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Abstract
When first written in 2000, TinyOS’s users were a hand-
ful of academic computer science researchers. A decade
later, TinyOS averages 25,000 downloads a year, is in
many commercial products, and remains a platform used
for a great deal of sensor network, low-power systems,
and wireless research.

We focus on how technical and social decisions influ-
enced this success, sometimes in surprising ways. As
TinyOS matured, it evolved language extensions to help
experts write efficient, robust systems. These extensions
revealed insights and novel programming abstractions
for embedded software. Using these abstractions, ex-
perts could build increasingly complex systems more
easily than with other operating systems, making TinyOS
the dominant choice.

This success, however, came at a long-term cost. Sys-
tem design decisions that seem good at first can have
unforeseen and undesirable implications that play out
over the span of years. Today, TinyOS is a stable, self-
contained ecosystem that is discouraging to new users.
Other systems, such as Arduino and Contiki, by remain-
ing more accessible, have emerged as better solutions
for simpler embedded sensing applications.

1. INTRODUCTION
Wireless sensor network research is just over a decade

old. Starting as a handful of academic institutions study-
ing networks of tiny, low-power wireless sensing de-
vices, it now has numerous academic conferences and
journals that serve a large, worldwide research commu-
nity. Sensor networks have also grown from research
projects to commercial systems. Commercial systems
today include ad-hoc wireless smart meter networks, home
area networks, and industrial monitoring systems. When
Cisco talks about an “Internet of Things,” it means the
coming Internet with millions or billions of tiny net-
worked devices that interact with and sense the physical
environment: sensor networks.

TinyOS is an operating system designed for such em-
bedded devices. It emerged from UC Berkeley in 2000

when sensor network research was beginning, starting
as a set of Perl scripts that auto-generated #define state-
ments [23]. Since then, it has evolved to use a C di-
alect called nesC, has gone through four major revisions,
supports tens of sensor network platforms, and has ap-
proximately 25,000 downloads per year. TinyOS is the
dominant software platform used for sensor network re-
search, enabling hundreds of research results. It is used
in numerous commercial products, such as Zolertia [3],
Cisco’s smart grid systems (formerly Arch Rock), and
People Power Company [2].

This paper examines how TinyOS evolved over the
past decade. TinyOS is interesting for two reasons. First,
like projects such as Xen [11, 44] and OpenFlow [16],
TinyOS started as an academic research project that tran-
sitioned to significant success and impact outside academia.
It managed to make this transition while simultaneously
remaining a linchpin of the research community. Sec-
ond, TinyOS differs from these other examples in that it
is a successful, principled, and novel operating system
for a new class of computing devices.

This paper examines how technical and social deci-
sions encouraged or restricted the growth of TinyOS and
therefore its impact on practice, sometimes in unfore-
seen ways. For example, fine-grained software compo-
nents allow users to easily customize the OS with small,
local changes. As TinyOS was still forming and being
used speculatively in a large number of domains, this
easy customization was beneficial. But once core OS
services solidified, fine grained components became ul-
timately harmful, as reading a core system requires leaf-
ing through many tiny components.

The paper is divided into four parts. Section 2 de-
scribes the two basic principles that have driven TinyOS.
The first principle is resource use minimization. The
costs of scale and low power operation say that TinyOS
code should trade off runtime flexibility or generality
for smaller code and data, in contrast to many modern
“large” software systems. The bug prevention princi-
ple, motivated by the tremendous difficulty of debug-
ging embedded systems, says that TinyOS should be
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Figure 1: Timeline of major events in TinyOS development from 1999-2010.

structured to make it hard to write bugs, sometimes at
the cost of making it generally harder to write code. To
help support these principles, TinyOS developers chose
to design and use nesC [20], a new C dialect. The lan-
guage and OS co-evolved, such that it does not make
sense to talk about one without the other: when we talk
about the evolution of TinyOS, we mean the evolution
of both the OS and its language.

Sections 3-6 walk through how four approaches TinyOS
took had unforeseen long-term implications. The first
two, memory allocation and isolation, relate to the unique
properties of embedded software. The second two, com-
ponents and systems language design, relate to systems
software more generally. Section 3 discusses how new
language features allowed TinyOS to optimally allocate
RAM while simultaneously removing the need for some
run-time memory access checks. Section 4 describes
how a novel software pattern based on this memory allo-
cation, static virtualization, improves software isolation
by making the finite state machine of each virtualized in-
stance completely independent. Section 5 examines how
using nesC was critically important to TinyOS’s early
success, but also how its evolution limited TinyOS from
even broader, long-term use. Section 6 looks at the ben-
efits and drawbacks of fine-grained, reusable software
components, concluding they are a poor fit for operating
systems.

Section 7 examines the TinyOS project from a so-
cial perspective: how did the project grow such a large
developer community? Open source projects live and
die based on their contributors. TinyOS today has a
large community of developers and users from all across
the world. It examines how this community is struc-
tured and how that structure evolved. It presents sev-
eral pitfalls the project encountered, relating to hiring
staff, managing code contributions, and the interactions
between academia and industry. It also discusses the
role of documentation and target audiences and how the
project was able to reduce the barrier to entry caused by
its increasing technical complexity.

Section 8 takes a step back to examine lessons from

Model ROM RAM Sleep Price

F2002 1kB 128B 1.3µA $0.94
F1232 8kB 256B 1.6µA $2.73
F155 16kB 512B 2.0µA $6.54
F168 48kB 2048B 2.0µA $9.11
F1611 48kB 10240B 2.0µA $12.86

(a) TI MSP430 Microcontrollers

Model ROM RAM Sleep Price

LM2S600 32kB 8kB 950µA $2.73
LM3S1608 128kB 32kB 950µA $4.59
LM3S1968 256kB 64kB 950µA $6.27

(b) TI ARM CortexM3 Processors

Table 1: A representative sampling of popular pro-
cessors used in low-power wireless sensors. The price
values are from DigiKey’s catalog on March 3rd,
2010, when purchased in quantities of 1,000 - 10,000.

TinyOS that can apply to embedded software, systems
more generally, and systems projects. One conclusion is
that fine-grained components are good for experimenta-
tion but add unnecessary and painful complexity to sta-
ble software that expects reuse (e.g., a kernel). A sec-
ond conclusion is the natural tendency to support long-
standing, dedicated users and evolve a system to bet-
ter meet their needs undermines system adoption. Re-
search wants to push a frontier, but doing so can alienate
a broader audience and stifle long-term success. We dis-
cuss some ways in which future projects seeking large-
scale adoption might avoid these and other pitfalls.

