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ABSTRACT

We present a method for calibration-free, infrastructure-free lo-

calization in sensor networks. Our strategy is to estimate node

positions and noise distributions of all links in the network simul-

taneously — a strategy that has not been attempted thus far. In

particular, we account for biased, non-line-of-sight (NLOS) range

measurements from ultra-wideband (UWB) devices that lead to

multi-modal noise distributions, for which few solutions exist to

date. Our approach circumvents cumbersome a-priori calibration,

allows for rapid deployment in unknown environments, and fa-

cilitates adaptation to changing conditions. Our first contribution

is a generalization of the classical multidimensional scaling algo-

rithm to account for measurements that have multi-modal error

distributions. Our second contribution is an online approach that

iterates between node localization and noise parameter estimation.

We validate our method in 3-dimensional networks, (i) through

simulation to test the sensitivity of the algorithm on its design

parameters, and (ii) through physical experimentation in a NLOS

environment. Our setup uses UWB devices that provide time-of-

flight measurements, which can lead to positively biased distance

measurements in NLOS conditions. We show that our algorithm

converges to accurate position estimates, even when initial position

estimates are very uncertain, initial error models are unknown, and

a significant proportion of the network links are in NLOS.
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1 INTRODUCTION

Localizing the nodes of a sensor network is an essential technology

with applications spanning the commercial, public, and military

sectors. The success of such technologies, however, hinges on

the robustness of the underlying localization algorithm to arbi-

trary measurement noise distributions. Indeed, while we aim at

engineering localization hardware with predictable measurement

uncertainty, external environmental factors can have significant

impact on signal propagation and, thus, affect measurement char-

acteristics. Since these external factors are very hard to model, our

goal is to develop methods that can handle arbitrary error distri-

butions. In particular, we focus on time-of-flight based range-only

localization in multi-path environments. In spite of sophisticated

signal processing methods, the resolution of multi-path signals is

still a hard problem [34]: when hardware-level algorithms fail to
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Figure 1: Actual and estimated node coordinates for a network with

20 nodes, 50% NLOS links (dashed lines) and average node degree 9.
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Figure 2: Range error between two SurePoint [21] devices based on

a total of 303 time-of-flight measurements, collected inside a room

withNLOS conditions. We superimposed the density of amulti-modal

Gaussian (fitted on the underlying data).

detect first signal paths, overestimated (positively biased) distance

measures are returned. When aggregated, these biased range mea-

surements lead to multi-modal error distributions. This is clearly

seen in Fig. 2, which shows an example of experimental data. Con-

sequently, we leverage statistical models that are able to capture

NLOS measurements, allowing us to compute accurate and precise

position estimates.

Formally, we consider the problem as an r -dimensional graph
realization problem in a network of n sensors whose positions

are unknown. Communication links are established bidirectionally

between selected nodes, for which pairwise distance measurements,

characterized by unique, unknown error distributions, are obtained

(see Fig. 1). The problem of simultaneously estimating the node

positions (and finding the unique graph realization), as well as

estimating the parameters of the underlying error distributions is

challenging — recent approaches assume either (i) knowledge of

the underlying statistical data model, to then successfully localize

the nodes [27, 30], or (ii) knowledge of the node positions to then

successfully estimate the model parameters [20, 31]. Moreover, the

joint localization and parameter estimation problem is compounded

by distance measurements that are biased and have multi-modal

error distributions.

This paper is the first to propose an approach that tackles net-

work localization in absence of both (i) and (ii), and, as a result,

allows for rapid deployments in unknown and changing environ-

ments. Moreover, by considering multi-modal error models, we

are capable of capturing NLOS behavior. This implicitly allows us

to distinguish between line-of-sight (LOS) and NLOS links in our

localization algorithm. Overall, our strategy is to progressively

reduce the error on both the node coordinates and the noise distri-

bution parameters for all links in the network by alternating online

between the two estimation sub-problems, ultimately returning

accurate node coordinates.

2 RELATEDWORK

The literature on network localization algorithms is vast — compre-

hensive, recent summaries can be found in [19, 24]. Here, we only

review selected methods that are most closely related to our work.

2.1 Graph Realization

The problem of finding Euclidean positions for the vertices of a

graph given a set of edge lengths is known as the graph realization

problem. This is a difficult problem for two main reasons: (i) the

existence of a unique realization depends on the topology of the

graph [16], and (ii) noise on the distance measurements compounds

the difficulty of finding a correct realization. In range-based mul-

tilateration, the Euclidean distances between pairs of nodes are

used to estimate the node coordinates. Aspen et al. [3] provide a

theoretical foundation for network localization in terms of graph

rigidity theory. The authors show that the network has a unique

localization if and only if it is generically globally rigid. However,

under the presence of noise in the range measurements, certain

ambiguities cannot be resolved, which means that even when the

graph is rigid, alternative incorrect realizations may result. Moore

et al. [30] propose an algorithm that addresses this problem, and

is capable of localizing a sensor network in the presence of range

measurement noise. The authors assume an unbiased Gaussian

noise distribution with known variance that is uniform all links

in the network. They introduce the probabilistic notion of robust

quadrilaterals as a way to avoid ambiguities that would otherwise

corrupt localization computations. Similarly, several works present

methods that exploit geometric relations between node-to-node-

distances [8, 15, 23, 24]. Finally, the work in [38] proposes a method

to jointly estimate target locations and received signal strength in-

dicator (RSSI) model parameters. The approach differs from our

work, however, since it makes use of fixed anchor nodes to estimate

both locations and channel parameters, and refers to the specific

case of RSSI.
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In contrast to these methods, our approach is anchor-free, does

not assume a-priori knowledge of the error distributions and allows

different multi-modal distributions for each link in the network.

