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ABSTRACT
Current submetering systems suffer from prohibitive device costs,
invasive installations, and burdensome maintenance. In this paper
we present Deltaflow, a submetering system that can estimate the
power draw of individual loads by augmenting aggregate measure-
ments with very simple sensors. The key insight is that we can
drastically reduce sensor complexity by encoding information in
the mere existence of a radio transmission, rather than the contents
of that transmission. A sensor consisting simply of a radio and
an energy-harvesting power supply tuned to harvest a side-channel
emission of energy consumption (e.g. light, heat, magnetic field,
vibration) will exhibit an activation frequency that is correlated
with the power draw of the load to which it is affixed. These sen-
sors report their activations to the data-processing backend, which
can determine the actual power draw by incorporating ground truth
aggregate measurements such as those provided by utility meters.
The server maps sensor activations to energy consumption by ob-
serving when the aggregate measurement and the sensor activation
frequency change simultaneously. The server iteratively partitions
the system history into discrete states which are used to construct
and solve instances of a linear optimization problem. Solutions
to the problem reveal the mapping from pulse frequencies to in-
dividual load power draw. This systems approach to submetering
results in deployments that are easy to install and maintain, while
contributing zero additional load, enabling building owners and oc-
cupants to simply affix tags to energy consumers and automatically
begin receiving real-time power draw readings.
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1. INTRODUCTION
Buildings account for a significant share of resource use in the

U.S.: they consume 39% of the energy, 73% of the electricity, 55%
of the natural gas, and 12% of the water. Powering them results
in $400 billion in annual expenditures. If current trends continue,
by 2025 buildings worldwide will consume more energy than the
transportation and industry sectors combined. Moreover, “between
60 and 80 percent of the energy used in commercial office buildings
is consumed by tenants within their spaces,” yet, “no widely avail-
able tools exist to help tenants understand their energy consumption
or to compare it against their peer groups,” claims a recent U.S. Na-
tional Science and Technology Council (NSTC) study [17]

The same NSTC study states that the “refined measurement of
electricity and water use represent a key enabler for the improved
performance of new and existing buildings,” and adds that, “For
building operators, a detailed record of system performance pro-
vides a critical means of. . . focusing future design and retrofit ac-
tivities on the most cost-effective energy and water system im-
provements,” and, “For building occupants, detailed information on
consumption promotes resource conservation through behavioral
changes.” [17] A recent U.S. National Science Board (NSB) study
adds, “One critical focus area is developing measurement science
to enable the development of zero-energy buildings.” [16]

Unfortunately, today’s metering technologies are ill-suited to the
measurement task at hand. Existing whole-building metering sys-
tems provide little visibility into the contributions of individual
loads. Non-intrusive load monitoring (NILM) techniques provide
some additional insights, but they do not scale beyond a few loads,
they often require training or association of loads to their signa-
tures, and they can typically identify only the largest loads. Plug-
load meters provide much greater visibility but they are costly and
limited in their coverage to easily accessible electrical loads. Hy-
brid approaches also exist that augment NILM with additional sen-
sors that aid disaggregation, but the devices are often costly, the
sensors require periodic battery maintenance, and the algorithms
often assume appliance states are known a priori.

To address the challenges with prior approaches, this paper pro-
poses not to replace, but rather to augment, existing whole-building
or panel-level metering techniques with a new class of simple and
easily-deployed energy-harvesting sensors and a novel algorithm
that combines data from both new and existing meters to infer the
contributions from individual loads. We envision a future in which
building owners or occupants can simply and directly tag end loads
like a ceiling light, shower head, or range top with small and in-
expensive sensors. The sensors indirectly monitor the load by har-
vesting the energy that a load emits when operating (e.g. the light
emitted from a bulb). The sensor activations are received by a base
station, time-stamped, and forwarded to the cloud for processing.



Our prior work has shown the viability of energy harvesting en-
ergy meters [4]. In particular, we have shown that the energy emit-
ted from many electrical loads is roughly proportional to the energy
consumed by that load, and that by harvesting this side-channel en-
ergy, it is possible to intermittently power sensors whose activation
interval (and in turn packet transmission period) approximately en-
codes the underlying energy use. We call this the “Monjolo” princi-
ple and envision many different kinds of “pulse” sensors that could
be constructed using this principle.

Such sensors represent a modern reinterpretation of the decades-
old pulsed-output meters that measure electricity, gas, and water,
but with one crucial difference. Whereas traditional meters are cal-
ibrated to output one pulse per useful billing quanta (e.g. 1 W-hr,
1 CCF, or 1 gal), our proposed meters would usually not be, and
often could not be, calibrated a priori. We hypothesize that by us-
ing statistical methods to correlate the timing of the packet pulse
train from instrumented loads with readings from existing aggre-
gate electricity, gas, or water meters, we can obtain individual esti-
mates without intrusive metering.

In an ideal measurement setting, all loads would be instrumented
and energy-harvesting sensors would respond instantly to changes
in load power draws. However, satisfying these conditions is usu-
ally undesirable for reasons of cost and coverage, and potentially
impossible for energy-harvesting sensors that must accrue energy
for some time before becoming active. To mitigate the effects
of delayed sensor response, we employ algorithmic techniques to
partition the power draw history into periods of rapid change and
relative stability. Then, by analyzing the sensor pulse trains, we
identify those adjacent periods in which it is likely that only the
monitored loads changed, discarding those changes attributable to
uninstrumented loads. Representative data points for the remain-
ing stable periods are then used to construct a regression problem
that determines the sensor calibration. This allows us to deploy un-
calibrated sensors, which reduces cost, and then employ parameter
estimation to calibrate the sensors in situ.