2. MINIMIZATION AND PREVENTION
TinyOS’s design has two major goals: minimizing

resource use and preventing bugs. Both are driven by
the unique intersection of requirements that sensor net-
works pose.

The minimization principle states that TinyOS soft-
ware should use as few hardware resources as possible.



This means being computationally efficient (minimizing
cycle counts and wake time), requiring little state (min-
imizing RAM) and having very tight code (minimizing
code ROM). Traditional computing systems want to be
efficient, but they typically trade off some efficiency for
flexibility and efficiency in the form of kernel modules,
plugins, or other mechanisms. In contrast, TinyOS fo-
cuses on producing an ultra-optimized binary that can
run unattended for months to years.

Two properties of embedded sensors motivate the min-
imization principle. The first is energy. Within a device
class, parts with more hardware resources draw more
power both when awake and when asleep. Since nodes
sleep almost all of the time, even small sleep power
draws are significant. Table 1 shows a selection of re-
cent microcontrollers. 16-bit MSP430 microcontrollers
dominate platforms today, due to their 1.3-2µA sleep
draw. An “ultra-low” power 32-bit architecture (ARM
Cortex M3), in contrast, has a 950µA sleep current.

As these devices are already designed for ultra-low
power operation, there is no low-hanging fruit which
will show large improvements in the short term. Fur-
thermore, microcontrollers do not follow Moore’s Law
due to market and performance considerations that dif-
fer from processors. While the first TinyOS prototypes
had 8kB of code and 512 bytes of RAM, 48kB of code
and 10kB of RAM has been typical for the past seven
years.

Harsh energy concerns (“every bit transmitted brings
a sensor node one moment closer to death” [36]) cause
nodes to spend almost all of their time asleep. Corre-
spondingly, real-time operating systems, such as FreeR-
TOS [41], eCos [40], and µC/OS-II [32], are a poor fit.
Their primary purpose is to schedule use of a limited re-
source (e.g., a CPU) to meet deadlines, but scheduling is
easy when the resource is almost always idle. The other
benefit of hard real-time is stability in very precise con-
trol systems. This stability breaks down in the presence
of an unreliable wireless network and so is typically not
useful in practice.

Cost is the second motivation for the minimization
principle. While research prototypes use top-end mi-
crocontrollers for flexibility (e.g., the bottom row of Ta-
ble 1(a)), for large scale or commercial use they are
overkill and raise prices unnecessarily. Using 16kB of
code and 512B of RAM instead of the top-end MSP430
could cut unit costs by $6. For 100,000 units, this $600,000
is well worth the cost of a year of software engineer time
to optimize and squeeze overly general code.

Over the first four years of TinyOS development, RAM
was generally the most limiting resource. The mica [22]
and mica2 [4] platforms have 128kB of ROM and 4kB
of RAM, and applications typically hit RAM limits be-
fore ROM. Unlike a computer with virtual memory and

swap, where a slightly-too-big program will run slowly,
there is no margin for error on a microcontroller. A too-
big program either has a compile error or crashes almost
immediately when the stack overruns data memory.

The prevention principle means preventing bugs through
software structure. All software wants to prevent bugs,
but TinyOS took a very extreme position due to how
astonishingly difficult in-the-field debugging of sensor
networks is. Debugging is so difficult that it has prompted
a wide range of research [13, 37, 42]. A sensor net-
work is a highly distributed system, where nodes dy-
namically react to the environment and each other. The
limited resources, as well as possible energy constraints,
on each device preclude extensive logging or other tra-
ditional debugging techniques. Many sensor networks
do not even support the equivalent of a TCP connection
or other per-node access. How does one debug a node’s
response to an unknown input?

The sensor network research literature has many pa-
pers describing application experiences, from volcanoes [43]
to bird burrows [38] to HVAC systems and oil tankers [28]
to industrial steam pipe monitoring [46]. Application
deployments using early versions of TinyOS almost al-
ways report a failure that occurred in bringing the sys-
tem from lab to deployment, yet are unable to pinpoint
the cause of the failure [42]. These experiences by users
led TinyOS developers to follow the prevention princi-
ple more strongly as it matured. Recent deployment pa-
pers that use TinyOS 2.x, such as a hospital application
in SenSys 2010 [14] are in comparison unabashed suc-
cess stories.

To meet these goals, TinyOS and nesC evolved lan-
guage primitives and programming abstractions to push
what are traditionally dynamic, run-time operations into
static, compile-time ones. Doing so allowed it to have
near-optimal RAM overhead while simultaneously en-
abling large, complex, and dependable software systems.
The next sections examine how TinyOS evolved in four
ways: ROM and RAM allocation, code isolation, soft-
ware components, and language features. Figure 1 shows
a timeline of the project between 1999 and 2010 that
highlights important organizational and technical events.

3. RAM AND ROM ALLOCATION
TinyOS programs generally require a 10:1 ratio of

ROM:RAM ratio. There are exceptions, such as large
packet queues or imaging sensors, but a 10:1 rule of
thumb is good for predicting whether RAM or ROM
will be the limiting resource. For example, TinyOS 1.x
was designed predominantly for the mica platform [22],
which had an Atmega atm128 microcontroller with 128kB
of ROM and 4kB of RAM. Applications on the mica
family typically run into RAM limits before ROM. In
contrast, the Telos family [35] uses a Texas Instruments



MSP430 with 48kB of ROM and 10kB of RAM; appli-
cations on Telos typically run into ROM limits first.

While minimizing CPU cycles is useful, most resource
use minimization efforts focused on RAM and ROM.
The nesC paper discusses the major techniques used to
minimize ROM (inlining and dead code elimination) [20].
RAM reduction, in contrast, was mostly through soft-
ware structure. RAM received more attention because
mica preceded Telos and so applications fought with
RAM limits first.