Also, it is unclear how prior methods deal with biased, multi-modal

error distributions that add ambiguities to their geometric assump-

tions. Many existing approaches model range errors as having a

Gaussian distribution, whereas in practice ranging errors do not

follow this behavior. In order to achieve accurate localization, we

use a multi-modal distribution to capture the measurement charac-

teristics accurately.

2.2 Multi-Dimensional Scaling

An alternative centralized distance-based approach builds on the

theory of Multidimensional Scaling (MDS) [25] and formulates net-

work localization as a least squares problem. MDS is a general

technique that represents a set of elements in r -dimensional space
using a similarity measure between pairs of elements. When used

for localization, similarity ismeasured via the Euclidean distance [7].

There exist several implementations of MDS, such as classical MDS,

metric MDS, non-metric MDS, depending on the characteristics of

the distance information. Variations consider a weighted version

of distributed MDS, termed distributed weighted Multidimensional

Scaling (dwMDS) [12], and a version that accounts for missing dis-

tances and local information [35, 36]. Overall, the collection of cited

works operate under the assumption that the range measurements

are sampled from unbiased Gaussian distributions with known vari-

ance. This can be problematic in environments that induce biased

measurements; furthermore, even if the methods were to account

for biased measurements, the problem of accurately calibrating

the error models as a function of the underlying data is not only

cumbersome, but near to impossible in changing environments. We

tackle this problem by proposing an online method that improves

nodes estimates while autonomously reducing the uncertainty of

the error model parameters.

2.3 Ultrawideband Localization

UWB is an attractive sensing modality for distance-based localiza-

tion. The main difference between UWB and other radio frequency

signals is that UWB transmits its signal over multiple bands of

frequencies simultaneously, in the interval of 3.1 to 10.6 GHz, ex-

ceeding a bandwidth of 500 MHz or 20% of the center frequency. In

the time-domain, this is typically achieved through the transmis-

sion of short pulses (with a duration on the order of nanoseconds)

which have large characteristics. Additionally, UWB systems typi-

cally run on very low duty cycles, and, thus, are very low power.

In the context of localization, UWB features high positioning ac-

curacy (due to the fine time resolution of the emitted signals) and

high material penetrability (due to the large bandwidth). However,

despite these desirable traits, UWB localization is challenged by

NLOS scenarios that induce multi-path signal components [31, 34].

Methods that handle NLOS measurements can be classified into

two groups: those that detect and discard NLOS measurements,

using only LOS measurements [9, 11], and those that use NLOS

measurements in addition to the LOS measurements [10, 37]. The

approaches in the second group employ means of identifying which

measurements are NLOS, and adapt the computations accordingly,

e.g. by weighting or scaling those measurements. Our approach

belongs to the second group, allowing us to take advantage of a

larger amount of information, in particular when the majority of

links in the network is in NLOS. Yet, we differ from the latter ap-

proaches in terms of our underlying assumptions. Whereas Chen et

al. [10] assume that NLOS measurements are always significantly

larger in magnitude than LOS measurements, we do not. In fact,

our model captures arbitrary error behavior, and uses the estimated

distribution parameters to scale the importance of network links.

Venkatraman et al. [37] assume knowledge of the geometric layout

of certain base station nodes, to infer bounds on the NLOS range

errors that are obtained. This can be troublesome when the material

properties of the nearby environment has non-negligible affects on

the signal propagation. Similarly, in [26], the multi-path reflections

of the signals are computed geometrically by knowing the loca-

tions of the anchors nodes and the floor plans of the building. In

contrast to the latter approach, we assume no a-priori knowledge

of the layout of the sensor nodes nor of the floor plan. We are, thus,

capable of rapidly deploying sensor networks in unknown envi-

ronments. Moreover, we fully rely on our procedures to perform

system identification and calibration in real-time.

Previous work analyzes UWB error characteristics in indoor

environments, and indicates that (i) the error behavior is multi-

modal, (ii) the multi-modal characteristic is preserved over different

spatial scales, and (iii) the error behavior is different at different

locations in space (and depends on the embedding of the UWB

devices in a given environment) [32]. In spite of the complexity of

the error patterns, past work discusses the suitability of a variety

of statistical models with exponential behavior, supported on the

semi-infinite interval (0,∞) [1, 33]. In particular, it was shown in
several comprehensive measurement campaigns that error char-

acteristics are well captured by a log-normal distribution [1, 31].

The proposed models are compact and efficient, as they capture

the entirety of NLOS measurements in one statistical mode with a

heavy tail. In [32], a real-time calibration of the error distribution

parameters is performed. The approach uses the knowledge of the

node and anchor locations to estimate a Gaussian-Lognormal mix-

ture model. The latter work focuses on the calibration procedure,

and does not address the real-time estimation of node positions.

Furthermore, the disadvantage of the Gaussian-Lognormal mix-

ture model is that it fails to capture multiple precise NLOS modes,

when present. Building on this insight, we propose a more general

approach that does not depend on a-priori information, and that

performs a joint estimation of the node locations and error distribu-

tions. Indeed, in this work, we make use of a mixture of Gaussians

to model the error distributions, which can effectively capture mul-

tiple, potentially narrow modes over biased NLOS measurements

(representing multi-path propagation). Later, in Section 6.2, we

show how Gaussian mixtures are well-suited models, producing

good fits on experimental data (cf. Fig. 9).

