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ABSTRACT
Today, most sensors that harvest energy from indoor solar, ambient
RF, or thermal gradients buffer small amounts of energy in capaci-
tors as they intermittently work through a sensing task. While the
utilization of capacitors for energy storage affords these systems
indefinite lifetimes, their low energy capacity necessitates complex
intermittent programming models for state retention and energy
management. However, recent advances in battery technology lead
us to reevaluate the impact that increased energy storage capacity
may have on the necessity of these programming models and the
reliability of energy harvesting sensors.

In this paper, we propose a capacity-based framework to help
structure energy harvesting sensor design, analyze the impact of
capacity on key reliability metrics using a data-driven simulation,
and consider how backup energy storage alters the design space.
We find that for many designs that utilize solar energy harvesting,
increasing energy storage capacity to 1-10 mWh can obviate the
need for intermittent programming techniques, augment the total
harvested energy by 1.4-2.3x, and improve the availability of a
sensor by 1.3-2.6x. We also show that a hybrid design using energy
harvesting with a secondary-cell battery and a backup primary-cell
battery can achieve 2-4x the lifetime of primary-cell only designs
while eliminating the failure modes present in energy harvesting
systems. Finally, we implement an indoor, solar energy harvesting
sensor based on our analysis and find that its behavior aligns with
our simulation’s predictions.
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1 INTRODUCTION
Non-rechargeable (primary-cell) batteries have been the preferred
method of powering sensors for both academic experimentation
and commercial applications. They enable sensors that are easy to
design, simple to program, and reliable to operate until their batter-
ies are exhausted. However, as we strive towards ubiquitous sensor
deployments aimed at supporting applications such as building
automation and industrial monitoring, the human cost of frequent
battery replacement may become untenable.

With the goals of alleviating battery replacement costs and de-
ploying sensors in difficult-to-access environments, researchers
have explored sensor designs that can rely solely on harvested
energy. Due to declining active and idle power of core system com-
ponents, subsisting on the small amounts of energy available from
indoor solar, ambient RF, and thermal energy sources has become
possible in the last decade. Initially, harvested energy was stored
in capacitors because contemporaneous rechargeable lithium ion
batteries required complex charging circuitry and offered low cycle
lifetimes—undermining the goal of long-lifetime sensors.

Unfortunately, capacitors offer small energy capacity relative
to the sensing, computing, communication, and storage tasks per-
formed by sensors, and systems that employ them must cope with
this limitation. Specifically, capacitor-based systems cannot per-
form atomic operations that require more energy than can be
stored in the capacitor. They must intermittently work through
non-atomic tasks over several iterations of starting up, perform-
ing some work, depleting energy reserves, and recharging. Still,
significant progress has been made in making these systems more
reliable and programmable. Progress latching and checkpointing
techniques [30, 40] enable forward progress through reboots, spe-
cial debugging tools [9] can emulate and replay energy state, and
finely-tuned or reconfigurable power supplies [10, 16] increase
sensor availability under varying workloads. Even with these tech-
niques, capacitor-based energy harvesting sensors are less reliable
and more difficult to use than their battery-powered counterparts.

Recent trends in technology, including new energy harvesting
battery management ICs and advances in rechargeable battery
(secondary-cell) chemistries, suggest that we no longer may be
limited to using capacitors in low power, long-lifetime designs [21].
New energy harvesting ICs are low leakage and offer high effi-
ciency max power point tracking even at low harvesting voltages
and currents [3, 43]. New battery chemistries like lithium titanate
(LTO) [19] and lithium iron phosphate (LiFePO4) [42] can with-
stand 4,000-10,000 cycles before cell degradation [36, 44] and come
in small (100-700mm3), and inexpensive ( $1 USD) packages [19, 20].
This work seeks to analyze and characterize the impact of energy
storage capacity on energy harvesting sensor systems. We define a
design space that is characterized by system capacity, harvesting
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potential, and workload, identifying where different intermittent
computing techniques are necessary and helpful. Further, we ex-
plore the benefits of capacity on energy utilization and reliability.
Finally, we show the potential gains offered by including a pre-
charged, backup energy store, such as a primary-cell battery, in a
sensor’s power supply and examine the impact on lifetime.

In our initial analysis, we consider human-occupied indoor en-
vironments and solar energy harvesting sensors. We find that in
these scenarios, increasing energy storage capacity to an amount
much greater than that required by a sensor’s workload eliminates
the need for checkpointing and significantly reduces the impact of
finely-tuned and reconfigurable power supplies. Eliminating the
necessity of these techniques further increases operating efficiency
because the techniques themselves draw considerable power.

To analyze the impact of capacity under variable harvesting
conditions or variable workload, both of which are common in real-
world environments, we develop a numerical model that utilizes
energy traces and several workloads that are representative of
real hardware. We use this model in the context of solar energy
harvesting, and find that sensors with higher capacity, on the order
of that of a battery, capture and utilize 1.3-2.6x the energy of systems
with capacitor-sized energy stores. This energy allows systems to
perform near 100% of scheduled tasks on time compared to only
20-80% for systems with insufficient energy capacity to continue
operating through energy droughts, or periods in which there is
not sufficient harvestable energy to sustain operation.

We find that the inclusion of a backup energy store like a primary-
cell in energy harvesting systems can eliminate nearly all drawbacks
of energy harvesting designs. Backup energy can be used to retain
state across reboots, cold-start harvester front ends to increase their
efficiency, and boost the availability of a sensor when harvested
energy is depleted. While a backup energy store does come with a
finite lifetime, our model predicts that hybrid designs performing
all of these operations achieve 2-4x the lifetime of primary-cell
only designs. A backup energy source that is only used for state
retention and harvester cold-start would offer longer lifetimes.

Based on our design exploration, we implement a solar energy
harvesting platform, Permamote, to enable autonomous lighting
control for indoor spaces. It has a 20mAh secondary-cell for more
energy capture and a backup energy store to ensure state retention
and high reliability even during long energy harvesting droughts.
We present the new and low-power components selected for its
design, demonstrating the viability of the design point and power
measurements of these components, which are used as the basis
for the standard workloads that we define and model. To validate
the model, we deploy Permamote along with battery-powered and
intermittent systems and compare their performance to that pre-
dicted by the model. We show that lifetime estimates, the frequency
and timing of charge-discharge cycles, and expected number of
transmissions are similar to that of the deployed systems.

