
Citation: Chwalek, P.; Chen, H.;

Dutta, P.; Dimon, J.; Singh, S.;

Chiang, C.; Azwell, T. Downwind

Fire and Smoke Detection during a

Controlled Burn—Analyzing the

Feasibility and Robustness of Several

Downwind Wildfire Sensing

Modalities through Real World

Applications. Fire 2023, 6, 356.

https://doi.org/10.3390/

fire6090356

Academic Editors: Aqil Tariq

and Na Zhao

Received: 21 August 2023

Revised: 8 September 2023

Accepted: 9 September 2023

Published: 12 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Downwind Fire and Smoke Detection during a Controlled
Burn—Analyzing the Feasibility and Robustness of Several
Downwind Wildfire Sensing Modalities through Real
World Applications
Patrick Chwalek 1 , Hall Chen 1, Prabal Dutta 2, Joshua Dimon 3, Sukh Singh 3, Constance Chiang 3

and Thomas Azwell 3,*

1 Gridware Technologies Inc., Walnut Creek, CA 94597, USA; chwalek@mit.edu (P.C.);
hallchen@berkeley.edu (H.C.)

2 Electrical Engineering and Computer Sciences Department, University of California,
Berkeley, CA 94720, USA; prabal@berkeley.edu

3 Disaster Lab, College of Engineering, University of California, Berkeley, CA 94720, USA;
jdimon@berkeley.edu (J.D.); sukh@berkeley.edu (S.S.); constance.chiang@berkeley.edu (C.C.)

* Correspondence: azwell@berkeley.edu

Abstract: Wildfires have played an increasing role in wreaking havoc on communities, livelihoods,
and ecosystems globally, often starting in remote regions and rapidly spreading into inhabited areas
where they become difficult to suppress due to their size and unpredictability. In sparsely populated
remote regions where freshly ignited fires can propagate unimpeded, the need for distributed fire
detection capabilities has become increasingly urgent. In this work, we evaluate the potential of a
multitude of different sensing modalities for integration into a distributed downwind fire detection
system, something which does not exist today. We deployed custom sensor-rich data logging units
over a multi-day-controlled burn event hosted by the Marin County Fire Department in Marin
County, CA. Under the experimental conditions, nearly all sensing modalities exhibited signature
behaviors of a nearby active fire, but with varying degrees of sensitivity. We present promising
preliminary findings from these field tests but also note that future work is needed to assess more
prosaic concerns. Larger scale trials will be needed to determine the practicality of specific sensing
modalities in outdoor settings, and additional environmental data and testing will be needed to
determine the sensor system lifetime, data delivery performance, and other technical considerations.
Crucially, this work provides the preliminary justification underscoring that future work is potentially
valuable and worth pursuit.

Keywords: controlled burn; prescribed burn; smoke; wildfire detection

1. Introduction

Evidence from historical wildfire trends predicts increasing fire severity with “six
of California’s seven largest wildfires [erupting] in the past year” [1]. The causes and
conditions that have led to the increased fire activity are numerous (e.g., drought conditions,
electric grid equipment failure, etc.), but the consequences are clear: staggering economic
losses, property and ecological damage, and loss of life. One example is the California
Camp Fire of 2018, which resulted in over USD 16 billion in damages over two weeks
and a loss of 86 lives [2]. A large number of these fires occur in what is known as the
wildland–urban interface (WUI), the zone of transition between wildland and human
development [3]. Fires that start in this WUI zone have the potential to go undetected for a
longer period of time than ignitions in urban areas due to a reduced population density in
these zones, reduced coverage of security cameras, and the potential for ignitions to start
out of line-of-sight from residences or businesses. This potential delay in ignition detection
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can give wildfires an opportunity to grow in size and unpredictability, which reduces the
ease of containment. Under such circumstances, the importance and need for remote fire
detection capabilities in these zones have become paramount.

Low-cost, low-power distributed sensor networks have become a promising avenue in
achieving early wildfire detection capability [4–9]. If implemented in practice, such a system
would supply fire fighting forces with an early warning of freshly ignited fires, knowledge
of localized geography-specific environmental details, and real-time situational awareness
of how the fire is expanding or moving. However, these systems need to be tested to prove
their detection capabilities across a variety of parameters, and for that, we need to test
them in live fire situations, which is most feasible under the quasi-controlled setting of a
controlled burn. In this paper, we investigated a wide variety of sensors including optical,
infrared, chemical, and sound sensors in order to compare the efficiency and robustness
across sensor modalities in a controlled burn situation. We placed the sensors downwind
from the fire to ensure that the sensors that rely on particulate or gas detections could
collect data. In an actual deployment, there would be the deployment of a sensor node
with sufficient and in an appropriate layout to address the highly variable wind intensities
and directions during a fire. Evaluating a full node is planned for future research.

Controlled burns are a burning method used to control vegetation in a given area
for esthetic, restorative, precautionary, and/or training purposes. These burns can be
used to create diverse habitats for plants and animals, reduce fuels, thereby preventing
more destructive fires, and as training exercises for departments to better understand the
nature of wildfires and how to effectively deal with them. This study deployed sensors at
the Marin County Fire Department’s controlled burn in Novato, CA in May 2021 for fuel
reduction purposes [10]. While controlled burns are of a lower intensity than uncontrolled
wildfires, adapting sensor systems to data collected from these events will ensure that the
sensors are sensitive enough to detect early fire starts in wildfire situations.

In this paper, we review the academic research and commercial applications focused
on sensing modalities for fire detection. We also present the custom sensing unit that we
built based on these findings and provide an overview of our experimental setup during
the controlled burn. Then, we discuss our results including areas where we have room for
improvement in collecting more diverse and wildfire-representative data during future
controlled burns.

1.1. Related Work

Research into sensors for fire detection can be broadly grouped into remote sensing
and local sensing. The remote sensing of wildfires today is primarily electromagnetic
sensor-based [11]. The main limitation with remote sensing is that occlusions such as
terrain line-of-sight limitations or volatile weather patterns (e.g., fog and rain) can impede
the capabilities of the system. In contrast, for local sensing (often also referred to as ground-
based or in situ sensing), the sensors need to be near a fire and/or its emissions to detect it
reliably. Local sensing can include detectors for gas, particulate matter, localized humidity,
sound, radio frequency, and wind, among others. Given the dependency on proximity,
topography, and wind dynamics, the local sensing of wildfires often requires a large number
of units to cover any appreciable land area, and these are thus often called sensor nodes or
networks and involve a wireless mesh network.

This review focused on sensor nodes because they are the least expensive to implement
and design compared to other methods for wildfire detection [12]. Sensor nodes are placed
throughout a wildfire risk area to form a wireless sensor network (WSN). The sensors
transmit data through the network to a base station where they are processed to detect fires.
Once detected, notice may be sent out to the authorities for verification and response.

