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Abstract
We propose a new design for highly concurrent Internet services, which
we call thestaged event-driven architecture(SEDA). SEDA is intended
to support massive concurrency demands and simplify the construc-
tion of well-conditioned services. In SEDA, applications consist of a
network of event-drivenstagesconnected by explicitqueues. This ar-
chitecture allows services to be well-conditioned to load, preventing
resources from being overcommitted when demand exceeds service ca-
pacity. SEDA makes use of a set ofdynamic resource controllersto
keep stages within their operating regime despite large fluctuations in
load. We describe several control mechanisms for automatic tuning
and load conditioning, including thread pool sizing, event batching, and
adaptive load shedding. We present the SEDA design and an implemen-
tation of an Internet services platform based on this architecture. We
evaluate the use of SEDA through two applications: a high-performance
HTTP server and a packet router for the Gnutella peer-to-peer file shar-
ing network. These results show that SEDA applications exhibit higher
performance than traditional service designs, and are robust to huge
variations in load.

1 Introduction
The Internet presents a computer systems problem of unprecedented
scale: that of supporting millions of users demanding access to services
that must be responsive, robust, and always available. The number of
concurrent sessions and hits per day to Internet sites translates into an
even higher number of I/O and network requests, placing enormous
demands on underlying resources. Yahoo! receives over 1.2 billion
page views daily [62], and AOL’s Web caches service over 10 billion
hits a day [2]. Moreover, Internet services experience huge variations in
service load, with bursts coinciding with the times that the service has
the most value. The well-documented “Slashdot Effect” shows that it is
not uncommon to experience more than 100-fold increases in demand
when a site becomes popular [58]. As the demand for Internet services
grows, new system design techniques must be used to manage this load.
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This systems challenge is magnified by three trends that increase
the generality of services. First, services themselves are becoming
more complex, with static content replaced by dynamic content that
involves extensive computation and I/O. Second, service logic tends to
change rapidly, which increases the complexity of engineering and de-
ployment. Third, services are increasingly hosted on general-purpose
facilities, rather than on platforms that are carefully engineered for a
particular service. As these trends continue, we envision that a rich
array of novel services will be authored and pushed into the infrastruc-
ture where they may become successful enough to scale to millions
of users. Several investigations are addressing the high-level aspects
of service authorship, including naming, lookup, composition, and ver-
sioning [16, 21, 22, 53, 55]. We focus here on the performance aspect of
the problem: achieving robust performance on a wide range of services
subject to huge variations in load, while preserving ease of authorship.

Replication is a key aspect of service scalability. Given a service
instance that can sustain a certain level of performance, it must be repli-
cated to sustain a many-fold increase in load. Scalable clusters are now
widely used to obtain replication within a service site [18], and wide-
area replication is increasingly employed for specific services, such as
content distribution networks [1, 3, 19]. However, because the peak
load may be orders of magnitude greater than the average, it is not
practical to replicate most services to handle the maximum potential
demand. Therefore, we expect large spikes in the load experienced by
each node. Our goal is to develop a general framework for authoring
highly concurrent and well-conditioned service instances that handle
load gracefully.

Unfortunately, traditional operating system designs and widely pro-
moted models of concurrency do not provide this graceful management
of load. Commodity operating systems focus on providing maximal
transparency by giving each process the abstraction of a virtual machine
with its own CPU, memory, disk, and network. This goal is somewhat at
odds with the needs of Internet services, which demand massive concur-
rency and extensive control over resource usage. Processes and threads
are well-supported models of concurrent programming, but often entail
high overhead in terms of context-switch time and memory footprint,
which limits concurrency. Transparent resource virtualization prevents
applications from making informed decisions, which are vital to man-
aging excessive load.

Much work has focused on performance and robustness for specific
services [4, 24, 44, 63]. However, with services becoming increas-
ingly dynamic and flexible, this engineering burden becomes excessive.
Few tools exist that aid the development of highly concurrent, well-
conditioned services; our goal is to reduce this complexity by providing
general-purpose mechanisms that aid software developers in obtaining
these properties.



We propose a new design framework for highly concurrent server
applications, which we call thestaged event-driven architecture
(SEDA).1 SEDA combines aspects of threads and event-based program-
ming models to manage the concurrency, I/O, scheduling, and resource
management needs of Internet services. In SEDA, applications are con-
structed as a network ofstages, each with an associatedincoming event
queue. Each stage represents a robust building block that may be indi-
vidually conditioned to load by thresholding or filtering its event queue.
In addition, making event queues explicit allows applications to make
informed scheduling and resource-management decisions, such as re-
ordering, filtering, or aggregation of requests. SEDA makes use ofdy-
namic resource throttlingto control the resource allocation and schedul-
ing of application components, allowing the system to adapt to overload
conditions.

This paper describes the design, architecture, and implementation
of a SEDA-based Internet services platform. This platform provides
efficient, scalable I/O interfaces as well as several resource control
mechanisms, including thread pool sizing and dynamic event schedul-
ing. We evaluate the framework through two applications — a high-
performance HTTP server and a packet router for the Gnutella peer-
to-peer file-sharing network. We present performance and scalability
results for these applications, demonstrating that SEDA achieves ro-
bustness over huge variations in load and outperforms other service
designs. Our Java-based SEDA HTTP server outperforms two popu-
lar Web servers implemented in C, as described in Section 5.1. We
argue that using SEDA, highly concurrent applications are easier to
build, more efficient, and more robust to load. With the right set of in-
terfaces, application designers can focus on application-specific logic,
rather than the details of concurrency and resource management.

2 Background and Related Work
SEDA draws together two important lines of research: the use of thread-
based concurrency models for ease of programming and event-based
models for extensive concurrency. This section develops the lineage of
this approach by outlining the key contributions and problems in the
steps leading to the SEDA design.

Intuitively, a service iswell-conditionedif it behaves like a sim-
ple pipeline, where the depth of the pipeline is determined by the path
through the network and the processing stages within the service it-
self. As the offered load increases, the delivered throughput increases
proportionally until the pipeline is full and the throughput saturates; ad-
ditional load should not degrade throughput. Similarly, the response
time exhibited by the service is roughly constant at light load, because
it is dominated by the depth of the pipeline. As load approaches satura-
tion, the queueing delay dominates. In the closed-loop scenario typical
of many services, where each client waits for a response before deliv-
ering the next request, response time should increase linearly with the
number of clients.

The key property of a well-conditioned service isgraceful degra-
dation: as offered load exceeds capacity, the service maintains high
throughput with a linear response-time penalty that impacts all clients
equally, or at least predictably according to some service-specific pol-
icy. Note that this is not the typical Web experience; rather, as load
increases, throughput decreases and response time increases dramati-
cally, creating the impression that the service has crashed.

2.1 Thread-based concurrency
The most commonly used design for server applications is the thread-
per-request model, as embodied in RPC packages [52], Java Remote
Method Invocation [54], and DCOM [37]. This model is well sup-
ported by modern languages and programming environments. In this

1Sedais also the Spanish word forsilk.
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Figure 1:Threaded server design:Each incoming request is dispatched to a
separate thread, which processes the request and returns a result to the client.
Edges represent control flow between components. Note that other I/O opera-
tions, such as disk access, are not shown here, but would be incorporated into
each threads’ request processing.

model, shown in Figure 1, each accepted request consumes a thread to
process it, with synchronization operations protecting shared resources.
The operating system overlaps computation and I/O by transparently
switching among threads.

Although relatively easy to program, the overheads associated with
threading — including cache and TLB misses, scheduling overhead,
and lock contention — can lead to serious performance degradation
when the number of threads is large. As a concrete example, Figure 2
shows the performance of a simple threaded server as the number of
threads increases. Although the effective thread limit would be large
for general-purpose timesharing, it is not adequate for the tremendous
concurrency requirements of an Internet service.