While today’s centimeter-scale prototype sensors are built from
off-the-shelf parts, we imagine that in the future the sensors will
be built from integrated circuit technology laminated into smart
labels with energy-harvesting front-ends, eventually making them
small, inexpensive, and easy-to-deploy. Indeed, contemporaneous
research has already demonstrated the viability of fully-functional
sensor systems at the millimeter-scale [13]. Our approach imposes
minimal sensor requirements, allowing the future sensors to be
drop-in replacements. We believe that one of Deltaflow’s great-
est strengths is sensor agnosticism. Since the disaggregation al-
gorithm simply analyzes uncalibrated pulse trains, pulse counting
serves as a layer of abstraction over the physical details of how the
pulse measurement is generated. This means the system naturally
supports a heterogeneous collection of pulse-counting devices. It
makes no difference whether the devices measure electricity, wa-
ter, or gas–or even whether the measurements are aggregated at the
level of plug loads, individual circuits, panel boxes, whole build-
ings, or entire campuses–the same techniques apply. Collectively,
these Deltaflow properties address cost and coverage challenges,
and enable scalable deployment and widespread adoption.

To evaluate the viability and drawbacks of this approach, we em-
ploy several types of sensors in various configurations with real
loads. We find that our pulse-counter calibration methods are able
to disaggregate power draw in cases with complete sensor cover-
age, with unmonitored loads, and with heterogeneous sensor types.
Further, we show that our approach is able to provide breakdowns
of total energy usage suitable for solving the submetering problem.
Finally, we identify limitations and opportunities for future work.

2. RELATED WORK
Numerous methods exist to measure and disaggregate electri-

cal loads in residential and commercial buildings including non-
intrusive load monitoring, plug-load monitoring, and hybrid ap-
proaches. In this section, we discuss these approaches, identify
their drawbacks, and contrast them with Deltaflow.

2.1 Non-Intrusive Load Monitoring
Whole-building meters [5, 25] provide an overall view of elec-

tricity or water use, but they do not disaggregate the data in a way
that allows either precise or approximate attribution to the various
individual loads comprising the whole. Analytics can take me-
ter data and disaggregate the readings using appliance signatures
with a technique called non-intrusive load monitoring or NILM [8].
This approach works well when the loads are sufficiently few (e.g.
typically no more than 6-7), mostly large (e.g., air conditioners
and stoves), and have distinctive signatures (e.g. refrigerators and
ovens). NILM has difficulty with smaller loads (e.g. electronics)
or multiple instances of a particular load (e.g. several 60 W light
bulbs), or a large collection of loads (e.g. in an office building).

Extensions of the general NILM approach use higher frequency
sampling (e.g. MHz) of the current and voltage waveforms, higher
dimensional data (e.g. real and reactive power), and complex signa-
tures (e.g. wideband spectra arising from the flick of a switch or a
toggle of a faucet) to identity individual loads [2,6,7,19], but these
approaches still require training to associate the loads to their sig-
natures, are susceptible to small changes in the environment (e.g.
moving a load from one outlet to another), and are costly due to the
use of high-rate sampling and processing. In contrast with NILM
techniques, our approach can scale to a much larger number of
loads of any type, even if they have similar or identical signatures.
By instrumenting individual loads with inexpensive, indirect, and
inaccurate sensors, Deltaflow can distinguish identical loads and
disaggregate the contributions of individual loads.

2.2 Plug-Load Metering
At the other extreme, plug load meters allow individual loads to

be measured [9, 14, 18, 20, 22, 24, 26]. Standalone meters display
usage data locally, which supports casual use but not automated
aggregation and analysis. Networked energy meters send their data
to servers for analysis and visualization. However, plug load me-
tering faces some coverage and cost disadvantages. Some loads are
built-in or hard-to-access, including ceiling lights, HVAC equip-
ment, and major appliances, making them ill-suited to such meters
(although NILM techniques can sometimes identify these loads).
Furthermore, at a price point of $25-$50 for standalone meters and
$75-$250 for networked meters, covering a home or office can cost
thousands or tens of thousands of dollars, making widespread mon-
itoring prohibitively expensive.

In contrast with intrusive plug load meters, our approach sup-
ports indirect measurements of a load—like a ceiling light’s ra-
diant output or an air conditioner’s vibrations—rather than their
electrical inputs, which makes instrumenting built-in or difficult-
to-access loads easier. In addition, the kinds of indirect sensors
we envision—that harvest energy from light, heat, magnetic fields,
and vibrations—could be constructed at the chip-scale and built
into “peel-and-stick” sensor tags, much like RFID chips today. Al-
though our mesoscale sensors deployed in modest numbers today
are centimeter-scale systems, prototypes of some of the basic sen-
sors, complete with an energy-harvesting front end, energy stor-
age, and a processor and a radio, have been demonstrated at the
millimeter-scale [13], providing some evidence that peel-and-stick
sensors may soon be viable and inexpensive.



2.3 Hybrid Approaches
Due to the drawbacks of both the NILM and direct metering

approaches, some recent efforts have explored hybrid models in
which additional sensors augment NILM and aid with disaggrega-
tion [11, 12, 15, 23]. The extra sensors help NILM scale beyond a
half-dozen loads by providing it an additional signal that reflects the
state of an individual load. Sensors that detect the on-off states [10]
or more finely quantized energy emissions of appliances including
light, sound, and magnetism [21], have been shown to aid greatly in
disaggregation. However, the former approach requires foreknowl-
edge of the states of the instrumented loads, and the latter approach
requires modeling the physical transfer functions for each type of
energy emission sensor. Additionally, a major scalability imped-
iment of earlier hybrid approaches is the cost of the sensors and
the overhead of periodic battery replacement. Low-cost, mains-
powered sensors that detect appliance state can address these prob-
lems, but they are currently limited to electrical plug loads [27].

In contrast with prior work that attempts to directly measure side-
channel emissions (including ones that harvest the side-channel en-
ergy and use it to power active sensors [1, 3, 15]), or inexpensively
measure plug loads, we propose to leverage emerging “Monjolo”
sensors that simply harvest the side-channel energy and transmit
a radio packet when enough energy has been accumulated to do
so [4, 28], making the activation rate a proxy for power. Harvest-
ing just enough to send a packet requires less energy than revenue-
grade sensing and is easier to install, thus enabling smaller and less
expensive—but also cruder—sensors. Such simple sensors, while
easier to deploy and operate, are not easily calibrated.