Some design decisions that traded off increased code
size for reduced RAM then posed problems for Telos
applications. One example of this tradeoff is how a sen-
sor driver configures a chip’s analog-to-digital converter
(ADC). Configuration options include which pin to sam-
ple, the reference voltage, the sample hold time, and the
clock source. Before the driver samples the ADC, it
must reconfigure it appropriately. Since reconfiguration
is very fast (just twiddling a few control bits in regis-
ters), ADC software automatically handles the configu-
ration on every sample. A simple way to set these pa-
rameters would be for a sensor driver to allocate a struc-
ture in RAM with the correct values, which it passes
to the ADC software. But this approach means that
each sensor driver allocates a structure even though the
ADC needs only one of them at any time. This wastes
RAM. Instead, TinyOS sensor drivers implement a func-
tion that returns their configuration structure directly on
the stack (i.e., not a pointer). Rather than maintain the
structure in memory, they regenerate it when needed, re-
ducing RAM needs by 4 bytes per client but increasing
ROM by 50-60 bytes. This approach worked well for
mica, but “ADC bloat” became a common complaint
for Telos applications. RAM-conserving and a ROM-
conserving APIs look quite different; forcing developers
to choose one or the other has the unwanted side effect
of making code less portable.

Minimizing the RAM needed by service APIs, in par-
ticular, became exceptionally critical. Where in a tradi-
tional OS one wants to make system calls fast, in TinyOS
we wanted them to require as little RAM state as possi-
ble. Take, as an example, the timer service. Many com-
ponents and systems need timers. Applications need to
periodically collect data, routing protocols need to peri-
odically send beacons, and link layers need to manage
backoff intervals as well as retransmissions. A complete
application can require anywhere from 3 to 15 timers,
and each 32-bit timer requires 10 bytes of state (when
it started, its interval, and some control bits, such as
whether it’s a repeating timer). In the best case, the sys-
tem will allocate 10 bytes for each timer and no more.

The first version of the timer system (pre-1.0) had
clients allocate their timer state and pass a pointer into
the timer system. On one hand, this meant that ap-

plications allocated precisely the right number of timer
structures. On the other, it required additional state in
each struct: a pointer so the timer implementation could
string them into a linked list. The pointer increased
the timer structure to 12 bytes, a 20% overhead. Fur-
thermore, the dynamic data structure became a common
source of runtime failures due to memory corruption. As
each user of the timer service allocated its own structure,
a local off-by-one error could corrupt the pointer, break-
ing the link list. Recall that there was no debugger. After
collecting 30 nodes to reprogram them due to a simple
memory bug, you don’t ever want to again.

In response to difficult experiences debugging timer
problems, the second version of the timer system (v1.0)
allocated a fixed array of private timer structures. To
distinguish different timers, nesC introduced a special
function, unique. The nesC compiler evaluates unique
at compile time. Each invocation of unique with a given
string s returns a unique integer in the range of 0 to n−1,
where n is the number of times unique is invoked with s.
Because there is no binary loading or linking, the nesC
compiler parses every call to unique and can compute n
correctly. Unique uses the string s as a general way to
manage needed sets of unique values. A component that
needed a timer allocated a key with unique and passed
this key in all calls to the timer system. The second
timer implementation used the key to index into its timer
structure array.

The second version of the timer system was much
more stable, but often wasted even more RAM. Pro-
grams made the timer array safely large so calls to unique
would not reach past the bounds of the array. This prob-
lem was not limited to timers. It existed for ADC sam-
pling, packet queues, and many other components.

The third version of the timer (v1.1) fully minimized
RAM through a new nesC function, uniqueCount. Like
unique, uniqueCount takes a string and returns an inte-
ger. The return value is the number of calls to unique
with that string. In the case of timers, for example, the
timer service can declare an array of timer state:

timer_state_t timers[uniqueCount("Timer")];

The unique values can safely access timer state accord-
ingly. Assuming that all timer clients use the correct
string (something static virtualization, below, ensures)
the timer service can even elide run-time checks that the
index parameter is within the size of the array, reduc-
ing code size. The final result is that TinyOS today al-
locates precisely the minimal amount of RAM needed
for timers and is 988 bytes of code on mica platforms.
If each timer requires 10 bytes of state and there are n
timers, it allocates 10n bytes of RAM, exactly the min-
imum required.



4. ISOLATION
Initially, TinyOS did not support dynamic memory al-

location of any kind. While the need for more flexible
memory allocation became increasingly apparent, so did
the dangers of a malloc-like approach. TinyOS 1.1 has
many cases where multiple components share a single
memory resource. For example, the core OS scheduler
provides the abstraction of a “task,” a form of deferred
procedure call. The scheduler maintains a fixed-size ar-
ray of tasks to execute. If a component posts a task to a
full queue, the post fails. This raises a very difficult fail-
ure condition: how does the component repost the task?
Since TinyOS has a single stack, the component cannot
spin or wait, as the scheduler will not free an entry un-
til the current function returns. Instead, the component
must somehow be re-invoked, e.g., by starting a timer.
But the timer system uses tasks, and it can drop timers
when it cannot post its task.

Packet transmission suffered from a similar problem.
In TinyOS 1.x, a transmission request fails if the send
queue is full. As this queue is shared across many com-
ponents, it is possible for one component to fill the queue
and starve other senders. Some protocols expect peri-
odic transmissions (e.g., routing beacons) and infer their
absence as packet losses. Therefore, the calling seman-
tics in TinyOS 1.x caused several deployments with one
badly behaving component to have entire protocols col-
lapse.

We concluded that global, shared memory pools, even
when hidden and very limited, were too dangerous for
robust software and violated the bug prevention princi-
ple. One bad component can create hard to handle fail-
ures across the entire system. They lead to hard-to-find
or unidentifiable bugs, which are excruciatingly frustrat-
ing in embedded platforms with no easy debugging in-
terface.

Over time, it became apparent that a lack of isolation
in programming interfaces was a major impediment to
writing highly reliable TinyOS 1.x software. By isolat-
ing processes, a traditional OS greatly simplifies appli-
cation implementations. The task queue example shows
how TinyOS 1.x components, in contrast, had poor iso-
lation. There were numerous other examples of this lim-
itation, such as the link layer send queue, sensors, and
generally almost every OS service except timers. Very
robust TinyOS 1.x software therefore had to consider
that any operation might fail and handle the error, in-
creasing RAM and ROM use.

TinyOS 2.x improves prevention through better com-
ponent isolation: it makes each component’s interac-
tions to an underlying shared resource completely in-
dependent. Each client has a perfectly virtualized in-
stance of the underlying service. For example, the return
value of a send packet call is independent of whether

AMSenderC! AMQueueC!
unique!

unique!

unique!
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Send interface!

Figure 2: Static virtualization with AMSenderC.

other packets are in the transmit queue. Memory allo-
cation for this virtualization, however, needs to occur at
compile-time, otherwise it would introduce a source of
run-time failure.