Below, we briefly review the specific sensor technologies we included in our sensor
package evaluation.
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1.2. Optical Sensors (Cameras)

Many fire-detection systems employ camera-based techniques because they are the
most intuitive sensing modality for operators to understand and can monitor a large
area of land with just one unit. Camera systems can use pan-tilt-zoom (PTZ) cameras
or multiple static cameras where the images are stitched together so that a single unit
can have 360-degree visibility. Because these systems can easily employ high-resolution
cameras, they often use machine learning techniques to identify specific characteristics
of a wildfire (e.g., contrast, flicker, temporal patterns, etc.) and give operators automated
alarms coupled with snapshots for further validation [13]. However, this means that the
system needs to have line-of-sight to the target area, which may not be possible in every
installation, and this type of system either needs to be coupled with local detection units
or several units need to be distributed to limit blind spots. An additional concern with
these types of systems is the power requirements of capturing, processing, and potentially
delivering a real-time video feed to remote observers or edge computation nodes. The
power requirements of such systems can be prohibitive for certain remote installations that
do not have access to the electrical grid and prohibit large energy harvesting installations
(e.g., photovoltaics). Finally, an obvious concern with camera techniques is privacy since,
ideally, the system would have visibility of a large area of land, which also means that it
can collect visual information on non-wildfire-related human activity that has the potential
of being exploited.

One approach to identify whether there is a wildfire in the scene is to look at individual
or clusters of pixels to identify flame flicker, which exists in the visible and infrared
spectra [13]. This approach takes into consideration the unique temporal characteristics
of fire, which is more accurate than just classifying a single image but is less reliable
at long distances [14]. Similarly, the same can be classified from a single photodiode if
exposed to a fire, particularly if equipped on a distributed fire detection system looking to
classify wildfire flicker from tens of meters away. Using a cheap COTS NIR flame flicker
at nighttime, a candlelight flicker could be detected from 10 m away, while the daytime
performance was significantly worse [15]. Commercial non-camera-based flame detectors
look for flicker between 1 and 10 Hz. These commercial systems also tend to incorporate an
ultraviolet (UV) sensing component to mitigate any noise that may occur from intermittent
sunlight exposure.

In the commercial space, the Lindsey FireSense FIREBird system is a camera-based
system that uses an array of cameras for a 360-degree field-of-view (FOV) [16]. The system
also uses additional thermal and environmental sensors to aid in fire detection. The
company claims it can detect a 3 ft × 3 ft fire from 400 feet or a large fire from a half-mile
away. The IQ FireWatch system is similar, but its imager covers a larger spectral range that
offers improved performance for nighttime use [17]. They claim that their system can detect
smoke plumes up to 40 miles away in perfect weather conditions, but the performance can
be significantly impeded by fog or clouds. The Lesnoy Dozor is a similar system based in
Russia, while the FireHawk system is one geared for timber plantations that uses a rotating
camera for a full panoramic image [18,19]. These two systems suffer the same drawbacks as
the others above-mentioned in that they require installation at significant heights, clearing
the tree-line, and achieving line-of-sight visibility to ignition sites.

1.3. Temperature

Temperature fluctuations from a wildfire result from conduction, convection, and
radiation, but for early detection sensing purposes, convection and radiative heating are the
most relevant [20]. Radiative heating and convective heating during a wildfire demonstrate
very different response curves, with radiative heating increasing monotonically as a fire
approaches, and convective heating demonstrating significant increases in variance, but not
necessarily in mean temperature, as cooling air can be drawn toward fire [21]. Researchers
from Bilkent University confirmed this when they performed several fire experiments where
they placed several COTS sensor units at varying distances from a fire source and measured
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the temperature [22]. They noticed that the sensor units that were placed downwind saw
greater temperature spikes due to convective heat transfer from the combustion. For an
early detection system, however, the fire ideally has not yet reached the level at which it is
causing significant convective heat fluctuations due to fire-generated wind currents.

For a smoldering fire, the peak electromagnetic emission is within the infrared domain,
1–5 µm [13]. Cheap, single-pixel infrared detectors exist (i.e., thermopiles) that can be
tailored to specific wavelengths with additional optical filters that can correspond to ranges
indicative of a wildfire. One problem with this approach is that the exhaust of a wildfire is
composed of a variety of matter that can attenuate any incident infrared radiation from
the fire [23]. However, if the attenuation bands of the constituent parts of wildfire exhaust
are known, a multiband system that can look at several wavelengths can be created to
estimate the wildfire temperature or look specifically for the constituent attenuation bands
to obtained an estimate of the amount of smoke being exhausted within the sensor’s FOV.
By knowing that one of the attenuation bands for CO2 is around 4.3 µm [24], a system can
be created to look at a reference band (e.g., 4.0 µm) and the CO2 attenuation band to create
an alarm for the presence of a large concentration of CO2.

1.4. Humidity

Relative humidity can increase during wildfires due to the release of water vapor
during combustion. Water vapor is released from wildfires through two processes: the
chemical output of hydrocarbon combustion, and the evaporation of water from woody
biomass due to conductive heat [21,25,26]. Both mechanisms together cause detectable
spikes in humidity during the initial phases of combustion. Byram [27] developed a
simplified oxidation reaction for generalized biomass (C6H9O4) as follows:

4C6H9O4 + 25O2 + [0.322MH2O + 94N2]→18H20 + 24CO2 + [0.322MH2O + 94N2] + 11.6 × 109 J

Moisture percentage of the fuel is represented by M (included in the brackets with
atmospheric nitrogen as inert components of the reaction). As a simplified formula, it does
not include the range of additional combustion emissions from wildfires beyond the basic
oxidation reaction assuming complete combustion (note no CO in oxidation products due
to this assumption). With this formula, Byram posits that for fuel moisture levels below
57%, the majority of water vapor from a wildfire is due to the combustion chemistry of the
biomass hydrocarbons.

Humidity sensors have been widely employed in multi-sensor wildfire detection
systems, but most studies have not specified the relative importance of humidity sensors
in overall system accuracy [28,29]. Nonetheless, capacitive humidity sensors are quite
common in multi-sensor wildfire detection systems being developed in academia and the
commercial sector, most likely because of the clear role of moisture in biomass combustion,
as noted above.

1.5. Wind

Wind sensors (anemometers) are commonly used by firefighters responding to large
wildfires due to the risks associated with sudden changes in wind direction for active
firefighting [30]. These anemometers are most often used to predict fire front movement on
live wildfire incidents, and not to detect new spot fires or engage in the early detection of a
new wildfire. Wind sensors have likewise been less often used in academic research aimed
at the early detection of wildfires [29,31]. They are commonly used in fire prediction and
forecasting models due to the key role wind speed plays in fire risk [32,33]. Heat fluctuations
from wildfires can influence wind currents in close proximity to the fire, but it is unclear at
what stage of fire these winds are first evident. If they are evident at feasibly detectable
levels at the earliest stages of fire, this could potentially be relevant for early detection in
very remote areas or during times of significant atmospheric occlusion of other sensors.