When we began the design of Permamote, we initially intended
to use capacitors as the rechargeable energy store. At the time, the
assertion that batteries were expensive, bulky, and had extremely
limited lifetimes was prevalent [10, 15–18, 29]. Upon further ex-
amination, we find that these claims are no longer true for many
applications due to technology improvements, and the gains pro-
vided by increased energy storage capacity are numerous. Greater

rechargeable capacity allows a system to obviate the need for in-
termittent techniques and harvest more energy. More collected
energy translates to higher reliability and capability. The addition
of a primary-cell allows an otherwise unreliable system to operate
without interruption for years or decades, or to support state reten-
tion and eliminate expensive cold start. With these advances, we
envision future energy harvesting sensors which are not limited by
the visions of immortality but are instead long-lived, reliable, and
capable of enabling interesting and useful applications.

2 RELATEDWORK
Prior work regarding energy harvesting sensor systems can be
broadly divided into two categories: those which make use of inter-
mittent computing techniques and those which do not. Intermittent
systems often exist in a regime of unreliable and ultra low harvester
power, where operation and uptime are not guaranteed. As such,
they often lose power and reboot while intermittently working
through a sensing task. A wealth of work has been devoted to
making these systems usable and reliable. Other energy harvesting
systems, especially those deployed outside, have access to signifi-
cantly more harvestable energy and are able to store more of this
energy for later use, so they do not use intermittent computing
techniques to complete their workloads.

2.1 Intermittent Sensors
Energy harvesting systems that rely exclusively on repeatedly
buffering small amounts of energy to operate are commonly re-
ferred to as intermittent systems. Many choose to employ capacitors
as an energy buffer due to their theoretically infinite lifetime, but
are limited to small energy capacities, and are only as reliable and
lively as their source of harvested energy. In situations of energy
drought, these platforms often deplete their small energy stores,
and they power off and lose state, potentially in the middle of an
important operation or for an extended period of time.

One-shot Intermittency. The Gecko and Monjolo platforms ig-
nore the difficulties associated with completing longer workloads
and instead allocate just enough capacitance to turn on and per-
form a simple task. Sometimes, the rate of harvesting is the sensor
itself [8, 12, 45]. However, this approach can require tedious and
non-standard optimization of the cold start process and is severely
limited in its simplicity. Performing any sensing or computing out-
side of the hardware’s intended use case is often not possible, and
it is difficult to distinguish sensor failure from a lack of energy.

Checkpointing. Other work in this space attempts to cope with
intermittency by developing tools and programming language prim-
itives that allow complex and energy intensive tasks to execute
despite limited energy storage. Intermittent-aware programming
models and compilers were developed to enable checkpointing and
progress latching over workloads that may require more energy
than can be stored or harvested in a reasonable time [18, 30, 40].
New debugging tools spanning both the hardware and software
domains measure the energy required for specific code operations
and restore energy state during code breakpoints [9].

Hardware Hysteresis Management. In addition to intermittent
software techniques, hardware platforms have been developed to
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increase availability and responsiveness through the fine-grained
management of capacitor charging hysteresis. For these systems, it
is often assumed that the upper hysteresis threshold, the point at
which a charging device turns on, is the voltage at which a capacitor
is full, and the lower threshold, the point at which the system turns
off or sleeps, is the minimum operating voltage of components in a
system. Smaller capacitors can charge to an upper threshold and
turn on faster, but store less energy. Hysteresis management tech-
niques attempt to combine different sized capacitors to minimize
charging time while also maximizing available energy.

The Flicker platform employs federated energy storage in which
each peripheral has its own storage tuned to the task it is expected to
perform [15, 16]. This has the effect of allowing various components
to charge their storage faster, as well as isolating power failure to
independent components. The Capybara platform is similar, but
provides even more flexibility by dynamically resizing its banked
capacitor store to match the energy required by a task [10]. This
leads to the lowest possible cold start and capacitor recharge times
to support a given operation.

We believe the assumption that operation should be coupled to
full-swing hysteresis is not valid for many systems. Capybara does
explore the possibility of setting an upper threshold to less than
the maximum voltage and using an adjustable bottom threshold
instead of dynamically resizing their capacitor store. However, they
disregard these options due to high voltage comparator power and
long cold start times, respectively.While these decisions make sense
in this context, the importance they place on cold start optimization
is specific to their design. Capybara’s power supply has a significant
"power overhead of the power system" that limits the effectiveness
of sleeping. Due to this, they opt to fully discharge their storage
on every operation and optimize cold start. In practice, if a system
has the ability to enter a low power sleep mode or power off, it can
avoid cold start and control its energy usage by willfully entering
these states. With this operating principle, the benefits of hardware
hysteresis management are limited to reducing cold start time and
are workload independent.

These complex software and hardware solutions, while increas-
ing usability and reliability, do not address the singular problem for
capacitor-based energy harvesting systems: in the face of plentiful
harvestable energy, they are not able to store the energy for later use
(in times of energy drought). As a result, they must micro-optimize
the little energy they have. In many applications, if these systems
had sufficient capacity, they could instead adjust sensing rate and
workloads over periods of days or weeks. We show that the energy
captured by these systems and their subsequent availability could
be substantially improved by using larger energy buffers.

2.2 Non-intermittent Sensors
Non-intermittent energy harvesting sensors have largely existed
in environments with plentiful harvestable energy and have been
designed with sufficient capacity to capture this energy. Some de-
vices have also embraced backup primary-cells to further ensure
reliable operation.

Rechargeable Batteries. Most examples of such devices are de-
ployed outdoors. For these systems, the obvious choice is to use
secondary-cells, as they can better capture a significant portion of

copious solar energy [2, 11, 22, 23, 28]. Most notable of this group
is Prometheus, which utilizes a supercapacitor as a short term en-
ergy store, and when full, charges a backup rechargeable lithium
battery [22]. At the time of its design, lithium cells offered highly
limited recharge cycles, and by utilizing a supercapacitor, much of
this charge-discharge volatility was masked from the secondary-
cell, extending its lifetime. Rechargeable batteries have also been
applied to indoor sensing. The EnHANTs sensor uses an intention-
ally oversized NiMH battery, with plans to eventually use a thin-film
battery [32]. While the choice to use batteries allows for more en-
ergy capacity, NiMH and thin film chemistries offer poor energy
density and lower cycle life compared to lithium based chemistries.
DoubleDip and other sensors [33, 39] use a lithium-manganese
battery. DoubleDip notes that supercapacitors offer lower energy
density and higher leakage when compared to batteries, but admits
that the lithium-manganese chemistry suffers from low maximum
output currents and a limited number of charge-discharge cycles.
While the limitations of past batteries have slowed their adoption
in low energy harvesting scenarios, we claim that recent develop-
ments in battery technology will enable higher capacity energy
storage without these trade offs.

Backup Energy Store. Regardless of which energy store is used,
energy harvesting systems will experience some degree of intermit-
tency. We advocate that a non-rechargeable backup energy store
can be utilized to mask this intermittency, cold start electrical com-
ponents, and provide consistent, reliable, and lively operation.