2.4 Contributions

The novelty of our approach is summarized as follows: (i) we as-

sume no prior knowledge of the noise characteristics of the UWB

measurements (beyond the fact that NLOSmeasurements have posi-

tive bias), (ii) we estimate statistical noise models on a per link basis
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(since NLOS errors are location dependent [11]), (iii) we assume no

prior knowledge of the layout of the nodes in our network, and fi-

nally, (iv) we use all collected measurements (NLOS as well as LOS),

and assume no upper bound on the ratio of NLOS to LOS links. In

light of the aforementioned characteristics, our work makes the

following contributions: (i) a generalization of Multidimensional

Scaling (MDS) that enables localization with Gaussian-mixture-

distributed range measurements, typical in NLOS settings, (ii) an

online algorithm that iterates between node localization and model

parameter estimation and hence enables rapid calibration-free net-

work deployment, and (iii) experimentation on a setup composed

of 13 UWB radio nodes in an indoor environment with multipath

and NLOS characteristics.

3 PROBLEM FORMULATION

Consider a collection ofn sensorswith positionsX = [x1, · · · , xn]� ∈
R
n×r . Suppose that the sensors can communicate with one another

and represent the communication network by an undirected graph

G = (V, E) with verticesV := {1, . . . ,n} and |E | = m edges. An

edge (i, j ) ∈ E from sensor i to sensor j exists if the two sensors
can communicate. Let di j (X) = ‖xi − x j ‖ be the distance between
nodes i and j . We consider the problem of estimating X using noisy

distance measurements:

d̂i j (t ) := di j (X) +vi j (t ) (1)

collected at discrete times t = 1, . . . ,T between pairs (i, j ) of nodes
that are in communication. The measurement noise is modeled

using a random variablevi j (t ) with a Gaussian-mixture probability
density function (pdf) with K mixture components (see Fig. 2):

p (vi j (t );θi j ) :=
K∑
k=1

αki j ϕ
(
vi j (t ); μ

k
i j ,σ

k
i j

)
, (2)

where αki j are the mixture weights and ϕ
(
· ; μki j ,σ

k
i j

)
is a Gauss-

ian pdf with mean μki j and standard deviation σki j . We denote

the whole set of parameters associated with node pair (i, j ) by

θi j =
[
α1i j · · ·α

K
i j , μ

1
i j · · · μ

K
i j ,σ

1
i j · · ·σ

K
i j

]
and assume that the mea-

surement noise vi j is independent for any pair of times and across
different sensors. To avoid any calibration steps needed to deter-

mine the noise parameters during network deployment, especially

in unknown environments, the goal is to estimate the parameters

θ := {θi j }i j ∈E online, concurrently with the sensor positions.

Problem (Joint Localization and Parameter Estimation).

Given range measurements {d̂i j (t ) | ij ∈ E, t = 1, . . . ,T }, determine
the maximum likelihood estimates:

X̂, θ̂ = argmax
X,θ

T∑
t=1

∑
(i, j )∈E

logp
(
d̂i j (t ) | di j (X),θi j

)
(3)

of the sensor positions X and noise parameters θ .

The goal of the above optimization is to determine the sensor

positions X and noise parameters θ that maximize the likelihood of

the given noisy measurements using the noise model in (2). Note

that once a graph realization is found (i.e., a solution to (3)), the

network still needs to be embedded into a global coordinate system.

In other words, the solution X̂ is isometry-invariant, and the node

Figure 3: Uni-dimensional illustration of the SMACOF algo-

rithm [7].

locations can be recovered only up to an unknown translation,

rotation, and reflection. To remove this ambiguity in practice, it is

necessary to deploy r + 1 anchors (nodes with known positions) in
r -dimensions. In the rest of the paper, we do not explicitly assume
the presence of anchors and instead evaluate our estimation results

via a scale-free orthogonal Procrustes analysis (e.g., via the Kabsch

algorithm [17, 18]). Besides needing r + 1 anchors to fix a global
coordinate frame, wemake no assumptions on the dimensionality of

the problem and hence the approach we present below is applicable

in arbitrary r dimensions.

4 GENERALIZATION OF
MULTIDIMENSIONAL SCALING

In this section, we begin with the simpler localization-only case in

which the noise distribution parameters θ are known. We present

a non-trivial generalization of the classical MDS technique [7] for

range-only network localization for the case of Gaussian-mixture-

distributed noise as in (2). Rewriting (3) using the noise distribution

in (2) and known θ results in:

max
X

T∑
t=1

∑
(i, j )∈E

log

K∑
k=1

αki jϕ
(
d̂i j (t ) − di j (X); μ

k
i j ,σ

k
i j

)
. (4)

Note that with only one measurement per edge (T = 1), error

modeled as a Gaussian distribution (K = 1) with zeromean (μKi j = 0),

and measurement weight defined aswi j := (2σKi j σ
K
i j )

−1, the above
is equivalent to the problem considered by weighted MDS:

min
X

S (X) :=
∑

(i, j )∈E
wi j

(
d̂i j − di j (X)

)2
. (5)

In other words, (4) is a generalization of the MDS objective that

captures multi-modal noise.

4.1 Review of Multidimensional Scaling

MDS is a general technique that estimates the coordinates of a set

of elements in r -dimensional space by minimizing the mismatch be-
tweenmeasured distances and the distances corresponding with the

coordinate estimates. The mismatch is measured using a square er-

ror function (Eq. (5)), which is also called the stress function. Among
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the most successful approaches in terms of guarantees and conver-

gence rate for optimizing (5) is an iterative method called Scaling

by MAjorizing a COmplicated Function (SMACOF) [13]. Instead of

minimizing the non-convex objective S (X) in (5), SMACOF mini-
mizes a convex function T (X,Z) that majorizes the stress function
S (X) (T bounds S from above and touches its surface at a support-

ing point Z ). The SMACOF algorithm is shown in Alg. 1 below and

illustrated in the scalar case in Fig. 3. The following proposition

Algorithm 1 SMACOF

input: initial position estimate X(0)

stress function S
majorizing function T

repeat

X
k ← min

X

T (X,Xk−1)

until S (Xk−1) − S (Xk ) < ϵ

establishes a majorizing function for the stress function S (X).

