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Abstract— In this work, we introduce the notion of the error
exponent region for a multi-user channel. This region specifies the
set of error-exponent vectors that are simultaneously achievable
by all users in the multi-user channel. This is done by associating
different probabilities of error for different users, contrary to the
traditional approach where a singleprobability of system erroris
considered. We derive an inner bound (achievable region) and
an outer bound for the error exponent region of a Gaussian
broadcast channel.

I. I NTRODUCTION

It is a well-known fact that the error exponent for a single-
user channel provides the rate of exponential decay of the
average probability of error as a function of the block length of
the codebooks [1], [2]. Conceptually, in a single-user channel,
the error exponent is a function of the operating pointR and
the channel capacityC and in particular, a non-decreasing
function of the difference betweenR andC. Therefore, there is
a tradeoff between the rate and the error exponent in a single-
user channel. One can increase the error exponent by reducing
the rate. The concept of the error exponent was extended to
a Gaussian multiple access channel (MAC) in [3], [4], where
an upper bound on theprobability of system error(i.e., the
probability that any user is in error) was derived for random
codes.

In many applications of wireless networks, different users
might have different reliability requirements. For instance, in
an uplink (or downlink) of a cellular system, a user running an
FTP application might have more stringent reliability require-
ments than a user running a multimeadia application which is
designed for graceful degradation. Based on the traditional
approaches [3], [4] which consider a singleprobability of
system error, a network can only be designed to satisfy the
most stringent reliability requirement. This might result in a
mismatch of resources allocation, and thus, it is inherently
suboptimal.

Motivated by the above observation, in this work, we
consider a new approach in analyzing the users’ performance
in a multi-user scenario. In addition to the rate vs. performance
tradeoffs that exist in traditional approaches, our approach
realizes new degrees of freedom that enable a richer trade-
off among users’ performance. Our approach hinges on the
following two observations.

First, one can define a probability of error for each user,
which, in general may be different for different users. There-

fore, there are multiple error exponents, one for each user, for
a given multi-user channel.

Second, in contrast to a single-user channel where the error
exponent is fixed for a given rate, in a multi-user channel one
can tradeoff the error exponents among different users even for
fixed rates. To illustrate this novel point, consider the capacity
region of a two-user broadcast channel as shown in Fig. 1(b).
As expected, the error exponents for the two users are func-
tions of both the operating pointA and the channel capacity.
However, unlike the case in a single-user channel where the
channel capacity boundary is a single point, in a multi-user
channel we have multiple points on the capacity boundary
(e.g. B, D in Fig. 1(b)). Thus it is expected that one can
get different error exponents depending on which particular
point on the capacity boundary is considered. Furthermore, it
might be possible to trade off error exponents between users
by considering different points on the capacity boundary. For
instance, consider an operating pointA (corresponding to a
rate pair (R1, R2)) with respect to a boundary pointB in
Fig. 1(b). It is intuitive to expect that the error exponent for
user 1 is smaller than that of user 2, since user 1 operates
at rateR1 which is very close to his capacity (determined
by B), while user 2 backs off significantly from his capacity
(determined again byB). On the other hand, if we consider
point A with respect to the boundary pointD, we then expect
the error exponent for user 1 to be larger than that of user 2.
Therefore, a tradeoff of error exponents between users might
be possible by considering different points on the capacity
boundary. It is our intention in this paper to formalize these
ideas by showing that such tradeoff indeed exists and by
proposing constructive strategies to achieve it.

Before continuing, we introduce the notion of error ex-
ponent region (EER). For a given operating point, the error
exponent region consists of all achievable error exponents
when the channel is operated at that point. For example, the
error exponent region for a single-user channel operated at
rateR is a line segment from the origin to the error exponent
E(R) (see Fig. 2(a)). For a broadcast channel operated at
point A (see Fig. 1(b)), the error exponent region is a two-
dimensional region which depends on ratesR1 and R2 (see
Fig. 2(b)). The concept of the error exponent region is very
similar to the concept of the channel capacity region (CCR).
In the EER, it is possible to increase user 1’s error exponent
by decreasing user 2’s error exponent. This is similar to the



idea of increasing the data rate of user 1 by reducing the data
rate of user 2 in the CCR. However, there is a fundamental
difference between CCR and EER. For a given channel, there
is only one CCR. One the other hand, an EER depends on
the channel operating point, and for a given channel, there
are numerous EERs depending on which operating point we
consider. Therefore, when we refer to an EER, we need to
specify the channel operating point.