The only systemwe find that employs a non-rechargeable backup
is the Pressac line of capacitor-based energy harvesting sensors
which use battery backup to obtain an estimated 10 years of contin-
uous operation [38]. This work suggests that these sensors could
significantly increase their lifetime by using a larger secondary en-
ergy store. There has been little exploration on the benefits of this
hybrid design and the use of primary-cells to avoid intermittency,
cold start harvesting circuits, and provide baseline reliability.

3 AN ENERGY HARVESTING FRAMEWORK
We seek to illustrate the design space for energy harvesting sen-
sors in two ways. The first defines an energy harvesting sensor
framework to examine when designs are feasible and when they
require intermittent techniques. The second examines dynamic in-
come energy and device behavior through numerical modeling and
simualtion. The framework is based on three key metrics: harvested
energy income, workload, and capacity.

3.1 Sensor Regimes
The framework splits the design space into four main regimes: al-
ways on, infeasible, checkpointing required, and no intermittent
techniques required. These regimes and their constraints are illus-
trated in Figure 1, and explained in more detail below.

Always On. If the energy harvester supplies a sensor with more
power than the max power it will ever draw, then the device needs
no energy buffer capacity to remain operational. If this is not the
case, then a sensor must have some ability to buffer energy to use
when its operating power exceeds than the harvester input power.

3



IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Neal Jackson, Joshua Adkins, and Prabal Dutta

Energy Storage Capacity

Ha
rv

es
te

r
In

pu
t

Po
we

r
max device

power
Always on

leakage

energy of
largest atomic

operation

Infeasible
energy of

largest non-atomic
operation

deep sleep

Checkpointing
required

Hysteresis management helpful
Hysteresis management less helpful

Checkpointing not required

Figure 1:Design space for energy harvesting sensors based on their
energy income (which we assume is constant for this analysis), en-
ergy storage capacity, and workload. Workload is represented by
the largest atomic/non-atomic operations supported by a design,
as well as the deep sleep and leakage power. The plot breaks into
four regions: 1) always on or effectively powered, 2) Infeasible due
to lack of energy storage or leakage higher than harvesting rate
3) Feasible but requires checkpointing to make forward progress,
and 4) Enough energy storage to not require or benefit from check-
pointing. Additionally, sensors which have high power when they
enter deep sleep before depleting their energy buffer may benefit
from hysteresis management techniques. This benefit diminishes
with lower sleep currents and higher harvesting potential.

Infeasible. If the energy harvester supplies less power than the
system leakage, the energy buffer will never charge. If the energy
buffer capacity is less than the energy required to perform a work-
load’s largest atomic operation, with energy harvested during the
operation itself, then that operation will not have enough energy to
complete. Neither of these designs will make forward progress and
are therefore infeasible. Common atomic operations on energy har-
vesting sensors include sampling a sensor, sending a radio packet,
booting the processor, and performing a checkpoint.

Checkpointing Required. If the energy buffer can hold enough
energy to perform atomic operations, but not enough to complete
workloads composed of multiple, chained atomic operations (such
as sampling a sensor and then sending a radio packet), then a mech-
anism for saving state and continuing progress on the next reboot
must be employed.

No Intermittent Techniques.A sensor that has enough harvester
potential and energy capacity to complete a workload’s longest
non-atomic operation can operate without checkpointing. Such
systems also benefit as energy devoted to checkpointing can be
used for a workload instead.

Hysteresis Management. Finally, if a sensor’s deep sleep power
draw is a substantial fraction of the harvester power, as is the
case with Capybara [10], then it is beneficial to continue operating
until the energy buffer is depleted, power off, and recharge quickly
rather than stop early and recharge slowly. Under this scenario,
hysteresis management techniques, such as reconfigurable capacity
and federated energy can increase sensor performance as discussed
in Section 2. The utility of hysteresis management is diminished

when the ratio of harvester power to deep sleep power increases. For
sensors that can willfully power off or sleep, operating thresholds
can be controlled, disentangling capacity and charging hysteresis.
Their deep sleep power is equal to leakage, and such techniques
will not improve recharge times.

For all systems, these techniques can decrease cold start time by
reducing the capacity that must be charged to achieve cold start.
This is more beneficial for systems that cold start frequently and
have a higher energy capacity, however, a higher-capacity energy
store also has a lower probability of needing to cold start. Therefore
the benefits of hysteresis management for cold start with respect
to storage capacity are in conflict with their necessity, and we do
not attempt to quantify these subtle nuances in Figure 1.

3.2 Framework Limitations
This framework makes a couple simplifying assumptions that pre-
vent it from fully capturing the richness of the design space.

Backup Energy Store. This framework does not consider the im-
pact of a backup energy store. A backup energy store can be viewed
as the ability to inject additional energy to the system at arbitrary
times, eliminating the need for checkpointing when there is very
low harvesting potential.

A backup energy store could also contribute in more subtle ways.
It could allow a system to avoid the energy and complexity of
checkpointing by providing just enough energy for a deep sleep
mode with state retention rather than a full power down when the
system depletes its stored energy. It could also cold start energy
buffer charging to eliminate the need for reconfigurable power
supplies, or to increase the efficiency of the energy harvesting front-
end at low voltages. Finally, in periods of long energy drought, the
backup energy store could increase sensor availability.

While the use of a backup energy store does constrain the sensor
to a finite lifetime, energy harvesting can substantially extend these
lifetimes under certain harvesting conditions.

Constant Harvester Power. The framework assumes an energy
harvester will supply a constant energy income, when in reality
income is often highly variable. In practice, a sensor platform both
defines the regions of the plot, and occupies a vertical line which
represents the energy storage capacity of the sensor combined with
the range of harvester input powers it might experience. We expect
this line will span multiple regions for most sensors.

However, by ignoring variability, the plot also fails to illustrate
key benefits of capacity under varying energy incomes and work-
loads. Intuitively, higher energy buffer capacity can store energy in
times of excess and supply that energy in times of drought. This bal-
ancing out of energy income effectively raises the minimum power
supplied by the energy harvester. Because the extent of this impact
is completely dependent on the variability of the energy income
and workload of the sensor, we also develop a numerical simulation
to quantify the impact of capacity on key metrics including energy
utilization, availability and reactivity.
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4 MODELING THE COMMON CASE
The framework we have presented does not consider harvesting
and workload variability. To explore the dynamic effects that en-
ergy capacity and backup storage have on sensor performance in
the face of variability, we develop a simple numerical model. We
use representative environmental conditions, measurements of real
hardware, and synthesized workloads to determine the common
case for our model and simulate the behavior of energy harvesting
sensors. From these data, our model produces estimates of energy
utilization, availability, responsiveness, and lifetime.