Proposition 4.1 ([7, Ch.8]). For X,Z ∈ Rn×r , the function:

T (X,Z) :=
∑

(i, j )∈E
wi j

�
�d̂

2
i j + d

2
i j (X) − 2d̂i j

(xi − xj )
T (zi − zj )

‖zi − zj ‖
�
�

is quadratic in X and S (X) ≤ T (X,Z) for any Z.

Proof. See Appendix A. �

4.2 Gaussian Mixture MDS

Now, consider the more general problem in (4) whose stress func-

tion is not convex:

F (X) := −
T∑
t=1

∑
(i, j )∈E

log

K∑
k=1

αki j ϕ
(
d̂i j (t ) − di j (X); μ

k
i j ,σ

k
i j

)
. (6)

Similarly to SMACOF, we want to find a convex majorizing function

which can be used to optimize the non-convex stress function F in

(6) iteratively. The following proposition establishes a majorizing

function for the Gaussian-mixture stress function above.

Proposition 4.2. For X,Z ∈ Rn×r , the function:

T (X,Z) :=
T∑
t=1

∑
(i, j )∈E

K∑
k=1

αki j

2σki jσ
k
i j

((
d̂i j (t ) − μki j

)2
+ d2i j (X)

−2
(
d̂i j (t ) − μki j

) (xi − xj )
T (zi − zj )

‖zi − zj ‖
�
�

+

T∑
t=1

∑
(i, j )∈E

K∑
k=1

αki j log
(
σki j
√
2π
)

is quadratic in X and F (X) ≤ T (X,Z) for any Z.

Proof. See Appendix B. �

The main utility of the majorizing function T (X,Z) in Prop. 4.2
is that it allows us to apply the SMACOF algorithm to the multi-

modal range-only localization problem in (4). The ability to han-

dle multi-modal noise enables applications in much more general

settings than those amenable to the classical MDS algorithm. In

particular, as we demonstrate in Sec. 6, the new Gaussian mixture

algorithm allows us to address UWB radio localization, in which

LOS measurements have (uni-modal) Gaussian noise while NLOS

measurements may have multi-modal noise [31]. Note that the

derivative of the majorizing function T , which is provided in Ap-

pendix C, can be used to optimize the GM-MDS objective via an

existing MDS implementation.

5 JOINT LOCALIZATION AND PARAMETER
ESTIMATION

Before returning to the general problem in (3), we consider the other

subproblem – that of estimating the parameters θ when the sensor

node positions X are known. As commonly done in Gaussian-

mixture parameter estimation, our idea is to introduce a discrete

latent variable that specifies which of the mixture components

k = 1, . . . ,K generated a given range measurement d̂i j (t ) between
nodes (i, j ). The probability mass function qi j (t ,k ) of this latent

variable specifies the likelihood that measurement d̂i j (t ) came from
mixture component k and is commonly refereed to as the mem-

bership probability qi j (t ,k ). The expectation-maximization (EM)

algorithm [5, 14] is an efficient way to estimate the parameters

θi j by iteratively computing the membership probabilities qi j (t ,k )
and updating the parameter estimates based on qi j (t ,k ). More pre-

cisely, starting from an initial guess θ̂i j , the EM algorithm iterates

the following two steps for each node pair:

(1) E step: compute the membership probabilities:

qi j (t ,k ) =
α̂ki jϕ

(
d̂i j (t ) − di j (X); μ̂

k
i j , σ̂

k
i j

)
∑
l α̂

l
i jϕ
(
d̂i j (t ) − di j (X); μ̂

l
i j , σ̂

l
i j

) (7)

(2) M step: update the parameter estimates using the soft mixture

component assignments qi j (t ,k ):

α̂ki j ←
1

T

T∑
t=1

qi j (t ,k )

μ̂ki j ←
∑T
t=1

(
d̂i j (t ) − di j (X)

)
qi j (t ,k )∑T

t=1 qi j (t ,k )

σ̂ki j ←
∑T
t=1

(
d̂i j (t ) − di j (X) − μ̂ki j

)2
qi j (t ,k )∑T

t=1 qi j (t ,k )

(8)

The iterations in (7) and (8) allow us to refine an initial parameter

estimate θi j and determine an accurate model fit to a measurement
set that may contain biased, NLOS measurements. Returning to

the original problem in (3), we note that the multi-variable objec-

tive function in X and θ can be optimized via coordinate descent,

which maximizes it along a single direction at a time. More pre-

cisely, starting with initial estimates X(0) , θ (0) , we can fix X(0) and

optimize over θ and then fix θ (1) and optimize over X and so on.

The first step results in the the parameter estimation problem that

can be addressed via EM as discussed above, while the second step
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Algorithm 2 Coordinate descent for joint localization and parameter esti-

mation

input: measurements {d̂i j (t )} for ij ∈ E, t = 1, . . . ,T
initial estimates X(0)

number of mixture components K
number of iterations L

for l = 0, . . . ,L − 1 do
θ (l ) ← InitEM

(
{d̂i j (t )},X(l ) ,K

)
via [4, 6, 29]

θ (l+1)←EM
(
{d̂i j (t )},X(l ) ,θ (l )

)
via (7),(8)

X
(l+1)←GM-MDS

(
{d̂i j (t )},X(l ),θ (l+1)

)
via Alg.1

and Prop.4.2

return {X(L) ,θ (L) }

results in the localization problem in (4), which we can address

via the Gaussian mixture MDS algorithm developed in Sec. 4. This

procedure is summarized in Alg. 2.

