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Abstract—In this work, we introduce the notion of the error ~ fore, there are multiple error exponents, one for each user, for
exponent region for a multi-user channel. This region specifies the g given multi-user channel.
set of error-exponent vectors that are simultaneously achievable  geconq, in contrast to a single-user channel where the error
by all users in the multi-user channel. This is done by associating - . . .
different probabilities of error for different users, contrary to the exponent is fixed for a given rate, in a mlj”t"user channel one
traditional approach where a single probability of system errois ~ can tradeoff the error exponents among different users even for
considered. We derive an inner bound (achievable region) and fixed rates. To illustrate this novel point, consider the capacity
an outer bound for the error exponent region of a Gaussian region of a two-user broadcast channel as shown in Fig. 1(b).
broadcast channel. As expected, the error exponents for the two users are func-
tions of both the operating poiM and the channel capacity.
However, unlike the case in a single-user channel where the

It is a well-known fact that the error exponent for a singleehannel capacity boundary is a single point, in a multi-user
user channel provides the rate of exponential decay of tbeannel we have multiple points on the capacity boundary
average probability of error as a function of the block length ¢é.g. B, D in Fig. 1(b)). Thus it is expected that one can
the codebooks [1], [2]. Conceptually, in a single-user channgkt different error exponents depending on which particular
the error exponent is a function of the operating pdinnd point on the capacity boundary is considered. Furthermore, it
the channel capacity’ and in particular, a non-decreasingmight be possible to trade off error exponents between users
function of the difference betwedr andC'. Therefore, there is by considering different points on the capacity boundary. For
a tradeoff between the rate and the error exponent in a sindlestance, consider an operating poiit(corresponding to a
user channel. One can increase the error exponent by redugitg pair (R;, R2)) with respect to a boundary poing in
the rate. The concept of the error exponent was extendedrig. 1(b). It is intuitive to expect that the error exponent for
a Gaussian multiple access channel (MAC) in [3], [4], wherigser 1 is smaller than that of user 2, since user 1 operates
an upper bound on thprobability of system errofi.e., the at rate R, which is very close to his capacity (determined
probability that any user is in error) was derived for randomy B), while user 2 backs off significantly from his capacity
codes. (determined again by3). On the other hand, if we consider

In many applications of wireless networks, different usefsoint A with respect to the boundary poift, we then expect
might have different reliability requirements. For instance, ithe error exponent for user 1 to be larger than that of user 2.
an uplink (or downlink) of a cellular system, a user running anherefore, a tradeoff of error exponents between users might
FTP application might have more stringent reliability requirebe possible by considering different points on the capacity
ments than a user running a multimeadia application whichli®undary. It is our intention in this paper to formalize these
designed for graceful degradation. Based on the traditiondéas by showing that such tradeoff indeed exists and by
approaches [3], [4] which consider a singheobability of proposing constructive strategies to achieve it.
system error a network can only be designed to satisfy the Before continuing, we introduce the notion of error ex-
most stringent reliability requirement. This might result in @onent region (EER). For a given operating point, the error
mismatch of resources allocation, and thus, it is inherentiponent region consists of all achievable error exponents
suboptimal. when the channel is operated at that point. For example, the

Motivated by the above observation, in this work, werror exponent region for a single-user channel operated at
consider a new approach in analyzing the users’ performarege R is a line segment from the origin to the error exponent
in a multi-user scenario. In addition to the rate vs. performanég R) (see Fig. 2(a)). For a broadcast channel operated at
tradeoffs that exist in traditional approaches, our approapbint A (see Fig. 1(b)), the error exponent region is a two-
realizes new degrees of freedom that enable a richer trad@nensional region which depends on rafes and R, (see
off among users’ performance. Our approach hinges on thRig. 2(b)). The concept of the error exponent region is very
following two observations. similar to the concept of the channel capacity region (CCR).