Environmental Conditions. We assume an indoor environment
that is built for and used by people. Occupied indoor environments
are the focus of a significant amount of prior work, and for good
reason: most applications aim to improve the lives of people and
are necessarily present in the spaces they occupy. Even the example
applications of intermittent, energy harvesting systems are nearly
all centered around monitoring indoor and human-centric phenom-
ena [8, 10, 16, 18]. We expect our environment to be lit, and that
it may occasionally get direct or indirect sunlight. We use indoor
photovoltaic energy harvesting because under these conditions, it
offers an order of magnitude more energy than other methods. This
does not mean that the conclusions we draw are not applicable to
other environments and harvesting methods, but that the sizing
and lifetime conclusions may be different.

To model the harvestable light in an occupied indoor environ-
ment, we use the EnHANTS indoor irradiance dataset [14]. We
find that it is the most complete and extensive dataset for indoor
light irradiance traces, capturing over a year of data in several sit-
uations. The traces we use for our model are summarized in Table 1.

Representative Hardware. We limit our analysis to the effects
of capacity, independent of the differences of energy intensity or
efficiency in device component selection. To do so, we define an
example solar energy harvesting sensor platform that utilizes avail-
able, state-of-the-art, commercial components. We choose new
components in an attempt to better represent prior energy storage
designs and give them the benefit of the improvements that have
occurred in recent years. We take benchmark measurements of
various tasks performed by this platform, such as the amount of
time and energy required to sample a sensor or send a Bluetooth
Low Energy (BLE) packet. These benchmarks are used to generate
energy utilization metrics for our representative workloads shown
in Table 1. The physical size of the solar panel used by this sensor
is assumed to be 10.9 cm2 and the volume of the sensor node is
similar to prior work like the Hamilton sensor [24]. We implement
this design and describe it further in Section 8.

Representative Workloads.We find that sensing workloads gen-
erally fall into three categories: (i) periodic sense-and-send [31],
(ii) reactive event detection [8], and (iii) infrequent, long-running,
high-power events [27]. We choose a representative workload for
each of these categories to use in our model. We characterize our
“periodic sense-and-send” workload as periodically sampling a light
and color sensor and sending a BLE advertisement containing the
data. Our “reactive workload” is represented by sending a BLE
advertisement upon motion detection of the main entrance of a
university building, and we linearly scale the frequency of these

Irradiance
Trace Total Days

Average
Power

(µW/cm2)

90th Percentile
Daily Power
(µW/cm2)

10th Percentile
Daily Power
(µW/cm2)

EnHANTS A 394 15.1 25.0 5.2
EnHANTS D 311 97.4 256.5 24.8

(a) Indoor photovoltaic irradiance traces
Workload Class Energy per Event (uJ) Average Period Average Power (µW) a

Periodic 586

10 s 58.6
30 s 24.5
60 s 14.7
120 s 9.8

Reactive 86
3.4 s b 25.3
6.8 s b 17.6
13.6 s b 11.3

Long-Running 93,300 2weeks c 5.1

(b) Representative workloads
a Average power includes an average 5 µW idle power, measured in Section 8.
b Event times are based on a Poisson distribution for each hour of the day and drawn
every second. The distribution is parameterized by collected entryway data then scaled.
c Event time is based on a uniform distribution and drawn every second.

Table 1: Representative harvesting conditions and workloads. To
evaluate different energy storage architectures, we define a set of
energy harvesting conditions and workloads that are representa-
tive of common sensing applications. We choose two real, 1Hz,
irradiance traces with different magnitudes of available energy.
We define three workloads: periodic, reactive, and long-running,
and we characterize those workloads for different event frequen-
cies. The energy used for each event is measured on our reference
hardware described in Section 8.

events to represent varying amounts of usage. We treat these work-
loads as atomic. Finally, our “infrequent expensive” workload is a
contiguous task that is representative of an over-the-air firmware
update, which is randomly executed with an average occurrence
rate of once every two weeks. We conservatively assume these long
running tasks can be interrupted and resumed at any point during
execution and that any checkpointing is free.

APredictiveModel.Weuse the previously discussed indoor irradi-
ance traces, generalized workloads, and hardware characterizations
to model the behavior of sensors using different types and sizes of
energy storage. We develop an open source1 numerical model that
allows parameterization of various system characteristics, including
regulator efficiency, solar harvester size and efficiency, energy stor-
age capacity, leakage, ESR, and charge-discharge efficiency. These
parameters are summarized in Table 2.

The simulation of our model operates as a second-by-second
calculation of the amount of energy entering and exiting a device.
At every step, the simulation calculates the net energy gain or loss
of the system based on its current state and available stored energy.
Occasionally, the model performs a workload event based on either
a periodic schedule (in the case of a sense-and-send workload) or
from a random distribution (reactive event detection or a high-
power event). For our modeling, workload schedules are generated
from values listed in Table 1. This simulation is performed for the
entirety of an input irradiance trace, which constitutes about a year
of data. During a simulation, metrics such as energy utilization, the
fraction of completed events versus expected events, and events’

1https://github.com/lab11/permamote/tree/master/simulator

5

https://github.com/lab11/permamote/tree/master/simulator


IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Neal Jackson, Joshua Adkins, and Prabal Dutta

Config Type Parameter Description
Device operating_voltage Output voltage of the power subsystem

boost_efficiency Efficiency of the boost converter
frontend_efficiency Efficiency of the harvesting frontend

Secondary capacity Capacity of secondary in joules or mAh
esr Equivalent series resistance in ohms
leakage_constant Factor for capacity dependent leakage
{max, min}_hyst Secondary capacity upper/lower hysteresis

Primary capacity Capacity of primary in mAh
leakage_percent Percent capacity leakage per year

Harvester area Area of solar harvester in cm2

(Solar) efficiency Efficiency of solar panel

Table 2: Simulation configuration parameters. A representative set
of available configuration options for our simulation of a sensor
with secondary storage and energy harvester, a primary-cell, or
both. A secondary-cell can be configured with a hysteresis, with a
lower bound set to min_hyst and an upper bound of max_hyst.

time to completion are collected, and if applicable, the primary-cell
lifetime is estimated from a trace of its state of charge.