TinyOS 2.x achieves this “static virtualization” be-
havior by combining generic components and the mem-
ory allocation techniques described above in Section 3.
Generic components are instantiable nesC components,
taking types and constant primitive types as parameters
(before 2.x, all nesC components were singletons in a
global namespace). Generic components improve code
reuse just as Java generic, C++ templates and other sim-
ilar language mechanisms do.

The basic idea behind static virtualization is that a
piece of software can declare a logical (virtualized) in-
stance of a service, such as the ability to send a link layer
packet. The behavior of an API is completely indepen-
dent of all other users of the API. A caller can determin-
istically know the result of any call, as all transitions in
the interface’s finite state machine come from that client.
This differs from deterministic parallelism [9] in that it
is concerned with the behavior of only a single API and
avoids shared state.

TinyOS accomplishes static virtualization entirely at
compile-time. It uses an abstraction called parameter-
ized interfaces to distinguish between multiple clients,
the unique and uniqueCount functions to determine ex-
actly how many clients there are, and generic compo-
nents to prevent bugs by hiding all of this machinery
from the user. In TinyOS 2.x, all APIs to core OS ser-
vices use static virtualization. For example, to send a
link layer packet, a program instantiates an AMSenderC
component. AMSenderC has the property that it rejects
a valid transmission request if and only if that client al-
ready has a transmission request outstanding.

Underneath, AMSenderC connects AMSend to a packet
queue, shown in Figure 2. The packet queue has a pa-
rameterized Send interface. Each instance of AMSenderC
connects to it with a call to unique. The queue uses
uniqueCount to allocate the correct number of queue
entries. When a component tries to send a packet, the
queue checks if the corresponding client’s entry in the



queue is occupied. If not, it accepts the packet for trans-
mission; if so, it tells the caller to retry.

Static virtualization is an example of a novel program-
ming abstraction from TinyOS that emerged from the
unique requirements that wireless sensors face. We be-
lieve it represents a large step forward for highly effi-
cient and dependable embedded software. With static
virtualization, software can use an OS service, safely
isolated from all other users of the service. Because the
behavior of the API is based solely on the calling com-
ponent, one can statically verify that some components
are correct (e.g., with interface contracts [7]). Further-
more, the underlying implementation allocates exactly
the amount of RAM needed and has simple, concise
code.

5. LANGUAGE/OS CO-DESIGN
Early on in TinyOS development we made the de-

cision to design a language to better support its pro-
gramming and concurrency model. The nesC language
allowed TinyOS to achieve near-optimal resource effi-
ciency (minimization) and a surprisingly low bug rate
(prevention). Having a new language also allowed us to
evolve and extend features as new problems arose. For
example, the language features for static virtualization
(parameterized interfaces, unique, uniqueCount, generic
components) emerged over a 4 year period. Being able
to control both the language and operating system gave
the project tremendous flexibility to achieve system de-
sign goals.

On one hand, static virtualization is an excellent pro-
gramming interface. On the other, the software com-
plexity it takes to achieve in nesC turns out to be formidable.
Reaching it took a circuitous path through 4 major re-
leases of TinyOS and five years of development. As
a result, static virtualization involves emergent, rather
than planned, uses of language mechanisms and a hand-
ful of programming idioms which are foreign to a new
user.

Language evolution is a two-edged sword. As TinyOS
became more robust and users began to tackle more chal-
lenging software projects, both the OS and nesC lan-
guage evolved to meet these needs. On one hand, this
evolution made it possible to tackle larger and harder
problems. On the other, each stage of this evolution
added new features, moving TinyOS and nesC further
from C and raising the barrier to entry. Furthermore, the
most effective software patterns, such as static virtual-
ization, used all of these features in complex and novel
ways. By focusing on expert TinyOS users and making
it possible to write larger software, TinyOS 2.x became
less accessible to new users. Making it harder to write
buggy code had the unfortunate result of making it just
plain harder to write code.

In retrospect, the focus on expert users missed a great
opportunity: hobbyists and the “Maker” do-it-yourself
crowd. The past five years have seen a huge growth in
simple, DIY electronic projects, spearheaded by Make
Magazine [1]. This community has latched onto the Ar-
duino platform [8] for its projects. In comparison to
TinyOS, Arduino is feature-poor: programs are single-
threaded C programs for simple sensing and actuation.
But for hobbyists, the resulting simplicity is extremely
desirable. Building a gumball machine that “only dis-
penses treats when you knock the secret rhythm on its
front panel” (an article in a recent issue of Make maga-
zine) doesn’t require static virtualization, network types,
and compile-time data race detection.

This increase in learning difficulty had more to do
with the novel features of nesC and their increased use
than APIs or software implementation. Evolving and
larger APIs do not increase programmer difficulty in the
same way that language features do. A simple program
needs to use a limited number of APIs, and the cognitive
effort required scales with program complexity. You see
this pattern in language communities, but not operating
system ones. For example, consider regular expressions
in Perl 5 versus Perl 6. Perl 5 regular expressions are
similar to those in many other UNIX tools (sed, shells,
etc.), so the learning curve for an experienced UNIX
can start very gradually. In contrast, Perl 6 regular ex-
pressions introduce programming constructions called
grammars and rules that require learning from scratch.
While the earliest TinyOS programs were mostly C with
a bit of nesC to support components, modern code heav-
ily uses many nesC features, making the learning curve
very steep.

The steepness of this learning curve has implications
to staffing. Academic projects tend have graduate stu-
dents as their primary developers. This tension between
research and engineering can sometimes be solved by
hiring staff software engineers. Language evolution, how-
ever, complicated this process considerably for TinyOS.
Different groups tried several times to hire TinyOS staff
programmers, with mixed results. The first staff hire,
made early in TinyOS 1.0, contributed a great deal. But
he departed in 2005 to work at a sensor network startup.
The second was hired in 2004 during the beginning of
TinyOS 2.x development. Intel Research tried hiring a
software engineer for 1.x: the hire, after a year, pro-
duced a single component which had to be thrown away.
The third hire had significant experience in event-driven
systems, the gulf between Internet services and TinyOS
was too wide and he was unable to contribute. In retro-
spect, hiring staff early in the project, so they can learn
the system as it evolves, was much more successful than
doing so late, when it had significant and novel com-
plexity.
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Figure 3: Component structure for the TinyOS
2.x timer implementation. Grey boxes with
solid lines are modules (executable code), while
white boxes with dashed lines are configurations,
components which connect other components to-
gether. AlarmCounterP exists to transform its
hardware-independent into specific chip implemen-
tation (Atm128AlarmAsyncC).

