Exam #:

EECS 373 Practice Midterm & Homework #2
Fall 2011

Name: Uniquename:

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Problem # | Points

/20
/15
/10
/15
/10
/10
/10
/10
Total /100

R A [N N || WIN|[—

NOTES:
* PUT YOU NAME/UNIQUENAME ON EVERY PAGE TO ENSURE CREDIT!
Can refer to the ARM Assembly Quick Reference Guide
Can use a basic/scientific calculator (but not a phone, PDA, or computer)
Don’t spend too much time on any one problem.
You have 80 minutes for the exam.
The exam is 7 pages long, including the cover sheet.
Show your work and explain what you’re doing. Partial credit w/o this is rare.

Name:

Uname:

1) Fill-in-the-blank or circle the best answer. [20 points, -2 per wrong or blank answer]

a)

b)

d)

g)

h)

)

An N-bit SAR ADC requires 1 /Ig(N) / N approximation cycles to produce a result.

A DRAM / SRAM / PROM is non-volatile. DRAM most commonly uses a 1T /4T / 6T
cell. SRAM most commonly uses a 1T/ 4T/ 6T cell.

A 100 MHz clock with a duty cycle of 25% is high for ns per cycle.

An EABI-compliant procedure could use registers / stack / both / neither to receive

arguments from the caller, and the callee should never / sometimes / always save and

restore the registers it uses.

The 12C bus is most commonly used to connect chips on a board / devices in a rack /

computers and modems.

The SPI bus is most commonly used to connect gne / two / many master device(s) to

one /two / many slave device(s).

You would expect that I2C /SPI would be able to support the higher data rate.

Differential signaling over a twisted pair of wires is used in a number of modern buses to

reduce the impact of external noise / make it easier to not have a shared clock /

implement Manchester encoding / increase the speed of the data lines.

Multiple devices can usually share an edge / level triggered interrupt line.

The RESET interrupt is maskable / non-maskable.

2/7

Name: Uname:

2) Consider the following 3-bit ADC. Draw the conversion transfer function (binary output vs
input voltage) on the top graph. Draw the quantization error transfer function (error voltage
vs input voltage) on the bottom graph. Make sure the transition points are clear. Assume
Vref'is 5V. [15]

\rin
) 111
: 110
de_d 101
> 8-line to 100
3-line 011
>: priority |
encoder — -~ Binary output 010
>" L 001
000
§_|—[0 5 V

3) Assume you have a 3-bit SAR ADC. The analog input is 0.35 V and the Vrefis 1V. Show
how the SAR would approximate the analog input over three cycles. Label the cycles on the
x-axis and show the approximation as a meandering stair-step line on the graph. [10]

111
110
101
100
011
N-bit c?éﬁ!il.f?é.”éu 010

Register » 001
SARLoSle | 000

Compam=tor

VREF

4

3/7

Name: Uname:

4) ARM assembly [15]

a) Write ARM assembly code that sets bits 4, 5, and 6 of register r0 to “Is” without
changing any other bits in that register. Use as few lines of assembly as you can. [5]

b) After running the following code snippet, the value of r2 at done is . Show
how your arrived at this conclusion. [5]

start:
movs r0, #1
movs rl, #1
movs r2, #1
subs r0, rl
bne done
movs r2, #2
done:
b done

¢) Write an ARM assembly language procedure that implements the following function in
an EABI-compliant manner and conforms to the following signature. Identify which
register holds which argument. [5]

f(x,y,2) = x+y-z
int32_t func(int32_t x, int32_t y, int32_t z);

4/7

Name: Uname:

5) Assume you have a memory-mapped register location REG_FOO on a 32-bit architecture.
Modify main to add 7 to REG_FOQ’s value. Your code should compile without any

warnings. [10]

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

main () {
// Your code here to declare reg and
// add 7 to REG_FOO’'s value.

printf (“0x%x\n”, *reg); // Prints out new value

}

6) Say your code writes the value 0x76543210 to memory location 0x20000604, on an
ARM Cortex-M3. Assume this memory location sits in an SRAM with no access delay (i.e.
a zero wait state). If you could attach a logic analyzer to the AHB bus, draw a timing
diagram that shows what you would expect to see on the logic analyzer for this write
operation. Make sure the actual values being transferred on the bus are clearly labeled. [10]

AHB Bus

FCLK | | ~ | ~ | ~ | ~
HADDR[31:0] |
HWRITE |
HWDATA[31:0] |

HREADY (OUT) |

5/7

Name: Uname:

7) Imagine that you want to attach an LED to the ARM Advanced Peripheral Bus (APB).
Sketch out the glue logic needed to interface a D flip-flop (DFF) to the APB. Assume that
the PSEL line is the peripheral select (i.e. it goes high when the processor is addressing the
DFF) and that the DFF will be attached to data bits (PWDATA[0] and PRDATA[0]), perhaps
through tri-state drivers. You should be able to change the value of the DFF by writing the
memory location corresponding to the PSEL and read the current value of the DFFs by
reading the location. Assume that the DFF has an enable (ENA) line that, when not asserted,
ignores any inputs (e.g. D and CLK) but continues to drive Q and Q#. The APB signals
available to you are: PCLK, PADDR, PWRITE, PSEL, PENABLE, PWDATA, and
PRDATA. [10]

6/7

Name:

8) Write a C function void enable_interrupts (int x) that enables interrupt x. You
need not check to validate that x is a legal interrupt number. The table below might be useful.

Uname:

[10]
Table 6-1 NVIC registers

Address Name Type Reset Description
OxENOOEDD4 ICTR RO - Interrupt Controller Tipe Register, ICTR
OxEOQOE100 - NVIC ISERO- RW 0x00000000 Interrupt Set-Enable Registers
@xEQQOELLC NVIC_ISER7
OxEOQOE1R0 - NVIC_ICERO- RW 0x00000000 Interrupt Clear-Enable Registers
@E@OOxE19C NVIC_ICER7
OxE0QQE200 - NVIC_ISPRO- RW 0x00000000 Interrupt Set-Pending Registers
@xE0Q0E21C NVIC_ISPR7
OxE0QOE280 - NVIC_ICPRO- RW 0x00000000 Interrupt Clear-Pending Registers
@xE0Q0E29C NVIC_ICPR7
OxEQOOE300 - NVIC_IABRO- RO 0x00000000 Interrupt Active Bit Register
@xE0QOE31C NVIC_IABR7
OxENOOE400 - NVIC_IPRO - RW 0x00000000 Interrupt Priority Register
OxEQQOE4EC NVIC_IPR59

void enable_interrupts(int x) {

7/7