Threads and processes are primarily designed to support multipro-
gramming, and existing OSs strive to virtualize hardware resources in a
way that is transparent to applications. Applications are rarely given the
opportunity to participate in system-wide resource management deci-
sions, or given indication of resource availability in order to adapt their
behavior to changing conditions. Virtualization fundamentally hides
the fact that resources are limited and shared [61].

A number of systems have attempted to remedy this problem by
exposing more control to applications. Scheduler activations [5],
application-specific handlers [59], and operating systems such as
SPIN [11], Exokernel [28], and Nemesis [34] are all attempts to aug-
ment limited operating system interfaces by giving applications the
ability to specialize the policy decisions made by the kernel. However,
the design of these systems is still based on multiprogramming, as the
focus continues to be on safe and efficient resource virtualization, rather
than on graceful management and high concurrency.

2.2 Bounded thread pools
To avoid the overuse of threads, a number of systems adopt a coarse
form of load conditioning that serves to bound the size of the thread
pool associated with a service. When the number of requests in the
server exceeds some fixed limit, additional connections are not ac-
cepted. This approach is used by Web servers such as Apache [6],
IIS [38], and Netscape Enterprise Server [42], as well as application
servers such as BEA Weblogic [10] and IBM WebSphere [25]. By lim-
iting the number of concurrent threads, the server can avoid throughput
degradation, and the overall performance is more robust than the uncon-
strained thread-per-task model. However, this approach can introduce
a great deal ofunfairnessto clients: when all server threads are busy or
blocked, client requests queue up in the network for servicing. As we
will show in Section 5.1, this can cause clients to experience arbitrarily
large waiting times.

When each request is handled by a single thread, it is difficult to
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Figure 2: Threaded server throughput degradation: This benchmark mea-
sures a simple threaded server which creates a single thread for each task in the
pipeline. After receiving a task, each thread performs an 8 KB read from a disk
file; all threads read from the same file, so the data is always in the buffer cache.
Threads are pre-allocated in the server to eliminate thread startup overhead
from the measurements, and tasks are generated internally to negate network
effects. The server is implemented in C and is running on a 4-way 500 MHz
Pentium III with 2 GB of memory under Linux 2.2.14. As the number of con-
current tasks increases, throughput increases until the number of threads grows
large, after which throughput degrades substantially. Response time becomes
unbounded as task queue lengths increase; for comparison, we have shown the
ideal linear response time curve (note the log scale on thex axis).

identify internal performance bottlenecks in order to perform tuning
and load conditioning. Consider a simple threaded Web server in which
some requests are inexpensive to process (e.g., cached static pages) and
others are expensive (e.g., large pages not in the cache). With many
concurrent requests, it is likely that the expensive requests could be the
source of a performance bottleneck, for which it is desirable to perform
load shedding. However, the server is unable to inspect the internal
request stream to implement such a policy; all it knows is that the thread
pool is saturated, and must arbitrarily reject work without knowledge of
the source of the bottleneck.

Resource containers [7] and the concept ofpathsfrom the Scout op-
erating system [41, 49] are two techniques that can be used to bound
the resource usage of tasks in a server. These mechanisms apply ver-
tical resource management to a set of software modules, allowing the
resources for an entire data flow through the system to be managed as a
unit. In the case of the bottleneck described above, limiting the resource
usage of a given request would avoid degradation due to cache misses,
but allow cache hits to proceed unabated.

2.3 Event-driven concurrency
The scalability limits of threads have led many developers to eschew
them almost entirely and employ an event-driven approach to manag-
ing concurrency. In this approach, shown in Figure 3, a server consists
of a small number of threads (typically one per CPU) that loop continu-
ously, processing events of different types from a queue. Events may be
generated by the operating system or internally by the application, and
generally correspond to network and disk I/O readiness and completion
notifications, timers, or other application-specific events. The event-
driven approach implements the processing of each task as a finite state
machine, where transitions between states in the FSM are triggered by
events. In this way the server maintains its own continuation state for
each task rather than relying upon a thread context.

The event-driven design is used by a number of systems, including

scheduler
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request FSM 2

request FSM 3

request FSM 4

request FSM N

Figure 3: Event-driven server design: This figure shows the flow of events
through an event-driven server. The main thread processes incoming events from
the network, disk, and other sources, and uses these to drive the execution of
many finite state machines. Each FSM represents a single request or flow of
execution through the system. The key source of complexity in this design is the
event scheduler, which must control the execution of each FSM.

the Flash [44], thttpd [4], Zeus [63], and JAWS [24] Web servers, and
the Harvest [12] Web cache. In Flash, each component of the server
responds to particular types of events, such as socket connections or
filesystem accesses. The main server process is responsible for contin-
ually dispatching events to each of these components, which are imple-
mented as library calls. Because certain I/O operations (in this case,
filesystem access) do not have asynchronous interfaces, the main server
process handles these events by dispatching them tohelper processes
via IPC. Helper processes issue (blocking) I/O requests and return an
event to the main process upon completion. Harvest’s structure is very
similar: it is single-threaded and event-driven, with the exception of the
FTP protocol, which is implemented by a separate process.

The tradeoffs between threaded and event-driven concurrency mod-
els have been studied extensively in the JAWS Web server [23, 24].
JAWS provides a framework for Web server construction allowing the
concurrency model, protocol processing code, cached filesystem, and
other components to be customized. Like SEDA, JAWS emphasizes
the importance of adaptivity in service design, by facilitating both static
and dynamic adaptations in the service framework. To our knowledge,
JAWS has only been evaluated under light loads (less than 50 concur-
rent clients) and has not addressed the use of adaptivity for conditioning
under heavy load.

Event-driven systems tend to be robust to load, with little degrada-
tion in throughput as offered load increases beyond saturation. Figure 4
shows the throughput achieved with an event-driven implementation of
the service from Figure 2. As the number of tasks increases, the server
throughput increases until the pipeline fills and the bottleneck (the CPU
in this case) becomes saturated. If the number of tasks in the pipeline is
increased further, excess tasks are absorbed in the server’s event queue.
The throughput remains constant across a huge range in load, with the
latency of each task increasing linearly.

An important limitation of this model is that it assumes that event-
handling threads do not block, and for this reason nonblocking I/O
mechanisms must be employed. Although much prior work has in-
vestigated scalable I/O primitives [8, 9, 33, 46, 48], event-processing
threads can block regardless of the I/O mechanisms used, due to inter-
rupts, page faults, or garbage collection.

Event-driven design raises a number of additional challenges for the
application developer. Scheduling and ordering of events is probably
the most important concern: the application is responsible for deciding
when to process each incoming event and in what order to process the
FSMs for multiple flows. In order to balance fairness with low response
time, the application must carefully multiplex the execution of multiple
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Figure 4: Event-driven server throughput: This benchmark measures an
event-driven version of the server from Figure 2. In this case, the server uses
a single thread to process tasks, where each task reads 8 KB from a single disk
file. Although the filesystem interface provided by the operating system used
here (Linux 2.2.14) is blocking, because the disk data is always in the cache, this
benchmark estimates the best possible performance from a nonblocking disk I/O
layer. As the figure shows, throughput remains constant as the load is increased
to a very large number of tasks (note the change in the horizontal axis scale from
Figure 2), and response time is linear (note the log scale on thex axis).

FSMs. The choice of an event scheduling algorithm is often tailored
to the specific application, and introduction of new functionality may
require the algorithm to be redesigned. Also, modularity is difficult
to achieve, as the code implementing each state must be trusted not to
block or consume a large number of resources that can stall the event-
handling thread.

2.4 Structured event queues
Several variants on the standard event-driven design have been pro-
posed to counter the problems outlined above. A common aspect of
these designs is to structure an event-driven application using a set of
event queues to improve code modularity and simplify application de-
sign.