One aspect that we left vague is the initialization phase of Alg. 2.

Since both the GM-MDS and the EM algorithms provide only local

convergence guarantees, the choice of X(0) and θ (0) determines the

performance of Alg. 2. There exist several reliable approaches for

initializing the EM algorithm [4, 6, 29]. We adopted the method

proposed by Blömer and Bujna [6], which first selects candidate

means via the k-means++ algorithm [2] and then converts them

into Gaussian mixture parameters via [6, Alg.1]. Note that in Alg. 2,

the EM is re-initialized at each coordinate descent step. After a

GM-MDS step, the optimal parameter choice might be significantly

different from the previous iteration and hence to avoid getting

stuck in a local minimum in parameter space, we reinitialize the EM

algorithm. If the GM-MDS step did not change the position estimate

X̂ by much, this reinitialization of EMwill cause a temporary worse

estimate but will be optimized by the subsequent EM steps (see

Fig. 5(c) for an example). However, if the GM-MDS changes the

position estimate X̂ significantly, the re-initialization of EM may

improve the performance.

Besides reinitializing the EM algorithm, it is also important to

try several choices of X(0) . Fig. 4 illustrates this. If any prior

information about the network deployment is available, it should

be used to select a reasonable guess for X(0) . Otherwise, one could

repeat the whole coordinate descent (Alg. 2) several times with

different random initializations of X(0) and select the the final

estimate that obtains the minimum value of the stress function

in (6). A slightly more efficient approach of re-initialization would

be to repeat the GM-MDS algorithm several times only in the first

coordinate descent step (l = 0 in Alg. 2) and to choose the estimate

X
(1) with the minimum value of the stress function F .

6 EVALUATION

To evaluate the practical feasibility of the proposed approach, we

implemented it on an UWB system that relies on time-of-flight

measurements to return distance values. First, we present simula-

tions that test the performance of our algorithm and its sensitivity

to varying conditions (network connectivity, sample size T, and

percentage of links in LOS ). Second, we present experimental re-

sults obtained using range measurements from UWB devices in an

indoor environment.

6.1 Simulations

Our approach does not rely on prior knowledge of the node coordi-

nates, nor of the error distributions for any links in the network.

We ran simulations to test its sensitivity to: (i) the number of nodes

n, (ii) the average degree of connectivity of the network D̄, and (iii)
the percentage of links in LOS, pLOS .

For each simulation, we iterate over a collection of random 3-D

networks with n nodes, for which the connectivity is defined by the
average edge degree D̄. Each edge (i, j ) samples T range measure-

ments from a unique tri-modal distribution with true parameters

θi j (unknown to our algorithm except that K = 3 is known), which
are assigned as follows. First, we define a fixed percentage of LOS

links, pLOS . The true distribution for LOS edges was generated

according the following values:

αi j = [1, 0, 0], μi j = [0, 0, 0], σi j = [0.2, 0, 0],

whose choice was motivated by the empirical distribution of real

UWB range measurements. We assumed that distributions of all

the LOS links in the network are the same. For NLOS edges, the

mean values were sampled uniformly at random in a neighborhood

of ±0.5 of μi j = [0, 2, 2.4]. The standard deviations were sampled

uniformly at random in the interval [0,1], and are then additionally

biased by σi j = [0.2, 0.5, 0.6]. The mixture weights were sampled

uniformly at random in the interval [0,1], and normalized such

that the sum equals 1. The choice of standard deviations for the

components of the NLOS edge noise was based on average values

observed in real UWB data, while the bias μi j introduced by the

different noise modes was inflated compared to real data1 to test

the robustness of our algorithm.

We evaluated the performance of our approach by computing

the the Root Mean Square Error (RMSE) between true and estimated

node positions,

RMSE
(
X, X̂
)
:=

√√
1

n

n∑
i=1

‖xi − x̂i ‖2. (9)

We also evaluated the accuracy of our estimated model parameters

θ̂ by comparing them to the true parameters θ using the Kullback-

Leibler Divergence,

DKL

(
θ 						θ̂ ) := 1

|E |

∑
(i, j )∈E

∫
p (v ;θi j ) log

p (v ;θi j )

p (v ; θ̂i j )
dv, (10)

where the probability densities p (·;θi j ) are defined in (2). Unless
otherwise specified, our default simulation setup employs 30 nodes

located in a 3-D work-space of dimension 30 × 30 × 30 m3, with av-

erage connectivity D̄ = 15,T = 200 measurements, and pLOS = 0.5.

Initial node coordinates X(0) were sampled randomly from within

this work-space. For each simulation case, the coordinate descent

(Alg. 2) was run 20 times with different initial X(0) and, among

those, the final position estimate that minimizes the stress function

1We observed 2 to 3 modes in real UWB distributions with biases around 0, 0.5, and 1
meters, respectively. See Fig. 9 for details.
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(a) (b) (c)

Figure 4: An example showing how multiple initialization points for the GM-MDS algorithm lead to different local minima: (a) shows a

network of n = 10 nodes with average connectivity D̄ = 5 and LOS percentage 0.5, (b) shows the trajectories (gray) taken by the GM-MDS

node estimates for an initial condition that leads to accurate localization, (c) shows an unlucky initialization of GM-MDS that leads to a local

minimum.
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Figure 5: Performance of GM-MDS, for a varying percentage of links in LOS, pLOS ∈ {10%, 50%, 80%}. Panels (a) and (b) show the root-mean-

square displacement between true and estimated positions (after application of the Procrustes transformation). The results are averaged over

50 random networks, with the standard deviation shown by the shaded area. (a) Results as a function of GM-MDS iterations. (b) Results as

a function of average node degree. The RMSE demonstrates low sensitivity of our approach to varying numbers of NLOS edges and robust

performance even for low network connectivities. Panel (c) shows the Kullback-Leibler divergence between estimated and true error distri-

butions, for a single run (one random network). The spikes at every 50 iterations are caused by the re-initialization of EM (see Sec. 5 for

details).