One staff member hired late in the project succeeded
in contributing because he was an exceptional and unique
case. Before starting as a staff engineer, he was one of
the largest contributors to TinyOS 2.x, having researched
sensor networks while pursuing a Masters degree. The
fact that only someone well inside the community could
be a significant contributor later on in the project fur-
ther demonstrates the barrier to entry that OS/language
co-design can create.

Other sensor network OSes have emerged to fill the
voids left by TinyOS’s evolution. Contiki [5], for exam-
ple, is written entirely in C and provides a more tradi-
tional operating system model of a core kernel and ap-
plications which compile against it. While TinyOS is
more efficient and cleaner, starting with Contiki is much
easier. Today a significant fraction of sensor network
research builds on top of Contiki rather than TinyOS.

6. COMPONENTS
The concept of a component is key to TinyOS’s pro-

gramming model. Components separate interface and
implementation, provide data privacy, allow code re-use,
and provide sufficient linguistic structure for nesC to
perform many useful optimizations. For all of these
reasons, using components in embedded software is a
tremendous improvement over basic C code.

But while components are generally beneficial, they

can be used badly. Early on, TinyOS was intended as a
research vehicle. We tried to structure software so that it
was easy to extend or modify in a small way. Based on
user feedback (in particular, early MAC research such
as S-MAC [45]), this structure involved many layered
compositions of small, lightweight components. For ex-
ample, if someone wanted to change the MAC timing
behavior of the mica platform (carrier sense, backoff),
this involves changing one component. Changing the
data encoding/decoding involves changing a different
component.

The main goal of this approach was to ease exper-
imentation. But taken to its conclusion, fine-grained
components have significant drawbacks we did not fore-
see. Today, the most heavily used radio driver (for the
ChipCon CC2420 [15]) is ≈2400 lines of code1 and 41
different components. The driver consists of 40 files for
2400 lines of code! In a slightly less extreme example,
the timer service, shown in Figure 3, involves 8 com-
ponents that convert a 32kHz counter with compare and
overflow interrupts into a millisecond granularity timer
component, which becomes the basis for the statically
virtualized timer abstraction (another 3 files). What is
ultimately less than a kilobyte of code is spread across
11 different files. In terms of prevention and minimiza-
tion, this is fine. Each small component is easy to verify
and debug, and the interfaces between components are
designed to avoid the waste of multiple private copies of
the same state.

But as Figure 3 suggests, the drawback of fine-grained
components emerges when trying to understand a sys-
tem for the first time. There are so many tiny pieces
of functionality spread across files, with numerous lev-
els of indirection, that keeping track of it all can be a
headache. The structural complexity is far beyond what
the underlying code complexity requires. In the case of
the CC2420, one literally has to have 41 different files
open at once to see all the code for just one (admittedly
very important) driver. When you are implementing the
system, all of it makes sense; but to a new user, it’s con-
voluted and complex. A user interface researcher might
say this is not a fundamental problem: a good devel-
opment tool could make browsing this code easy and
intuitive. However, we had neither such a tool nor the
expertise to build one. While perhaps not a fundamental
problem, it is a real and practical one.

For application-level systems, such as GUI toolkits or
the Click modular router [27], fine grained components
can make sense. Every application is different, and a
very flexible toolkit can greatly speed development. But
the tradeoffs for an operating system are very differ-
ent. In the end, there are very few microcontrollers with

1We measure lines of code as the number of lines in a file
outside of comments that have a semicolon in them.



which one builds a timer system for using the TinyOS
timer library, not that many radios which resemble the
CC2420 and not that many variations in its use. These
libraries are intended to be the basic APIs of an OS; ul-
timately, application developers want stability, and so
there is very little innovation.

Designing generalized fine-grained abstractions can
be valuable if you need to integrate multiple, indepen-
dent changes. For example, one might want to incorpo-
rate an alternative MAC protocol (e.g., Funneling MAC [6])
with an alternative packet retransmission scheme (e.g.,
Partial Packet Recovery [24]). In practice, however, op-
erating system changes are rarely simply localized and
rarely compose easily. While implemented as many small
components, those components, for sake of code sim-
plicity, end up being tightly coupled.

Our conclusion is that a well designed and carefully
implemented operating system is more helpful than an
operating system toolkit or operating system software
designed with reuse in mind. Our experience with devel-
oping more traditional operating systems supports this
conclusion. It is easier to take the Linux boot code and
modify it for your needs than to work within a compo-
nent framework for its generalized boot module. We lost
sight of the fact that “code reuse” really means within a
system, not necessarily across completely independent
systems. As both researchers and software engineers,
we want to design generalized abstractions, but an ex-
cellent artifact is often more useful than a general archi-
tecture.

7. COMMUNITY STRUCTURE
TinyOS began as a small research project at UC Berke-

ley and today has a large, global developer community.
Linux’s success over HURD in the early 1990s demon-
strated that the ability for an open source project to build
and maintain an active developer community is as much
a result of social interactions and structure as technical
concerns.

This section describes how the TinyOS community
has evolved socially, focusing on three major consid-
erations: the structure of the community, the relation-
ship between academic and industrial developers, and
the effort needed to manage and support users. The
prior section described how TinyOS’s technical evolu-
tion increased its barrier to entry, and this section ex-
plores how social mechanisms adopted very late in the
project (2007) helped counteract this somewhat.

7.1 Historical Progression
The TinyOS community has gone through two major

structural changes, reflecting its major revisions: pre-
1.0 from 1999-2002, 1.x from 2002-2005 and 2.x from
2005 to present. We present a very brief overview of

these changes as background for later observations and
also to acknowledge major contributors.

7.1.1 Pre-1.0
Before version 1.0, TinyOS was a small research project

at UC Berkeley [23]. All of the major authors were
UC Berkeley students, with some students visiting from
UCLA and USC contributing a few components, such
as for flooding experiments [19]. At this point in time,
there was no real separation between TinyOS develop-
ment and sensor network research. Research meetings
at UC Berkeley discussed major design decisions, and
close proximity made social interactions about code sim-
ilar to most research group codebases.