The Click modular packet router [40] is one such example. In Click,
packet processing stages are implemented by separate code modules
with their own private state. Click is optimized to improve per-packet
latency through the router, allowing a single thread to call directly
through multiple packet-processing stages. This design is targeted at
a specific application (routing) and a single thread services all event
queues. Click makes the assumption that modules have bounded pro-
cessing times, leading to a relatively static resource-management poli-
cies. Qieet al. [47] also describe techniques for scheduling and load
conditioning in a software-based router; like SEDA, their design makes
use of controllers to adjust runtime parameters dynamically based on
load.

Gribble’s Distributed Data Structures (DDS) [20] layer also makes
use of a structured event-processing framework. In DDS, storage
servers emulate asynchronous network and disk I/O interfaces by mak-
ing use of fixed-size thread pools, and software components are com-
posed using either explicit event queues or implicit upcalls. Work
Crews [56] and the TSS/360 queue scanner [35] are other examples of
systems that make use of structured event queues and limited numbers
of threads to manage concurrency. In each of these systems, the use
of an event queue decouples the execution of two components, which
improves modularity and robustness.

StagedServer [31] is another system that makes use of modules com-

municating using explicit event queues. In this case, the goal is to
maximize processor cache locality by carefully scheduling threads and
events within each module. By aggregating the execution of multiple
similar events within a queue, locality is enhanced, leading to greater
performance.

Lauer and Needham’s classic paper [32] discusses the merits of pro-
cesses communicating via messages and contrasts this approach to that
of “procedures,” closely related to the threaded model described above.
SEDA can be seen as an instance of the message-oriented model dis-
cussed there. The authors claim that the message-based and procedure-
based models are duals of each other, and that any program imple-
mented in one model can just as efficiently be implemented in the other.
While we agree with this basic sentiment, this argument overlooks the
complexity of building scalable general-purpose multithreading, as well
as the inherent difficulties of adapting to load in a thread-based model,
without an explicit request queue.

3 The Staged Event-Driven Architecture
In this section we propose a new software architecture, thestaged event-
driven architecture(SEDA), which is designed to enable high concur-
rency, load conditioning, and ease of engineering for Internet services.
SEDA decomposes an application into a network ofstagesseparated
by event queuesand introduces the notion ofdynamic resource con-
trollers to allow applications to adjust dynamically to changing load.
An overview of the SEDA approach to service design is shown in Fig-
ure 5.

3.1 Goals
The primary goals for SEDA are as follows:

Support massive concurrency: To avoid performance degradation
due to threads, SEDA makes use of event-driven execution wherever
possible. This also requires that the system provide efficient and scal-
able I/O primitives.

Simplify the construction of well-conditioned services: To reduce
the complexity of building Internet services, SEDA shields application
programmers from many of the details of scheduling and resource man-
agement. The design also supports modular construction of these appli-
cations, and provides support for debugging and performance profiling.

Enable introspection: Applications should be able to analyze the re-
quest stream to adapt behavior to changing load conditions. For exam-
ple, the system should be able to prioritize and filter requests to support
degraded service under heavy load.

Support self-tuning resource management: Rather than mandate
a priori knowledge of application resource requirements and client load
characteristics, the system should adjust its resource management pa-
rameters dynamically to meet performance targets. For example, the
number of threads allocated to a stage can be determined automatically
based on perceived concurrency demands, rather than hard-coded by
the programmer or administrator.

3.2 Stages as robust building blocks
The fundamental unit of processing within SEDA is thestage. A stage
is a self-contained application component consisting of anevent han-
dler, an incoming event queue, and athread pool, as depicted in Fig-
ure 6. Each stage is managed by acontroller that affects scheduling
and thread allocation, as described below. Stage threads operate by
pulling a batch of events off of the incoming event queue and invok-
ing the application-supplied event handler. The event handler processes
each batch of events, and dispatches zero or more events by enqueuing
them on the event queues of other stages.
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Figure 6: A SEDA Stage: A stage consists of anincoming event queue, a
thread pool, and an application-suppliedevent handler. The stage’s operation
is managed by thecontroller, which adjusts resource allocations and scheduling
dynamically.

Threads are the basic concurrency mechanism within SEDA, yet
their use is limited to a small number of threads per stage, rather than
a single thread per task in the system. Moreover, the use of dynamic
control (see Section 3.4) can automatically tune the number of threads
allocated to each stage based on demand.2 This design allows stages
to run in sequence or in parallel, or a combination of the two, depend-
ing upon the characteristics of the thread system and scheduler. In this
paper we assume preemptive, OS-supported threads in an SMP environ-
ment, although this choice is not fundamental to the SEDA design. For
example, a thread system could be designed which is cognizant of the
staged structure of the application and schedules threads accordingly.
We return to this issue in Section 3.4.

The core logic for each stage is provided by the event handler, the
input to which is a batch of multiple events. Event handlers do not
have direct control over queue operations or threads. By separating core
application logic from thread management and scheduling, the stage is
able to control the execution of the event handler to implement various
resource-management policies. For example, the number and ordering
of events passed to the event handler can be controlled externally by the
runtime environment. However, the application may also implement its
own scheduling policy by filtering or reordering the event batch passed
to it.

3.3 Applications as a network of stages
A SEDA application is constructed as a network of stages, connected by
event queues. Event handlers may enqueue events onto another stage by

2Rather than allocating a separate thread pool per stage, it is possible to have
multiple stages share the same thread pool. To simplify the discussion, we de-
scribe SEDA in terms of a private thread pool per stage. Note also that the
number of stages in an application is typically much smaller than the number
of threads that the system can support, so a separate thread pool per stage is
reasonable.
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Figure 7:SEDA resource controllers:Each stage has an associatedcontroller
that adjusts its resource allocation and behavior to keep the application within
its operating regime. Thethread pool controlleradjusts the number of threads
executing within the stage, and thebatching controlleradjusts the number of
events processed by each iteration of the event handler.

first obtaining a handle to that stage’s incoming event queue (through a
system-provided lookup routine), and then invoking anenqueueopera-
tion on that queue.

An important aspect of event queues in SEDA is that they may befi-
nite: that is, an enqueue operation may fail if the queue wishes to reject
new entries, say, because it has reached a threshold. Applications may
make use of backpressure (by blocking on a full queue) or load shed-
ding (by dropping events) when enqueue operations fail. Alternately,
the application may wish to take some service-specific action, such as
sending an error to the user, or performing an alternate function, such
as providing degraded service.

Figure 5 illustrates the structure of a SEDA-based application, in this
case the Haboob Web server described in Section 5.1. The application
consists of a number of application-specific stages to process HTTP re-
quests, implement a page cache, and so forth, as well as several generic
stages provided by the runtime to support asynchronous I/O. These in-
terfaces are described further in Section 4.

The introduction of a queue between stages decouples their execu-
tion by introducing an explicit control boundary. This model constrains
the execution of a thread to a given stage, as a thread may only pass data
across the control boundary by enqueuing an event. A basic question is
whether two code modules should communicate by means of a queue,
or directly through a subroutine call. Introducing a queue between two
modules provides isolation, modularity, and independent load manage-
ment, but may increase latency. For example, a third-party code module
can be isolated in its own stage, allowing other stages to communicate
with it through its event queue, rather than by calling it directly.

The SEDA design facilitates debugging and performance analysis
of services, which has traditionally been a challenge for complex multi-
threaded servers. The decomposition of application code into stages and
explicit event delivery mechanisms facilitates inspection; for example,
a debugging tool can trace the flow of events through the system and vi-
sualize the interactions between stages. Because stages interact through
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Figure 8: SEDA thread pool controller: This graph shows the operation of
the thread pool controller during a run of the Haboob Web server, described in
Section 5.1. The controller adjusts the size of each stage’s thread pool based
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are removed from the pool when they are idle for more than 5 seconds. The
asyncFilestage uses a controller threshold of 10 queue entries to exaggerate the
controller’s behavior.

an event-dispatch protocol instead of a traditional API, it is straightfor-
ward to interpose proxy stages between components for debugging and
performance profiling. Using this mechanism, our prototype of SEDA
is capable of generating a graph depicting the set of application stages
and their relationship. The prototype can also generate temporal vi-
sualizations of event queue lengths, memory usage, and other system
properties that are valuable in understanding performance.