During simulation, modeled devices can be online or offline and
idle or performing work. These states are shown in Figure 2. A
device’s state transitions from top to bottom of this figure and vice
versa depending on the energy state of the secondary storage. If
the secondary-cell energy state drops below min_hyst, the state
of the system moves to the upper half (offline) of this diagram.
The state of the system moves downward (online) if the state of
charge of the secondary reaches the max_hyst limit. Secondary
charging hysteresis limits are defined by parameters described in
Table 2. A device’s state can also move to the right or left of the
state machine depending on whether a workload event is scheduled,
or the prescribed workload has been completed. A new workload
event is counted as failed if the device is not in the Online Idle
state when it begins. In the case of the “atomic” sense-and-send and
reactive workloads, the modeled device will only begin to perform
an expected workload event if it has enough energy to perform
the event in entirety. If the workload is not atomic, the device will
only begin scheduled work if it has enough energy to make the
configured minimum amount of progress. We make the assumption
that the duration of atomic events are less than the one second
simulation step. We assume that a modeled sensor has perfect, zero-
energy progress latching and can go to sleep at any point after an
active event. If there is energy remaining after performing a task,
the modeled sensor will attempt to spend the rest of the simulation
period in the Online Idle state.

If the simulated device is configured with a backup primary-cell,
offline states transform to "primary" states in which the device
remains on and able to perform work, but charges energy usage to
the primary storage instead of the secondary. During these periods,
the secondary cell continues charging from harvested energy. Upon
reaching the upper charging hysteresis limit, the device returns to
an online state, using energy stored in the secondary. If the primary
storage is depleted, the simulation ends early.

5 CAPACITY INCREASES CAPABILITY
In addition to relaxing the need for intermittent techniques, we find
that an increase in sensor energy capacity achieves a significant

Offline Idle
Primary Idle

Offline Working
Primary Working

< min hyst≥ max hyst

work completed

work scheduled

< max hyst < max hyst

work completed

work scheduled

Online Working

≥ min hyst

Online Idle

≥ min hyst
(no work)

< min hyst≥ max hyst

Figure 2: Model state machine. A modeled device can be in one of
four states: Offline Idle, Online Idle, Online Working, and Offline
Working. When a device is Offline Idle, it has run out of energy
and is off. If a device is Online Idle, it is on and in deep sleep,
ready to perform work if triggered. If triggered, a device moves
to Online Working, where it performs a portion of a work event.
If a workload is atomic, workload events must be completed in
one Online Working step, without any transitions to an offline
state. Offline Working means that while working on a non-atomic
task, the device ran out of energy, checkpointed, and is waiting to
harvest more and resume its task. For devices configured with a
primary-cell,Offline Idle andOffline Working become Primary Idle
and Primary Working respectively. In these states, outgoing energy
is charged against the primary-cell and the device remains online
and able to perform work for the life of the primary-cell.

return on sensor reliability and capability in the face of variable en-
ergy income. Higher energy capacity allows higher energy capture
during periods of abundant harvestable energy.

5.1 Ambient Energy Utilization
Ambient energy is underutilized when it is not used to support the
specified sensing application. This may happen for two reasons: 1)
the secondary energy store is full but energy is still available for
harvesting, and 2) the sensor performs work based on its energy
state rather than its application goals. The first scenario is com-
mon for energy harvesting systems presented in prior work, which
charge up a capacitor and wait for an event before sensing and
sending, failing to capture all energy that may have been harvested
while their capacitor was full [8]. For an example of the second
scenario, consider systems that transmit a packet every time their
energy storage capacitor is full rather than saving this energy for
use during periods of lower harvesting potential [10, 16]. Another
example of this are sensors in which the harvesting rate is propor-
tional to the sensed phenomena [12]. While compelling for their
simplicity, these sensors use energy that could be saved and used
later for more useful and relevant tasks.

To explore ambient energy utilization as a function of storage
size, we model the charge-discharge patterns of idealized energy
stores under the harvesting conditions and workloads described
in Section 4. This modeling is primarily accounting for our first
classification of wasted energy, since our workload definitions do
not perform tasks in response to available energy; instead they
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Figure 3: Ambient energy utilization as a function of idealized secondary storage capacity for different harvesting scenarios and workloads.
The harvesting scenarios and workloads are described in Section 4 and Table 1. The x-axis is split by energy capacities possible with
capacitors, supercapacitors, and batteries. The upper extents of capacity for (super)capacitors represent ten 100 µF tantalum capacitors [4],
and one large 220mF supercapacitor [35]. Larger capacitors exist, but are not appropriate for use on a small sensor node. As energy storage
increases, the harvestable energy used in the application also increases, implying increased application performance. Some scenarios, such
as the periodic 30 s, 15.1 µW/cm2 case, reach 100% utilization at high secondary capacities indicating that available energy is not sufficient to
meet the application’s requirements. Generally, for both workloads and irradiance traces, from the smallest to largest capacity simulated, we
see a 1.4-2.3x increase in utilized energy.

attempt to maximize the success rates for the specified sensing
tasks. The results of this modeling are shown in Figure 3. No matter
the amount of available energy, utilization increases as storage
capacity increases. For scenarios with low harvesting potential and
high power workloads, a sensor with at least 1mWh of storage can
accomplish 100% utilization. In cases of high harvesting potential
and low power workloads, utilization often stops increasing before
reaching 100%. This can be attributed to a small fraction of the
available energy being sufficient to fully support the sensing task.
Small increases in utilization have significant impact on reliability
and system lifetime.

5.2 Application Reliability
We also model the ability of varying energy stores to meet our
defined sensing tasks and intensities. Our results are shown in Fig-
ure 4. Similar to the results of Section 5.1, we see marked increases
in performance when energy stores reach 1-10mWh of capacity.
Simulations experience 100% reliability for all but the most energy
constrained scenarios with high power workloads and ≥2mWh of
energy storage. We also see that even when low capacity sensors
have large energy harvesting potentials and infrequent workloads,
they experience low reliability. This is because they do not have
enough storage to keep sensing throughout the night.

Finally, we analyze the ability of different storage configurations
to perform a random, contiguous, higher energy task. We use a
100mJ (30 µWh) event that is representative of a 50KB over-the-
air code update. While this is larger than a code update would
be for simple programs, we see in Figure 4d that nearly all of the
configurations with 0.28mWh of energy storage complete the task
in theminimum time (5 s). In comparison, even reducing the amount
of energy storage to match the amount of energy required for the
code updates causes significant latency. It is clear that many of the
updates for smaller energy storage configurations do not complete
for 1000-10,000 s. This aligns with the amount of time a sensor may
sit idle overnight waiting for solar power.

6 RELIABILITY REQUIRES BACKUP
Increasing secondary capacity greatly improves reliability. However,
some environmental conditions and workloads do not reach 100%
reliability regardless of the size of the secondary store. Some results
in Figure 4 appear to achieve perfect reliability, but still miss 0.1-2%
of events. Others achieve well below 100% reliability, and simply
require much more energy than is harvestable. A backup energy
store can increase reliability of a system to 100%, at the cost of a
finite lifetime.