However, much of what the sensors lose in individual quality,
they gain through sheer numbers in conjunction with data fusion
and optimization algorithms. Like the NILM and hybrid disaggre-
gation techniques, Deltaflow uses a whole-building meter (or, in the
case of large buildings, unit-, zone-, or floor-level meters). In our
model, data from the whole-building meter is combined with the
activation frequency data from a multitude of inexpensive energy-
harvesting sensors to infer the contributions of individual loads. We
model the relationship between a sensor’s activation rate and the
underlying energy flow using a combination of time series parti-
tioning heuristics and linear optimization techniques.

3. OVERVIEW
The goal of the Deltaflow system is to provide a breakdown of

the total electrical energy consumption of a building at the individ-
ual load level. Deltaflow accomplishes this using a calibrated, ac-
curate aggregate meter and an array of simple, pulse-based sensors
attached to each load. Each pulse sensor operates according to a
simple principle: the higher the power draw of the load, the greater
the frequency of the pulses. The Deltaflow system uses these pulse
streams as hints about each load to disaggregate the aggregate mea-
surement into each individual load’s contribution.

The Deltaflow system architecture is shown in Figure 1. A power
meter that is monitoring aggregate energy flow upstream from the
target loads (e.g., a utility meter) reports aggregate measurements
to the Deltaflow server. Additionally, the individual loads to be me-
tered are instrumented with a suitable pulse sensor that transmits a
representative pulse stream to the Deltaflow server. By augment-
ing the aggregate measurements with pulse frequencies that change
as the individual load’s power draw changes, the Deltaflow server
characterizes the sensor’s response to changes in the power state of
the load it is attached to. The server uses these models of the sen-
sors to perform calibrated disaggregation and provide power draw
estimates for the individual loads being monitored.

Deltaflow	  
Server	  

Aggregate	  
Meter	  

Sensed	  
	  Loads	  

Pulse	  Sensors	  

Un-‐sensed	  
	  Loads	  

Pulse	  
Frequencies	  

Aggregate	  
Measurements	  

Individual	  
Power	  Draws	  

Figure 1: System architecture. The Deltaflow server takes in ag-
gregate power draw measurements and the activation frequencies
of energy-harvesting sensors attached to individual loads. By aug-
menting aggregate power measurements with sensor activation (or
pulse) frequencies that are correlated with power draw, Deltaflow
determines the individual energy consumption of the sensed loads.
The system is able to function even if some loads remain unsensed.

4. DESIGN
In this section we describe common types of aggregate meters,

the pulse sensors we use to monitor loads, and the algorithm used
by the Deltaflow server to disaggregate loads.

4.1 Aggregate Meters
Aggregate meters provide a calibrated stream of ground truth

measurements that represent the sum of all of the individual loads
or consumers in the system or subsystem. Common household ag-
gregate meters exist for electricity, water, and natural gas. In some
cases unit-, zone-, or floor-level aggregates may be more appro-
priate than whole-building meters. Currently, while many utility
meter readings are difficult to access and provide a temporal res-
olution that is quite coarse, being revenue-grade devices, they are
quite accurate. Trends suggest that in the future detailed readings
may become more readily accessible. In the meantime, commer-
cial whole-house meters that provide higher temporal resolution,
like The Energy Detective [5], are available on the market.

4.2 Energy-Harvesting Sensors
The pulse sensors the Deltaflow system uses are based around a

simple observation: the act of energy consumption often emits side
channels of energy that can be harvested to intermittently power a
sensor node. For example, powering an AC load creates a chang-
ing magnetic field around the wires running to the load, lighting a
room generates a harvestable light source, and drawing a hot bath
causes pipes to be warmer than the surrounding air. Capturing these
side-channel energy sources to power a sensor node creates a suit-
able pulse sensor that follows the principle in Section 3. As the
power draw of the energy-consuming load increases, so does the
magnitude of the side-channel emission, and this in turn causes the
sensor node to activate more frequently. These activations are the
“pulses” from the pulse sensors. Even though we employ energy-
harvesting sensors to generate these pulses, any meter that operates
on this principle (including most utility meters in existence today)
will satisfy our requirements.



(a) Coilcube (b) Split-core (c) Gecko

Figure 2: Pulse sensors. Examples of the energy-harvesting pulse
sensors we use attached to the loads they meter. Monitored loads
include a plug-load, a circuit in a panel box, and a recessed can
light. The latter two loads are easily monitored using our approach.

The Deltaflow pulse sensors are based on the Monjolo princi-
ple [4], a simple energy-harvesting design that entails three basic
components: a harvester, a processor with non-volatile storage, and
a radio. The energy-harvesting power supply accumulates charge
over time and activates the computational core of the node when
enough energy has accrued. Upon activation, the node transmits
a wireless packet, discharges any remaining energy, and resumes
charging once again. The node also stores the activation count to
stable storage and transmits this information in each packet. The
Deltaflow server receives these packets and interprets each packet
as one (or more) pulse(s) for disaggregation purposes.

While simple, this design offers two major advantages: it re-
quires no batteries and can be used to measure any energy source
that can be harvested. Removing batteries simplifies deployment
and eliminates the maintenance cost of replacing them. Harvest-
ing side-channel emissions of power draw, such as magnetic induc-
tance, heat, light, or vibration enables sensing of otherwise difficult-
to-measure energy sources, such as ceiling lights, shower heads, or
built-in appliances. Additionally, these sensors abstract the hetero-
geneity of their power sources and sensor types by eschewing direct
measurements in exchange for a single homogeneous interface—
pulse rate as proxied by activations or radio packet transmissions.

We adjust our specific implementation to address two common
network problems: packet loss and flooding. First, because radio
packets can be dropped, each sensor keeps a local counter of its own
activations in nonvolatile memory and transmits this count every
time it sends a packet. This way, the receiver can still calculate
the rate of activations even if a packet is lost. Second, if one or
more of the sensors has a very high activation rate it could easily
flood the wireless channel by sending packets at every activation.
To prevent this, we use a “timing” capacitor with a large resistor in
parallel. At every activation, the sensor checks the voltage on the
capacitor. If it is below a threshold, the node transmits and then
recharges the timing capacitor. If it is above a threshold, the node
simply increments the counter and waits for its next activation. The
following sections describe the specific devices we employ as pulse
sensors for three representative load classes.