Basic wind sensors typically detect wind via anemometers. Another way that the
wind intensity, direction, and changes can be detected is via a spatially distributed system
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detecting the evolving levels of relative humidity, temperature, PM, and gases over time.
Local wind dynamics can potentially be inferred from the spatially distributed tempera-
ture, humidity, smoke, or other sensors detecting localized variations driven by fire with
sufficient time intervals over a short period of time to detect granular changes [34]. The
downside is that it is hard to differentiate the temperature and humidity fluctuations driven
by close proximity to fire (radiant heat and water vapor release) from those driven by wind
(wind-carried heat convection and increased humidity). This approach would therefore
most likely be applicable beyond a minimum distance from the fire.

1.6. Particulate Matter

During combustion, an extensive variety of particulate matter (PM) is released, along-
side gases [35,36]. The relative proportions of these quantities vary depending on the fuel
source and environmental characteristics [13]. Burning biomass generates a higher propor-
tion of PM 2.5 compared with coarser particulate matter [37]. One mass emission estimate
ratio (grams of emission/kilogram of fuel burned) puts PM 2.5 at 10.3, while particulates
between 2.5 µm and 10 µm are at 1.9 and anything larger is estimated at 3.8 [38]. These num-
bers vary depending on the type of fuel being burned (e.g., biomass, hydrocarbons, etc.) [8].
Some fine particulate components such as levoglucosan (1,6-anhydro-‚-D-glucopyranose)
have been demonstrated to be a decent biomarker for biomass combustion emissions, and
thus holds potential for sensors appropriately tuned to its detection [39]. A distributed
fire detection system that uses a particulate counter as one of its modalities also serves the
dual purpose of characterizing the air quality across a geographical region, which is an
important feature for complex microclimate environments such as the San Francisco Bay
Area, where the air quality can vary greatly across the metropolitan area. These systems
have become low cost, are increasingly widespread through many WUI areas, and have
been shown to be strongly correlative with PM reference instruments when correction
equations for each package are implemented [40]. PurpleAir is one company offering
low-cost particulate counters for consumers and is making that data publicly accessible for
anyone to view [5]. This is a valuable offering for people wanting to monitor their local air
quality and for informing computational models of wildfire particulate diffusion.

1.7. Gas

The top three exhaust constituents from wildfire by mass are CO2 (71.44%), water
(20.97%), and CO (5.52%) [38]. NOx is also generated in significant quantities. Therefore,
having CO2, CO, and NOx sensors could potentially increase the detection capabilities
of any fire detection system. In a wildland fire setting, one general limitation will be the
diffusion rate of these gases across an area and, in the case of sensors that require direct
contact with the gas, the location of the sensor in relation to the fire and wind direction.
Additionally, for CO2, the additive concentration of CO2 from the ignition source must
be substantial enough to be detectable against high normal concentrations of CO2 in the
atmosphere and confounding sources of CO2. NOx and CO do not suffer from this last
drawback, as background concentrations in the atmosphere are very low, particularly in
remote wildland contexts where early detection would be the most difficult. The most
common sensors employed for CO detection are non-dispersive IR absorption (NDIR),
electrochemical, and metal-oxide-based sensors. Although MOS sensors are widely used
for gas sensing and have been used in other fire detection system prototypes, they are less
ideal for use in distributed low-power systems because of the power requirements of the
built-in heater module [41]. Alternative non-dispersive infrared (NDIR) sensing techniques
exist where the attenuation at specific electromagnetic wavelengths is measured, which
can be correlated to the attenuation of a specific gas, therefore indicating the concentration
of a particular gas [42]. This method is far superior due to its simpler architecture (i.e., an
emitter and receiver diode pair) and lower power requirements. GCxGC is also used to
identify the compounds within wildfire smoke. Seventy-two gas phase and 240 particle
phase compounds were analyzed using GcxGC to explore the profile of wildfire smoke [43].
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Diterpenoids were found to be the most abundant organic particles detected in the wildfire
smoke samples. Furthermore, monoterpenes in the gas phase were higher in the wildlife
smoke samples compared to the lab smoke samples, which means that they can be used to
identify wildfire.

Organic aerosols (OAs) and brown carbon (BrC) are also present in wildfire smoke
and can be used to quantify primary and secondary biomass burning. Phenolic compounds
and their oxidation products are also large contributors to brown carbon (BrC) ABs405 in
wildfire plumes [44], which can be identified with an aerosol mass spectrometer. OAs can
be quantified using a photoacoustic absorption spectrometer. Fourier transform infrared
spectroscopy (FTIR) can also be used to identify trace gas emissions from burning biofu-
els [45]. FTIR is especially strong in measuring both organic and inorganic compounds and
providing information on the distribution of emitted carbon. Some understudied emissions
from wildfires such as polycyclic aromatic hydrocarbons, intermediate-volatile compounds,
and alkyl amines require more research given their toxicity and the increasing exposure
of populations to biomass smoke [46]. Knowing the emission profile of wildfire smoke is
important and can aid in the future modeling of wildfires or exposure assessments.

1.8. Sound

Wildfires have a specific sound associated with them that can indicate not only the
presence of a fire but also the type of fire it is. Khamukhin and Bertoldo [47] attempted to
create a system that can classify two types of forest fires: crown and surface. Crown fires
occur when surface fires spread and ignite the forest canopy, leading to strong turbulent air
vortices that result in an increased rate of combustion. Surface fires tend to have a low rate
of spread (0.5 m/min) while crown fires tend to be very volatile, extremely dangerous, and
can have rates of spread in excess of 200 m/min. Khamukhin and Bertoldo [48] analyzed
several open-source wildfire recordings and noticed that the frequency response of a surface
fire resembled that of the red noise spectrum while that of a crown fire was more distinct,
with a Gaussian distribution centered around 350 Hz. Therefore, for a microphone array
placed in the wild, it is possible to classify and triangulate certain fire types to estimate
severe wildfire regions. Thompson et al. [49] performed an acoustic analysis of firebrands
on a crown fire in Alberta, Canada. This research is especially pertinent because prior
studies on firebrands focus solely on structure fires. The audio files from eleven cameras
recording the fire were extracted and analyzed, and they found that the in-fire cameras had
a low false negative rate of 15% and an even lower false positive rate of 1%. They developed
a spatial estimate for the spread of firebrands and concluded that there was the highest
amount of firebrands 75 m away from the source, with a concentration of 640 firebrands
per kg of tree fuel consumed. This research encourages the re-examination of past studies
that have well-documented audio tracks of fires to further observe firebrand distribution.
Yedinak et al. [50] performed research on the effect of vegetation on the acoustic signature
of fires and found that the moisture content of vegetation had an effect on the acoustic
pattern of the wildfire. Higher moisture content led to a lower amplitude and duration
of the acoustic signature. Furthermore, Yedinak et al. found that the type of vegetation
burned affected the acoustic signature of the fire, with grass combustion having a higher
duration but smaller amplitude than burning twigs. The acoustic information can help
identify what kind of vegetation was burned in a wildfire.