3.4 Dynamic resource controllers
A key goal of enabling ease of service engineering is to shield program-
mers from the complexity of performance tuning. In order to keep each
stage within its operating regime, SEDA makes use of a set ofresource
controllers, which automatically adapt the resource usage of the stage
based on observed performance and demand. Abstractly, a controller
observes runtime characteristics of the stage and and adjusts allocation
and scheduling parameters to meet performance targets. Controllers can
operate either with entirely local knowledge about a particular stage, or
work in concert based on global state.

We have implemented several resource controllers in SEDA, two of
which are shown in Figure 7. The first is thethread pool controller,
which adjusts the number of threads executing within each stage. The
goal is to avoid allocating too many threads, but still have enough
threads to meet the concurrency demands of the stage. The controller
periodically samples the input queue and adds a thread when the queue
length exceeds some threshold, up to a maximum number of threads
per stage. Threads are removed from a stage when they are idle for a
specified period of time. Figure 8 shows the effect of the thread pool
controller operating within the Web server described in Section 5.1; the
controller operation is discussed in more detail in Section 4.2.

The second is thebatching controller, which adjusts the number of
events processed by each invocation of the event handler within a stage
(the batching factor). It has been observed [31] that processing many
events at once increases throughput, as cache locality and task aggre-
gation can be performed. However, a large batching factor can also in-
crease response time. The controller attempts to trade off these effects
by searching for the smallest batching factor that sustains high through-
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Figure 9:SEDA batching controller: This graph shows the operation of the
batching controller for a simple benchmark consisting of a single stage gener-
ating events at an oscillating rate. This causes the measured output rate of the
stage to vary as shown in the top portion of the figure. While the output rate
increases, the controller decreases the batching factor. When the output rate de-
creases, the controller increases the batching factor. The batching factor is reset
to its maximum value after a sudden drop in the output rate.

put. It operates by observing the output rate of events from a stage (by
maintaining a moving average across many samples) and decreases the
batching factor until throughput begins to degrade. If throughput de-
grades slightly, the batching factor is increased by a small amount. The
controller responds to sudden drops in load by resetting the batching
factor to its maximum value. Figure 9 shows the batching controller at
work.

These mechanisms represent two simple examples of dynamic con-
trol in SEDA. It is possible to introduce more complex controllers into
the system; for example, a controller might adjust thread pool sizes
based on a global notion of stage priority, or to keep the number of
threads in the entire system below some threshold. Another option is
to adjust thread scheduling parameters based on the stage’s progress, as
proposed by Steereet al.[51]. The SEDA asynchronous sockets library,
described in the next section, contains an optional controller that throt-
tles the rate at which packets are read from the network. In Section 5.1
we describe an application-specific controller that adaptively sheds load
to meet a response time target. SEDA’s structure facilitates inspection
and control of the underlying application, and a range of control strate-
gies are possible in this model.

An important aspect of dynamic control in SEDA is that it allows
the application to adapt to changing conditions despite the particular
algorithms used by the underlying operating system. In some sense,
SEDA’s controllers are naive about the resource management policies
of the OS. For example, the SEDA batching controller is not aware of
the OS thread scheduling policy; rather, it influences thread scheduling
based on external observations of application performance. Although
in some cases it may be desirable to exert more control over the un-
derlying OS — for example, to provide quality of service guarantees to
particular stages or threads — we believe that the basic resource man-
agement mechanisms provided by commodity operating systems, sub-
ject to application-level control, are adequate for the needs of Internet
services.

3.5 Sandstorm: A SEDA prototype
We have implemented a SEDA-based Internet services platform, called
Sandstorm. Sandstorm is implemented entirely in Java, and makes use
of a set of native libraries for nonblocking socket I/O (described in Sec-



tion 4). Using the latest Java implementations, coupled with judicious
use of Java’s language features, we have found the software engineer-
ing and robustness benefits of using Java have more than outweighed
the performance tradeoffs. For instance, we rely on Java’s automated
memory management to garbage-collect “expired” events as they pass
through the system; this greatly simplifies the code as components are
not responsible for tracking the lifetime of events. The performance
gap between Java and statically compiled languages is also closing; in
fact, our Java-based SEDA Web server outperforms two popular Web
servers implemented in C, as described in Section 5.1.

In Sandstorm, each application module implements a simple event
handler interface with a single method call,handleEvents() ,
which processes a batch of events pulled from the stage’s incoming
event queue. Applications do not create or manage threads; this is the
responsibility of the runtime system and associated controllers. Sand-
storm provides a thread manager interface that can be tailored to im-
plement various thread allocation and scheduling policies; the version
described here manages a pool of threads for each stage and relies
upon the underlying OS for scheduling. Sandstorm provides APIs for
naming, creating, and destroying stages, performing queue operations,
controlling queue thresholds, as well as profiling and debugging. The
socket and file I/O mechanisms described in the next section are pro-
vided as standard interfaces.

The Sandstorm runtime consists of 19934 lines of code with 7871
non-commenting source statements (NCSS). Of this, 3023 NCSS are
devoted to the core runtime and 2566 to the I/O facilities.

4 Asynchronous I/O Primitives
To meet SEDA’s goal of supporting high concurrency requires efficient,
robust I/O interfaces. This section describes how the SEDA concepts
are used to implement these interfaces using existing OS primitives. We
describe an asynchronous network socket layer that makes use of non-
blocking I/O as provided by the operating system, and an asynchronous
file I/O layer that uses blocking OS calls and a thread pool to expose
nonblocking behavior. Both of these layers are implemented as a set
of SEDA stages that can be used by applications to provide fast asyn-
chronous I/O.

4.1 Asynchronous socket I/O
The Sandstorm asynchronous socket (asyncSocket) layer provides an
easy-to-use nonblocking sockets interface for services. Applications
create instances of the classesasyncClientSocketand asyncServer-
Socketto initiate outgoing and incoming socket connections. When a
connection is established, anasyncConnectionobject is pushed onto the
event queue provided by the user (typically the queue associated with
the requesting stage). Incoming packets are enqueued onto the user’s
event queue, andasyncConnectionimplements a queue interface onto
which outgoing packets can be placed. Each outgoing packet may also
have an associated event queue onto which a completion event is pushed
when the packet is transmitted. Error and other notification events are
passed to the user in a similar way.

Internally, the asyncSocket layer is implemented using three stages,
which are shared across all sockets, as shown in Figure 10.readStage
reads network packets and responds to user requests to initiate packet
reading on a new socket.writeStagewrites packets to the network
and establishes new outgoing connections.listenStageaccepts new
TCP connections and responds to user requests to listen on a new port.
Each operation on anasyncConnection, asyncClientSocket, or async-
ServerSocketis converted into a request and placed onto the appropriate
stage’s request queue.

