.“m.(d) n (7).W'th feed .forvv_ard to only Markov coding scheme is described in detail below.
one decoder. This is plotted in gragh) in Figure 2 for

: _ 9Xr _ 9Xr
distortionsd > 0.08. Graph (a) is the Zhang-Berger lower I/?andolrvn Codinglet My = 2=, M; = 2=™ and

bound (8) tors.m (d) without feed-forward. We see that forM2 = 22 2. ChooseU(1), ..., U(M,) independently ac-
all the distortions considered, we do better than the optinf2P'ding to a uniform distribution over the sgt(U) of all the
no feed-forward rate with feed-forward to one decoder . &inyPical N/2-vectorsU. For eachU(i), choose a codebook
decodersl and 2 produce reconstructions with distortiah %1 (1);- .- X (M) of N/2-vectors, independently according
Ry and R, have to each be greater than the Shannon raf@-a uniform distribution over the S@(Xlw(l))- Similarly
distortion functionR(d) = 1—h(d). This is true both with and €h00SEX5(1), .. ., X5(Ms) from T (X2 [U(i)).

without feed-forward. Thus a simple lower boundrg,,, (d) Partition eachX’ codebook into)M, disjoint cells, so that

with feed-forward is each cell hasM;/M, elements (we assume for simplicity
that M7 /M, is an integer). One simple way to partition the
Tsum (d) > 2(1 — h(d)), codebook is shown in Figure 3.
o ) ] Encoding We consider encoding of a source sequence
which is plotted in graptic) of Figure 2. x spanning B blocks, each block containingv/2 source

Of particular interest is the case when the sum i&atet+ symbols. We denote thigh block byx,, b= 1,...B. Thus
Rs = 1. This is the case oho excess ratd¢o the central

decoder [4]. SettingDy, = 0.25945, Theorem1 tells us that X = [21,%2,...,TpN/2) = [X1X2 ... XB].

(R; = 0.5, R2 = 0.5) is achievable ford = 0.12 with feed- ) _

forward to one decoder. In comparison, it was shown in [15roadly speaking, there is a ‘cloud center; for each block
that with rates of (0.5,0.5) and no feed-forward, the mimimu?. conditioned on which reconstructior,, and %o, are
achievable distortion at each side-decodefy& — 1)/2 = Produced at decodedsand?2.

0.207. o Step0: Setu; = U(1).



TABLE |
TIME-LINE OF OBSERVATIONS AT ENCODER AND DECODER WITH FEEfFORWARD WITHE =1

Time instant 1 N/2 2N /2
Source X1 Xny2 Xon /2
Encoder (w11, wa1)
FF at decoder -
Reconstruction X11,X21

e Stepb (b =1,...,B —1): Assumeu, is known to be
equal toU(¢). Encodex; as follows. Observe the next
length<V/2 block x;11 and find aj € {1,..., My} such
that (xp41, U(j)) € Te(X, U). Set

w1 = U(j).
If no suchj is found, setu,; = U(1).
So we now havew, = U(i),up41 = U(j). Pick

(wlbaw;b) € {1,....Mi} x {1,.. .,Méﬂ} such that
(xp, wp, X (wip), Xh(wy,)) € Te(X,U,X;,X3) and
X7 (wo,) belongs to thejth cell of theX’ codebook. If
no such(wlb,w;b) is found, setw;; to a random index
in the jth cell of theX} codebook, and similarly set,,
to a random index in th&? codebook.

Note that we performestricted encodingi.e., we do not

search for reconstructions in the enti® codebook-

instead, we restrict ourselves to one cell within the

N(b+1)/2 BN/2
XN@(b+1)/2 XBN/2
(w1p, wap) (wiB—1,w2B-1)
X1... . Xyn /2
X1p, Rap X1B-1,%2B-1

are produced using, w;b and (wy, w;b), respectively.
By time instant(b 4+ 2)N/2, decoder2 has received the
first b N/2-blocks of source samples, ..., x; through
feed-forward®. Decoder2 now decodes the reconstruc-
tion of decoderl- it tries to find%;; from theXi code-
book such thatxy, uy, X1p, X2p) € T.(X, U, X1, Xy). If
there is more than on®,;}, satisfying the conditionwgb
resolves the list. The cell numbgt of %Xy, determines
up1 = U(5*). Thus by time instanh+2) N/2, all three
decoders have decoded, ;.