4.2.1 AC Power Meter
In order to harvest from an AC power source, we use a current

transformer. The magnetic field of the AC line induces a current
in the transformer and the output of the transformer is then recti-
fied and harvested. We call the AC power pulse sensor Coilcube,
which comes in two forms. The plug-load (Figure 2(a)) version
sits between the wall outlet and the load, and contains the phase
line leading to the AC load wrapped around a current transformer.
The coil, the harvesting power supply, and the sensor node core
fit in a small enclosure into which the load is plugged. Although

Figure 3: Recessed ceiling lights. Lights such as these are tradi-
tionally difficult to meter due to limited access to their wiring and
uncertainty about the topology of the lighting circuit. Our Gecko
sensors are easily and unobtrusively installed in fixtures such as
these. See Figure 2(c) for a closeup view of the sensor mounting.

it might seem odd to design a plug-load pulse sensor, it allows us
to both illustrate the viability of the approach and deploy a near-
zero power sensor [4]. The second version uses a split-core current
transformer that can be clipped easily around a wire running to a
breaker in a circuit panel (Figure 2(b)). The other electronics are
small and can be installed with the transformer in the panel box.
This design is ideal for unobtrusively monitoring an entire circuit.

4.2.2 Light Meter
The light meter, called Gecko, enables Deltaflow to measure the

energy contribution of ceiling lights, such as those in Figure 3 that
are otherwise challenging to measure. Harvesting is based on a
small amorphous solar cell. All of the other required electronics
fit in a space approximately the same size as the solar cell. This
results in a small sensor that can easily be deployed near a light
bulb to unobtrusively meter the light as shown in Figure 2(c).

4.3 Disaggregation Methodology
As Figure 1 shows, the Deltaflow server receives two input streams:

aggregate ground truth measurements (e.g. Watt or Whr) and pulse
frequencies from each sensor attached to the instrumented loads.
The server uses each of the pulse streams to decompose the aggre-
gate measurements into the contributions from each load.

4.3.1 Sensor Calibration
The server starts by trying to estimate a calibration function for

each sensor. This calibration function must be determined at run-
time, and not a priori, for two main reasons: manufacturing dif-
ferences, as shown in Figures 4(a) and 4(b), and sensor placement,
which is unknown until after installation yet affects the response
of the light-based pulse meters, as shown in Figures 4(c) and 4(d).
We determine the sensor specific calibration function by first not-
ing that the sensor pulse frequency, si, of load i is a function of the
power draw of load i

si = fi(pi) (1)

Examples of this relationship are shown for Coilcube sensors
in Figures 5(a) and 5(b) and for Gecko sensors in Figures 5(c)
and 5(d). Given that we know si and want to determine pi, we
can express the relationship as:

pi = f−1
i (si) = gi(si) (2)

Then, given a pulse rate, we can determine a power estimate for
each sensed load using the calibration function gi.
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Figure 4: Motivation for runtime calibration. Figures 4(a) and 4(b) show that the pulse rate of different instances of the same sensor type
varies over the same range of loads. This suggests that a single calibration function cannot be used for all instances of a particular sensor
type. Figures 4(c) and 4(d) show the effect of placement on the pulse rate of Gecko sensors. As the distance and angle from the light source
varies, so does the pulse rate. Therefore, factory calibration is inadequate; calibration must be performed after installation.
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Figure 5: Pulse sensor activation rate vs load power. The activation rate of Coilcube, Split-core, and Gecko sensors is shown as the primary
load is swept across a range of values. All sensors demonstrate a roughly monotonically increasing relationship with primary load power,
but some noisy outliers are clearly visible as well.

To determine each gi we use information about how the pulse
streams change when the aggregate measurements change. How-
ever, to avoid searching through the infinite space of possible func-
tions, we choose a general form of gi with which to work. We ad-
ditionally assume that the general form will be the same for every
instance of a particular type of sensor. Requiring foreknowledge of
the function for each class of sensor is reasonable because it can be
determined once, at design time. This shifts the burden of configu-
ration from sensor users to manufacturers.

We use datasets like those in Figure 5 to estimate the sensor cal-
ibration function. We find that the best-fit functions are second-
order polynomials, and therefore make the assumption that the cal-
ibration function can be approximated by a monotonically increas-
ing polynomial of degree two or less. Thus Equation 2 becomes:

pi = αis
2
i + βisi + γi (3)

Now, to determine the calibration function, Deltaflow need only
choose the coefficient parameters αi, βi, and γi for each sensor that
best fit with historical data.

4.3.2 Full Coverage
To determine the polynomial coefficients, we start with the sim-

plest case: assume all n loads comprising the aggregate are me-
tered. If we let Mt be the ground truth aggregate meter reading at
time t and let si,t be the pulse frequency for sensor i attached to
load i at time t, then we have the relationship:

Mt =

n∑
i=1

pi(si,t) (4)

Using the least squares method, let M be a vector of aggregate
measurements Mt taken at different times t. Let A be a matrix of
calibration function terms derived from pulse frequencies, where
each row Ai is a vector of all the terms in each sensor’s calibration

function at time t, stripped of their coefficients.

Ai =
[
s21,t s1,t 1 s22,t s2,t 1 . . . s2n,t sn,t 1

]
(5)

Let −→x be the vector of coefficients where xi,j is the coefficient
of the jth term in the calibration function for sensor i.

−→x =
[
α1 β1 γ1 . . . αn βn γn

]
(6)

Given data points for aggregate power draw and sensor pulse
frequencies from some m different points in time, Equation 4 can
be written in matrix form as:

M = A−→x (7)

M =


s21,t1 s1,t1 1 . . . s2n,t1 sn,t1 1

s21,t2 s1,t2 1 . . . s2n,t2 sn,t2 1
...