7.1.2 Building a community: v1.x
When version 1.0 was released, TinyOS had a small

community of research users through the DARPA NEST
project. These users began to contribute code. In addi-
tion to students at UC Berkeley, the TinyOS core sys-
tem2 developers included researchers and a staff pro-
grammer at Intel Labs Berkeley. The Berkeley NEST
project group hired a staff member to organize demon-
strations, who began to contribute code.

The TinyOS 1.x core system had 37 developers who
checked code into the tree. 23 of the developers were
from Berkeley: 16 graduate students, 5 undergraduates
and two staff members. 6 were from Intel Research
Berkeley, 3 were from Technische Universität Berlin, 2
were from Crossbow, Inc., the company that produced
the Berkeley hardware designs, and the last 3 were grad-
uate students from Vanderbilt, UCLA, and Harvard.

Although TinyOS 1.x had many users building sys-
tems they sought the community to use, most of the core
TinyOS development continued to occur at Berkeley.
Code in the main TinyOS tree had to go through regres-
sion tests for each release. For most research projects,
the responsibility of managing formal releases and per-
forming regular tests on someone else’s schedule was
much more effort than it was worth. Instead, the re-
search community put code in a separate “contributions”
directory. While the core TinyOS 1.x tree had 37 con-
tributors, the contrib directory has 110, spread across
over 80 project subdirectories, from Funneling MAC [6]
to the Capsule flash storage system [31].

7.1.3 Expanding globally: v2.x
The tight collaboration between Berkeley and TU Berlin

was the seed for the core TinyOS development commu-
nity to expand beyond UC Berkeley. This step forward
was auspicious: three of the largest TinyOS contribu-
2By “core system” we mean the TinyOS code packaged in
a release (the tos/ directory), not PC-side support tools or
other non-nesC code.



tors left Berkeley in the spring of 2005. Two started to
work full time at their startup company, Moteiv, while
one took a faculty position. Setting up a more formal
structure would allow all of them to continue to con-
tribute.

A group of the core developers agreed that TinyOS
1.x had numerous unsolvable structural flaws, mostly
relating to reliability (e.g., packet transmission queuing
as described in Section 4). They formed the TinyOS
2.x working group in October of 2004. The working
group realized that one of the major challenges for new
users to TinyOS was its lack of any formal design doc-
uments. Because every abstraction in TinyOS was up
for review and redesign, small subgroups formed and
began to define the new interfaces, documenting them
in TinyOS Enhancement Proposals (TEPs), a cross be-
tween a Python Enhancement Proposal (PEP) and an In-
ternet Request for Comments (RFC).

The first full release of TinyOS 2.0 took two years.
When work started, three companies (Moteiv, Arch Rock,
and Crossbow) were all significantly involved in the ef-
fort and contributed code. By the time 2.0 was released,
however, both Crossbow and Moteiv had dropped out
of participation. Arch Rock continued to contribute late
into 2007.

A small number of institutions dominate academic con-
tributions. After Berkeley-based development transitioned
into Arch Rock, Stanford, and Moteiv, Berkeley devel-
opment dropped to zero until late 2008 and early 2009.
The most consistent and significant academic contribu-
tor over time is TU Berlin, which not only wrote many
parts of the core OS in 2005-6 but also continued devel-
opment on extensions (e.g., an 802.15.4 MAC in 2008-
10). In 2008, Johns Hopkins contributed a network pro-
tocol for reprogramming as well as CC2420 security ex-
tensions.

One notable aspect of the commit logs is that they are
very bursty. Commits generally relate to a library or
contribution, and there are very few background com-
mits, e.g., for fixing bugs. The small number of bugs
indicates that TinyOS 2.x has successfully followed the
prevention principle. From when the TinyOS 2.x tree
moved to Google code in July of 2010 until May 2011,
there were 16 bug reports over the approximately 80,000
lines of code of the core system.

7.2 Industry vs. Academia
TinyOS represents a unique point in the design space

of open source projects because it deals with embedded
systems yet sees very heavy use by the research com-
munity. Because debugging embedded code is very dif-
ficult, users have a very strong incentive to use exist-
ing code rather than write their own: writing a new de-
vice driver is a much more daunting task than writing a
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Figure 4: Traffic on tinyos-help mailing list.

new protocol. The research community, however, wants
to explore ideas on how to improve important systems
and so modify existing codes. These conflicting desires
between efficient existing codes to use and extensible
codes to conduct research has been a continual tension
in the TinyOS development community.

TinyOS code development has always been primarily
academic. Industrial contributions, however, constitute
some of the most critical components of the system. For
example, the link layer stack for the ChipCon CC2420
radio, the dominant radio used today, has gone through
three iterations. The first was an academic rewrite of
the TinyOS 1.x stack; the second was a clean reimple-
mentation by Arch Rock; the third was from Rincon
Research and included a low-power mode. While the
CC2420 code is only 2,400 lines (3% of the codebase),
it is one of the most heavily used, experimented with,
and important pieces of code.

Initially, developers who left Berkeley for Moteiv and
Arch Rock continued to contribute to TinyOS 2.x, as
the companies had expressed commitment to an open-
source platform. However, the very different timescales
of startups and academia proved to be an irreconcilable
tension. Both Moteiv and Arch Rock wanted to set-
tle on a “good enough” platform quickly so they could
move on to higher-level services they could sell. The
academics, in contrast, saw 2.x as the opportunity to
“do things right” and establish a design which would
minimize future maintenance. The numerous iterations
on the design of very low-level systems, such as power
management and locking [26], led both Moteiv and Arch
Rock to fork the TinyOS tree and use their own private
versions of the codebase.

This forking introduced difficult conflicts of interest.
For example, Moteiv released Boomerang, a hybrid ver-
sion of TinyOS halfway between 1.x and 2.x which sup-
ported features in newer Moteiv hardware. Meanwhile,
members of Moteiv remained involved in TinyOS 2.x
discussions. On one hand, they argued that TinyOS 2.x
was going in directions contrary to the needs of their
customers. On the other, Moteiv had stopped contribut-
ing code towards this end, and changing course to follow
these suggestions would slow TinyOS 2.x development
and cause more people to use Boomerang.