The rest of the paper is structured as follows. In Section II,
we derive the achievable error exponent region by superposi-
tion and the achievable error exponent region by time-sharing
in a Gaussian broadcast channel. The union of these two
regions is an inner bound for the error exponent region. In
Section III, we use a different decoding scheme to improve the
error exponent region derived by superposition in Section II.
In Section IV, we derive outer bounds for the error exponent
regions of a discrete memoryless broadcast channel (DMBC)
and the error exponent region of a Gaussian broadcast channel.
We conclude our work in Section V. The existence of a
good codebook which achieves the average error exponents
of random codebooks using superposition encoding is proved
in Appendix.
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Fig. 1. Capacity region for (a) single-user, and (b) broadcast channels.
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Fig. 2. (a) The error exponent region associated with rateR (single-
user). (b) The error exponent region associated with operating point
(R1, R2).

II. A CHIEVABLE ERROREXPONENT REGION FOR

GAUSSIAN BROADCAST CHANNELS

Consider a two-user Gaussian broadcast channel

Y1 = X + Z1 (1)

Y2 = X + Z2, (2)

whereX is the channel input with power constraintP , andY1

andY2 are the channel outputs for user 1 and user 2. Assume
that the noise power forZ1 is σ2

1 and the noise power forZ2 is
σ2

2 . The capacity boundary for a Gaussian broadcast channel
is achieved by different input distributions. In Fig. 1(b), the
operating pointB is achieved byX = X1+X2 with Gaussian
distributionsN (0, α1P ) andN (0, (1 − α1)P ) for X1, X2,
respectively, but the pointD is achieved by another pair
of Gaussian distributionsN (0, α2P ) and N (0, (1 − α2)P )
(0 < α1 < α2 < 1). Therefore, we expect the error
exponents for the operating pointA evaluated with respect
to B to be different from those evaluated with respect toD.
In the receivers side, we decode users’ messages usingjoint
maximum likelihood (ML) decoding, i.e., decoding user 1’s
message based on the pair(i, j) maximizingP (Y N

1 |XN
1i , X

N
2j)

and decoding user 2’s message based on the(i, j) maximizing
P (Y N

2 |XN
1i , X

N
2j), where XN

1i , XN
2j , Y N

1 , and Y N
2 are the

transmitted codewords and the received data for user 1 and
user 2 with block lengthN , respectively. Based on this
assumptions, we derive achievable error exponents for user 1
and user 2 in a Gaussian broadcast channel as

Es
1 = min{E(R1,

αP

σ2
1

), Et3(R1 + R2,
αP

σ2
1

,
(1− α)P

σ2
1

)}
(3)

Es
2 = min{E(R2,

(1− α)P
σ2

2

), Et3(R1 + R2,
αP

σ2
2

,
(1− α)P

σ2
2

)},
(4)

where the superscript “s” denotes superposition, and0 < α <
1. In (3), (4), E(R, SNR) is the maximum of the single-
user random coding exponent and the single-user expurgated
exponent [1], [2], andEt3(R1 + R2, SNR1, SNR2) is the
random coding exponent for the type 3 error in a two-user
Gaussian multiple access channel [3]. An explicit expression
for Et3 is

Et3(R3, SNR1, SNR2) = max
ρ,θ1,θ2

{Et3,0(ρ, θ1, θ2)− ρR3}
(5)

Et3,0(ρ, θ1, θ2) = (1 + ρ) ln
[
e
√

θ1θ2

1 + ρ

]
− θ1 + θ2

2

+
ρ

2
ln

[
1 +

SNR1

θ1
+

SNR2

θ2

]
,

(6)

where the maximization is over0 ≤ ρ ≤ 1, and0 < θ1, θ2 ≤
1 + ρ.

In Fig. 3(a), the solid curve is the boundary of the achievable
EER obtained by superposition. In the following, we propose
a simple scheme (time-sharing) to enlarge the achievable EER
beyond the achievable region by superposition. The achievable
error exponents for user 1 and user 2 by time-sharing are



Ets
1 = αE

(
R1

α
,

P

σ2
1

)
(7)

Ets
2 = (1− α)E

(
R2

1− α
,

P

σ2
2

)
, (8)

where the superscript “ts” denotes time-sharing, and
0 < α < 1. In Fig. 3(a), the dotted curve is the achievable
EER by time-sharing. The union of the superposition
achievable EER and the time-sharing achievable EER is an
inner bound for the EER in a Gaussian broadcast channel
(see Fig. 3(b)). We summarize this result in the following
theorem.