...
...

. . .
...

...
...

s21,tm s1,tm 1 . . . s2n,tm sn,tm 1





α1

β1

γ1
...
αn

βn

γn


(8)

With these definitions, we can formulate our optimization prob-
lem as:

min−→x
||M−A−→x ||22 (9)

The solution to this problem is the value of −→x—i.e. the set of
coefficients for our calibration functions—that gives load estimates
that best match our aggregate readings.

Note that while our calibration functions may be non-linear, by
providing the values of each non-linear term we have reduced cali-
bration to a linear least squares problem. Use of the l2 norm makes
the regression more susceptible to noisy outliers than the l1 norm,
but it is much easier to compute. Outlier identification techniques
can be used if the system converges to an unsatisfactory result.
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Figure 6: Effect of hidden loads. The change in aggregate power
at time t0 is attributed to the load metered by Sensor 1 whose fre-
quency changes at that time. The aggregate also changes at t1, but
since neither sensor changes, we attribute the change at t1 to a hid-
den load and ignore state C. This allows us to discard the effects of
non-aliasing uninstrumented hidden loads.

4.3.3 Partial Coverage
The above approach describes finding the calibration coefficients

in the ideal case when all loads are instrumented. Unfortunately,
that approach does not work if even a single load is left uninstru-
mented, as Equation 4 no longer holds. The aggregate Mt now
becomes the sum of both sensed loads and hidden loads.

Mt =

n∑
i=1

pi(si,t) +

k∑
i=1

hi,t (10)

Let us assume that there are no aliasing hidden loads—that is, no
hidden load changes at the same time as a sensed load. In that case,
we can choose to select just those data points that represent states
where sensed loads changed. Figure 6 illustrates such a situation.
At time t0 the pulse frequency of Sensor 1 changes along with the
aggregate. However, at time t1, the aggregate changes but both
Sensor 1 and Sensor 2’s frequencies stay the same. We attribute the
change in aggregate power to a hidden load and ignore state C. We
examine aliasing loads further in the discussion section.

For a data set in which between any two times t = 0 and t = 1
only sensed loads change, the following holds true:

M1−M0 =

(
n∑

i=1

pi(si,1) +

k∑
i=1

hi,0

)
−

(
n∑

i=1

pi(si,0) +

k∑
i=1

hi,0

)

∆Mt =

n∑
i=1

pi(si,1)− pi(si,0)

∆Mt =

n∑
i=1

(αis
2
i,1 + βisi,1 + γi)− (αis

2
i,0 + βisi,0 + γi)

∆Mt =
n∑

i=1

αi(s
2
i,1 − s2i,0) + βi(si,1 − si,0) (11)

When calculating the change in estimated load power draw, the
constant term γi drops out of the model. However, due to the
energy-harvesting nature of our pulse sensors, we know that when
the load power draw pi is zero, the pulse rate si is also zero. This
means that γi must be zero as well for all i. Our calibration function
is now of the form:

pi = αis
2
i + βisi (12)

If we define a new matrix ∆A such that

∆Ai =
[
(s21,t1 − s

2
1,t0) (s1,t1 − s1,t0) . . .

]
(13)

then

∆A−→x = ∆M (14)

Solving the optimization problem

min−→x
||∆M−∆A−→x ||22 (15)

will give us the coefficients for all of the calibration functions.
Many existing libraries provide optimizers that can easily solve
optimization problems of this formulation. In our implementation
we used the non-negative linear least squares function provided by
Python’s SciPy library.

4.3.4 State Identification
The data points used to construct the optimization problem crit-

ically determine the performance of the regression. For exam-
ple, when a load changes power states, the aggregate may reflect
the change sooner than the pulse sensor which only activates once
enough energy has accrued to power the sensor, thus causing a syn-
chronization error. We find that identifying steady states in the data
(using heuristic thresholds) and selecting a median or mean data
point to represent the state compensates for this error. These data
points are then used to determine the deltas between distinct adja-
cent stable states when constructing the calibration Equation 14.

5. EVALUATION
In this section, we evaluate Deltaflow’s ability to identify the

individual contributions of multiple loads comprising an aggregate
under several conditions: when all loads are instrumented, in the
presence of uninstrumented (hidden) loads, when monitoring loads
with non-unity power factors, and when monitoring a load tree as
one might find in a home.

5.1 Methodology
To evaluate Deltaflow we conduct several experiments consist-

ing of a set of loads designed to test Deltaflow in different condi-
tions. In each test, each load is monitored by a pulse sensor and
a calibrated meter to collect ground truth. All loads are addition-
ally plugged into a common calibrated meter to obtain aggregate
measurements. Each load is operated to expose its power states
and to simulate normal usage. The resulting ground truth and pulse
data streams are collected during the experiment and then saved
to be processed offline. The processing step removes the power
overhead of the ground truth meters, runs the disaggregation al-
gorithms, and computes statistics about the estimations including
absolute and percentage error.

5.2 Full Instrumentation of Loads
We evaluate Deltaflow’s baseline performance with an experi-

ment in which all loads in the system are metered with pulse sen-
sors. Figure 7(a) shows the setup of the three loads, all light bulbs
with four states each. The loads are switched between states at ran-
dom intervals in such a way that all state combinations are visited.
Figures 7(b) to 7(d) show Deltaflow’s disaggregation. Deltaflow
is able to identify transitions and steady states of the loads to de-
termine the calibration function for each pulse sensor. It then ap-
plies that calibration function to the subsequently observed pulses.
In the steady state for each load, the absolute error in Deltaflow’s
estimates is no greater than 15 W, with average error of 5.9 W,
6.3 W, and 7.5 W, and average percent error of 12.3%, 12.3%, and
11.5%, for Loads A, B, and C, respectively. When a load transi-
tions, Deltaflow identifies the transition and then updates its esti-
mate, while momentarily exhibiting a higher estimation error.
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(d) Load C

Figure 7: Deltaflow operating on stateful loads with instrumentation of all loads. Three loads are metered as shown in Figure 7(a). Fig-
ures 7(b) to 7(d) show the ground truth for each load and the resulting Deltaflow estimates, with graphs of the absolute error above. In steady
state the error is ≤ 15 W with the only significant errors occurring during load state transitions.