Probability of Error. For our coding strategy, we will
declare an error in block (b = 1,...,B) if one or more
of the following events occur.

1) EventFE;: The source vectat, is not a typical sequence
with respect toPx.

2) E,: The encoder cannot finfle {1,..., My} such that
U(j) is jointly typical with xp. .

codebook. As explained in the sequel, restricted encodingg) Bs: Assumingu, = U(4), ups1 = U(j), the encoder

enables decodexto take advantage of the feed-forward.

Decodersl and?2 will receive wy, and w;b, respectively
and produce reconstructios, andx,;,. Later, decoder

2 learnsx; precisely through feed-forward and tries to

decodeky;, using the knowledge dix;, X2 ). To facilitate

cannot find a(X1p,%X95) such that(x, X1y, Xop, up) IS
jointly typical andxy; is in thejth cell of its codebook.

4) E,: Decoder?2 is unable to decod&;; correctly with
knowledge of(x;, 2;) andwy,.

this, the encoder might need to send some extra bits t§€ Probability of error for block is

decoder2 in addition tow,,. These extra bits sent to
decoder2 are represented as an additional indey,

from an appropriately chosen codebook of ralfie V/2
The total rateR, sent to decode? is thus R, + R,. In
summary, the encoder sends, to decoder, (wy,, wsy; )
to decoder2 and (w1, wy,, wy,) to decoden.

StepB: Assumeup = U(i). Setj = 1 and do encoding
as in previous steps: pickuip, wy) € {1,..., M} x
{1,...,M,} such that(x,, uy, X’ (wip), Xj(wyy)) €
T.(X,U,X;,X,) and X’ (wy) is in the first cell of the
Xi codebook.

P., = P(E; UE,UFE3U Ey).

Consider anye > 0. We can bound the probability of each
each event for larg&v as follows. For largeV/2, with high
probability x; is typical with respect taPx. Thus, P(E;) <
e/4.

Forb=1,...,B—1and largeN/2, there exists a codebook
{U(y), 57 € {1,...,Mo}} such that with high probability,
at least one codeword is jointly typical witk,; iff My >
2! (XGUIN/2 Hence for sufficiently largeV/2, P(E,) < €/4

. . . . . if
Decoding Since there is a growing amount of information

available at the decoder (due to feed-forward), the time-tif

Ry > I(X;U). (14)

observations at the encoder and decoder is important. IRecal

that a source sample is available to the decadler k time

To compute P(E3), we first note that givenu,

units after it is produced. The time-line of various everits aJ(i),u;41 = U(j), we need to find arky, from the jth

the encoder and decoder with= 1 is shown in Table I.
o Stepb (b = 1,2,...,B): At time instant(b + 1)N/2,

cell of X codebook (a cell hag(/i1—£0)N/2 codewords) and
an x;, from the X}, codebook £7%2"/2 codewords) such that

Wi, (Wyy, Way ), (Wip, Wy, wyy,) are received by the de- (x1p,%2) € T.(Xy,X,|X, U). Using arguments similar to
coders1, 2,0, respectively. As described in the sequethe proof in [1], we can show that this is possible with high
u, = U(i) has been decoded in the previous step just
before time(b+ 1) N/2. Therefore, the appropriate code-

PR - 3We can assumé&v >> k, so that receivingV/2 — k source samples is
booksX}, X% are used and reconstructioRs,, X25, Xop

equivalent to receiving the entire block.
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From the above arguments, using the union bound we have!
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for large enoughB.

The central decoddr can either produc&Ob as a function
of (X1, X), or X can be quantized to X, codebook
conditioned on the knowledge of decod&r No extra bits
are needed in the first case. In the latter case, it can be
shown [1] that the extra rate needed by the central decoder
is I(X; Xo|X1, Xo,U). This overhead needs to be shared
between the rateR; and R,. Note that the first situation is a
special case of the second sinbeX; X,| X1, Xo,U) = 0 if
X, is a function of X, Xo.

We combine this shared overhead with the rates specified
by (14), (15) and (17), and recognize that = R; + R;’ to
obtain the rate region of Theorem 1.