Theorem 1: For a two-user Gaussian broadcast channel with
power constraintP and noise powerσ2

1 andσ2
2 for user 1 and

user 2, respectively, an achievable EER isEER(R1, R2) =
EERs(R1, R2)∪EERts(R1, R2), whereEERs(R1, R2) and
EERts(R1, R2) are given by

EERs(R1, R2) = {(E1, E2) :

E1 ≤ min{E(R1,
αP

σ2
1

), Et3(R1 + R2,
αP

σ2
1

,
(1− α)P

σ2
1

)},

E2 ≤ min{E(R2,
(1− α)P

σ2
2

), Et3(R1 + R2,
αP

σ2
2

,
(1− α)P

σ2
2

)},
0 < α < 1} (9)

EERts(R1, R2) = {(E1, E2) :

E1 ≤ αE(
R1

α
,

P

σ2
1

), E2 ≤ (1− α)E(
R2

1− α
,

P

σ2
2

), 0 < α < 1}.
(10)
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Fig. 3. Error exponent achievable region (a) time-sharing and
superposition, (b) inner bound (R1 = R2 = 0.5; P

σ2
1

= P
σ2
2

= 10).

The proof of Theorem 1, as given in the Appendix, requires
to show the existence of two codebooks,CB∗

1 andCB∗
2 , that

simultaneouslysatisfy P ∗e1 ≤ e−NE1 and P ∗e2 ≤ e−NE2 , for
any pair of(E1, E2) in the achievable EER.

III. I MPROVED ACHIEVABLE ERROREXPONENT REGION

BY NAIVE SINGLE-USERDECODER

The result in Theorem 1 and in Fig. 3 is a little surprising.
Since T. M. Cover’s famous paper “Broadcast Channels” was

published in 1972, it is believed that the superposition encod-
ing is a better scheme than the time-sharing encoding [5].
When we consider unequal error protection for different
users, however, the result in Fig. 3 suggests that the time-
sharing scheme sometimes might be better than superposition.
Although these results do not contradict those in [5] (since we
are examining error exponents, while the work in [5] refers to
channel capacity), there are three possible explanations to this
observation:
(i) It might be the case that time-sharing can indeed expand the
EER provided by superposition, especially for the case when
one user requires a much better reliability than the other.
(ii) The achievable error exponents derived in Theorem 1 for
superposition encoding usejoint maximum likelihood (ML)
decoders, i.e., decoding user 1’s message based on the(i, j)
pair maximizing P (Y N

1 |XN
1i , X

N
2j) and decoding user 2’s

message based on the(i, j) maximizing P (Y N
2 |XN

1i , X
N
2j).

This is in general different and worse than usingindividualML
decoders, which minimize the error probability for user 1 and
user 2, i.e., decoding user 1’s message based on thei maximiz-
ing

∑
j P (Y N

1 |XN
1i , X

N
2j)P (XN

2j) and decoding user 2’s mes-
sage based on thej maximizing

∑
i P (Y N

2 |XN
1i , X

N
2j)P (XN

1i ).
(iii) The third reason comes from the fact that in (3), (4),Es

1

and Es
2 are both upper bounded byEt3, which accounts for

the error event when both user 1’s and user 2’s codewords are
decoded as wrong codewords. Since bothEs

1 andEs
2 are upper

bounded byEt3. This might result in loose bounds which are
derived using thejoint ML decoder.

To answer this question it is desirable to find tight upper
bounds for the optimalindividual ML decoder. However,
it seems that it is difficult to derive an analytical, single-
letter expression for the error exponents using the individual
ML decoders. Instead, we propose another decoding scheme,
the naive single-user decoder, which can improve the error
exponent region achieved by the joint ML decoders. In the
naive single-user decoding, user 1 simply treats user 2 as noise,
and user 2 also simply treats user 1 as noise. Since both users
can choose either the joint ML decoders or the naive single-
user decoders, the new error exponents for user 1 and user 2
using superposition encoding are

E
′s
1 = max

{
E(R1,

αP

(1− α)P + σ2
1

),

min
[
E(R1,

αP

σ2
1

), Et3(R1 + R2,
αP

σ2
1

,
(1− α)P

σ2
1

)
]}

(11)

E
′s
2 = max

{
E(R2,

(1− α)P
αP + σ2

2

),

min
[
E(R2,

(1− α)P
σ2

2

), Et3(R1 + R2,
αP

σ2
2

,
(1− α)P

σ2
2

)
]}

.