First, one can define a probability of error for each usdn the EER, it is possible to increase user 1's error exponent
which, in general may be different for different users. Therdy decreasing user 2's error exponent. This is similar to the
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idea of increasing the data rate of user 1 by reducing the data
rate of user 2 in the CCR. However, there is a fundamental Y, — X+7 1)
difference between CCR and EER. For a given channel, there L !

is only one CCR. One the other hand, an EER depends on Y = X+ 2, @

the channel operating point, and for a given channel, thefgere x is the channel input with power constraiRt andY;
are numerous EERs depending on which operating point W&qy, are the channel outputs for user 1 and user 2. Assume
cons!der. Therefore, when. we rgfer to an EER, we need gyt the noise power fof; is o2 and the noise power fof, is
specify the channel operating point. 03. The capacity boundary for a Gaussian broadcast channel
The rest of the paper is structured as follows. In Section {5 achieved by different input distributions. In Fig. 1(b), the
we derive the achievable error exponent region by superpoggerating points is achieved byX = X; + X, with Gaussian
tion and the achievable error exponent region by time-sharifgtributions (0, o, P) and A(0, (1 — ) P) for X1, Xo,
in a Gaussian broadcast channel. The union of these tW@pectively, but the pointD is achieved by another pair
regions is an inner bound for the error exponent region. §} Gaussian distributions\'(0, asP) and (0, (1 — az)P)
Section Ill, we use a different decoding scheme to improve the¢ ~ », < o, < 1). Therefore, we expect the error
error exponent region derived by superposition in Section Bxponents for the operating point evaluated with respect
In Section IV, we derive outer bounds for the error exponeg§ B to be different from those evaluated with respectito
regions of a discrete memoryless broadcast channel (DMBfg)the receivers side, we decode users’ messages jmiftg
and the error exponent region of a Gaussian broadcast chanpflximum likelihood (ML) decoding, i.e., decoding user 1's
We conclude our work in Section V. The existence of gessage based on the piir;) maximizing P(Y{N | X{Y, X2¥)

of random codebooks using superposition encoding is prOVP‘éYQN|X{¥,X§§), where X%, XQAJ’-, v, and Y}V are the
in Appendix. transmitted codewords and the received data for user 1 and
user 2 with block lengthN, respectively. Based on this
rate 2 assumptions, we derive achievable error exponents for user 1
and user 2 in a Gaussian broadcast channel as
. aP aP (1—-a)P
Ef = mm{E(Rl, 72), Etg(Rl + R, —5 %)}
01 01 03
3)

, 1—a)P aP (1—-a)P
E; = mln{E(RQ, %),Etg(Rl + RQ, ?7 %)},

> rate 1 2 2 2
4)
@) (b) where the superscript “s” denotes superposition, @rRda <
1. In (3), (4), E(R,SNR) is the maximum of the single-

Fig. 1. Capacity region for (a) single-user, and (b) broadcast channi€r random coding exponent and the single-user expurgated
exponent [1], [2], andE;3(R1 + R2, SNR1,SNRy) is the
random coding exponent for the type 3 error in a two-user

error exponent 2 Gaussian multiple access channel [3]. An explicit expression
for E;5 is

Etg(Rg, SNRl, SNRQ) = ela)e( {EtS,O(Pa 01, 92) - pRg}

1EY) p
®)
<«—EER(R) —» ev/ 0105 01+ 05
+—>E - t1 E ,601,0:) = (1 1 —
= error exponen 13.0(p,61,02) = (1+p)ln [ 15 5
SNR SNR
(@) () +gln{1+ ’ L i 2}7
1 2

Fig. 2. (@) The error exponent region associated with tsingle- (6)
user). (b) The error exponent region associated with operating pqilwlere the maximization is over < p < 1, and0 < 61,6, <

(R1, R2). 1+

In Fig. 3(a), the solid curve is the boundary of the achievable
EER obtained by superposition. In the following, we propose
a simple scheme (time-sharing) to enlarge the achievable EER
beyond the achievable region by superposition. The achievable
Consider a two-user Gaussian broadcast channel error exponents for user 1 and user 2 by time-sharing are