7.3 Managing and Supporting Users



Today, TinyOS averages approximately 50-100 down-
loads/day, or 18,000-36,000 per year (the numbers spike
on a release). This number does not include developer
downloads via CVS, SVN, or git: it is solely downloads
of RPMs, debian packages, and VMWare images. We
obtained this count by examining web logs for down-
loads of these three formats from the TinyOS distribu-
tion server, pruning by agent to remove search bots, and
then counting the number of unique IP addresses. Un-
fortunately the bi-monthly rotation of web logs (as well
as a server replacement in 2010) prevents us from giving
detailed download statistics over time.

Managing a user base so large is difficult, especially
because every developer is a volunteer. Computer sci-
ence graduate students have very little motivation to ac-
tively support users. Support is also especially challeng-
ing due to the fact that TinyOS is used in many uni-
versity courses, whose students represent a huge variety
of technical ability. Developers typically do not mind
answering “interesting” questions or responding to bug
reports, but questions on more mundane issues such as
Java classpath problems, general C programming ques-
tions such as “is there array for TinyOS,” or “where
do I download TinyOS” become wearying after a few
months, let alone a decade.

Tinyos-help, the main help mailing list, started in May
2002. Figure 4 shows the posts per month between then
and now. There are two interesting trends: first is the
annual dip in traffic around the new year, due to the
winter holidays. The second is that messages on the
mailing list peaked in June of 2007 with 947 messages
that month. Since that time, there has been a steady,
downward trend. This downward trend does not corre-
late with a downward trend in downloads.

What happened in 2007 that made mailing list sup-
port easier? In July 2007 the Documentation Working
Group formed to move TinyOS from a set of static doc-
umentation web pages to a documentation wiki that any-
one could modify and improve. Over time, documenta-
tion since then has continually improved. Anecdotally,
our experience with tinyos-help is that the reduction in
traffic since then has not been uniform across types of
questions. Traffic on -help has become bimodal, either
consisting of the most rudimentary questions by posters
who have not bothered to look at the documentation (or
search the web), or detailed technical questions. De-
velopers ignore the former and typically respond to the
latter. The response to a common, recurring question is
typically a pointer to the site-specific Google search for
the web accessible tinyos-help archives.

While the process of writing tutorials, API reference
documents, and programming manuals is neither glam-
orous nor exciting, the presence of these materials re-

duced the long-term effort needed to support a large user
community.

8. LESSONS LEARNED
In the past decade TinyOS has transitioned from C

preprocessor macros maintained by a graduate student
at Berkeley to 80,000 lines of code written in a new C
dialect by a worldwide community of academic and in-
dustrial developers. Arriving at this point involved some
good steps and some mistakes. This section tries to an-
swer the question: if we could do it all over with hind-
sight, what would we do similarly and what would we
do differently? Or more generally, how would we rec-
ommend growing a systems software research project to
be adopted outside academia? We focus on 5 specific
decisions TinyOS made: adopting nesC, its focus on
software components, its reliance on a research commu-
nity as users, its collaboration with industry, and how it
developed documentation. When possible, we draw par-
allels between a few other academic software projects.

8.1 Good: Language Extensions
Ultimately, the decision to go with nesC was the right

one: nesC’s language features allowed developers to write
robust code that used very few hardware resources. Had
we stayed with C, it seems unlikely that TinyOS-based
sensor networks would be as advanced as they are to-
day. Chances are another project, realizing the limi-
tations of C, would have tried an alternative language
approach. Furthermore, nesC gave us the flexibility to
discover novel programming abstractions that are not
possible in C and greatly improve system development,
such as static virtualization.

8.2 Bad: How Language Extensions Evolved
While the decision to use nesC was a good one, how

TinyOS used it should have evolved differently. On one
hand, eating your own proverbial dog food is important:
TinyOS developers built applications and systems, giv-
ing them experience with the strengths and weaknesses
of the system. On the other hand, doing so led to a dis-
torted perception of what was hard or important. Chas-
ing hard, unsolved problems makes sense from a re-
search standpoint. But from a practical standpoint, mak-
ing it easier to solve hard problems can simultaneously
make it harder to solve the easy ones, and this happened
with TinyOS.

In retrospect, it would have been better to split the sys-
tem design and evolution efforts into two halves. The
first half would be to make it easier to build larger and
more complex systems. The second half would make
it easier to build trivial systems. Motivating systems
and networking graduate students to take this second
approach would most likely fail. But, for example, sup-



pose TinyOS developers had engaged with work at Stan-
ford [21] or Carnegie Mellon [10] on rapid sensor de-
vice prototyping. It could have possibly enabled whole
new application domains and use for low-power wire-
less sensing devices. Arduinos, which have moved to
fill this capacity, have very limited network capabilities:
who knows what interesting new scientific experiments,
art pieces, or toys could have appeared if TinyOS were
used instead?

On the other hand, nesC’s evolution discovered new
and better ways to write efficient, bug-free embedded
code. Going forward, the right thing to do is to com-
pletely redesign the language, or design a new one, to
make these concepts basic language structures rather than
complex uses of more general features. For example,
one could have a way to define a static virtualization
that automatically sets up parameterization, unique, and
state management: a single file could define the service,
rather than the typical case today of at least 4 files.

8.3 Good: Software Components
Components are a significant improvement over basic

C code. They provided clean, reusable interfaces, data
privacy, and enabled many tools for checking and ver-
ifying TinyOS code. They encourage clean system de-
compositions, which enabled small groups of program-
mers to build intricate, complex systems, ranging from
shooter localization applications [30] to the Tenet pro-
gramming system [33].

8.4 Bad: Software Component Architec-
tures

Faced with such capabilities, however, the inevitable
academic tendency is to generalize and define architec-
tures for core services, such as TinyOS’ network layer
architecture (NLA) [18]. But these generalizations, in
practice, turn out to usually be much more effort than
they are worth. If there is only a small handful of im-
plementations for any given abstraction (e.g., forward-
ing policy, link estimator), the structural complexity that
generalization adds is detrimental. “Don’t generalize;
generalizations are generally wrong.” [29] In practice,
clean, easy-to-understand code without too much struc-
tural complexity can be easier to copy and modify. We
should have started with fine-grained components, then
over time transitioned to more monolithic implementa-
tions as they stabilized.

8.5 Good: Initial Users
Without the NEST project, TinyOS would not have

moved far past Berkeley and a few other schools. NEST
motivated Berkeley developers to embark on sometimes
boring software engineering projects: others would use
their code and so the work had impact. It also led to soft-

ware from outside Berkeley that others could use, ex-
tend, and compare against. Finally it created momentum
and interest in the form of social memory and knowl-
edge. When a researcher thinks about using TinyOS,
chances are they know another person or group who is
already doing so, whom they can learn from.