6.1 Reliability Required
We argue that 100% reliability is a significant improvement over
even low failure rates with respect to reliability and simplicity due
to the lack of intermittency. Many applications, especially human
facing ones, must be reliable to function, and research shows that
unreliability leads to frustration and unwillingness to adopt auto-
mated solutions [7, 13, 41]. To use energy harvesting sensors for
control or feedback of systems with potential safety issues, inherent
unreliability is intolerable.

Worse, intermittent system failures are difficult to detect because
there is no method for distinguishing between lack of energy and
an actual fault. While scheduled communication of current energy
state may help, this would be difficult for systems that only store
enough energy to perform a single operation such as Flicker [16],
Gecko [45], and some configurations of Capybara [10].

Finally, it is more difficult to program intermittent systems be-
cause programmers or the underlying programming model must
monitor and adapt to available energy with fine granularity, both
of which are non-trivial tasks. These systems have little ability to
correct for failures even when they are detected.

6.2 Lifetime of a Backup Energy Store
To achieve 100% reliability and avoid intermittency, designs can
utilize a backup energy store. In instances where the rechargeable
source is depleted, the system can operate from the backup, masking
the effects of variable energy income.When the backup energy store
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(d) Long-running, high energy event

Figure 4: Workload reliability for different harvesting scenarios, workloads, and idealized secondary storage sizes. We define reliability as
the percentage of successfully completed events. As expected, workload reliability follows the same trend as energy utilization, improving
with increased secondary energy storage. For both periodic and reactive workloads, from the smallest to largest capacity simulated, we see a
1.4-2.7x improvement in availability. In (c) we investigate the period at which different secondary storage sizes meet a specific reliability,
showing that even with infrequent periodic workloads, small amounts of secondary storage have low reliability while larger secondary
stores reach near 100% reliability. (d) shows a CDF of time to completion for events in the long-running workload. In this workload, events
are not atomic, and can be paused and resumed based on available energy. With secondary capacities that are large relative to the workload
(which takes 93mJ) we see immediate completion. However, performing the event on smaller secondary capacities can take between three
hours and a day to complete even for scenarios with large amounts of harvestable ambient energy.

is depleted, we consider the node’s lifetime to be complete, although
it could continue operating intermittently and with lower reliability.
This energy store should be a primary-cell, as they offer very low
self-discharge, long shelf life, and substantial energy density.

An analysis of the reliable lifetime of a node with both energy
harvesting and a backup energy store is shown in Figure 5. We
choose several backup energy stores with energy equivalent to
those found in several types of common primary-cells. We see that
with energy harvesting and a sufficiently large secondary energy
store, nodes can achieve 100% reliable lifetimes that exceed what
we can reasonably predict, especially for harvesting scenarios that
exceed the average power of the application. In these scenarios,
the inclusion of a backup energy store is critical to ensure reliabil-
ity in uncharacteristically adverse conditions. Even for conditions
with limited energy availability we still observe significant lifetime
improvements due to energy harvesting.

7 OPTIONS FOR CAPACITY
Capacitors and supercapacitors have been the preferred option for
storing energy in energy harvesting systems due to their purported
indefinite lifetime. Batteries have been largely abandoned by energy
harvesting researchers even though they offer performance and
lifetime benefits. Many intermittent systems papers have dismissed
batteries as expensive [15–18], temperature-sensitive [10, 15–18,

29], less efficient [15–18], bulky [15–18, 45], dangerous [15–18],
and short-lived [10, 15–18, 29, 45].

Due to recent developments in both battery technology and
management techniques, we believe many of these claims may no
longer be true. Recent work has highlighted new battery chemistries
such as LTO and LiFePo4 that do not possess these shortcomings
to the same extent as traditional lithium-based chemistries [21].

This work finds that 2-40mAh LTO cells are available in small
quantities for $1 USD, are of similar or smaller size, and offer orders
of magnitude more capacity than the capacitor configurations used
in recent intermittent system designs. These batteries are some-
what temperature sensitive, but have similar temperature ratings to
some supercapacitors and better temperature performance than tra-
ditional lithium-based chemistries. Specifically, they are sufficient
for common temperatures expected for indoor and non-extreme
outdoor spaces. While these battery chemistries possess more self
discharge and ESR than ceramic and tantalum capacitors, they
exhibit an order of magnitude lower self discharge than supercapac-
itors. At worse, the self discharge of LTO and LiFePo4 chemistries
are lower than the leakage of other sensor components [21].

More importantly, LTO and LiFePo4 chemistries offer 3000-4000
full cycle lifetimes [19, 36, 44], and this increases exponentially with
decreasing depth-of-discharge. By reducing depth-of-discharge to
10-20%, LiFePo4 cells can achieve greater than 10,000 cycles before
substantial cell degradation [36, 44]. We expect LTO cells will have
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Figure 5: Estimated lifetime when varying secondary energy capacity for different harvesting scenarios and backup energy storage sizes.
The periodic application’s period is 30 s and the reactive application events are scaled to represent a maximum of 2000 events per hour. The
backup sizes correspond to those found in common coin cell batteries: 90mWh, 720mWh, 4500mWh for the CR927, CR2032, and CR123A
respectively. As the ability to capture more harvested energy increases, the sensors lifetime increases. In some scenarios, expected lifetime
becomes unbounded as the device is able to subsist entirely on harvested energy. We see a 2-4x increase in lifetime estimates from the
smallest to largest capacity simulated, if we only consider bounded results. We emphasize that these lifetime estimations are just estimations,
and while we do model the 1%/year leakage typical of coin cells, we do not consider the unknown physical degradation that would be
experienced over decades of use.

similar gains in lifetime. In addition, the capacity of LTO cells do not
degrade when undervolted to zero volts, indicating that long term
storage or absences in charging are not as destructive as they are
with other lithium chemistries [6]. Finally, these new chemistries
are safer than older lithium chemistries. They exhibit significantly
lower thermal runaway under electrical, mechanical, and thermal
stress [5, 26], and LTO cells have been shown to not release toxic
gasses under temperature abuse like conventional lithium cells [5].

Finally, all batteries have the advantage of producing a stable
voltage if they have any stored energy. This helps significantly
with cold start issues caused by insufficient voltage, and prevents
the waste of energy stored in the lower voltages of a capacitor or
supercapacitor based system.

8 PERMAMOTE IMPLEMENTATION
We implement the design principals discussed in Sections 5 and 6 in
a new sensor called Permamote. The Permamote sensing platform
integrates a processor, BLE/802.15.4 radio, and various environmen-
tal, lighting, and occupancy sensors. A picture and system diagram
of Permamote is shown in Figure 6. All hardware and software for
the platform is open source2.