II. ACHIEVABLE ERROREXPONENT REGION FOR
GAUSSIAN BROADCAST CHANNELS



published in 1972, it is believed that the superposition encod-

s R, P ing is a better scheme than the time-sharing encoding [5].
By = aF (avgz) (7)  When we consider unequal error protection for different
1R p users, however, the result in Fig. 3 suggests that the time-
EY¥ = (1-a)E (1 2@, 02) , (8) sharing scheme sometimes might be better than superposition.
2

Although these results do not contradict those in [5] (since we
where the superscript “ts” denotes time-sharing, angte examining error exponents, while the work in [5] refers to
0 < a < 1. In Fig. 3(a), the dotted curve is the achievablghannel capacity), there are three possible explanations to this
EER by time-sharing. The union of the superpositioBpservation:
achievable EER and the time-sharing achievable EER is @it might be the case that time-sharing can indeed expand the
inner bound for the EER in a Gaussian broadcast changgR provided by superposition, especially for the case when
(see Fig. 3(b)). We summarize this result in the followingne user requires a much better reliability than the other.
theorem. (ii) The achievable error exponents derived in Theorem 1 for
superposition encoding ugeint maximum likelihood (ML)
Theorem 1: For a two-user Gaussian broadcast channel witlecoders, i.e., decoding user 1's message based ofi,the
power constrain and noise powes? ando? for user 1 and pair maximizing P(Y1N|Xh,X21\§) and decoding user 2's
user 2, respectlvely, an achievable EEREIER(Rl,RQ) = message based on ﬂ(e’ ]) maX|m|z|ng P(%NlX{Y’XN)
EER (R, Ry))UEER:s(Ra, R2), whereEER, (R, Rz) and  This is in general different and worse than usingjividual ML

EER;s(R1, R2) are given by decoders, which minimize the error probability for user 1 and
EER.(Ry, Ry) = {(Ey, Ey) : user 2, i.e., decoding user 1's message based onntlaimiz-
(B, o) i; 1 E2) aP (1—a)P ing >, P(Y{V|X{}, X3})P(X3)}) and decoding user 2's mes-

E; < min{E(Ry, —) Ei3(R1 4+ Ry, —5, ——5—)}, sage based on themaximizing)~, P(Y5V| X[}, X35) P(X ).

o1 o1 o1 (iii) The third reason comes from the fact that in (3), (&)
Ey < min{E(Ra, - a)P),Etg(Rl + Ro, g, a _QO‘)P)}7 and E3 are both upper bounded W¥,s, which accounts for

93 03 03 the error event when both user 1's and user 2's codewords are
0<a<l1} (9) decoded as wrong codewords. Since hbfhand £ are upper
EER(R1, Ro) = {(E1, E») : bognded b.yEtg. Th_is might result in loose bounds which are
R, P Ry derived using thgoint ML decoder.

P) 0 <a<1}.  To answer this question it is desirable to find tight upper
(10) bounds for the optimaindividual ML decoder. However,
it seems that it is difficult to derive an analytical, single-

B |etter expression for the error exponents using the individual
ML decoders. Instead, we propose another decoding scheme,

the naive single-user decoder, which can improve the error

: exponent region achieved by the joint ML decoders. In the
naive single-user decoding, user 1 simply treats user 2 as noise,
and user 2 also simply treats user 1 as noise. Since both users

e— can choose either the joint ML decoders or the naive single-
user decoders, the new error exponents for user 1 and user 2

using superposition encoding are

e , OéP

E1<05E(a 2),E2<(170£)E(

o1 - l1-a

R Efzmax{E(Rl,(l_a) o7
1
(@ (b)
. aP aP (1-a)P
Fig. 3. Error exponent achievable region (a) tlme sharlng and [E(Rl’af)’EtB(Rl +R2’7§’ o2 )]
superposition, (b) inner bound?{ = Ry = 0.5; 4 = = ; = 10). (11)
By = ——