(12)

Although decoding by treating the other user’s interference as
noise is sub-optimum, this simple scheme does improve the
original EER achieved byEs

1 andEs
2 in (3), (4). In Fig. 4(a),

the solid curve is the boundary of the original achievable EER



by superposition using joint ML decoding, and the dashed
curve (which merges with the solid curve at(E1, E2) =
(0.038, 0.002)) is the boundary of the new achievable EER
by superposition using the joint ML decoding and the naive
single-user decoding. In Fig. 4(b), the solid curve is the
boundary of the new achievable EER by superposition, and
the dotted line is the achievable EER by time-sharing. For this
operating point(R1, R2) = (0.2, 0.65), the achievable EER by
time-sharing is inside the achievable EER by superposition. In
general, the EER defined by (11), (12) does not always expand
the EER beyond that achieved by time sharing (this is the case
in the example of Fig. 3).
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Fig. 4. Error exponent achievable region (a) superposition, (b) inner
bound (R1 = 0.2, R2 = 0.65; P

σ2
1

= 10, P
σ2
2

= 5).

IV. OUTER BOUND FORERROREXPONENT REGION

In this section, we first derive an outer bound for the error
exponent region of a discrete memoryless broadcast channel
(DMBC), then we extend this result to a Gaussian broadcast
channel.

Consider a DMBC defined by the joint probability mass
function P (Y1, Y2|X). The probability of decoding error for
user i can always be lower bounded by the probability of
decoding error for useri operating over a point-to-point
channel defined by the marginal distributionP (Yi|X), for
i = 1, 2. Further, we use the fact that the performance of
a broadcast channel depends only on the marginal distribu-
tions P (Y1|X) and P (Y2|X), not on the joint distribution
P (Y1, Y2|X). To be specific, consider another DMBC with
marginal distributions the same as those in the original DMBC,
i.e., P ′(Y1|X) = P (Y1|X) and P ′(Y2|X) = P (Y2|X), but
with P ′(Y1, Y2|X) 6= P (Y1, Y2|X) in general. The EER of
this new DMBC is the same as the EER of the original
DMBC, since the probability of error of each user depends
only on the corresponding marginal distribution [6]. If we
now allow the two receivers in the new DMBC to cooperate,
we have a two-output single-user DMC, whose probability of
error (using an optimal receiver),P ′e, should be less than or
equal to the probability of system errorPe in the original
DMBC. Using the union bound, it is also easy to show that
Pe ≤ 2max{Pe1, Pe2}, wherePei denotes the probability of
error for useri in the original DMBC. Collecting all these
ideas, we have the following outer bound for the EER.

E1 ≤ Esu
1 (R1) (13)

E2 ≤ Esu
2 (R2) (14)

min{E1, E2} ≤ min
P ′(Y1,Y2|X)

Esu
12 (R1 + R2), (15)

whereEsu
i (R) denotes any valid error-exponent upper bound

for a single-user channel defined byP (Yi|X), and Esu
12 (R)

denotes any valid error-exponent upper bound for a single-
input-two-output single-user channel defined byP ′(Y1, Y2|X),
and the minimum on the right hand side of the last inequality is
over all the distributionsP ′(Y1, Y2|X) with the same marginal
distributions as those of the original DMBC. If the original
DMBC is a degraded broadcast channel (with user 1 having
the better channel), thenminP ′(Y1,Y2|X) Esu

12 (R1 + R2) =
Esu

1 (R1 + R2).
The above argument can be easily extended to a Gaussian

broadcast channel with power constraintP by noticing that a
Gaussian broadcast channel is a degraded broadcast channel.
We summarize the result in the following theorem.

Theorem 2: For a two-user Gaussian broadcast channel with
power constraintP and noise powerσ2

1 and σ2
2 for user 1

and user 2, an outer bound for the error exponent region
EER(R1, R2) is

E1 ≤ Esu(R1,
P

σ2
1

) (16)

E2 ≤ Esu(R2,
P

σ2
2

) (17)

min{E1, E2} ≤ max{Esu(R1 + R2,
P

σ2
1

),

Esu(R1 + R2,
P

σ2
2

)}, (18)

where Esu(R, SNR) is any upper bound for a single-user
scalar Gaussian channel operating at rateR and having
signal-to-noise rationSNR.