Energy Harvesting and Storage. Permamote is powered by an
energy harvesting front end that realizes the benefits of using bat-
teries. It uses the TI BQ25505 energy harvesting IC, which harvests
energy while monitoring both rechargeable and backup energy
stores, switching between them at user-configurable voltages [43].
A 20mAh (48mWh) LTO battery is charged by an 10.9 cm2 amor-
phous silicon solar panel [19, 20]. We limit the apparent capacity
of this battery to ensure longer cycle lifetime as described in Sec-
tion 7, but still have 24mWh of energy storage, more than the
capacity required to achieve the reliability and energy utilization
improvements described in Section 5. For the backup energy store,
Permamote uses lithium primary-cells which can be configured to
either one or two CR2032 coin cells or a CR123A cell. The output

2https://github.com/lab11/permamote/tree/master/hardware/permamote

of the active battery is boosted by a MAX17222 regulator, which
features high conversion efficiency (>90%) at low output currents
and operates down to 400mV [34].

Processor, Radio and Sensor Selection. In designing Permamote,
we search for the newest and lowest power components. To benefit
other platform builders, we document our component selections
along with their key performance metrics. A summary of these
components can be found in Table 3.

We note our choice of the Nordic NRF52840 MCU over the more
commonly used MSP430FR series because of its higher efficiency in
active mode while offering comparable sleep currents. Specifically,
it only draws 56 µA/MHz compared to over 100 uA/MHz for the
MSP430. Unlike intermittent systems, we do not rely on the FRAM
present on the MSP430FR series chips. While slightly more efficient
processors and radios exist than those found in the NRF52840, we
value the simplicity of an SoC-based design.

Energy Benchmarks. The data presented in Table 3 are bench-
marks taken on the Permamote platform. We find that a BLE ad-
vertisement at 0 dbm consumes 86 µJ and that sampling both light
and color sensors and transmitting them in a BLE advertisement
consumes 586 µJ. Additionally, the entire system, including the en-
ergy harvesting front end, consumes only 5.0 µW in deep sleep
with RAM retained and all sensors powered off. We use the energy
numbers from Permamote as a basis for our workloads to fairly
compare against prior energy storage architectures.

9 EVALUATION
To evaluate the model, we perform a three-month-long deployment
in a partially sunlit room using i) a primary-cell only system, ii)
an intermittent, capacitor-only system, and iii) Permamote, our
system that features both a secondary and primary-cell. We model
these systems over the same period and compare the availability of
Permamote to the intermittent system.

9
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(a) Harvesting and storage architecture (b) Hardware

Figure 6: The Permamote power supply architecture is informed
by the findings in Sections 5 and 6. An LTO battery is recharged by
a solar panel. When the battery is depleted, a primary-cell powers
the system, providing reliability and avoiding intermittency.

9.1 Model Analysis
We analyze the deployment of these systems and compare their be-
havior to our model’s predictions: i) ten CR2032 primary-cell only
devices, ii) an intermittent system configured with just 500µF of ca-
pacitance (about 0.36 µWh at 2.2 V), and iii) Permamote, configured
with a 20mAh (48mWh) secondary-cell, half of which is usable,
and a CR2032 backup. The primary-cell only device performs envi-
ronmental sensing over BLE every second. The intermittent system
sends a beacon as soon as its capacitor bank is full. When its energy
is depleted, it powers off and charges again. Permamote is run-
ning the “sense and send” workload that we described in Section 4,
and sends illuminance measurements every second. This workload
stresses the model and requires more charge and discharge cycles.
We use Permamote illuminance readings to estimate irradiance
using the same scaling factors used by Yerva et al. [45], and use
these traces as model input.

Primary-Cell Only.We model the workload of the primary-cell
system and produce estimates for lifetime. Our model predicts the
platform lifetime to be 58 days. We find that the average lifetime of
the 10 devices is 61 days.

Intermittent. We model the number of packets sent each hour by
the intermittent system over a three week period, and compare
against the results of an actual device in Figure 8a. The average
daily error of the model versus our results is 15%, with a standard
deviation of 17%. This error can attributed to two primary sources.
Illuminance is measured close to, but not exactly at the solar panel of
the test device. Occasional direct sunbeams, like that experienced
on day 16, can illuminate the solar panel but not the sensor, or
vice versa. This results in a substantial over or underestimate of
available light. In addition to inaccurate light measurements, we
introduce error through our estimation of irradiance. We measure
illuminance instead of irradiance, and must resort to a piecewise
linear estimation, when in reality the relationship is not well defined
and non-linear when considering different light sources. In the
case of our estimation, results indicate that the model consistently
underestimates high irradiance measurements.

Secondary and Primary-Cell.We compare ourmodel’s predicted
state of charge to a deployed Permamote over a seven day period in
Figure 8b. We estimate state of charge from the reported secondary-
cell voltage, and irradiance from lux measurements. In this figure,
the state of charge cycles between configured battery hysteresis

Component Function Active Power Idle Power

Nordic NRF52840 Processor 56 µA/MHz 940 nA a

Radio 5.2mA @ 0dbm — a

Ambiq AB1815-T3 Real time clock 55 nA N/A b

ST Micro LIS2DW12 Accelerometer 1 uA @ 12.5Hz 50 nA
Maxim MAX44009 Light sensor 650 nA N/A b

Intersil ISL29125 Color sensor 56 µA 500 nA
Silicon Labs SI7021 Humidty sensor 1.5 µA @ 1Hz 60 nA
TE Connectivity MS5637 Pressure sensor 0.6 - 5 µA @ 1Hz 10 nA
Panasonic EKMB11011 PIR Occupancy 100 µA 1 uA

a Sleep current for both processor and radio. b No shutdown or idle mode.
Table 3: The components used in Permamote. These components
are among the lowest power options available, and are even 2-4x
lower power than those used on relatively recent systems such as
BLEES, Flicker, Capybara, and Hamilton.

Figure 7: Packets received over two days. This figure compares the
reliability of an intermittent design and Permamote. Permamote
sends a packet every second and does so without fail, while the
intermittent system is only able to send when light is available.

limits, as the workload is too intense to be sustained by energy
harvesting alone. Flat and upward slopes of the curve represent
the device in hysteresis, using the primary battery to perform its
workload. Upper slopes indicate the secondary cell is charging from
harvested energy. Downward slopes indicate the device is out of
hysteresis and is using harvested energy stored in its secondary
battery to perform its workload. The shaded “nighttime” regions
are not uniform, as the deployment environment is occupied by
graduate students that occasionally work late hours or forget to turn
off the lights. The model correctly predicts the cycling behavior of
the deployed device for two days, but deviates during the third day.
The model predicts that the device would charge above the upper
hysteresis limit and begin supplying energy from the secondary-
cell before the test device actually does. This inaccuracy, like that
of the last of experiment, is partially due to our inexact estimation
of irradiance. In addition, real device hysteresis limits are set using
resistor networks. The resistors used have 1-5% tolerance, and are
susceptible to temperature changes, which introduces dynamic
errors that is not accounted for in our model. Even though the
predicted state of charge deviates after two days, the length and
frequency of periods in which harvested energy is stored and used
are identical to our experimental measurements.