The proof of Theorem 1, as given in the Appendix, requires? max{ (B2, aP+o )
to show the existence of two codebooksB; andC' B;, that ) (1—a)P aP (1—a)P
simultaneoushsatisfy P, < e~ VE1 and Py, < e‘NEQ, for min [E(R% oz ), Es(R1 + R, P R )] }
any pair of(E1, Es) in the achievable EER. (12)

lIl. I MPROVED ACHIEVABLE ERROREXPONENTREGION  Although decoding by treating the other user’s interference as
BY NAIVE SINGLE-USERDECODER noise is sub-optimum, this simple scheme does improve the

The result in Theorem 1 and in Fig. 3 is a little surprisingoriginal EER achieved by and E3 in (3), (4). In Fig. 4(a),
Since T. M. Cover’s famous paper “Broadcast Channels” w#se solid curve is the boundary of the original achievable EER



by superposition using joint ML decoding, and the dashed
curve (which merges with the solid curve &E,, F2) =

(0.038,0.002)) is the boundary of the new achievable EER Er < Elﬂ (1) (13)

by superposition using the joint ML decoding and the naive Ey < E3"(R») (14)

single-user decoding. In Fig. 4(b), the solid curve is the min{F1, F>} <  min  EYY (R + Ra), (15)
P'(Y1,Y2]X)

boundary of the new achievable EER by superposition, and
the dotted line is the achievable EER by time-sharing. For thighere E£*(R) denotes any valid error-exponent upper bound
operating poin{R;, R2) = (0.2,0.65), the achievable EER by for a single-user channel defined B(Y;|X), and E$Y(R)
time-sharing is inside the achievable EER by superposition. dienotes any valid error-exponent upper bound for a single-
general, the EER defined by (11), (12) does not always expangut-two-output single-user channel definedi®yY, Y5| X),

the EER beyond that achieved by time sharing (this is the cased the minimum on the right hand side of the last inequality is

in the example of Fig. 3). over all the distributiong’ (Y7, Y| X') with the same marginal
distributions as those of the original DMBC. If the original
DMBC is a degraded broadcast channel (with user 1 having
the better channel), theminp: (v, v,|x) Eiy(R1 + R2) =
E$“(Ry + Ry).

0 The above argument can be easily extended to a Gaussian
aoor broadcast channel with power constraihtby noticing that a
Gaussian broadcast channel is a degraded broadcast channel.
We summarize the result in the following theorem.

1
0.018] 0018
1

0.004] 0,004

Theorem 2: For a two-user Gaussian broadcast channel with
power constraint” and noise power? and o2 for user 1
@) (®) and user 2, an outer bound for the error exponent region

Fig. 4. Error exponent achievable region (a) superposition, (b) innérER(R1, R2) is
bound R: = 0.2, R, = 0.65; & =10, & =5).
o1 93
P
E, < E**(Ry, ?) (16)
IV. OUTER BOUND FORERROREXPONENT REGION 1

In this section, we first derive an outer bound for the error Ey < E*(Ry, ?) (7)
exponent region of a discrete memoryless broadcast channel 2

(DMBC), then we extend this result to a Gaussian broadcast min{E1, B>} < max{E*“(R; + Ro, 52),
channel. 71

Consider a DMBC defined by the joint probability mass E*“(R; + Ry, %)}7 (18)
function P(Y1,Y>|X). The probability of decoding error for g3

useri can always be lower bounded by the probability vahere ESU(R’ SNR) is any upper bound for a Sing]e_user
decoding error for user operating over a point-to-point scalar Gaussian channel operating at r&eand having
channel defined by the marginal dlStrlbUtldﬁ(Y”X), for Signa|-to-noise ratiorb NV R. [

i = 1,2. Further, we use the fact that the performance of

a broadcast channel depends only on the marginal distrilityr jllustration, we use the spherical packing bound for
tions P(Y1|X) and P(Y2|X), not on the joint distribution gsu(R SNR), though this bound can be improved by
P(Y1,Y>|X). To be specific, consider another DMBC withthe minimum distance bound or the straight line bound at
marginal distributions the same as those in the Original DMB%W rates [7]' [8] In F|g 5(a), the small solid curve is
e, P'(Y1]X) = P(Y1]X) and P'(Y2|X) = P(Y2|X), but the achievable error exponent region (the same curve in
with P'(Y1,Y2|X) # P(Y1,Y2|X) in general. The EER of Fig. 3(b)), and the dash-dotted curve is the outer bound of
this new DMBC is the same as the EER of the originghe error exponent region. Fig. 5(b) is the same diagram