While it’s obvious that getting an initial group of users
is critical, how does one do so? There are two basic
mechanisms. The first is to promote use internally, among
other groups or researchers who might find the system
useful. One notably successful example is the Click
modular router [27]. Click, originating at MIT, has been
used in many research projects from that institution, such
as Roofnet [12] and wireless network coding [25]. These
demonstrations of Click’s success as not only a research
project but also a practical tool have helped it now be
used by many researchers and companies.

The second approach, which is generally more eas-
ily successful, is to have a funding agency give grants
to work on the system. For the NEST project, using
TinyOS was essentially a requirement. Of course, this
has drawbacks as well. Some NEST participants still
resent that they had to use TinyOS. Other examples that
followed this approach are less extreme, such as DHash++ [17]
as part of IRIS, or PlanetLab [34] and Intel.

8.6 Bad: Focusing on Experts
In retrospect, focusing on growth within the research

community exacerbated TinyOS’ focus on technical com-
plexity. The project, just as with technical directions,
should have also focused on broadening participation.
But in seeking research impact, the project sought im-
pact predominantly with researchers.

While it is possible to achieve impact by having users
outside the research community (X from MIT, BSD from
Berkeley, Mach from CMU, Xen from Cambridge, and
more recently OpenFlow from Stanford, are notable ex-
amples), this is especially difficult for embedded soft-
ware. Embedded systems are often closed, single-vendor,
vertically integrated systems where the vendor gives few
if any real details on the underlying technology. Anec-
dotally, through we know of many companies who use
TinyOS in products, only a tiny handful will say so on
the record.

8.7 Bad: Early Industrial Involvement
When effort on TinyOS 2.x started, several companies

were involved in the design process. Each of them, how-
ever, dropped out within nine months as their develop-
ment timescale was much, much faster than academia.
Frustrated by the long discussions and numerous design
iterations, both Moteiv and Arch Rock forked from the
main tree to develop their own branches. The frustra-
tion was also due to differing goals: both Arch Rock and



Moteiv wanted to focus on the hardware platform they
both used, while academic groups representing multiple
hardware devices wanted more generality.

What is especially revealing is that many of the early
criticisms from Crossbow and Moteiv on the programma-
bility of TinyOS 2.x were, in retrospect, completely cor-
rect. While we believe involving industry in early de-
sign was a mistake, TinyOS would have benefited from
more carefully listening to the requirements industrial
collaborators presented. Instead, early industrial part-
ners departed the project in frustration.

8.8 Good: Late Industrial Involvement
Once the core design was complete in early 2006,

however, companies such as Rincon Research, Hand-
helds.org, Zolertia, and Shockfish began to join the project
and contribute significantly. This code was typically
drivers for their platforms, although it also included a
few utility libraries. Given a well defined structure and
precise, stable interfaces, commercial engineers were
willing to participate and contribute without having to
accommodate what must at times seem like philosoph-
ical debates about hypothetical universes. The Open-
Flow project at Stanford lends additional evidence that
incorporating commercial contributors later, not earlier,
is a better approach than the one TinyOS tried. The
original designs of OpenFlow and Xen originated within
Stanford and Cambridge. Over time, the projects en-
listed industrial partners who are willing to implement,
extend, and use the system.

8.9 Good: Diverse Documentation
As a user community grows, documentation is abso-

lutely critical to keeping down the support effort needed.
Writing documentation can be time consuming, but is
worth the long-term time savings in answering ques-
tions. TinyOS ultimately gravitated towards three forms
of documentation: tutorials, for getting started, TEPs,
which are API and implementation references, and a
TinyOS programming manual (over 200 pages) that goes
into excruciating detail on advanced programming and
software engineering techniques. Tutorials acclimate a
new user to how to write a program and use some simple
functionality; TEPs explain most of the system function-
ality, for when a user wants to build something new; the
programming manual helps when a user wants to write
a reasonably large and complex piece of software.

One sometimes frustrating result of good documen-
tation is that you hear very little from users: no news
is good news. After the TinyOS documentation wiki
started, some developer wondered whether the slow re-
duction in questions was due to the TinyOS community
slowly fading away. But the number of downloads indi-
cates otherwise: more people are downloading TinyOS,

but fewer are asking questions about it.

8.10 Bad: Only Developer Documentation
It’s challenging for someone to write documentation

intended for an audience with a vastly different techni-
cal background. When TinyOS was early in its evolu-
tion and not yet very complex, documentation written
by its developers was reasonably accessible to other C
programmers. But as the system become more complex
and developer expertise increased, tutorials became si-
multaneously longer and more obtuse.

In retrospect, TinyOS was far too late in transition-
ing documentation to a wiki. There was a bit of a con-
trol concern: if you open documentation to the masses,
they might write something incorrect. But generally, for
every mistake, there will be ten additions that are cor-
rect. If a user thinks a certain piece of documentation is
needed, trust that thought. For example, one of the earli-
est community documentation contributions, the second
link on http:/docs.tinyos.net, is a tiny page
that demonstrates the simplest TinyOS program. We
initially thought that something so minor should be in
a tutorial, or deeper in the site, but in retrospect realized
we should leave it to users to decide.

However, one cannot simply create a wiki and expect
users to populate it with content for free. Developers
have to heavily seed the documentation effort. Users,
like everyone else, are much more motivated to improve
something that’s there than to create out of whole cloth.

9. CONCLUSION
A decade is a long time, especially for an academic

project. TinyOS was able to transition from the aca-
demic halls of UC Berkeley into a worldwide commu-
nity of developers and users. Getting to this point in-
volved tens of thousands of hours of work by hundreds
of contributors. In retrospect, some decisions that seemed
sound at the time had significant negative long-term im-
plications that we did not foresee. For example, while
designing language extensions for better operating sys-
tems programming is valuable, co-evolving those exten-
sions with the OS can alienate new users, limiting the
long-term benefits of the work.

TinyOS has been a critical enabler for wireless sen-
sor network research and engineering, the benefits of
which we see in efforts like the IETF developing stan-
dards for connecting low-power wireless sensors to the
Internet [39]. As computing increasingly pervades soci-
ety, the ability for universities to transition research into
practical, real-world impact and benefits will remain im-
portant and valuable. Our hope is that the lessons we
learned so may help others trying to do so in the future.

http:/docs.tinyos.net
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