The error spikes are due to the fact that Deltaflow’s accuracy is
constrained by the update latency of the pulse sensors. These sen-
sors may not report a change in pulse frequency instantly, which
in turn results in a race condition: aggregate measurements arrive
before the pulse sensors react, causing Deltaflow to exhibit an es-
timation lag, which results in short periods of high error until the
pulse sensors “catch up.”

This experiment demonstrates Deltaflow’s ability to disaggregate
within reasonable error bounds. While not sufficient for scientific
or revenue-grade metering, Deltaflow supports the goal of subme-
tering loads and providing information about the energy consump-
tion contribution of loads in a building. The delay surrounding tran-
sitions could be addressed with minor modifications to the pulse
sensors themselves. Reconfiguring the pulse meters to transmit a
pulse immediately after a sudden change in load power would en-
able Deltaflow to respond to changes quicker.

5.3 Selective Instrumentation of One Load
To explore selective instrumentation—for example, when one

might want to instrument only one or just a few loads—we evaluate
the case when not all loads are metered. We run the same exper-
iment as in Section 5.2 but ignore the pulse data from the sensors
attached to loads A and C. Figure 8 shows the ground truth for the
single metered load and the power estimate curve from Deltaflow
overlaid on the aggregate power trace for the three loads.

Even in the presence of transitions in the aggregate with no match-
ing change in any pulse stream, Deltaflow is able to provide a power
estimate for the sensed load comparable with the estimate provided
in the case of full coverage. With one metered load, the average
error of the power estimates is 12.5%, marginally worse than the
case with full coverage, which exhibits a 12.3% estimation error.

The calibration function that Deltaflow estimates compensates
for the sensed load and hidden loads changing at the same time.
At t = 7.5 in Figure 8, the aggregate increases by 45 W while
the sensed load increases only 14 W. Deltaflow correctly does not
attribute the entire increase to the sensed load.

5.4 Power Factor Effects
As observed in prior work [4], Coilcube sensors have a different

relationship between load power and pulse frequency depending
on a load’s power factor. To investigate how well Deltaflow han-
dles loads with non-unity power factors, we construct the following
setup: two loads with very similar power draws but with different
power factors are run independently with the same Coilcube sen-
sor. The first load, an AC fan, draws approximately 11.1 W with a
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Figure 8: Deltaflow monitoring one sensed load and multiple hid-
den loads. This figure shows the ground truth and Deltaflow esti-
mated power for the single sensed load, as well as the ground truth
aggregate for a tree containing the sensed load and two unmoni-
tored (hidden) loads. In steady state, Deltaflow tracks ground truth
reliably, with a slight overestimate. Significant error occurs in the
transitions until the sensor frequency stabilizes and Deltaflow is
able to correct. Deltaflow successfully ignores state transitions that
belong to hidden loads.

power factor of 0.6. The second load, an incandescent light bulb,
draws 10.8 W with a power factor of 1.0. The power factor of
the two loads and the activation rate of the sensor are shown in
Figure 9(a). While the power draws are very similar, the different
power factors cause the same sensor to activate at different rates.

Deltaflow adapts to the different activation rates and generates
different calibration functions for the AC fan and light bulb as
shown in Figure 9(b). This demonstrates that Deltaflow can adapt
to the difference in power factor. Figure 9(c) shows the resulting
power estimates for each load. The estimates for the AC fan and
light bulb differ from ground truth by 6.0% and 6.9%, respectively.
From two different activation rates from the same sensor, Deltaflow
accurately maps the rates to the correct power magnitudes by adapt-
ing to the load.
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Figure 9: Effect of different power factors on the Deltaflow system. Two loads, an AC fan and an incandescent light bulb, with very similar
power draws but different power factors are measured. Figure 9(a) shows the power factor of each load over time and the corresponding
activation frequency when the same Coilcube sensor is attached to each load. Although the power draw is the same for both loads, the different
power factors cause the sensor to report different activation frequencies. Figure 9(b) shows the polynomials that Deltaflow generates for each
of the loads. These polynomials differ due to the activation rate differences. Figure 9(c) shows the estimated power draw matches ground
truth for each load even though the same Coilcube generates different activation frequencies when measuring the same power draw.
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(c) Deltaflow Estimates
Load Ground Truth (W·h) Estimated (W·h) Error (%) Ground Truth (%) Estimated (%) Error (%)
(A) Desktop Computer 14.39 20.17 40.17 14.22 17.23 21.16
(B) 60 W Bulb 17.22 18.18 5.57 17.02 15.53 8.75
(C) 24" Monitor 16.63 23.8 43.11 16.44 20.33 23.66
(D) Smartphone 1.92 1.87 2.60 1.89 1.59 15.87
(E) 150 W Bulb 51.02 53.04 3.96 50.43 45.31 10.15

(d) Results

Figure 10: Deltaflow performance on a realistic tree of loads. Figure 10(a) shows the hierarchy of loads and the corresponding sensors.
Figure 10(b) shows the ground truth power traces for the aggregate and each load. Figure 10(c) shows the Deltaflow estimates for all five
loads and an estimated aggregate for comparison purposes. Figure 10(d) shows the breakdown of overall energy usage by each load and
the estimate provided by Deltaflow, as well as the percent of the total energy usage each load represents. While the error for loads (C) and
(E), which change power states at similar times, is high (> 40%), Deltaflow handles loads that transition independently successfully. Also,
Deltaflow is able to successfully integrate streams from multiple types of pulse counting sensors.

5.5 Load Tree
To mimic a realistic load tree as one might find in a residential or

commercial building, we construct a load hierarchy and instrument
it with pulse sensors as shown in Figure 10(a). The five loads at the
leaves of the tree are (A) desktop computer, (B) 60 W incandescent
light bulb, (C) 24" monitor, (D) smartphone charger, and (E) 150 W
incandescent light bulb. The 150 W light bulb is monitored with
a Gecko sensor and the other four loads are attached to Coilcube
sensors. Three split-core current transformer sensors monitor the
aggregate and each main branch of the tree. Each load and the
aggregate is also metered with a ground truth meter, so we have
full knowledge of the power draws.