Each asyncSocket stage services two separate event queues: a re-
quest queue from the user, and an I/O readiness/completion event queue

asyncClientSocket asyncConnection asyncServerSocket

Connect pendingWrite readyRead ready

request

request
Read

complete

connection
request
Listen

New

Write
WritePacket

Operating System

Write ListenRead

Application

Figure 10:SEDA-based asynchronous sockets layer:The Sandstorm sock-
ets interface consists of three stages:read, write, and listen. The readstage
responds to network I/O readiness events and reads data from sockets, pushing
new packets to the application stage. Thewrite stage accepts outgoing packets
and schedules them for writing to the appropriate socket. It also establishes new
outgoing socket connections. Thelistenstage accepts new TCP connections and
pushes connection events to the application.

from the operating system. The thread within each stage alternately ser-
vices each queue, using a simple timeout mechanism to toggle between
the two. The I/O event queue is implemented as a library that causes
dequeue operations to invoke the appropriate OS call to retrieve I/O
events. Our current implementation supports the standard UNIXpoll(2)
system call as well as the/dev/poll [46] interface for event delivery.
A native library is used to provide nonblocking socket calls in Java [60].
To increase fairness across sockets, each stagerandomizesthe order in
which it processes I/O events delivered by the operating system. This
is necessary because the OS generally returns socket events in a fixed
order (e.g., in increasing order by file descriptor).

readStageoperates by performing a socket read whenever an I/O
readiness event indicates that a socket has data available. It reads
at most 16 KB into a pre-allocated buffer and enqueues the resulting
packet onto the event queue provided by the user. In case of an I/O er-
ror (e.g., because the peer has closed the connection), the stage closes
the socket and pushes an appropriate notification event to the user. Each
socket read requires the allocation of a new packet buffer; while this can
potentially cause a great deal of garbage collection overhead, we have
not found this to be a performance issue. Note that because this sys-
tem is implemented in Java, no explicit deallocation of expired packets
is necessary.readStagealso provides an optional rate controller that
can throttle the rate at which packets are read from the network; this
controller is useful for performing load shedding during overload con-
ditions. The controller is implemented by calculating a moving average
of the incoming packet rate and introducing artificial delays into the
event-processing loop to achieve a certain rate target.

writeStagereceives packet write requests from the user and en-
queues them onto an internal queue associated with the particular
socket. When the OS indicates that a socket is ready for writing, it
attempts to write the next packet on that socket’s outgoing queue. As
described in Section 5.2, the socket queue may be thresholded to pre-
vent “slow” sockets from consuming too many resources in the server.

To evaluate the performance of asyncSocket, we implemented a sim-
ple server application that accepts bursts of 8KB packets from a num-
ber of clients, responding with a single 32-byte ACK for each burst of
1000 packets. This somewhat artificial application is meant to stress
the network layer and measure its scalability as the number of clients
increases. Figure 11 shows the aggregate throughput of the server as
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Figure 11: Asynchronous sockets layer performance:This graph shows
the performance of the SEDA-based asynchronous socket layer as a function
of the number of simultaneous connections. Each client opens a connection to
the server and issues bursts of 8KB packets; the server responds with a sin-
gle 32-byte ACK for each burst of 1000 packets. All machines are connected
via switched Gigabit Ethernet and are running Linux 2.2.14. The SEDA-based
server makes use of nonblocking I/O primitives provided by the operating system.
Performance is compared against a compatibility layer that makes use of block-
ing sockets and multiple threads to emulate asynchronous I/O. The thread-based
layer was unable to accept more than 400 simultaneous connections, because
the number of threads required would exceed the per-user thread limit in Linux.

the number of clients increases from 1 to 8192. The server and client
machines are all 4-way 500 MHz Pentium III systems interconnected
using Gigabit Ethernet running Linux 2.2.14 and IBM JDK 1.3.

Two implementations of the socket layer are shown. The SEDA-
based layer makes use of nonblocking I/O provided by the OS and the
/dev/poll event-delivery mechanism [46]. This is compared against
a compatibility layer that uses blocking sockets and a thread pool for
emulating asynchronous I/O. This layer creates one thread per connec-
tion to process socket read events and a fixed-size pool of 120 threads
to handle socket writes. This compatibility layer was originally devel-
oped to provide asynchronous I/O under Java, which does not provide
this functionality directly.

The nonblocking implementation clearly outperforms the threaded
version, which degrades rapidly as the number of connections increases.
In fact, the threaded implementation crashes when receiving over 400
connections, as the number of threads required exceeds the per-user
thread limit in Linux. The slight throughput degradation for the non-
blocking layer is due in part to lack of scalability in the Linux network
stack; even using the highly-optimized/dev/poll mechanism [46]
for socket I/O event notification, as the number of sockets increases the
overhead involved in polling readiness events from the operating system
increases significantly [29].

4.2 Asynchronous file I/O
The Sandstorm file I/O (asyncFile) layer represents a very different de-
sign point than asyncSocket. Because the underlying operating system
does not provide nonblocking file I/O primitives, we are forced to make
use of blocking I/O and a bounded thread pool to implement this layer.3

Users perform file I/O through anasyncFileobject, which supports the

3Patches providing nonblocking file I/O support are available for Linux, but
are not yet part of standard distributions. Furthermore, these patches make use
of a kernel-level thread pool to implement nonblocking file writes, over which
SEDA would have no control.

familiar interfacesread, write, seek, stat, andclose. Each of these op-
erations translates into a request being placed on the asyncFile stage’s
event queue. asyncFile threads dequeue each request and perform the
corresponding (blocking) I/O operation on the file. To ensure that mul-
tiple I/O requests on the same file are executed serially, only one thread
may process events for a particular file at a time. When an I/O re-
quest completes, a corresponding completion event is enqueued onto
the user’s event queue.

The asyncFile stage is initialized with a single thread in its thread
pool. The SEDA thread pool controller is responsible for dynamically
adjusting the size of the thread pool based on observed concurrency
demand. Figure 8 shows the thread pool controller at work during a
run of the SEDA-based Web server described in Section 5.1. The run is
broken into three periods, each corresponding to an increasing number
of clients; note that client load is extremely bursty. As bursts of file
accesses arrive, the controller adds threads to each stage’s thread pool
until saturating at a maximum of 20 threads. Between periods, there is
no demand for I/O, and the thread pool shrinks. While thePageCache
andCacheMissstages require more threads with increasing client load,
the number of threads needed to service file I/O actually decreases. This
is because the underlying filesystem buffer cache is warming up, and is
able to service disk requests more rapidly. The thread pool controller
infers that fewer threads are needed to manage the disk concurrency,
and avoids creating threads that are not needed.

5 Applications and Evaluation
In this section we present a performance and load-conditioning evalu-
ation of two applications:Haboob,4 a high-performance HTTP server;
and a packet router for the Gnutella peer-to-peer file sharing network.
Whereas Haboob typifies a “closed-loop” server in which clients issue
requests and wait for responses, the Gnutella packet router is an exam-
ple of an “open-loop” server in which the server performance does not
act as a limiting factor on offered load.

5.1 Haboob: A high-performance HTTP server
Web servers form the archetypal component of scalable Internet ser-
vices. Much prior work has investigated the engineering aspects of
building high-performance HTTP servers, but little has been said about
load conditioning, robustness, and ease of construction. One benefit
of studying HTTP servers is that a variety of industry-standard bench-
marks exist to measure their performance. We have chosen the load
model from the SPECweb99 benchmark suite [50] as the basis for our
measurements, with two important modifications. First, we measure
only the performance of static Web page accesses (which constitute
70% of the SPECweb99 load mix). Second, we keep the Web page
file set fixed at 3.31 GB of disk files, corresponding to a SPECweb99
target load of 1000 connections. Files range in size from 102 to 921600
bytes and are accessed using a Zipf-based request distribution mandated
by SPECweb99. More details can be found in [50].

