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Abstract

Investigating Low Energy Wireless Networks for the Internet of Things

by

Branden R. Ghena

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Associate Professor Prabal Dutta, Chair

The Internet of Things (IoT) encompasses a broad array of technologies that connect the
physical world with large-scale data processing and storage. Today, we can build ultra-low
power devices that last for decades on ambient energy and we can deploy highly scalable
internet services to process streams of IoT data. The dominant challenge of IoT lies in con-
necting these two domains. To meet this challenge, many new networks have been developed
with low-energy, low-throughput, and predominantly uplink use cases in mind.

In this work, we explore the capabilities and limitations of several recent IoT-focused net-
works. While these novel networks are not yet deployed at scale, modeling aspects of them
enables us to predict the success or failure of particular applications and explore the ramifi-
cations of potential protocol improvements.

In the local-area domain, Bluetooth Low Energy (BLE) has arisen as an ubiquitous method of
connecting deployed devices directly to users’ smartphones. One communication mechanism
that BLE provides is the advertisement—a simple, periodic, broadcast message intended for
device discovery. With advertisements, we can create a single-hop, star-topology network in
full compliance with the BLE specification that allows any number of devices to send data
to any number of gateways. By modeling advertisement transmissions, we can accurately
predict congestion in advertisement networks, which enables an a priori understanding of
performance and an in-situ adaptation mechanism to meet reliability expectations.

In the wide-area domain, multiple low-power, wide-area networks (LPWANs) have arisen
to enable city-scale deployments. Their ability to transmit at ranges over a kilometer while
drawing only a few hundred milliwatts could enable exciting new applications. To understand
LPWAN capabilities, we propose a new metric, bit flux, which describes communication in
terms of throughput over a coverage area. By using bit flux to model the performance of
networks and the needs of applications, we demonstrate problems with the existing designs
of several LPWANs that make them unsuitable for many real-world deployments.
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In both domains, we explore the strengths and weaknesses of communication technologies and
their potential to serve real-world applications. The potential for these networks to promote
a new generation of easy-to-deploy sensors is high. However, through the application of
communication models, we demonstrate both potential use cases and also very real concerns
that may limit them. By uncovering concerns that future deployments will face, we hope to
guide improvements to these protocols that will improve their use and support the growth
of the Internet of Things.
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2.1 BLE advertisement overview. During BLE advertising, the advertiser and scan-
ner are unsynchronized and operate independently. The scanner rotates listen-
ing across the three advertising channels, changing channels every Tscan interval.
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2.2 Protocol format for common BLE beacon types. The default BLE PDU is shown
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2.3 BLEES and PowerBlade. At left is BLEES: an environmental sensor capable
of sensing temperature, humidity, pressure, light, and acceleration. At right
is PowerBlade: a low-profile, plug-load power meter. Both sensors broadcast
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3.1 Packet reception rates as deployment size increases. Both the worst case (31 byte
payload broadcast every 20 ms) and best case (0 byte payload broadcast every
10240 ms) are displayed. The configuration for PowerBlade [16], a research BLE
sensor node that transmits a 23 byte payload every 200 ms, is also included as a
real-world example. For small deployments (fewer than 10 nodes), any configu-
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must balance desired throughput and reception rate. . . . . . . . . . . . . . . . 18
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3.2 Minimum advertising intervals to realize target packet error rates. Given a fixed
payload (here 31 bytes), to realize a target packet error rate the minimum adver-
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3.3 Probability of a repeat packet collision. A repeat collision occurs if the difference
in delays applied to each previous colliding transmission is less than the size of the
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3.4 Collision probability for two devices. The probability of a collision between two
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ets transmitted is varied for multiple deployment sizes, each transmitting at a
20 ms interval except the 100 device scenario which considers both 20 ms and
100 ms intervals. As the density of a deployment grows, advertisers need to send
a greater number of redundant packets to maintain data reception reliability. La-
tency and throughput also affect reception rate, slowing advertising from 20 to
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3.7 Analytical and experimental packet reception rate. Packet reception rate is mea-
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intervals. Note that the y-axis ends at 0.6 PRR. We find that the analytical
model tracks well with reality, but that it overestimates the true reception rate,
possibly due to interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Analytical and experimental data reception rate. Packet reception rate is mea-
sured across a range of number of redundantly transmitted packets for a selection
of deployment sizes. series of deployment sizes. Note that the y-axis ends at 0.6
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3.9 Average power consumption for transmitting at various rates. Connectable adver-
tisements are transmitted at 0 dBm on an nRF51822, with a sleep power draw of
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3.11 Data reception rates with modified random delay. The random delay appended
to each advertising interval is normally selected from 0 to 10 ms. If its maximum
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4.1 Data reception rate by deployment location. Data reception rate is determined
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4.2 Measurement loss probability. For each received measurement, we count the
number of immediately preceding measurements that were missed. A line is
plotted for each device in the deployment. As expected, the most common count
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deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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4.3 Data reception rate by deployment location with gaps removed. We liberally
remove any contiguous gaps longer than one hour in duration from the expect
packet receptions for each deployment. Expected DRR is marked as a black line
above each bar. Even if all of these gaps represent true infrastructure failures,
they fail to account for all of loss in reception rates. . . . . . . . . . . . . . . . 37