DMBC, since the probability of error of each user dependgs Fig. 5(a), but focuses on the region containing the inner
only on the corresponding marginal distribution [6]. If weyound.

now allow the two receivers in the new DMBC to cooperate,

we have a two-output single-user DMC, whose probability of V. CONCLUSION

error (using an optimal receiverf., should be less than or In this paper, we consider an inner and an outer bound for

equal to the probability of system errdf. in the original the error exponent region in a Gaussian broadcast channel.
DMBC. Using the union bound, it is also easy to show thaiwo simple strategies (time-sharing and superposition) are

P, < 2max{P., P2}, where P,; denotes the probability of proposed to obtain achievable EERs. The concept of the EER

error for useri in the original DMBC. Collecting all these is general and can be extended to other channel models, such
ideas, we have the following outer bound for the EER. as multiple access channels [9]. Currently the authors are
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Fig. 5. Inner and outer bounds for error exponent regidh (=
Ry =05; 5 = 5 = 10).
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The proofs for the other three cases are similar.

In order to prove the existence of the codebodk8;
investigating tighter inner and outer bounds for the EER arthd C' B satisfying (23), (24), we construct two independent

practical schemes to achieve these bounds. random codebook§'B; and CB,, each withM; = ¢Nfa
codewords and\f, = eN%2 codewords respectively. Every
V1. APPENDIX element inC B; is independent and identically distributed with

average powerP — §/2, whered is some positive number.
Similarly, every element i’ B, is independent and identically

adistributed with average powefl — «)P — §/2. Suppose

Ehat user 1 sends codeworg; (1 < i < M;) and user 2

We now prove that for anyF,, E5) interior to the achiev-
able region EER,(R1, R2) U EER:s(R1, R2), there exist
codebooksC B} and CB3 for user 1 and user 2 such th

for any e > 0, sends codeword; ; (1 < j < M). We usec; i to denote
Py < e~ N(E1—0) (19) another codeword irC'B; different from c; ;, and usecy ;-
T to denote another codeword @B, different frome, ;. For
Py < e NE (20) e

any realization of the random codeboakd3, and C B, we

for sufficient large N, where N is the codeword length. define the following probabilities.

For (Ei,E,) interior to EER;;(R1,Rs) or interior to
EER,(Ry, R,) using naive single-user decoding, the proof of ~ “!'
the existence of the codebook&B; and C'B; is trivial. For p
(E1, E,) interior to EER,(R;, R,) using joint ML decoding, e22
the proof is equivalent to showing that for amy> 0 and
0 < a < 1, there exist codebookS'Bf and C'B; for user 1
and user 2 satisfying the following inequalities

: average of probability of error when user 1 decodes
(c1,irC2,5) @S €1,i,C2,5)

: average of probability of error when user 2 decodes
(c1,i02,5) @S €1,i,¢2,57)

P.13 : average of probability of error when user 1 decodes
(c1,i,C2,5) @S €1,i71C2,57)

P.23 : average of probability of error when user 2 decodes
(c1,4:C2,5) @S €1,i7,C2,57)

. [ ) aP P.; : average probability of error for user 1
P2y < exp | =N { min | B(Ry, (T%)’ P., : average probability of error for user 2
P (1—a)P | .
Ei3(Ry + Ro, O%, (2@))} — e) (21) In general, all the above parameters are random variables. In
) 71 71 : the following, we first use Markov inequality to upper bound
P <exp |-N (min {E(Rg, (1- S)P% the tail probabilities forPel_l_, P.o55, P.13, and P.s3. Then we
L 03 upper bound the probability of the event when the average
Fis(B1 + R aP (1- a)P) B | (22) transmitted powerP; is larger than the power constraift.
BT e T2 ik Finally, we use the union bound to prove the existence of the