1.9. Radio Frequency Interference

Wildfire-induced radio interference is an important active area of research since to
enable any wireless distributed sensing network to work in the wild, there needs to be a
stable communication network to rely on. The research on characterizing RF interference is
sparse, but Boan [51] showed evidence that the extreme heat of a small diesel-fueled fire can
cause RF attenuation below 600 MHz and an amplification above 600 MHz. He theorized
that this is likely due to the refractive effects of the fire, which can work in favor or against
the signal, depending on the frequency. However, Li et al. [52] saw no appreciable RF
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attenuation effects of a diesel-fueled flame on frequencies between 350 MHz and 400 MHz.
They did find that the smoke resulting from the flame attenuated more at 300 MHz than
at 400 MHz, and that this attenuation varied depending on what type of fuel was used to
start the fire. More research in this area is warranted but there is supporting evidence that
a system measuring the RF attenuation between a network of nodes can work to estimate
the presence and spatial characteristics of a wildfire.

1.10. Multi Sensor Systems

Because of the strengths and weaknesses of the various sensor modalities, many
academic and commercial systems employ multiple sensors on the same device. This can
contribute to increased precision and recall, at the expense of additional processing power
and time. It can also serve to build in predictive components to a detection system, where
the sensor data reach combined thresholds determining a high fire risk. For instance, when
the relative humidity is less than 30%, temperatures are in excess of 30 ◦C, and wind speeds
are higher than 30 km/h, the fire risk is heightened [53]. This 30–30–30 rule is often used in
the deployment of smart sensors to create a multi-tier alarm system that provides alerts on
the varying risk and severity of a wildfire [7]. Landis [54] explored various multimodal
sensors capable of measuring fine particulate matter (PM2.5), carbon monoxide (CO),
carbon dioxide (CO2), and ozone (O3). The most effective device had an accuracy greater
than 80%. Another aspect of this research was describing the importance of using federal
reference method (FRM) instruments to evaluate the device’s performance in detecting
biomass smoke. Current FRMs for measuring PM 2.5 are not well-characterized and Landis
observed that the 1-h FRM correction factor is a function of burn condition. Therefore, this
research supports that PM 2.5 can be used to detect wildfires.

2. Materials and Methods
2.1. System Overview

When designing our system, we built around several key constraints to guarantee
the operation of our experimental system for a 2-day controlled burn. We derived these
constraints from knowing that the unit was going to be placed in remote areas that may
be inaccessible until after the experiment and that the fire was going to occur at varying
distances near the sensors including directly below. We were also informed by the fire
department that the scheduling of the controlled burn may be subject to change, even at the
last minute, and that we should be prepared to quickly install and uninstall our systems.
The constraints around which we built our system were:

- Autonomous operation over 48-h;
- Weather resistant;
- Continuous camera snapshots for data ground truth over the entire experiment,
- Installation time less than 10-min so as to not impede the controlled burn training

exercises. In an actual deployment for uncontrolled wildfire detection, this would not
be a constraint;

- Local data storage with every sample being timestamped;
- System offset from the ground level to minimize fire risk;
- Two systems built and deployed simultaneously at different locations to account for

the uncertainty of when a controlled burn at a given site will begin and if it will be
canceled due to weather or scheduling reasons.

With these constraints in mind, we built two identical versions of the system shown
in Figure 1. The system included several COTS sensor modules that were interfaced with
an ARM Cortex-M7 MCU (Teensy 4.1). We used several types of temperature sensors
to measure the variability across them and the difference between mounting techniques
(i.e., external vs. internal). We included a particulate sensor (SPS30), RGB light sensor
(TCS34725), UV light sensor (GUVA-S12SD), gas and humidity sensor (BME680), and a CO2
sensor (SCD30). We also added a laser range finder (LIDAR-Lite V3hp) to see whether NIR
reflectance in thick smoke could be observed. The system was equipped with an external
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Zoom H1n microphone and as a truth source, a DJI Osmo Action camera. Two LEDs
were added where one was actuated if an error occurred at system startup and another
every 1 Hz so that the observer could quickly validate if the sensor unit was operating
correctly. All sensor data were recorded to onboard SD cards, a risky decision given that
the sensor modules could have been destroyed and all the data would then be lost, but
external communication to the device was prohibitive given the complex topography of
the area and the uncertainty of how far away a communication relay could be placed. The
onboard GPS module was used to periodically synchronize the system with GPS time and
limit any clock drift—the antenna was mounted externally to the unit to reduce any signal
attenuation from the enclosure. The system was enclosed in a polycarbonate case that was
machined to allow for all sensors to have open access to the ambient environment—each
sensor had a partial conformal coating with silicone to reduce any risk of water damage.
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Figure 1. Overview of the experimental system designed to evaluate various sensing modalities for
the detection of wildfire events. The system includes a camera for the truth measurements and a GPS
module to synchronize all the sensor subsystems and to give an approximation of sensor location.
Two were built and later deployed at the test site.

Our unit was also equipped with nine infrared sensors (i.e., thermopiles) spread
over three banks. Bank 1 was exposed to ambient while banks 2 and 3 had additional
optical filters. Bank 2 used a bandpass optical filter rated for the CO2 attenuation range
(CWL: 4.26 µm, FWHM: 105 nm). Bank 3 used a bandpass optical filter rated near the CO2
attenuation range of 4.3 µm (CWL: 4 µm, FWHM: 500 nm) but the tails of the response
curve overlapped with 4.3 µm. Each bank of thermopiles comprised of three discrete
digital thermopiles: TSD305, TPiS 1T 1084, and TPiS 1T 1086 L5.5. Digital thermopiles were
chosen since the radiation reading compensates for any thermal fluctuations for the sensor
itself. TSD305 and TPiS 1T 1084 are equipped with long wave pass filters (attenuation
under 5.5 µm) while the TPiS 1T 1086 L5.5 just has a raw silicon lens. Since two of the
thermopiles have long wave pass filters that attenuate under 5.5 µm, they cannot measure
the ambient atmosphere through either of the bandpass optical filters used in banks 2 and
3 since they attenuate anything above 5.5 µm—this was intentional with the TSD305 but
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we only learned through a conversation with the manufacturer after the experiment that
the TPiS 1T 1084 was also equipped with a similar filter (this detail was omitted from the
part’s datasheet). Given the lack of visibility in their responsive regions, these sensors were
only able to sense the radiation emitted by the temperature fluctuations of the bandpass
lenses themselves.

We maximized the sample rates for each sensor channel by characterizing the sample
times required and splitting the digital sensors across all available digital communication
peripherals (i.e., three I2C busses, one SPI bus, and the Serial bus) so that each bus only
has at most one sensor that requires a lengthy bidirectional communication cycle (>50 ms)
for each sample. These sample rates are shown in Table 1. This limits the amount of time
the system is deadlocked, waiting for the next available sample, and also reduces the risk
of complete system failure in the event that one of the communication busses becomes
damaged.

Table 1. The sensor sample rates.