Figure 10(b) shows ground truth power for each load as well as
the aggregate, and Figure 10(c) shows the resulting estimates of
power draw from the Deltaflow system and the sum of the esti-
mates to form an estimate of the aggregate. The primary error in

Deltaflow’s results is overestimation. Notably, between t = 20 min
and t = 28 min, all loads except for (D) are off, causing the ground
truth aggregate to be very low. However, Deltaflow estimates the
off loads at a higher power state, causing the estimated aggregate
to be significantly higher. This error primarily stems from the de-
sign of the pulse meters. When no current is flowing to each load,
the energy-harvesting pulse meters are unable to report any pulses.
Without data from the pulse streams, Deltaflow does not update its
estimate for the load power until it receives a new pulse, which it
then uses to backfill the missing data. This causes it to overestimate
during periods in which most loads are turned off and there are no
transitions. To compensate for this error, heuristics could be added
that predict the likelihood the load is off given no incoming pulses
and update the estimates accordingly. Alternately, the pulse sensors
could be modified to report their state if they detect a sudden loss
in harvestable energy income.



To quantify how Deltaflow performs in a use-case likely to be
relevant to consumers, we explore how well Deltaflow estimates
kilowatt-hours (kWh), the unit of energy by which consumers typi-
cally buy their electricity. Further, we evaluate how well Deltaflow
is able to disaggregate the total kWh consumed into the percent
contribution of each load. This information would be particularly
useful for a consumer to determine where to direct effort when
seeking energy efficiencies. Figure 10(d) shows this breakdown.
The percent error of the estimated kWh values for loads (B), (D),
(E) is under 6%. These loads tended to change independently of
other loads, allowing Deltaflow to better determine their calibra-
tion functions and disaggregate the total to these loads. Loads (A)
and (C), however, are likely used together and transitioned power
states at similar times. This adversely affects Deltaflow’s ability to
successfully disambiguate two loads leading to the relatively high
(> 40%) errors in the kWh estimation. These errors would likely
be reduced with a longer running experiment that exhibits a greater
number of transitions that Deltaflow could use for calibration.

Also included in Figure 10(d) is a breakdown of each load based
on the fraction of the total kWh each load consumes. While the
errors in absolute kWh are still present in the breakdown, general
trends about load consumption are still clear in the Deltaflow es-
timates: load (E) dominates the contributions of the other loads,
loads (A), (B), and (C) have approximately the same contribution,
and load (D) is an insignificant fraction of the total. These results
show that Deltaflow supports critical comparative analyses of this
nature that are essential for determining how best to invest con-
strained resources toward increasing efficiencies.

Figure 10 also demonstrates the effectiveness of integrating pulse
meters that are based on different types of sensors and energy-
harvesting front ends. Monitoring load (E) with only a Gecko node
does not hinder Deltaflow’s ability to disaggregate the load. Al-
though we use only three different kind of pulse sensors in these
experiments, we envision many other kinds might be used in the
future to monitor not only electricity, but water and gas as well.

6. DISCUSSION
Designing a system with few constraints on input data and few

assumptions about sensor calibration results in some limitations,
but it also offers many opportunities for improvement.

6.1 Limitations
The Deltaflow system has some obvious limitations, which we

now discuss, as well as possible ways to address them.

6.1.1 State Identification
A major challenge in achieving high accuracy is correctly iden-

tifying when a load is in a power state that would be useful for the
regression engine, particularly if Deltaflow is processing in real-
time. Poor state identification leads to inaccurate curves being fit
to model the pulse-counter frequencies. We believe that techniques
such as stepwise approximation algorithms and histogramming can
be added to Deltaflow to improve state identification and make
Deltaflow more robust to highly variable loads.

6.1.2 Environmental Bias
Pulse sensors may be triggered by more than simply the targeted

load, causing pulses that are not correlated to the power draw of
the load being metered. One example of this is the solar cell-based
sensors that can be activated by ambient light, as shown in Fig-
ure 11. This type of error could be compensated for by using addi-
tional sensors that are designed to only capture environmental bias
conditions and subtracting their pulses from the affected sensors.
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Figure 11: Effect of ambient light on Gecko sensors. A Gecko
node is placed in a lamp shade near a window. When the light
turns on shortly before midnight, the sensor correctly activates in
response. Long after the light is turned off, however, the sensor
activates several times between 9:00 AM and 4:00 PM in response
to ambient sunlight. These activations are false positive and they
must be accounted for to ensure robustness disaggregation.

However, differentiating between the load and environmental sen-
sors may require supplying the system with additional metadata,
which may complicate deployments.

6.1.3 Aliased Loads
It is possible for an unmonitored (hidden) load to change power

states simultaneously with a monitored load such that the change in
the aggregate that corresponds to the metered load is masked. Simi-
larly, two monitored loads that change power states simultaneously
will cause a single change in the aggregate, making disaggregation
between those two loads difficult. In the first scenario, we assume
that this case will not occur too frequently, and while it will be a
source of error when it happens, over time the error will be miti-
gated. In the second case, it may be acceptable to group the power
draw of items that transition simultaneously, as that likely repre-
sents a composite load that can be thought of as a single load, like
a TV and surround sound speaker system.

6.1.4 Privacy
Conveying information via the characteristics of the transmission

channel instead of the content obviously raises security and privacy
issues, due to potential leakage of the occupant activities as they are
performed within a private space.

While content can be encrypted, it is much more difficult to hide
from a malicious observer the transmission frequency. In order to
obscure the timing characteristics of sensor wakeups so that they
are not detectable by a third party but are still available to the in-
tended recipient, we must convey timing information over a regular
encryptable data channel, not a side-channel.