F in (6) was chosen. Note that, since our approach is calibration-

free, it does not require an initial estimate of the parameters θ (l ) .

However, since only local convergence is guaranteed by GM-MDS

for the node positions, better initializations X(0) will lead to better

overall performance. This is illustrated in Fig. 4 where two different

starting points were used to perform localization in a network with

n = 10 nodes, average connectivty of D̄ = 5, and LOS percentage of
0.5. In Fig 4 (c), the initial location estimates lead the GM-MDS al-

gorithm to a local minimum, while a luckier choice in Fig 4 (b) leads

to more accurate estimates. For this reason, localization techniques

with local convergence guarantees such as MDS and GM-MDS rely

on repeated initializations with different starting points to achieve

a better estimate. The stress function in (6) can be used to judge the

quality of the different initializations. To bound the computation

time of our algorithm we used a maximum number of 400 GM-MDS

iterations and 50 EM iterations.

Fig. 5 shows the performance of our algorithm for a varying pro-

portion of links in LOS. Fig. 5(a) shows the convergence properties

over 3 iterations of the coordinate descent algorithm. The error

is shown as a function of GM-MDS iterations (with executions of

EM at iterations 0, 400, 800, and 1200). The RMSE demonstrates

successful localization, despite initially high uncertainty and signif-

icant NLOS — for 50% of links in LOS, and considering a modest

connectivity of D̄ = 15, our algorithm performs robustly, with a

mean error below 1 m. Fig. 5(b) evaluates the sensitivity of our
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Figure 6: Performance of GM-MDS for varying percentage of LOS

nodes, pLOS ∈ {10%, 50%, 80%}, and varying measurement sample
size T . The improvement in performance due to increasing sample

size becomes less evident after 100 samples.

approach to average node connectivity2. As expected, the higher

the connectivity, the lower the error. This is due to the reduction

of ambiguities present when the graphs are not rigid. It is note-

worthy that the proportion of LOS links only has a marginal affect

on performance. Finally, Fig. 5(c) demonstrates the ability of the

EM algorithm to produce good parameter estimates. The Kullback-

Leibler divergence is shown as a function of EM iterations, for four

executions of GM-MDS (at iterations 50, 100, 150). Its performance

is affected by the LOS proportion — less NLOS allows for better

initial positioning, which subsequently allows EM to more accu-

rately calibrate the noise models. The initial ripple at every group

of 50 iterations is caused by the re-initialization of the distribution

parameters, as suggested in Alg. 2 and discussed in Sec. 5.

The simulations were implemented in MATLAB® on a Core-I7-

4770K at 3.50GHz. The complete localization procedure (Alg. 2)

with 3 coordinate descent steps, each involving 400 GM-MDS and

50 EM iterations, takes on the order of a few seconds to compute the

node positions and estimate the noise parameters. In detail, the 1200

GM-MDS iterations take approximately 30 milliseconds per node,

while the 150 EM iterations take approximately 10 milliseconds per

edge. For instance, in a network with 50 nodes and average node

connectivity of D̄ = 5, the complete localization procedure takes
about 2.2 sec. of which half is due to the GM-MDS iterations and

the other half to the EM iterations.

Finally, we ran a simulation to understand the effect of the mea-

surement sample size T on the accuracy of the localization system.

The results are summarized in Fig. 6 and suggest that networks with

networks with larger percentages of NLOS links benefit from larger

measurement sample sizes. However, in all scenarios the improve-

ment in performance due to an increasing number of measurements

becomes less evident after about 100 samples.

6.2 Experiments

Our experimental setup uses SurePoint localization devices [21].

SurePoint nodes leverage the DecaWave DW1000 UWB transceiver

2This experiment was performed on random 2-D networks.

in conjunction with multiple antennas and RF channels to achieve

high ranging accuracy in the presence of heavy multi-path inter-

ference. Prior work [21] has shown that 50% of ranging estimates

are within 8 cm and 95% of ranging estimates are within 31 cm

in predominantly-LOS environments. All SurePoint devices are

equivalent in terms of their hardware and can execute the role of

either an anchor or a tag, where ‘tag’ is defined as those nodes

which initiate ranging operations with nearby anchors. One ‘coor-

dinator’ node provides global time synchronization and scheduling

functionality through the use of UWB floods. In order to produce

range measurements between all nodes of the system, we program

each node to request a time-slot for ranging operations, effectively

rotating tag functionality through each node participating in the

network.

Experiment 1. Our first experiment was conducted in an ap-

proximately rectangular 4.6 × 7.2 × 2.7 m3 room in a commercial

building. Ground truth node positions were measured using a laser

rangefinder 3. We deployed 8 UWB devices, as shown in Fig. 7, and

schematized in Fig. 8(a), considering only the subset of nodes that

are placed in the closed space.

Experiment 2. Our second experiment was an extension of Ex-

periment 1, with a total of 13 UWB devices. The additional 4 nodes

were installed in locations with heavy multi-path characteristics,

causing NLOS signal propagation. The average node degree of the

network was D̄ = 8. The layout is schematized in Fig. 8(a), where

we see that additional nodes are placed on the opposite wall of the

hallway, as well as on the far left wall of the office space (additional

node IDs are 37, 1F, 38, and 2C).