Description Sensor Type Sample Rate (Hz)

Thermopiles Optical (infrared) 10
CO2 Sensor (SCD30) Optical (infrared) 0.5

Particulate Sensor (SPS30) Optical 0.5
Temperature Sensor (TMP117) Heat Transfer 1
Temperature Sensor (DS8B20) Heat Transfer 1

Gas Sensor (BME680) Metal Oxide 1
RGB Light Sensor (TCS34725) Optical (visible) 0.2

UV Light Sensor (GUVA-S12SD) Optical (ultraviolet) 10
Camera Optical (visible) 1

Microphone Cardioid Condenser
Stereo Pair 44,100

When the sensing system was fully operational, the power draw combined with the
recorder operating at 44.1 kHz, was on average 1.53 W, so to fit the requirement of 48-h of
autonomous operation, we equipped the unit with a 111 Wh battery, allowing for over 65 h
of continuous use on a single charge. We learned that for a 1 Hz sampling rate of the DJI
Osmo Action camera, there would be an additional 3.33 W power draw, which warranted a
larger/additional battery reserve to keep the unit alive for 48 h. Given that we could not fit
a battery large enough within the enclosure to support the camera, we attached an external
second power source (240 Wh) dedicated only to the camera’s operation.

2.2. Experimental Procedure

The experiment took place at a controlled burn scheduled by the Marin County Fire
Department in Novato, CA. The controlled burn occurred on a large plot of private land
where over 80 firefighters continuously burned and extinguished long strips of vegetated
land after preparing the land with firebreaks to avoid any unwanted spread. This exercise
was used both as a training exercise and as a mitigation technique by burning existing
dried vegetation that was at high risk of catching fire.

Our two units were deployed at two different locations across the controlled burn
area (Figure 2). Our first unit (Unit 1) was placed in a mixed vegetation area (e.g., tall
grass, bushes, etc.) where we expected some of the most intense burns of the event to occur
(Figure 3). The second unit (Unit 2) was placed on a hill near the base camp where lower
intensity burns were expected, since the only vegetation in the area were fields of short,
dry grass. Each sensor unit was placed on 6-foot metal rods with the external batteries
places on a second set of rods alongside the sensors to limit direct fire exposure. Unit 2 was
installed and left unmoved during the 2-day test event while Unit 1 had to be repositioned
twice during the test given that the fire department’s controlled burn plan changed during
the experiment and it would not have been able to directly observe a fire in its first location.
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We were fortunate enough to work with a crew of firefighters on repositioning the sensor
twice so that it was less than 5 m downwind from two high-intensity burns (Figure 4).
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Figure 4. Unit 1’s first experimental trial seen by the external observer (left) and by the camera
mounted on the in situ sensor (right).

Figure 5 shows a simplified diagram of the configuration in which each unit was
placed. During this controlled burn, an initial firebreak was cut into the landscape, and
then firefighters progressed from that break by burning parallel strips of land that ranged in
width (i.e., Y meters in Figure 5) but it was observed to be generally around 1–5 m. During
each pass, if the firefighters observed that the vegetation was burning too vigorously, they
reduced the width of the proceeding strip. The strips were oriented so that the wind
naturally blew the fire toward the firebreak to prevent the fire from spreading toward
uncontrolled locations. Given this controlled burn test architecture, we placed all of our
sensors near the fire break to not impede the firefighting effort and to ensure downwind
fire exposure. The exact path and length of land (i.e., X meters in Figure 5) that was burned
during each pass was variable and depended on the topography of the landscape. What
was also uncertain was when each pass would occur, given that this was dependent on
a variety of parameters (e.g., reset time from last pass exercise, water availability, crew
readiness, etc.).
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Figure 5. A diagram of the experimental setup for each sensor deployment. Each sensor was offset
from the fire’s path and viewed its propagation across its field-of-view. For all deployments, there
was variable wind present that always blew orthogonal to the path of the fire and toward each sensor.

3. Results

Over the course of the experiment, both units observed several direct fire events
(Table 2). Unit 1 observed two direct fire events at about 5 m while Unit 2 observed several
events over the course of two days where they varied in range (directly below the sensor to
>30 m away) and intensity. As mentioned in Section 3.2, Unit 1’s placement was moved
twice during the experiment, both times being placed in areas that had previously been
burned within the past 30 min and in close proximity to the next incoming fire. For all test
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events, the wind was observed to be blowing from the fire toward the sensors, so direct
smoke exposure was true across all cases.

To synchronize all of the sensor data, the environmental sensors were synchronized
with the onboard microcontroller’s running clock and also with GPS time to compensate
for clock drift. For the DJI Action Camera, the video frames proved to be difficult to auto-
matically synchronize with the rest of the system. The first attempt at time synchronizing
the camera frames with the sensor data started with summing the pixel values of each
frame, making a signal out of this sum by doing this for all frames, and then comparing this
signal to the RGB light sensor on the sensor unit. A cross-correlation was performed and
the initial attempts looked promising, but when validating the fire events seen by the CO2
signal with the corresponding synchronized camera frame, it appeared to be misaligned
by several minutes. The main reason for misalignment was that the camera had a very
active automatic gain control (AGC) that made cross-correlating with the RGB light sensor
difficult. We settled on cross-correlating over a region of time that the AGC was stable
(consistent lighting in the scene); this allowed us to manually fine-tune the alignment.
We also noticed that although the camera was supposed to be recording at 1 Hz, it was
slightly off, resulting in increased misalignment as the video progressed from where we
fine-tuned it. To compensate, we recalculated the alignment for each new day of testing.
With the frames synchronized, we generated several video snippets for each test event
where we showed the temporal evolution of each sensor channel mapped to the camera
frames so that it could inform our qualitative analysis; a link to the video snippets can be
found here: https://tinyurl.com/ynuhuha7 (accessed on 8 June 2022). We did not include
the microphone data for this phase of analysis, but it will be a focus in our future work.
We also did not include the laser range finder data since the results were inconclusive.
Theoretically, we should be able to sense smoke-related reflectance in the NIR band using
a NIR laser-based ToF sensor; the sensor we used preprocessed the raw signal and only
returned the estimated distance of the maximum reflectance point.

Table 2. Fire event times for each unit’s experimental trials.

Unit Event Day Time

1
1 2 12:20

2 2 13:06

2

1 1 11:48

2 1 12:27

3 1 14:05

4 1 14:29

5 1 14:59

6 2 11:24

7 2 11:47

8 2 12:11

9 2 12:42

10 2 13:02

For two of the 12 fire events seen by our two sensors (Table 2), the raw signals of a
subset of our sensors are shown in Figures 6 and 7. Figure 6 is the first event seen by Unit 1
that was exposed to a nearby high-intensity fire. Figure 7 is the last event seen by Unit 2
where the controlled burn occurred over 20 m away. Both figures feature a few snapshots
from each unit’s cameras to provide a visual frame of reference. It is important to note that
throughout both testing days, the entire test event area had an increase in smoke activity
given the multiple controlled burns occurring on various hills in the vicinity.

https://tinyurl.com/ynuhuha7
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Figure 6. (Unit 1, Event 1) Time-synchronized environmental sensor data from a sensor unit with a
nearby (<5 m) controlled burn with time-aligned picture excerpts (vertical dashed lines). A few of the
sensor channels were saturated due to the extreme nearby fire and smoke activity, which resulted in
either a flattened upper-threshold signal or a digital reading being reset to zero by the sensor itself.
As can be seen throughout all channels, every sensor had a unique signal response to the fire event,
which can be used in combination in a fire detection system.
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Figure 7. (Unit 2, Event 10) Time-synchronized environmental sensor data from a sensor unit with
the furthest (>20 m) measured controlled burn with time-aligned picture excerpts (vertical dashed
lines). Across all sensor channels, the signal response was not as abrupt as seen in Figure 6, but fire
induced signal fluctuations were still evident. At longer ranges, optical sensors may outperform
sensors that require direct exposure to the stimulus since they are less wind-dependent, but in this
experiment, all shown sensor channels still showed significant responses.