5.1.1 Haboob architecture

The overall structure of Haboob is shown in Figure 5. The server con-
sists of 10 stages, 4 of which are devoted to asynchronous socket and
disk I/O, as described in the previous section. TheHttpParsestage is re-
sponsible for accepting new client connections and for HTTP protocol
processing for incoming packets. TheHttpRecvstage accepts HTTP
connection and request events and passes them onto thePageCache
stage (if they represent disk files) or generates responses directly (for
dynamic pages generated to gather server statistics).PageCacheimple-
ments an in-memory Web page cache implemented using a hashtable

4A haboobis a large dust storm occurring in the desert of Sudan.



indexed by URL, each entry of which contains a response packet con-
sisting of an HTTP header and Web page payload. TheCacheMiss
stage is responsible for handling page cache misses, using the asyn-
chronous file I/O layer to read in the contents of the requested page
from disk. Finally, HttpSendsends responses to the client and han-
dles some aspects of connection management and statistics gathering.
An additional stage (not shown in the figure) generates dynamic Web
pages from HTML templates with embedded code written in the Python
scripting language [36]. This feature provides general-purpose server-
side scripting, akin to Java Server Pages [26].

The page cache attempts to keep the cache size below a given thresh-
old (set to 204800 KB for the measurements provided below). It ag-
gressively recycles buffers on capacity misses, rather than allowing old
buffers to be garbage-collected by the Java runtime; we have found this
approach to yield a noticeable performance advantage. The cache stage
makes use of application-specific event scheduling to increase perfor-
mance. In particular, it implements shortest connection first (SCF) [15]
scheduling, which reorders the request stream to send short cache en-
tries before long ones, and prioritizes cache hits over misses. Because
SCF is applied only to each set of events provided by the batching con-
troller, starvation across requests is not an issue.

Constructing Haboob as a set of stages greatly increased the modu-
larity of the design, as each stage embodies a robust, reusable software
component that can be individually conditioned to load. We were able
to test different implementations of the page cache without any modifi-
cation to the rest of the code; the runtime simply instantiates a different
stage in place of the original page cache. Likewise, another developer
who had no prior knowledge of the Haboob structure was able to replace
Haboob’s use of the asynchronous file layer with an alternate filesystem
interface with little effort. Not including the Sandstorm platform, the
Web server code consists of only 3283 non-commenting source state-
ments, with 676 NCSS devoted to the HTTP protocol processing li-
brary.

5.1.2 Benchmark configuration

For comparison, we present performance measurements from the pop-
ular Apache [6] Web server (version 1.3.14, as shipped with Linux Red
Hat 6.2 systems) as well as the Flash [44] Web server from Rice Univer-
sity. Apache makes use of a fixed-size process pool of 150 processes;
each process manages a single connection at a time, reading file data
from disk and sending it to the client in 8 KB chunks, using block-
ing I/O operations. Flash uses an efficient event-driven design, with a
single process handling most request-processing tasks. A set of helper
processes perform (blocking) disk I/O, pathname resolution, and other
operations. The maximum size of the Flash static page cache was set
to 204800 KB, the same size as in Haboob. Both Apache and Flash are
implemented in C, while Haboob is implemented in Java.

All measurements below were taken with the server running on a 4-
way SMP 500 MHz Pentium III system with 2 GB of RAM and Linux
2.2.14. IBM JDK v1.3.0 was used as the Java platform. 32 machines of
a similar configuration were used for load generation, with each client
machine using a number of threads to simulate many actual clients. All
machines are interconnected via switched Gigabit Ethernet. Although
this configuration does not simulate wide-area network effects, our in-
terest here is in the performance and stability of the server under heavy
load.

The client load generator loops, continually requesting a Web page
(using a distribution specified by the SPECweb99 suite), reading the
result, and sleeping for a fixed time of 20 milliseconds before request-
ing the next page. To more closely simulate the connection behavior
of clients in the wide area, each client closes the TCP connection af-
ter 5 HTTP requests, and reestablishes the connection before contin-
uing. This value was chosen based on observations of HTTP traffic

from [39].5 All benchmarks were run with warm filesystem and Web
page caches. Note that the file set size of 3.31 GB is much larger
than physical memory, and the static page cache for Haboob and Flash
was set to only 200 MB; therefore, these measurements include a large
amount of disk I/O.

5.1.3 Performance analysis
Figure 12 shows the performance of Haboob compared with Apache
and Flash in terms of aggregate throughput and response time. Also
shown is the Jain fairness index [27] of the number of requests com-
pleted by each client. This metric is defined as

f(x) =
(
∑

xi)
2

N
∑

x2
i

wherexi is the number of requests for each ofN clients. A fairness
index of 1 indicates that the server is equally fair to all clients; smaller
values indicate less fairness. Intuitively, ifk out ofN clients receive an
equal share of service, and the otherN − k clients receive no service,
the Jain fairness index is equal tok/N .

As Figure 12(a) shows, Haboob’s throughput is stable as the number
of clients increases, sustaining over 200 Mbps for 1024 clients. Flash
and Apache also exhibit stable throughput, although slightly less than
Haboob. This result might seem surprising, as we would expect the
process-based Apache server to degrade in performance as the number
of clients becomes large. Recall, however, that Apache accepts no more
than 150 connections at any time, for which is not difficult to sustain
high throughput using process-based concurrency. When the number of
clients exceeds this amount, all other clients must wait for increasingly
longer periods of time before being accepted into the system. Flash has
a similar problem: it caps the number of simultaneous connections to
506, due to a limitation in the number of file descriptors that can be used
with theselect()system call. When the server is saturated, clients must
wait for very long periods of time before establishing a connection.6

This effect is demonstrated in Figure 12(b), which shows the cumu-
lative distribution of response times for each server with 1024 clients.
Here, response time is defined as the total time for the server to respond
to a given request, including time to establish a TCP connection if one
has not already been made. Although all three servers have approxi-
mately the sameaverageresponse times, the distribution is very differ-
ent. Apache and Flash show a greater distribution of low response times
than Haboob, but have very long tails, exceeding tens of seconds for a
significant percentage of requests. Note that the use of the log scale
in the figure underemphasizes the length of the tail. The maximum re-
sponse time for Apache was over 93 seconds, and over 37 seconds for
Flash. The long tail in the response times is caused by exponential back-
off in the TCP retransmission timer for establishing a new connection,
which under Linux can grow to be as large as 120 seconds.

With Apache, if a client is “lucky”, its connection is accepted
quickly and all of its requests are handled by a single server process.
Moreover, each process is in competition with only 149 other processes,
which is a manageable number on most systems. This explains the large
number of low response times. However, if a client is “unlucky” it will
have to wait for a server process to become available; TCP retransmit
backoff means that this wait time can become very large. This unequal

5Note that most Web servers are configured to use a much higher limit on
the number of HTTP requests per connection, which is unrealistic but provides
improved benchmark results.

6It is worth noting that both Apache and Flash were very sensitive to the
benchmark configuration, and our testing revealed several bugs leading to seri-
ously degraded performance under certain conditions. For example, Apache’s
throughput drops considerably if the server, rather than the client, closes the
HTTP connection. The results presented here represent the most optimistic re-
sults from these servers.
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(a) Throughput vs. number of clients (b) Cumulative distribution of response time for 1024 clients

256 clients 1024 clients
Server Throughput RT mean RT max Fairness Throughput RT mean RT max Fairness

Apache 173.36 Mbps 143.91 ms 27953 ms 0.98 173.09 Mbps 475.47 ms 93691 ms 0.80
Flash 180.83 Mbps 141.39 ms 10803 ms 0.99 172.65 Mbps 665.32 ms 37388 ms 0.99
Haboob 208.09 Mbps 112.44 ms 1220 ms 0.99 201.42 Mbps 547.23 ms 3886 ms 0.98

Figure 12:Haboob Web server performance:This figure shows the performance of the Haboob Web server compared to Apache and Flash. (a) shows the throughput
of each server using a fileset of 3.31 GBytes as the number of clients increases from 1 to 1024. Also shown is the Jain fairness index delivered by each server. A fairness
index of 1 indicates that the server is equally fair to all clients; smaller values indicate less fairness. (b) shows the cumulative distribution function of response times for
1024 clients. While Apache and Flash exhibit a high frequency of low response times, there is a heavy tail, with the maximum response time corresponding to several
minutes.

treatment of clients is reflected in the lower value of the fairness metric
for Apache.