9.2 Permamote Performance
We also compare the performance of the deployed intermittent
system and Permamote. In Figure 7, we show the number of packets
sent per hour for two days. Permamote sends data every second,
while the intermittent system sends as fast as possible. Permamote is
able to collect and send its data continuously, while the intermittent
system is limited to sending only during the day. This demonstrates
the increased availability afforded by increasing secondary capacity
and including a backup energy store.
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Figure 8: Model comparison to deployed hardware.Data from
a three month deployment of two systems is used to verify our
model. (a) We use three weeks of lux measurements to estimate
irradiance and model the number of packets transmitted by an inter-
mittent node. Average daily error is 15%, with a standard deviation
of 17%. (b) We model and measure a Permamote’s state of charge
while running a “sense and send” workload with a 1 s period for a
week, beginning at midnight on the first day. Secondary charging
hysteresis limits of the devices are set at 51% and 43%. Shaded re-
gions represent periods of low harvestable potential (< 15 µW/cm2),
i.e. nighttime. For the first two days, model predictions closely track
the experimental measurements. Errors in hysteresis and irradiance
estimation cause the model to reach its upper hysteresis sooner
than the experiment does, annotated by the green circle. In actual-
ity, the device exits charging hysteresis at the peak marked with the
purple square. More importantly, the frequency and length of pe-
riods spent using harvested energy collected in the secondary-cell
(downward slopes) are identical.

We also use our model to explore the estimated performance
of Permamote compared to prior systems. To isolate the analysis
to just power supply types and sizing, we assume each system
uses the same low-power hardware and is performing the same
workload. The results of this modeling are shown in Table 4. Our
model estimates that Permamote can expect several decades of
100% reliable lifetime when configured as it was deployed for this
evaluation, albeit configured with a less intense workload.

10 DISCUSSION
While we have verified that our model generally matches reality,
many assumptions were made that impact its predictions. Specifi-
cally, lifetime estimates produced by the model can be described as

Platform Successful Events (%) Long-Running
Time to Completion Ratio Lifetime (yrs)

Periodic Reactive Average 95th Percentile
Telos [37] 100 100 1 1 8.55
Hamilton [24] 100 100 1 1 6.75
BLEES [1] 100 100 1 1 1.11
Gecko [45] 39.5 64.9 387 981 ∞ g

Capybara [10] a 46.3 72.8 37.6 1 ∞ g

Capybara [10] b 41.1 67.1 2730 8900 ∞ g

Flicker [16] 39.3 64.2 1307 5670 ∞ g

EnHANTs [32] 79.4 96.0 1 1 — h

DoubleDip [33] 77.9 66.5 1 1 — h

[39] 78.4 66.9 1 1 — h

Permamote c 81.2 98.3 1 1 — i

Permamote d 100 100 1 1 35.8
Permamote e 100 100 1 1 30.2
Permamote f 100 100 1 1 6.27
a With capacitors: 400 µF ceramic + 330 µF tantalum + 67.5mF supercapacitor.
b With capacitors: 300 µF ceramic + 1100 µF tantalum + 7.5mF supercapacitor.
c No primary-cell. d AA primary-cells like Telos. e CR123A primary-cell like Hamilton.
f CR2032 like BLEES. g Lifetimes are theoretically infinite for capacitor-based systems.
h Not enough information to predict cycling failure time for theses systems.
i Expect cycling failure in 20-50 years, but do not attempt to estimate.

Table 4: Modeled performance of energy harvesting systems. For
each platform considered, we model the performance of its en-
ergy storage architecture. Periodic workload and lifetime estimates
are based on a 10 s period, and the reactive workload is scaled to
generate a maximum of 2000 events per hour (3.4 s average daily
period). Generally, intermittent systems have significantly worse
availability and responsiveness compared to battery-only systems
and systems that use a secondary-cell. Battery-only systems achieve
perfect operation, but have finite, sub-decade lifetimes.

optimistic. We are skeptical of the reality of these lifetimes when
considering the myriad of factors not considered by our model.

Model Limitations. Many assumptions were made when design-
ing the model and considering different parameters and behaviors.
In particular, many dynamic parameters are modeled as static. For
example, leakage is dependent on state of charge and age, but we
assume a static leakage rate. Similarly, many components like solar
panels and boost regulators have dynamic efficiencies, that we con-
sider to be static. Nominal voltages for solar panels and batteries
are used to calculate energy output and capacity, but they are really
dynamic. In addition, we do not consider the effects of temper-
ature and ignore cycle capacity degradation for supercapacitors
and secondary-cells. We also assume that every platform can wake
up and perform a task at any point in its voltage curve. In reality,
many intermittent systems must recharge to a threshold voltage.
We attempt to ensure that these assumptions favor intermittent
systems over larger capacity designs so that our conclusions are
not distorted by inaccuracies in the model.

Theoretically Infinite vs. Reality. We discuss capacitor-based
systems as perpetual throughout the paper and even predict that
Permamote will have 30-50 years lifetimes under some configura-
tions and harvesting conditions. While in theory this is true, it is
highly unlikely that any sensor nodes we build and deploy today
will be functional, let alone relevant in 50 years. We expect physical
degradation of not only energy storage components, but also the
silicon itself. The MCU architectures in use on these systems have
only been commercially available for 1-2 decades. This makes it
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difficult to state that failure rates will remain low for over five.
Components like MEMS sensors and oscillators will age and lose
calibration well before this time. Outside of physical degradation,
we must also consider the potential decline of common protocols
and standards that dictate wireless and security functions, and spe-
cial care will need to be taken to ensure long term operation [25].
Before advances in device and sensor technologies are realized, we
expect that the increases in usable energy shown in this work may
translate into sensor nodes that are smaller in size or more capable,
rather than sensor nodes with multi-decade lifetimes.

11 CONCLUSIONS
Our results, along with recent advances in battery technology, sug-
gest that we are now able to build energy harvesting sensors with
greater energy storage capacity. These sensors will not need to
micro-manage their energy state and can instead adapt their life-
time and energy usage over the course of weeks, months, or not at
all. This push toward reliable and capable sensors will enable more
standard programming models, energy management techniques,
and ultimately useful applications to be built on top of dense and
ubiquitous energy harvesting sensor deployments.
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