3.1. Temperature, Humidity, and Pressure

For the multiple modes of temperature sensing we had on the unit, all sensors saw
a momentary increase during each fire event. We chose to present a subset of results in
this paper since the other temperature sensors yielded similar temperature ranges and the
responsivity across all internal sensors was similar, although the externally mounted sensor
was the quickest to respond given its ability to make direct contact with the hot smoke.
However, upon request, we can make the full data collection available. For the closest of
the fires observed (Unit 1: event 1, Figure 6), we saw temperature fluctuations of 15 ◦C
while for the furthest of events (Unit 2: event 10, Figure 7), we were still able to observe a
near 1 ◦C momentary rise. However, during the furthest of the fire events seen during
testing, the temperature fluctuations were minimal and virtually nonexistent in the cheapest
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and lowest resolution temperature sensors (e.g., DS18B20). Our units benefitted from
having direct contact with the hot smoke being blown over it, so that had a strong influence
on the system’s quick response after ignition. For the pressure fluctuation, we observed
significant variability across the entire experiment, likely caused by the convective nature
of the fire itself, but the results are inconclusive given that the strong wind currents in the
area are a dominating factor when measuring the pressure fluctuations of the environment.

During ignition and a short time right after, we saw sharp increases in humidity (e.g.,
Figure 6) as any existing moisture in the ground evaporated and was carried downwind
toward the sensor. We did not observe these sharp increases when the fire was ignited
directly below the sensor (<1 m radius) since the moisture was blown away by the air
currents. Similarly, when the fire was ignited at its furthest (>20 m), the humid exhaust
diffused, which resulted in a highly dynamic signal.

3.2. Particulate Matter

We took the difference of a 4-min average particulate count directly prior and during
each fire event (Figure 8). For Unit 2, events 8–10, the test area started to become noticeably
hazy due to the ongoing controlled burns upwind from the test site, which is why the
particulate count prior to those fire events was higher than the previous events. As can
be seen in Figure 8, the particulate count across PM 1, PM 2.5, PM 4, and PM 10 rose
sharply during all fire events—these measurements continued to linger at above-average
levels for several minutes after, as the ground continued to smolder. Figure 9 shows how
abrupt the unfiltered signal looked for the PM 2.5 mass concentration measurements across
five sequential controlled burns. The smallest particulate count response was seen during
Unit 2’s first fire event, where the fire occurred directly below the device and the wind was
able to effectively push the particulate matter away from the sensor. These results clearly show
that the particulate count is strongly dependent on wind direction and sensor placement.
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Figure 8. Difference in the average observed particulate concentration recorded 5-min prior and
during each fire event. All events showed significant increases in particulate count except for the
event that had the fire burning directly underneath the sensor (i.e., 2.1). This shows that a particulate
counter is a valid sensing modality for smoke detection but is highly wind dependent.

We did not see an appreciable relationship between particulate count and distance
between the sensor and the fire. No significant concentration differences were seen when
the sensor unit was exposed to a fire event at 5 m (Unit 2: event 3) or to a fire in excess of
20 m away (Unit 2: event 10). This was likely due to the strong wind currents observed
that day, so further testing is required to estimate how much the particulates diffuse for a
given air current and distance. We did see that the particulate count is dependent on the
concentration of fuel being burned near the devices, since Unit 1’s first event (Figure 6)
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had roughly double the concentration of PM observed when compared to its second event,
which is likely due to a large bush that ignited directly in front of our device, resulting in a
greater measured density of particulate discharge.
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Figure 9. PM 2.5 mass concentration across sequential controlled burn events (Unit 2, Events 6–10).
Over the two days, there were no other natural or artificial phenomena (e.g., trucks driving on dirt
road) that resulted in similar extreme particulate concentrations, as seen throughout the fire events.

3.3. Gas

Similar to the particulate count measurements, the CO2 PPM saw a dramatic increase
in measurements and signal volatility during the fire but, unlike the PM count, quickly
returned to pre-event CO2 concentrations once the fire was extinguished (Figure 10). The
signal was also far noisier than the PM count, likely due to the variable air currents and
continued fire activity throughout the region. For Unit 1, the CO2 sensor saturated to
its max count (40,000 PPM) for both high-intensity fire events. We realized that once the
sensor saturated, the reading dropped to zero while the sensor underwent an internal reset
process, as seen in Figure 6. To compensate, we removed the zero values and forward-filled
the values when calculating the average differences shown in Figure 10.
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Figure 10. Difference in the average observed gas measurements recorded 5-min prior and during
each fire event. The same y-axis was used for comparing the CO2 sensor with the BME680 Gas
Resistance sensor, but the units differed (see legend). The average difference in gas concentrations
prior and during each fire event is shown to scale with the proximity and strength of each fire,
with the largest fluctuations occurring when the sensors were engulfed in flames and dense smoke
(i.e., experiments 1.1 and 1.2). However, we could still see significant volatility in the CO2 and
gas concentrations when the fires were at their furthest distances, where their exhaust was carried
downwind toward the sensors.
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The gas resistance output by BME680 is the resistance across the metal oxide sensor,
which drops when it encounters specific types of gas such as volatile organic compounds
(VOCs). The exact value cannot be mapped to a specific level of VOCs without proper cali-
bration; Bosch calibrated these sensors to map the gas resistance to air quality, equivalent-
CO2, and other metrics, but they only pertain to indoor applications. The gas resistance
during each event phase saw dramatic dips in the averages while dramatic increases in
volatility during the burn with lingering effects were seen for some time after the burn,
unlike the CO2 sensor readings. This is likely due to BME680 being sensitive to a wide
array of exhausting gases that are still present several minutes after the burn, unlike CO2.
which appears to dissipate relatively quickly.

3.4. Optical: Visible and UV

We split the RGB sensor values measured during each fire event and plotted them
next to the remaining measurements (Figure 11); the data are a combination of both sensor
units (Unit 1 and Unit 2) and span 2 full days and a night. It is clear that the in-event
measurements are a subset of the out-of-event measurements and cannot be used alone to
classify a fire event. Nonetheless, the smoke has a specific color profile (Figure 11, left) that
can be used in daylit scenarios to increase the confidence of a fire detection sensing system.
Although it appears that the out-of-event measurements also include similar RGB values as
the in-event measurements, it is important to note that even during times where there was
not a fire present in the immediate vicinity, the area was still hazy from the other controlled
burns happening in the area. Further work is warranted on collecting more measurements
from clean events and comparing them to the near-fire data.
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Figure 11. Comparison of the observed RGB values of the fire events (left) to no-fire and indirect
fire events (right) over the entire sensor deployment window including night time operation. The
variation of colors seen during the fire events varied minimally and overlapped with the color profile
of daylight and smoke. However, given the wide field-of-view of the sensor and the prevalence of
indirect smoke from other nearby fire events, more work is warranted on classifying the unique color
profile and temporal fluctuations of wildfire events.