For illustration, we use the spherical packing bound for
Esu(R, SNR), though this bound can be improved by
the minimum distance bound or the straight line bound at
low rates [7], [8]. In Fig. 5(a), the small solid curve is
the achievable error exponent region (the same curve in
Fig. 3(b)), and the dash-dotted curve is the outer bound of
the error exponent region. Fig. 5(b) is the same diagram
as Fig. 5(a), but focuses on the region containing the inner
bound.

V. CONCLUSION

In this paper, we consider an inner and an outer bound for
the error exponent region in a Gaussian broadcast channel.
Two simple strategies (time-sharing and superposition) are
proposed to obtain achievable EERs. The concept of the EER
is general and can be extended to other channel models, such
as multiple access channels [9]. Currently the authors are
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Fig. 5. Inner and outer bounds for error exponent region (R1 =
R2 = 0.5; P

σ2
1

= P
σ2
2

= 10).

investigating tighter inner and outer bounds for the EER and
practical schemes to achieve these bounds.

VI. A PPENDIX

We now prove that for any(E1, E2) interior to the achiev-
able regionEERs(R1, R2) ∪ EERts(R1, R2), there exist
codebooksCB∗

1 and CB∗
2 for user 1 and user 2 such that

for any ε > 0,

P ∗e1 ≤ e−N(E1−ε) (19)

P ∗e2 ≤ e−N(E2−ε) (20)

for sufficient largeN , where N is the codeword length.
For (E1, E2) interior to EERts(R1, R2) or interior to
EERs(R1, R2) using naive single-user decoding, the proof of
the existence of the codebooksCB∗

1 andCB∗
2 is trivial. For

(E1, E2) interior toEERs(R1, R2) using joint ML decoding,
the proof is equivalent to showing that for anyε > 0 and
0 < α < 1, there exist codebooksCB∗

1 and CB∗
2 for user 1

and user 2 satisfying the following inequalities

P ∗e1 ≤ exp
[
−N

(
min

{
E(R1,

αP

σ2
1

),

Et3(R1 + R2,
αP

σ2
1

,
(1− α)P

σ2
1

)
}
− ε

)]
(21)

P ∗e2 ≤ exp
[
−N

(
min

{
E(R2,

(1− α)P
σ2

2

),

Et3(R1 + R2,
αP

σ2
2

,
(1− α)P

σ2
2

)
}
− ε

)]
, (22)

whereP ∗e1 and P ∗e2 are the average probabilities of error for
user 1 and user 2. Recall thatE(R, SNR) is the maximum of
the random coding exponentEr(R, SNR) and the expurgated
exponentEex(R,SNR). Therefore, (21), (22) in fact implies
four cases, each depending on whether the random coding
exponent or the expurgated exponent dominates for user 1 or
user 2. We prove in the appendix only the case when the
random coding exponents dominate the expurgated exponents
for both user 1 and user 2, i.e.,

P ∗e1 ≤ exp
[
−N

(
min

{
Er(R1,

αP

σ2
1

),

Et3(R1 + R2,
αP

σ2
1

,
(1− α)P

σ2
1

)
}
− ε

)]
(23)

P ∗e2 ≤ exp
[
−N

(
min

{
Er(R2,

(1− α)P
σ2

2

),

Et3(R1 + R2,
αP

σ2
2

,
(1− α)P

σ2
2

)
}
− ε

)]
. (24)

The proofs for the other three cases are similar.

In order to prove the existence of the codebooksCB∗
1

andCB∗
2 satisfying (23), (24), we construct two independent

random codebooksCB1 and CB2, each withM1 = eNR1

codewords andM2 = eNR2 codewords respectively. Every
element inCB1 is independent and identically distributed with
average powerαP − δ/2, whereδ is some positive number.
Similarly, every element inCB2 is independent and identically
distributed with average power(1 − α)P − δ/2. Suppose
that user 1 sends codewordc1,i (1 ≤ i ≤ M1) and user 2
sends codewordc2,j (1 ≤ j ≤ M2). We usec1,i′ to denote
another codeword inCB1 different from c1,i, and usec2,j′

to denote another codeword inCB2 different from c2,j . For
any realization of the random codebooksCB1 andCB2, we
define the following probabilities.