Fig. 8(b) shows the quantitative localization performance after

3 coordinate descent iterations with 50 EM and 400 GM-MDS iter-

ations, respectively, per coordinate descent step. The final RMSE

of our approach, GM-MDS, in Experiment 1 and 2 is 0.32 m and

0.34 m, respectively. We compared the performance against a stan-

dard weighted MDS approach (eq. (5) and Alg. 1 using a (uni-modal)

Gaussian distribution), whose weights were computed based on

the empirical variance of the range measurements, i.e., wi j :=

(2var({d̂i j }))−1. Although this weighted MDS approach does not
employ accurate parameter estimation, its choice of weights dis-

counts the effect of NLOS edges with large measurement variance.

The weighted MDS algorithm performs as well as our coordinate

descent approach in Experiment 1 due to the prevalence of LOS

links. However, notice that its performance degrades significantly

in Experiment 2 due to the presence of the NLOS measurements.

This highlights the benefit of using careful parameter estimation and

hence taking advantage of biased NLOS measurements in environ-

ments that are prone to induce multi-path fading. Both experiments

demonstrate the ability of our method to localize nodes accurately,

with no overhead in terms of a-priori system identification and

calibration. To illustrate the effect of lower network connectivity

on the localization accuracy, experiment 2 was repeated for several

choices of average node degree. Fig. 8(c) shows that the perfor-

mance of weighted MDS degrades significantly as the average node

degree decreases, while GM-MDS remains robust due to its ability

to incorporate information from NLOS measurements.

3https://www.boschtools.com/us/en/boschtools-ocs/
measuring-tools-and-surveying-equipment-23413-c/
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(a) (b)

Figure 7: (a) Photo of experimental space with UWB devices. (b) SurePoint Hardware includes a DW1000 UWB transceiver and 3 antennas. It

is composed of a TriPoint module (that implements the SurePoint system) and a Tritag Carrier Board that includes a BLE interface.
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Figure 8: Experiment 2: We deployed 13 UWB SurePoint devices in an indoor environment with heavy multi-path characteristics. The nodes

covered the space of one office and a partial hallway area. (a) Illustration of localization performance. The red lines indicate data associations

between ground truth and estimates. (b) RMSE for Experiment 1 and Experiment 2, implemented with our approach, GM-MDS, and classical

MDS as a benchmark. The final RMSE of GM-MDS (Alg. 2) in Experiment 1 and 2 is 0.32m and 0.34m, respectively. The final RMSE of weighted

MDS in Experiment 1 and 2 is 0.3 m and 0.55 m, respectively. The cusps in the GM-MDS RMSE curve are due to the EM iterations altering the

noise parameter estimates. (c) Performance as a function of average node degree. The performance of weighted MDS degrades significantly

as the average node degree decreases, while GM-MDS remains robust due to its ability to incorporate information from NLOS measurements.

Finally, Fig. 9 shows actual data gathered during Experiment 2.

We superimposed the density of a multi-modal Gaussian estimated

by Expectation Maximization. The modes of the empirical distribu-

tion are captured well by this error model. In fact, the high fidelity

of this representation is key to refining the position estimates of

nodes providing NLOS measurements. In contrast, unbiased uni-

modal models will tend to overestimate the inter-node distances,

ultimately leading to alternate (and incorrect) graph realizations.

7 DISCUSSION

7.1 Partial Connectivity & Decentralization

An important question is how to implement the Gaussian mixture

MDS in networks that are not fully-connected, or in a distributed

setting, where sensor nodes receive range measurements from their

one-hop neighbors only. Partial connectivity arises in networks

for which (i) distance measurements d̂i j are not available for some
node pairs (i, j ), or (ii) in strongly connected topologies with uni-
directional links (e.g., a node i may receive measurements for the
link (i, j ), but not node j). The basic solution, as presented here, is

to simply ignore the missing distances and sum the log-likelihood

in (4) only over the available edges E. Another possibility is to
obtain a rough estimate for the missing measurements, e.g., by

using the topology of the network or the number of hops. A more

complex approach is map stitching [35, 36], which builds a local

map at each node of the immediate neighbors and then merges

maps together to form a global map. Finally, we note that our ap-

proach is compatible with variant MDS solutions that allow the

integration of the majorizing function we derived in Prop. 4.2. In

particular, we can integrate our method with the decentralized

dwMDS algorithm [12] to produce a fully-distributed solution for

the localization problem with Gaussian mixture noise.

7.2 Number of Mixture Components

Although Gaussian mixtures allow arbitrary modeling precision, us-

ing large values for the number of modes, K , may lead to a number
of pitfalls. Firstly, models with largeK are prone to over-fitting. Pre-

vious results compare the performance of localization algorithms

using (i) histogram distributions and (ii) bi-modal distributions, and

show that the former model leads to poor performance due to over-

fitting [32]. Secondly, models with large K require more data to
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Figure 9: Selected error distributions from Experiment 2. Gaussian

mixture probability densities estimated by EM algorithm are super-

imposed onto gathered data, represented by histograms. (a) Range

between devices 2C and 38, based on a total of 352 measurements.

(b) Range error between devices 27 and 2B, based on a total of 333

measurements. (c) Range error between devices 23 and 27, based on

a total of 303 measurements. These data clearly demonstrate that

using a single Gaussian distribution to model UWB range measure-

ments might not accurately capture the noise characteristics and

will tend to overestimate the inter-node distances, ultimately lead-

ing to inaccurate localization results.

ensure that the model captures true environmental traits. Generally,

the value of K depends on the environment’s multipath conditions

and the amount of available measurement data, and hence, must

be determined by in-field measurements. One approach is to start

with a small number of modes K , and to gradually increase this
number until over-fitting becomes apparent. For instance, from

the data collected in our experiments (See Fig. 9, as an example) it

is possible to see that UWB measurements can be modeled with

enough precision with K = 3.