In Figure 12, we calculated the mean of the UV data 4-min before and after each event
and compared to that of the mean during (4-min windows). For Unit 1, we expected to
see a significant increase in UV for both test events given the close proximity the unit was
to high-intensity burns. We did see momentary spikes in the data but the average UV
measurement during the burn was less than or comparable to the measurements directly
prior. We believe this is because, after the initial ignition where a large fire enveloped the
sensor, the fire quickly subsided and was out of the FOV of the optical UV sensor. With the
increased wind activity, the sensor had no visibility to the fire or the exhaust after the initial
ignition. For Unit 2, we saw similar results, but as the fire events grew in distance from the
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sensor, we saw a greater disparity between the measurements during and before the fire.
We expected reduced UV activity in the presence of smoke since the smoke particulates
occluded UV exposure from the Sun and ongoing fires, but it appears that we were still
able to detect minor increased levels of UV radiation. Although the initial results look
promising, further validation is required in more controlled experiments where we can
limit the amount of particulate exhaust and the intensity of the burn. We were also limited
by the type of UV sensor we could use that offered uncalibrated, unitless measurements.
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Figure 12. Average UV measurements for each fire event compared with the measurements taken
5-min before and after peak flame visibility. The standard deviation was also compared for each
measurement to show the volatility of the results. Greater volatility was seen for events that had
increased smoke activity while the average measurements varied negligibly.

3.5. Optical: Infrared

Figure 13 shows the data from the bank 1 thermopiles, which had no additional optical
filtering besides the ones they were equipped with from the factory. For the analysis, we
looked at the max temperature fluctuations observed within a 4-min window directly
before and during the fire while also taking into consideration the standard deviation of
the samples within that window. In Figure 13, we show the differences between these two
maximums to prove the feasibility of using these sensors as wildfire detectors. These ther-
mopile measurements were adjusted/normalized to fluctuating changes in the thermopile
housing temperatures. To compensate, we used the manufacturer’s built-in calibration
constants for each sensor and applied them in real-time. Figures 6 and 7 show the raw
signals from the TpiS 1T 1084 L5.5 thermopile across the optical banks.

Fire 2023, 6, x FOR PEER REVIEW 19 of 23 
 

 

 

Figure 13. The difference in the maximum observed thermopile measurements taken during the 

peak of each fire event and 4-min prior to ignition. The plot compares the performance between 

each thermopile and shows the similar close-range potentials of each for detecting fire-driven dis-

turbances. As can be seen, the Calipile TpiS 1T 1086 L5.5 was able to outperform the other sensors 

at longer ranges (i.e., experiments 2.5–2.10) because of the narrow field-of-view. 

Unsurprisingly, the greatest infrared fluctuations that we saw were those with the 

most intense burns (Unit 1: events 1 and 2). For Unit 2, as the fire events grew in distance 

from the sensor, the temperature readings and variability in the readings decreased. The 

hot smoke diffused through the air, which led to a more uniform temperature profile. 

When the fire was right below the sensor (Unit 2: event 1), the thermopiles picked up on 

the increased temperature but the standard deviation across the window remained low. 

We believe that this is because the thermopile was not exposed to the hot smoke as it was 

blown away from its FOV, but did observe a transient flame or hot smoke trail, which led 

to the sudden but short spike. The performance across the thermopiles with similar FOVs 

(i.e., TSD305 and TpiS 1T 1084) was virtually the same, but the TpiS 1T 1086 thermopile 

with the tighter FOV (5° vs. 60°) had a stronger response throughout, especially for events 

where the fire was far away from the sensor (Unit 2: events 6–10). The performance differ-

ences are because the wider FOV thermopiles trade-off responsivity for increased visibil-

ity, which is great when looking at a large scene and only looking for a significant change 

from the steady-state. The wider FOV thermopiles had an increased standard deviation 

during further fire events (Unit 2: events 4–10) from that of the narrower FOV thermopile 

since they were responding to all of the thermal activity occurring within their visibility 

region while the narrower-FOV thermopile saw spurious peaks when hot smoke or a 

flame trail crossed its optical path. However, when specifically looking for a fire event 

down a narrow corridor (i.e., down a long, narrow clearing), a better performance will be 

obtained from a narrower FOV sensor since it only captures the area of interest. 

As for the thermopile data in the other banks, the results are inconclusive since we 

observed sudden temperature fluctuations during each test event on the thermopiles that 

were supposed to have an optically opaque FOV (TSD305 and TpiS 1T 1084), preventing 

them from direct observation of the fire events. We believe that the cause of this phenom-

enon is because since we were downwind from each fire, the optics in banks 2 and 3 heated 

up via convection from the hot smoke, resulting in increased thermal radiation at the 

bands the thermopiles were sensitive. So, although the thermopiles could not observe the 

fire directly, they were able to visualize their effects through a proxy. We did observe that 

the optical filters were attenuating a significant portion of the infrared when one of the 

two filters was forced out of place due to the extreme fire exhaust during Unit 1’s first fire 

event (Figure 6). The difference between the signals of the two filtered thermopiles was 

far greater for Unit 1’s first event, where one of the filtered sensors was uncovered, than 

that observed in other experiments such as the one shown in Figure 7. Further experimen-

tation is required in other configurations where the heat from the fire does not make direct 

contact with the sensing unit. 

Figure 13. The difference in the maximum observed thermopile measurements taken during the
peak of each fire event and 4-min prior to ignition. The plot compares the performance between each
thermopile and shows the similar close-range potentials of each for detecting fire-driven disturbances.
As can be seen, the Calipile TpiS 1T 1086 L5.5 was able to outperform the other sensors at longer
ranges (i.e., experiments 2.5–2.10) because of the narrow field-of-view.
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Unsurprisingly, the greatest infrared fluctuations that we saw were those with the
most intense burns (Unit 1: events 1 and 2). For Unit 2, as the fire events grew in distance
from the sensor, the temperature readings and variability in the readings decreased. The
hot smoke diffused through the air, which led to a more uniform temperature profile. When
the fire was right below the sensor (Unit 2: event 1), the thermopiles picked up on the
increased temperature but the standard deviation across the window remained low. We
believe that this is because the thermopile was not exposed to the hot smoke as it was
blown away from its FOV, but did observe a transient flame or hot smoke trail, which led to
the sudden but short spike. The performance across the thermopiles with similar FOVs (i.e.,
TSD305 and TpiS 1T 1084) was virtually the same, but the TpiS 1T 1086 thermopile with the
tighter FOV (5◦ vs. 60◦) had a stronger response throughout, especially for events where
the fire was far away from the sensor (Unit 2: events 6–10). The performance differences are
because the wider FOV thermopiles trade-off responsivity for increased visibility, which
is great when looking at a large scene and only looking for a significant change from the
steady-state. The wider FOV thermopiles had an increased standard deviation during
further fire events (Unit 2: events 4–10) from that of the narrower FOV thermopile since
they were responding to all of the thermal activity occurring within their visibility region
while the narrower-FOV thermopile saw spurious peaks when hot smoke or a flame trail
crossed its optical path. However, when specifically looking for a fire event down a narrow
corridor (i.e., down a long, narrow clearing), a better performance will be obtained from a
narrower FOV sensor since it only captures the area of interest.