To report wakeups over a regular data channel, the sensors need
to transmit periodically and provide a recent history of wakeup
times within each transmission. However, storing and reporting
time-series data is a challenge as the intermittently-powered energy-
harvesting sensors that we use are unable to support real-time clocks
(RTCs). To provide these highly-constrained sensors with a notion
of temporal history, we propose an unconventional method for rep-
resenting the passage of time.

The main resources that our sensors have for carrying the effects
of past states into the present is their timing capacitor and flash
memory. If the sensors record the voltage level of their timing ca-
pacitor upon wakeup, then Deltaflow need only convert a report of
these voltage levels into the corresponding wallclock times to ob-
tain the time-series and subsequent sensor wakeup frequency.



To map voltages to time, we propose a two phase approach con-
sisting of model acquisition and secure sensing. During model ac-
quisition, when a sensor powers itself it immediately transmits an
encrypted packet containing the current timing capacitor voltage
level. These transmissions allow Deltaflow to build a model of the
load power-timing capacitor relationship. During secure sensing,
the sensor records voltage levels upon wakeup. The sensor periodi-
cally transmits that history to the server which reconstructs it using
the initial model, thus preserving some level of privacy.

6.2 Future Work
We envision four key areas for future work. These areas focus

on improving the deployability and automation of the system by
providing real-time processing capabilities, supporting redundant
sensors, removing the need to specify the parameterized form of
the calibration function, and miniaturizing the sensors.

6.2.1 Real-time Processing
In a practical deployment, the disaggregation system will likely

need to update in real time. This presents unique challenges over
static data processing because a sensor’s activation frequency at a
given time is unknown until the next pulse is received. If a pulse
stream suddenly stops, Deltaflow loses its information source.

One possible solution is to assume that a load will stay con-
stant. This means that the activation rate will also stay constant,
and Deltaflow can predict the latest time by which the next pulse
should arrive. If the pulse does not arrive by the expected time,
there are four possible explanations: the load has reduced its power
draw, the load has turned off completely, a packet has been lost, or
the sensor has been lost (i.e. is broken or has been removed).

If Deltaflow estimates the expected arrival time of the next sen-
sor pulse for each sensor, it can identify missing pulses and accom-
modate them by incrementally reducing the power estimate for the
load until the server receives the next pulse or the estimate reaches
zero. If the load reduces its power draw, then this process will draw
a line that slopes down to the new estimate. If the load turns off,
then this method will converge to a power estimate of zero.

If a packet is lost, then using this method will cause Deltaflow’s
estimate to dip during real-time operations. However, packets from
the pulse sensors contain sequence numbers that allow the system
to retroactively correct the estimate when the next pulse is received.
How post facto corrections are used is a different matter.

If the sensor is lost, then Deltaflow will generate an incorrect
estimate for that load. The aggregate will not drop, however, so
the error of the estimated aggregate will increase. When the er-
ror is greater than a certain threshold, Deltaflow is alerted to the
fact that its system model is no longer accurate. Problematic sen-
sors can be identified using techniques like the largest normalized
residual test, which is used for detecting faulty sensors during the
bad data processing phase of power system state estimation. Once
the bad sensor is identified, Deltaflow can alert the user and re-run
the regression problem without that sensor to determine an updated
system model. This method of monitoring the error and re-running
when the error exceeds a threshold can be used to compensate for
other error sources, such as changing power factors, new sensors,
and changes in load characteristics.

6.2.2 Multiple Sensors
One potential method for reducing error in the system is to add

multiple sensors per load, e.g. using both a Gecko and Coilcube
sensor on the same lamp. This would both provide additional hints
for the Deltaflow system and remove the current constraint that al-
lows at most one sensor per load.

Figure 12: A mm-scale sensor node that integrates a solar cell,
processor, radio, and battery that provides much of the pulse sensor
functionality. This illustrates that the “peel-and-stick” sensor tags
we envision will soon be viable.

Extending Deltaflow to support multiple sensors would involve
adding a method for determining which sensors represent the same
load. This could be done by observing that a set of sensors are syn-
chronized in their pulse frequency deviations, perhaps by observing
the sensor covariance matrix. However, due to differences in sensor
response times, determining their synchronized behavior may be
difficult, requiring that sensor traces be partitioned into stable and
volatile segments. Manually augmenting the system with metadata
would be an effective but labor-intensive and perhaps error-prone
fallback should efforts at automation prove too complex.

6.2.3 Adaptive Models
Currently, Deltaflow requires that the monotonically increasing

calibration function for the sensors be provided in a general form a
priori. Our implementation uses non-negative least squares regres-
sion to enforce the monotonicity constraint, but this may rule out
monotonically increasing functions with negative coefficients. A
more general approach may be to use semi-definite programming
to establish the monotonicity constraint. It may also be possible to
eliminate all foreknowledge of the calibration function. Calculus
of variations is an analytical tool that can discover arbitrary func-
tions that minimize some other function. If these techniques could
be used to discover the functions at runtime that minimize the error
of the estimated aggregate, then we could eliminate assumptions
about the form of the calibration function.

6.2.4 “Peel-and-stick” Sensors
While the current generation of sensors are functional, we en-

vision a future generation of pulse sensors that are truly peel-and-
stick, like RFID tags are today. Figure 12 shows an example of
such a sensor. At this scale, the sensor could be integrated into
laminated tags and easily affixed to loads.

7. CONCLUSIONS
A recent U.S. National Science and Technology Council report

states that the ability to submeter electricity and water in modern
buildings is critical to meeting Federal sustainability targets, but the
same report also notes the difficulty of submetering at scale. This
paper explores a new approach to submetering that does not suffer
from many of the drawbacks of current systems. We leverage re-
cent advances in inexpensive—but low-quality—energy-harvesting
sensors that can be deployed broadly and propose new algorithms
to processing their intermittent, inaccurate, and noisy data streams.
Our results show that it is possible to deploy small, unobtrusive,
inaccurate, and uncalibrated sensors, and yet still be able to esti-
mate individual contributions to an aggregate load. Miniaturizing
the sensors and supporting other modalities will soon pave the way
to pervasive, fine-grained, “peel-and-stick” submetering solutions.
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