With Flash, all clients are accepted into the system very quickly,
and are subject to queueing delays within the server. Low response
times in Flash owe mainly to very efficient implementation, including a
fast HTTP protocol processing library; we have performed few of these
optimizations in Haboob. However, the fact that Flash accepts only 506
connections at once means that under heavy load TCP backoff becomes
an issue, leading to a long tail on the response time distribution.

In contrast, Haboob exhibits a great degree of fairness to clients
when overloaded. The mean response time was 547 ms, with a max-
imum of 3.8 sec. This is in keeping with our goal of graceful degra-
dation — when the server is overloaded, it should not unfairly penal-
ize waiting requests with arbitrary wait times. Haboob rapidly accepts
new client connections and allows requests to queue up within the ap-
plication, where they are serviced fairly as they pass between stages.
Because of this, the load is visible to the service, allowing various load
conditioning policies to be applied. For example, to provide differenti-
ated service, it is necessary to efficiently accept connections for inspec-
tion. The tradeoff here is between low average response time versus
low variance in response time. In Haboob, we have opted for the latter.

5.1.4 Adaptive load shedding
In this section, we evaluate the behavior of Haboob under overload, and
demonstrate the use of an application-specific controller that attempts
to keep response times below a given threshold through load shedding.
In this benchmark, each client repeatedly requests a dynamic Web page
that requires a significant amount of I/O and computation to generate.
By subjecting each server to a large number of these “bottleneck” re-
quests we can induce a heavier load than is generally possible when
serving static Web pages.

For each request, the server performs several iterations of a loop that
opens a file, reads data from it, and generates a sum of the data. After
this processing the server returns an 8 KB response to the client. In

Apache, this was implemented as a Perl module that runs in the con-
text of an Apache server process. In Flash, the provided “fast CGI”
interface was used, which creates a number of (persistent) server pro-
cesses to handle dynamic requests. When a CGI request is made, an idle
server process is used to handle the request, or a new process created if
none are idle. In Haboob, the bottleneck was implemented as a separate
stage, allowing the number of threads devoted to the stage processing to
be determined by the thread pool controller, and the use of thresholding
on the stage’s incoming event queue to reject excess load. Because of
differences between these three implementations, the amount of work
performed by the dynamic page generation was calibrated to cause a
server-side delay of 40 ms per request.

Figure 13 shows the cumulative distribution of response times for
the three servers with 1024 clients. Apache and Haboob each exhibit
large response times, but for different reasons. Apache’s response time
tail is caused by TCP retransmit backoff, as explained above, and with
only 150 concurrent processes the queueing delay within the server is
minimal. In Haboob, up to 1024 concurrent requests are queued within
the server at any given time, leading to a large queueing delay at the
bottleneck. Flash’s apparent low response time is due to a bug in its CGI
processing code, which causes it to close connections prematurely when
it is unable to fork a new CGI process. With 1024 clients, there may be
up to 1024 CGI processes in the system at one time; along with the other
Flash processes, this exceeds the per-user process limit in Linux. When
the fork fails, Flash closes the client connection immediately, without
returning any response (even an error message) to the client. In this run,
over 74% of requests resulted in a prematurely closed connection.

This mechanism suggests an effective way to bound the response
time of requests in the server: namely, to adaptively shed load when the
server detects that it is overloaded. To demonstrate this idea, we con-
structed an application-specific controller within the bottleneck stage,
which observes the average response time of requests passing through
the stage. When the response time exceeds a threshold of 5 sec, the
controller exponentially reduces the stage’s queue threshold. When the
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Figure 13: Response time controller: This graph shows the effect of an
application-specific controller that sheds load in order to keep response times
below a target value. Here, 1024 clients are repeatedly requesting a dynamic
Web page that requires both I/O and computation to generate. Apache and Ha-
boob (with no control) process all such requests, leading to large response times.
Flash rejects a large number of requests due to a bug in its CGI processing code;
clients are never informed that the server is busy. With the response-time con-
troller enabled, Haboob rejects requests with an error message when the average
response time exceeds a threshold of 5 sec.

response time is below the threshold, the controller increases the queue
threshold by a fixed amount. When theHttpRecvstage is unable to en-
queue a new request onto the bottleneck stage’s event queue (because
the queue threshold has been exceeded), an error message is returned to
the client. Note that this is just one example of a load shedding policy;
alternatives would be to send an HTTP redirect to another node in a
server farm, or to provide degraded service.

Figure 13 shows the cumulative response time distribution with the
response-time controller enabled. In this case, the controller effectively
reduces the response time of requests through the server, with 90% of
requests exhibiting a response time below 11.8 sec, and a maximum re-
sponse time of only 22.1 sec. In this run, 98% of requests were rejected
from the server due to queue thresholding. Note that this controller is
unable toguaranteea response time below the target value, since bursts
occurring when the queue threshold is high can induce spikes in the
response time experienced by clients.

5.2 Gnutella packet router
We chose to implement a Gnutella packet router to demonstrate the
use of SEDA for non-traditional Internet services. The Gnutella router
represents a very different style of service from an HTTP server: that
of routing packets between participants in a peer-to-peer file shar-
ing network. Services like Gnutella are increasing in importance as
novel distributed applications are developed to take advantage of the
well-connectedness of hosts across the wide area. The peer-to-peer
model has been adopted by several distributed storage systems such as
Freenet [14], OceanStore [30], and Intermemory [13].

Gnutella [19] allows a user to search for and download files from
other Gnutella users. The protocol is entirely decentralized; nodes
running the Gnutella client form an ad-hoc multihop routing network
layered over TCP/IP, and nodes communicate by forwarding received
messages to their neighbors. Gnutella nodes tend to connect to several
(typically four or more) other nodes at once, and the initial discovery
of nodes on the network is accomplished through a well-known host.
There are five message types in Gnutella:ping is used to discover other
nodes on the network;pong is a response to a ping;query is used to

search for files being served by other Gnutella hosts;queryhitsis a re-
sponse to a query; andpushis used to allow clients to download files
through a firewall. The packet router is responsible for broadcasting
receivedping andquerymessages to all other neighbors, and routing
pong, queryhits, andpushmessages along the path of the correspond-
ing pingor querymessage. Details on the message formats and routing
protocol can be found in [19].

5.2.1 Architecture
The SEDA-based Gnutella packet router is implemented using 3 stages,
in addition to those of the asynchronous socket I/O layer. The code con-
sists of 1294 non-commenting source statements, of which 880 NCSS
are devoted to Gnutella protocol processing. TheGnutellaServerstage
accepts TCP connections and processes packets, passing packet events
to theGnutellaRouterstage, which performs actual packet routing and
maintenance of routing tables.GnutellaCatcheris a helper stage used
to join the Gnutella network by contacting a well-known site to receive
a list of hosts to connect to. It attempts to maintain at least 4 simulta-
neous connections to the network, in addition to any connections estab-
lished by other wide-area clients. Joining the “live” Gnutella network
and routing packets allows us to test SEDA in a real-world environment,
as well as to measure the traffic passing through the router. During one
37-hour run, the router processed 24.8 million packets (with an average
of 179 packets/sec) and received 72,396 connections from other hosts
on the network, with an average of 12 simultaneous connections at any
given time. The router is capable of sustaining over 20,000 packets a
second.

5.2.2 Protection from slow sockets
Our original packet router prototype exhibited an interesting memory
leak: after several hours of correctly routing packets through the net-
work, the server would crash after running out of memory. Observing
the various stage queue lengths allowed us to easily detect the source
of the problem: a large number of outgoing packets were queueing up
for certain wide-area connections, causing the queue length (and hence
memory usage) to become unbounded. We have measured the average
packet size of Gnutella messages to be approximately 32 bytes; a packet
rate of just 115 packets per second can saturate a 28.8-kilobit modem
link, still commonly in use by many users of the Gnutella software.