As for the thermopile data in the other banks, the results are inconclusive since we
observed sudden temperature fluctuations during each test event on the thermopiles that
were supposed to have an optically opaque FOV (TSD305 and TpiS 1T 1084), preventing
them from direct observation of the fire events. We believe that the cause of this phe-
nomenon is because since we were downwind from each fire, the optics in banks 2 and 3
heated up via convection from the hot smoke, resulting in increased thermal radiation at
the bands the thermopiles were sensitive. So, although the thermopiles could not observe
the fire directly, they were able to visualize their effects through a proxy. We did observe
that the optical filters were attenuating a significant portion of the infrared when one of the
two filters was forced out of place due to the extreme fire exhaust during Unit 1’s first fire
event (Figure 6). The difference between the signals of the two filtered thermopiles was far
greater for Unit 1’s first event, where one of the filtered sensors was uncovered, than that
observed in other experiments such as the one shown in Figure 7. Further experimentation
is required in other configurations where the heat from the fire does not make direct contact
with the sensing unit.

4. Discussion
4.1. Multimodal Sensing Approach for Fire Detection

This experiment demonstrated the capabilities of several different sensing modalities
on detecting a fire event under specific parameters (e.g., illuminated scene, downwind, and
no visual obstruction from the sensor to fire). The RGB light sensor showed promise in
detecting the color signature of smoke, but that was not enough to confidently classify a fire
event. It would not work in dark conditions and the color profile is a subset of possible color
profiles in non-smoke events. Similarly, the UV sensor saw significant disturbances in the
UV measurements during a fire event, but this can also occur in nature due to intermittent
sunlight from the swaying of foliage. The thermopiles accurately detected fire events, only
under the condition that the fire event was within their FOV. We did not test the thermopiles
in upwind conditions where the convective heating from the smoke would not influence the
signal. Particulate and gas sensors demonstrated strong responses to fire events, especially
where direct visibility was lacking, but these sensors require direct contact with the fire’s
exhaust, which may be unlikely due to wind patterns. This requirement can be resolved
through distributed sensing but may be cost-prohibitive.
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It is clear from this study that a robust fire detection system using one sensing modality
is simply not possible when taking into consideration the dynamics of natural environments
and the feasibility of a densely distributed network in the wild. A system could be placed
in a dense mesh across a landscape, but the cost of manufacturing, installation, and mainte-
nance may be prohibitive. A more cost-effective approach may be to sparsely distribute
sensors that are equipped with multiple sensing modalities and can communicate with each
other to operate in concert. Not only could a fire be classified in proximity to each sensor,
but by using differential measurements across units (e.g., significant variance in particulate
and gas concentrations), a distributed system can be used to estimate the locations and size
of the fires. With such a sparsely distributed multi-sensor system, the degree of wildfire
spread could also potentially be detected and modeled using the relationships of fire to the
local humidity and wind dynamics.

4.2. Practical Considerations

Several of the most substantial constraints in creating a distributed fire detection
system are the cost and deployment feasibility, metrics that were not thoroughly evaluated
in this study but will be evaluated in the context of our future work. In principle, we can
integrate each sensor we used in this study into a comprehensive sensing unit, fit it with
a large solar panel, and deploy it in mass across a large landscape that is vulnerable to a
wildfire. Although possible, this type of system would not be ideal for any municipality
to deploy, both because of the financial costs and esthetic reasons—people may not want
large electronic units scattered across their public areas. We suggest that an affordable and
effective mesh-based fire detection sensor system could balance several factors: (1) optimal
sensing diversity to detect a wildfire event accurately and quickly, (2) cost and visible
footprint, and (3) additional landscape-wide sensing services that may be of value to land
managers and owners. For the sensing diversity question, more data need to be collected
in naturalistic environments to properly characterize the accuracy and repeatability of
sensors in detecting fires. Long-term studies are also required to assess the practical sensor
considerations of outdoor deployments into remote regions. Apart from fire detection, there
is a wealth of knowledge that a distributed sensing system provides, especially in areas
rich with microclimates. Having physical sensing nodes scattered across a landscape offers
direct insight into environmental parameters that are tough to measure indirectly. The
argument for a distributed system strengthens when pursuing a multi-faceted classification
approach where the data can be made public for others to use in understanding varying
parameters across large areas that inform environmental public policies (e.g., where there
is increased air pollution trending, monitoring noise levels of human activity, etc.).

5. Conclusions

Wildfires are becoming an increasing threat to communities, livelihoods, and ecosys-
tems around the world. As our climate changes, causing drought conditions and volatile
weather patterns, the continual increase in the probability of annual destructive wildfires
raises alarms for residential communities that are at high risk of exposure to direct fires
or their pollutants. Given that fires can begin in isolated areas with limited human pres-
ence and difficult terrain to navigate, there is a strong case for automated distributed fire
detection capabilities to limit the spread and potential destruction of such fires. In our
work, we presented several potential fire sensing modalities, integrated them into custom
datalogging units, and collected and analyzed data from a 2-day controlled burn. Given the
experimental conditions, nearly all sensing modalities exhibited signature behaviors when
exposed to active flames and their exhaust, but with varying degrees of sensitivity. Further
work is warranted to fully assess the practicality of each sensor for long-term outdoor
applications, but with these results, it is clear that any fire detection system requires a
multi-modal sensing approach for robust and accurate detection.

For future work, we plan on collecting more sensor data at other controlled burns
where we can diversify the positioning of our devices such as placing them upwind from
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the fire, therefore preventing our system from experiencing any direct contact with the
exhausted particulates and gases. This will allow us to thoroughly test our various thermal
optical sensors and avoid any signal disturbances from self-heating. This will also allow
us to understand the failure modes of our particulate and CO2 sensors, which require
direct exposure to the exhausted material. In addition to working with fire departments on
control burns, we seek to create more controlled lab experiments where we can test how
our sensors perform when we artificially vary the materials being burnt, the amount of
smoke exhausted from incomplete combustion, and how well our optical sensors perform
during nighttime use. On a system design front, additional work is needed to understand
how these systems should be powered, how long they will last in the wild, how they will
communicate from remote regions with potentially poor network connectivity, and the
cost and deployment feasibility. The promising results of this study suggest that these
additional efforts are warranted.
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