Pe11 : average of probability of error when user 1 decodes
(c1,i,c2,j) as (c1,i′ ,c2,j)

Pe22 : average of probability of error when user 2 decodes
(c1,i,c2,j) as (c1,i,c2,j′)

Pe13 : average of probability of error when user 1 decodes
(c1,i,c2,j) as (c1,i′ ,c2,j′)

Pe23 : average of probability of error when user 2 decodes
(c1,i,c2,j) as (c1,i′ ,c2,j′)

Pe1 : average probability of error for user 1
Pe2 : average probability of error for user 2

In general, all the above parameters are random variables. In
the following, we first use Markov inequality to upper bound
the tail probabilities forPe11, Pe22, Pe13, andPe23. Then we
upper bound the probability of the event when the average
transmitted powerPt is larger than the power constraintP .
Finally, we use the union bound to prove the existence of the
codebooksCB∗

1 andCB∗
2 .

A. Tail Probabilities forPe11, Pe12, Pe13, and Pe23

For any random variableX, we use the notationX to denote
the ensemble averageE{X}. From Markov inequality, for any
β > 0, we have



Pr{Pe11 > βPe11} ≤ 1
β

(25)

Pr{Pe22 > βPe22} ≤ 1
β

(26)

Pr{Pe13 > βPe13} ≤ 1
β

(27)

Pr{Pe23 > βPe23} ≤ 1
β

. (28)

In addition, we have the following inequalities using the
random coding exponent argument

Pe11 ≤ exp

[
−NEr

(
R1,

αP − δ
2

σ2
1

)]
(29)

Pe22 ≤ exp

[
−NEr

(
R2,

(1− α)P − δ
2

σ2
2

)]
(30)

Pe13 ≤ exp

[
−NEt3

(
R1 + R2,

αP − δ
2

σ2
1

,
(1− α)P − δ

2

σ2
1

)]

(31)

Pe23 ≤ exp

[
−NEt3

(
R1 + R2,

αP − δ
2

σ2
2

,
(1− α)P − δ

2

σ2
2

)]
.

(32)

B. Upper Bound forPr{Pt > P}
For any realization of the random codebooksCB1 and

CB2, denotec1,i(k) the kth element in the codewordc1,i,
and c2,j(k) the kth element in the codewordc2,j . We also
define the following notations

Pij : average power of the codeword(c1,i, c2,j); Pij =
1
N

∑N
k=1[c1,i(k) + c2,j(k)]2

Pt : average transmitted power; Pt =
1

M1M2

∑M1
i=1

∑M2
j=1 Pij .

In general,Pij andPt are random variables. Since the random
codebooksCB1 andCB2 are constructed independently with
average powerαP − δ/2 and(1−α)P − δ/2, we haveP t =
P − δ. From the weak law of large numbers,Pr{|Pt−Pt| >
δ} < δ for N sufficiently large. Therefore,

Pr{Pt > P} ≤ Pr{|Pt − Pt| > δ} < δ (33)

for N sufficiently large.

C. Existence of the CodebooksCB∗
1 and CB∗

2

DefineB as the union of the following events

B ={Pe11 > βPe11} ∪ {Pe22 > βPe22} ∪ {Pe13 > βPe13}∪
{Pe23 > βPe23} ∪ {Pt > P}. (34)

Therefore, we can use the union bound to get

Pr{B} ≤ 4
1
β

+ δ =
4
β

+ δ. (35)

For arbitrary smallδ, we can always chooseβ to get

Pr{Bc} = 1− Pr{B} ≥ 1− 4
β
− δ > 0. (36)

Since Pr{Bc} > 0, this implies that there exist codebooks
CB∗

1 andCB∗
2 such that

• P ∗e11 ≤ βPe11, P ∗e22 ≤ βPe22, P ∗e13 ≤ βPe13,
P ∗e23 ≤ βPe23.

• P ∗t ≤ P ,

where P ∗e11, P ∗e22, P ∗e13, P ∗e23, and P ∗t are the parameters
corresponding to the codebooksCB∗

1 and CB∗
2 . Because

P ∗e1 ≤ P ∗e11 + P ∗e13, P ∗e2 ≤ P ∗e22 + P ∗e23, and Pe11, Pe22,
Pe13, Pe23 are upper bounded by (29), (30), (31), (32), it is
easy to see that

P ∗e1 ≤ exp
[
−N

(
min

{
Er(R1,

αP

σ2
1

),

Et3(R1 + R2,
αP

σ2
1

,
(1− α)P

σ2
1

)
}
− ε

)]
(37)

P ∗e2 ≤ exp
[
−N

(
min

{
Er(R2,

(1− α)P
σ2

2

),

Et3(R1 + R2,
αP

σ2
2

,
(1− α)P

σ2
2

)
}
− ε

)]
, (38)

for sufficiently largeN since Er and Et3 are continuous
functions. This completes the proof.
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