4.4 Packet reception rate by device at Location 4. Devices are grouped by the room
where they are deployed, with the gateway being placed in the living room. Ex-
pected PRR is the same for each device and marked as a black line. While all
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far more poorly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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4.6 Data Reception rate for each device in the “99%” deployment. A gateway is
deployed between the living room and kitchen of an apartment, with a bedroom
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devices, especially those further away, suffer degraded performance due to poor
connectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 PRR over 24 hours for the “99%” deployment. Average PRR for each minute is
plotted for all 25 PowerBlades in the deployment. The grid line above each ID
is 100% reception rate for that device and 0% reception rate for the ID above it.
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connection to the gateway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Data Reception Rate for devices in the “80%” deployment. The predicted recep-
tion rate is 80%, marked with a black line, and the majority of devices meet this
expectation. Several devices close to the gateway perform better than expected,
likely due to the capture effect. Without changing the locations of devices, the
resulting data reception is poorer than in the “99%” deployment as expected due
to more frequent packet collisions without redundant transmissions. . . . . . . 44

4.9 Error in collision estimation due to limited measurement windows. Sampling for
an entire second gives a true measurement of transmissions per second. Sampling
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4.11 Actual and estimated transmissions during adaptation experiment. Actual trans-
missions are measured with a BLE gateway. Estimated transmissions are calcu-
lated by the adapting device every ten minutes based on the results of a one
second BLE scan. Packet collisions will lead to invalid CRCs, which results in
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missions, this underestimate is as large as 35% error. For smaller transmission
totals, collisions occur less frequently and the estimate is more accurate. Alterna-
tive scanning methods that receive packets with invalid CRCs may be necessary
to support dense deployments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Range and network throughput for several IoT network technologies. Maximum range

is estimated from uplink path loss using the Hata model [93]. Network throughput is the

uplink payload bitrate shared by all devices connected to a single gateway, accounting

for access control overhead. While all emphasize long range and low throughput, each

network technology has different capabilities based on its particular protocol choices. 60
6.2 Throughput per unit area (bit flux) as range is varied through power control.

Plotted are the bit per hour per square meter for each of the unlicensed-band
and cellular LPWANs we discuss. Using power control, networks can reduce
their coverage area, increasing their bit flux and allowing them to satisfy the
needs of more applications at the cost of the deployment of additional gateways.
The minimum and maximum ranges are limited to the power options found in
existing hardware for each technology. . . . . . . . . . . . . . . . . . . . . . . . 63



xii

7.1 Bit flux for networks and the H1N1 application. LTE-M satisfies application
needs, but only while devoting most of the network to the application. NB-IoT
and LoRaWAN are capable of satisfying application needs with range reduction
and the deployment of additional gateways. Sigfox is incapable of meeting the
needs of the H1N1 application under any configuration. . . . . . . . . . . . . . 69

7.2 The proportion of the network capacity used by the H1N1 application for varying
gateway density. As shown in Figure 6.2 and Table 7.1, networks can increase
bit flux through power control to service certain applications at the cost of a
decrease in range and a subsequent increase in gateway deployment density. LTE-
M networks can service the application throughout San Francisco, USA (120 km2)
with only a few gateways and a small proportion of their total network capacity.
LoRaWAN and NB-IoT can also serve the application, but only by allocating a
significant proportion of their capacity to it or deploying many gateways. . . . 70

7.3 Bit flux for networks and the electricity metering application. Networks above the
application requirement line, such as 2G GPRS, LTE-M, and LoRaWAN meet
its requirements without modification. NB-IoT and Sigfox are also capable of
servicing this application, but require a range reduction. . . . . . . . . . . . . . 71

7.4 The proportion of the network capacity used by the electricity metering applica-
tion for varying gateway density. LoRaWAN and NB-IoT have similar tradeoffs,
where a single gateway could cover the entire deployment region but would re-
quire the devotion of more than half of the network’s throughput. They may also
deploy additional gateways, with the deployment instead of ten gateways utilizing
less than 10% of network capability. . . . . . . . . . . . . . . . . . . . . . . . . 72

7.5 Increased deployment of gateways results in higher packet reception rate due to
the capture effect. Shown is the reception rate for packets sent by 100 devices
on the target network. As the total number of deployed devices, most not on the
network, increases, collisions cause packets to be lost. Increasing the number of
gateways deployed throughout the same area results in more packets received as
some overcome collisions due to the capture effect. . . . . . . . . . . . . . . . . 74



xiii

List of Tables

4.1 PowerBlade deployment overview. 355 BLE power meters are deployed in nine
locations (averaging to 37 devices at each location for 68 days). Given the network
configuration, our models predict the data reception rate for most deployment
locations to be greater than 99%. This deployment provides an opportunity
for measuring BLE advertisement network performance in the real world and
comparing to the theoretical expectations. . . . . . . . . . . . . . . . . . . . . . 34