7.3 Dynamic Environments

The validity of our model still needs to be investigated for highly

dynamic environments. On the one hand, one could assume that

moderately busy environments would only produce very sporadic

anomalies, and that the overall localization quality would be main-

tained for infrequent model updates. On the other hand, since our

iterative solution is capable of calibrating the measurement model

continuously, we can readily produce a dynamic sequence of models

so that the network remains faithful to time-varying error statistics.

Moreover, the initialization of subsequent coordinate descent runs

can be bootstrapped by using the final parameter estimates of the

current coordinate descent run.

8 CONCLUSION

In this work, we introduced an approach for network localization

that uses UWB range measurements to simultaneously estimate

the node positions and the parameters of the measurement distri-

butions. In order to account for biased, NLOS measurements, we

modeled the noise distributions via Gaussian mixtures and gen-

eralized the classical MDS algorithm to handle such distributions.

Coordinate descent was used to combine the resulting GM-MDS lo-

calization algorithm with an EM algorithm for online estimation of

the mixture parameters. We demonstrated through simulations and

physical experiments with UWB radios that the proposed approach

provides robust calibration-free network localization in the pres-

ence of partial connectivity and NLOS measurements. We compare

our approach to an alternative implementation of our coordinate

descent algorithm that employs simple Gaussian error models, and

hence, does not capture the multi-modality of error distributions.

Our results highlight the benefit of our approach in environments

with heavy multi-path characteristics. In summary, our method

allows for rapid deployment of network nodes in environments

that are unknown a-priori and that do not necessarily guarantee

LOS conditions.

In future work, we plan on applying our algorithms to the track-

ing of multiple mobile targets in potentially dense, cluttered and

dynamic environments, extending the results presented in [22].

We also plan on evaluating the applicability of our method to Re-

ceived Signal Strength (RSS) based measurement techniques, such

as in [28].
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APPENDIX A: PROOF OF PROPOSITION 4.1

Expanding the stress function as follows:

S (X) =
∑

(i, j )∈E
wi j

(
d̂2i j + d

2
i j (X) − 2d̂i jdi j (X)

)
,

we notice that the first term is constant and the second term is

quadratic in X. For any Z ∈ Rn×r , the problematic non-convex
third term can be bounded via the Cauchy-Schwarz inequality as

follows:

2d̂i jdi j (X)
‖zi − zj ‖
‖zi − zj ‖

≥ 2d̂i j
(xi − xj )

T (zi − zj )

‖zi − zj ‖

APPENDIX B: PROOF OF PROPOSITION 4.2

To find a convex function that majorizes the Gaussian-mixture

stress function in (6), we exploit the concavity of log to exchange

the summation over the mixture components and the log function:

F (X) ≤−
T∑
t=1

∑
(i, j )∈E

K∑
k=1

αki j logϕ
(
d̂i j (t )−di j (X); μki j ,σ

k
i j

)

=

T∑
t=1

∑
(i, j )∈E

K∑
k=1

αki j

2σki jσ
k
i j

(
d̂i j (t ) − μki j − di j (X)

)2

+

T∑
t=1

∑
(i, j )∈E

K∑
k=1

αki j log
(
σki j
√
2π
)
.

The above transformation results in a simpler function that upper-

bounds F but is unfortunately still non-convex. Fortunately, the

problematic non-convex term is exactly the same as in the case of

the MDS stress function majorization in Prop. 4.1. Proceeding as in
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the proof of Prop. 4.1, we expand the term:(
d̂i j (t ) − μki j − di j (X)

)2
=
(
d̂i j (t ) − μki j

)2
+ d2i j (X)

− 2
(
d̂i j (t ) − μki j

)
di j (X)

and notice that the first term is constant in X, the second term

is quadratic in X, and the third term is a problematic non-convex

term. For any Z ∈ Rn×r , the third term can be bounded via the

Cauchy-Schwarz inequality as before:

di j (X) ≥
(xi − xj )

T (zi − zj )

‖zi − zj ‖
which establishes the upper bound in Prop. 4.2.

APPENDIX C: DERIVATIVE OF THE GM-MDS
MAJORIZING FUNCTION

The Gaussian-mixture majorizing function in Prop. 4.2 can be writ-

ten in matrix form as follows:

T (X,Z) = tr
(
X
TVX

)
− 2 tr

(
X
T B (Z)Z

)
+ η

where:

Vi j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=1

−αki jT
2σ ki jσ

k
i j

, (i, j ) ∈ E

0, (i, j ) � E, i � j

−
∑
j�i

Vi j , i = j

Bi j (Z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T∑
t=1

K∑
k=1

−αki j
(
d̂i j (t )−μki j

)
2σ ki jσ

k
i jdi j (Z)

, (i, j ) ∈ E

0, (i, j ) � E, i � j

−
∑
j�i

Bi j (Z), i = j

η :=
T∑
t=1

∑
(i, j )∈E

K∑
k=1

��
�

αki j

2σki jσ
k
i j

(
d̂i j (t ) − μki j

)2

+ αki j log
(
σki j
√
2π
)��
� .

Relying on the linearity of the trace operator, the gradient of

T (X,Z), necessary to implement Alg. 1 (SMACOF), can be com-
puted as follows:

∇XT (X,Z) = 2VX − 2B (Z)Z
and vanishes at X ∗ := V †B (Z)Z, where

V † =
(
V + 11T

)−1
−

1

n2
11

T

is the Moore-Penrose pseudoinverse of V .
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