- codebooksU' B} and C'B3.
where P}, and P}, are the average probabilities of error for

user 1 and user 2. Recall thB{ R, SN R) is the maximum of

the random coding exponeht.(R, SN R) and the expurgated
exponentE,,. (R, SNR). Therefore, (21), (22) in fact implies
four cases, each depending on whether the random codﬁlg
exponent or the expurgated exponent dominates for user 1 or
user 2. We prove in the appendix only the case when theFor any random variabl&, we use the notatioX to denote
random coding exponents dominate the expurgated exponghtsensemble average{ X }. From Markov inequality, for any
for both user 1 and user 2, i.e., £ > 0, we have

Tail Probabilities forP.i1, P.12, P.13, and P.o3



Pr{Pe11 > P} < % (25)
Pr{P.ys > 3Pes2} < % (26)
Pﬂﬂm>ﬂﬁ£}§% @7)
Pr{Pes3 > (P} < %. (28)

In addition, we have the following
random coding exponent argument

- [ p_9
Py < exp |-NE, (Rl, aﬁ)] (29)
01
- [ 1l—a)P-29
P622 < exp _NET (RZa ( O;_)g - >‘| (30)
[ aP-$% (1-a)P -3
PelS < exp _NEtS Rl + R2> 5 ’ D)
o3 o5
(31)
[ aP—3% (1—a)P—2\]
B 2 2
P€23 < €xp 7NEt3 <R1 + RZa 2 ) 2 ) .
03 03
(32)

B. Upper Bound forPr{P, > P}

For any realization of the random codebooks3; and
CB,, denotec, ;(k) the kth element in the codeword ;,
and ¢ ;(k) the kth element in the codeworg ;. We also

define the following notations
P;; . average power of the codewold ;,cz ;); P;; =
¥ Zicilera(k) + ez (R)
P average transmitted power; P, =
M1A42 Z Z]W‘z P

In general,P;; andPt are random variables. Since the randorlﬁr’]
codebooks” By andC B, are constructed independently withe)

average powet P —§/2 and (1 — a)P — §/2, we haveP; =

P — 6. From the weak law of large numbe®By{|P; — P;| >
0} < ¢ for N sufficiently large. Therefore,
Pr{P, > P} < Pr{|P.— P >d} <46 (33)

for N sufficiently large.

C. Existence of the Codebooks3; and C B3
DefineB as the union of the following events

B ={Pe11 > BPe11} U{Peos > BPeo} U {Pe13 > P13}V
{P.o3 > BP.o3} U{P, > P}. (34)

Therefore, we can use the union bound to get

Pr{B}§4%+6:é+6.

3 (39)

inequalities using the'

For arbitrary smally, we can always choose to get

Pr{B} =1 Pr{B} >1— % _5>0.  (36)
Since Pr{B°} > 0, this implies that there exist codebooks
CBj andC'Bj such that

o PPy < BPenn, Ploy < BPess, Pl < BPes,

P:23 S ﬂpe23-

o« PF <P,
here P, P, PXs, Pls, and P; are the parameters
corresponding to the codebooksB; and C'Bj. Because
Pl < Piy+ Phy, Pl < Phy + Ply, and Py, Peas,
P.13, P.o3 are upper bounded by (29), (30), (31), (32), it is
easy to see that

i P
N <min {E,,.(Rl, 25,
g

1

P}y <exp

aP (1—-a)P )
Ei3(Ry +R2727(2))} —6) (37)
01 01 i
[ 1—a)P
P <exp|—-N (min {ET(RQ, %),
L 02
aP (1—-a)P |
Eg(R1 + Ry, —5, (2))} - 6) , (38)
02 03 i

for sufficiently large N since E, and E;3 are continuous
functions. This completes the proof.
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