The solution in this case was to impose a threshold on the outgoing
packet queue for each socket, and close connections that exceed their
threshold. This solution is acceptable because Gnutella clients auto-
matically discover and connect to multiple hosts on the network; the
redundancy across network nodes means that clients need not depend
upon a particular host to remain connected to the network.

5.2.3 Load conditioning behavior
To evaluate the use of SEDA’s resource controllers for load condition-
ing, we introduced a deliberate bottleneck into the Gnutella router, in
which every query message induces a servicing delay of 20 ms. This is
accomplished by having the application event handler sleep for 20 ms
when a query packet is received. We implemented a load-generation
client that connects to the server and generates streams of packets ac-
cording to a distribution approximating that of real Gnutella traffic. In
our Gnutella traffic model, query messages constitute 15% of the gen-
erated packets. With a single thread performing packet routing, it is
clear that as the number of packets flowing into the server increases,
this delay will cause large backlogs for other messages.

Figure 14(a) shows the average latencies for ping and query pack-
ets passing through the server with an offered load increasing from 100
to 1000 packets/sec. Both the client and server machines use the same
configuration as in the HTTP server benchmarks. Packet latencies in-
crease dramatically when the offered load exceeds the server’s capacity.
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Figure 14: Gnutella packet router latency: These graphs show the average latency of ping and query packets passing through the Gnutella packet router with
increasing incoming packet rates. Query packets (15% of the packet mix) induce a server-side delay of 20 ms. (a) shows the latency with a single thread processing
packets. Note that the latency increases dramatically as the offered load exceeds server capacity; at 1000 packets/sec, the server ran out of memory before a latency
measurement could be taken. (b) shows the latency with the thread pool controller enabled. Note that for 100 and 200 packets/sec, no threads were added to the
application stage, since the event queue never reached its threshold value. This explains the higher packet latencies compared to 400 and 1000 packets/sec, for which
2 threads were added to the stage. (c) shows theGnutellaRouterqueue length over time for a load of 1000 packets/sec, with the thread pool controller active. The
controller added a thread to the stage at each of the two points indicated.

In the case of 1000 packets/sec, the server crashed (due to running out
of memory for buffering incoming packets) before a latency measure-
ment could be taken.

At this point, several load conditioning policies may be employed. A
simple policy would be to threshold each stage’s incoming event queue
and drop packets when the threshold has been exceeded. Alternately,
an approach similar to that used in Random Early Detection (RED)
congestion avoidance schemes [17] could be used, where packets are
dropped probabilistically based on the length of the input queue. Al-
though these policies cause many packets to be dropped during over-
load, due to the lossy nature of Gnutella network traffic this may be an
acceptable solution. An alternate policy would be admit all packets into
the system, but have the application event handler filter out query pack-
ets (which are the source of the overload). Yet another policy would
be to make use of theasyncSocketinput rate controller to bound the
incoming rate of packets into the system.

An alternate approach is to make use of SEDA’s resource controllers
to overcome the bottleneck automatically. In this approach, the thread
pool controller adds threads to theGnutellaRouterstage when it de-
tects that additional concurrency is required; this mechanism is similar
to dynamic worker allocation in the cluster-based TACC [18] system.
Figure 14(b) shows the average latencies in the Gnutella router with
the SEDA thread pool controller enabled. As shown in Figure 14(c),
2 threads were added to theGnutellaRouterthread pool, allowing the
server to handle the increasing packet loads despite the bottleneck. This
number matches the theoretical value obtained from Little’s result: If
we model the stage as a queueing system withn threads, an average
packet arrival rate ofλ, a query packet frequency ofp, and a query ser-
vicing delay ofL seconds, then the number of threads needed to main-
tain a completion rate ofλ is n = λpL = (1000)(0.15)(20 ms) =
3 threads.

6 Discussion and Conclusion
Internet services give rise to a new set of systems design requirements,
as massive concurrency must be provided in a robust, easy-to-program
manner that gracefully handles vast variations in load. SEDA is a step
towards establishing design principles for this regime. In this paper
we have presented the SEDA design and execution model, introducing

the notion of stages connected by explicit event queues. SEDA makes
use of a set of dynamic controllers to manage the resource usage and
scheduling of each stage; we have described several controllers, includ-
ing two that manage thread allocation across stages and the degree of
batching used internally by a stage. We have also presented an analysis
of two efficient asynchronous I/O components, as well as two applica-
tions built using the SEDA design, showing that SEDA exhibits good
performance and robust behavior under load.

The SEDA model opens up new questions in the Internet services
design space. The use of explicit event queues and dynamic re-
source controllers raise the potential for novel scheduling and resource-
management algorithms specifically tuned for services. As future work
we plan to implement a generalized flow-control scheme for commu-
nication between stages; in this scheme, each event requires a certain
number of credits to enqueue onto the target stage’s event queue. By
assigning a variable number of credits to each event, interesting load-
conditioning policies can be implemented.

We believe that measurement and control is the key to resource man-
agement and overload protection in busy Internet services. This is in
contrast to long-standing approaches based on resource containment,
which assign fixed resources to each task (such as a process, thread, or
server request) in the system, and strive to contain the resources con-
sumed by each task. Although these techniques have been used with
some success in providing differentiated service within Internet ser-
vices [57], containment typically mandates ana priori assignment of re-
sources to each task, limiting the range of applicable load-conditioning
policies. Rather, we argue that dynamic resource control, coupled with
application-specific adaptation in the face of overload, is the right way
to approach load conditioning.

Two new challenges arise when control is considered as the basis
for resource management. The first is detecting overload conditions:
many variables can affect the delivered performance of a service, and
determining that the service is in fact overloaded, as well as the cause,
is an interesting problem. The second is determining the appropriate
control strategy to counter overload. We plan several improvements to
the resource controllers in our current implementation, as well as new
controllers that optimize for alternate metrics. For example, to reduce
resource consumption, it may be desirable to prioritize stages that free
resources over those that consume them. Under SEDA, the body of



work on control systems [43, 45] can be brought to bear on service
resource management, and we have only scratched the surface of the
potential for this technique.

A common concern about event-driven concurrency models is ease
of programming. Modern languages and programming tools support
the development and debugging of threaded applications, and many
developers believe that event-driven programming is inherently more
difficult. The fact that most event-driven server applications are often
quite complex and somewhatad hoc in their design perpetuates this
view. In our experience, programming in the SEDA model is easier
than both multithreaded application design and the traditional event-
driven model. When threads are isolated to a single stage, issues such as
thread synchronization and race conditions are more straightforward to
manage. Message-oriented communication between stages establishes
explicit orderings; in the traditional event-driven design it is much more
difficult to trace the flow of events through the system. We view SEDA
as an ideal middle ground between threaded and event-driven designs,
and further exploration of the programming model is an important di-
rection for future work.

While SEDA facilitates the construction of well-conditioned ser-
vices over commodity operating systems, the SEDA model suggests
new directions for OS design. We envision an OS that supports the
SEDA execution model directly, and provides applications with greater
control over scheduling and resource usage. This approach is simi-
lar to that found in various research systems [5, 11, 28, 34] that en-
able application-specific resource management. Even more radically,
a SEDA-based operating system need not be designed to allow multi-
ple applications to share resources transparently. Internet services are
highly specialized and are not designed to share the machine with other
applications: it is generally undesirable for, say, a Web server to run
on the same machine as a database engine (not to mention a scientific
computation or a word processor). Although the OS may enforce pro-
tection (to prevent one stage from corrupting the state of the kernel or
another stage), the system need not virtualize resources in a way that
masks their availability from applications.
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