4.2 Additional packet loss in tested receivers. 25 BLE beacons are set in a single room
advertising data. For a series of advertising intervals, all packets are recorded
by: a BLE gateway identical to the ones used in the PowerBlade deployment, a
modified gateway with an increased scan interval, a gateway with an increased
scan interval and different BLE hardware, an ESP32 BLE scanner over serial, a
nRF52DK BLE scanner over serial, and a professional BLE sniffer. Packet recep-
tion rates are improved most by avoiding the Linux BLE stack and Noble library
and instead streaming data directly from a scanning microcontroller. However
all configurations tested do introduce some packet loss above that predicted by
the theoretical models, which needs to be accounted for. . . . . . . . . . . . . . 40

4.3 Number of simultaneous devices supported at a desired data reception rate. As-
suming all devices are following the same algorithm for determining redundancy,
the number of devices that can be supported depends on the desired DRR. As
more devices are added, additional transmissions are needed from each to main-
tain the same reliability. At a certain point, shaded grey in this table, additional
devices cause a failure in the algorithm where more transmissions lead to reduced
reliability. Deployments kept at less total devices in a single broadcast domain
than this number will be stable. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Survey of LPWAN technologies. Each of these technologies provides low-bandwidth,
low-power, long-range communications targeting IoT devices. The list includes
unlicensed LPWANs as well as the cellular IoT protocols LTE-M and NB-IoT. . 53



xiv

6.1 Average power for each network across example application demands. Expected power

is presented for cellular protocols both with good connectivity (144 dB) and at maxi-

mum range (164 dB), while Sigfox and LoRaWAN are measured only at their maximum

ranges. Application demands span from 84 Bytes each hour to 200 Bytes each day. Lo-

RaWAN performs the best in all application cases, around an order of magnitude better

than the cellular protocols in good connectivity. Sigfox must fragment payloads across

many packets for all application examples, resulting in higher average power. The ad-

ditional costs of more complicated physical layers and access control mechanisms lead

to an increased power draw for the cellular protocols, particularly when at maximum

range. NB-IoT performs better than LTE-M at maximum range, but both perform

similarly otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Throughput, radius, and bit flux of sensing applications published in past sensor

networking proceedings and the IMT-2020 standard [107]. The single location
metrics show the requirements to deploy an instance of each application, while
the pervasive metric assumes that the application is deployed at scale in its target
environment. With throughput and bit flux spanning many orders of magnitude,
these applications impose highly varying requirements on their underlying net-
works. While many networking technologies may meet the throughput require-
ments of a single application, they often do not have the capacity to support one
or more of these applications at scale. . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Sufficiency of a networking technologies to meet the pervasive bit flux require-
ments of each application. A circle indicates sufficiency, however an open circle
indicates that range reduction is required for suitability, where suitability is de-
fined as providing greater than five times the bit flux required for each application.
The degrees of range reduction required to meet these cases varies significantly.
For instance LTE-M can easily meet 5× the capacity of the IMT-2020 standard
with greater than 4000 m range, however NB-IoT must reduce its range to less
than 1000 m to provide this same capacity. . . . . . . . . . . . . . . . . . . . . 68



1

Chapter 1

Introduction

There is enormous potential for computation and connectivity to assist and improve our lives
in ways we cannot today predict. One aspect of this is the dream of ubiquitous computing—
computers interwoven into our homes, workplaces, and cities. Today we are realizing this
dream through the Internet of Things (IoT), which promises intelligent devices that will
enable new, impactful application domains.

A great example of the Internet of Things is the Nest thermostat [1]. It is not that
thermostats are a new technology, and prior thermostats have included simple computers to
manage schedules. What makes the Nest thermostat intellectually interesting is the combina-
tion of sensing, local compute, communication, and cloud computation. Now the thermostat
can not only sense temperature in the home, but also can check local weather reports and
predictions. Now smartphones can remotely monitor and control the thermostat from any-
where around the world. Local networks allow the thermostat to incorporate measurements
and commands from nearby devices. The fusion of compute, communication, and sensing
has transformed a simple device into something more intelligent and, hopefully, more useful.

Maybe the Nest thermostat is also a useful example because it is still a work in progress.
The pricing model and consumer friendliness of these devices is still being continuously
developed, and the usefulness is very much in question. The Internet of Things has not yet
been solved. The processes for making intelligent devices and the mechanisms to link them
to each other and to their users are still uncertain. As a researcher, this is what makes the
domain so exciting. Ubiquitous computing holds much promise, but still has many hurdles
to be cleared along the way. Each challenge is an opportunity for engineers and scientists to
shape our future world.

One commonality for the diverse world of IoT devices is the need for communication.
It is the connections to each other and to the internet at large that allow them to ex-
pand their capabilities. Machine-to-machine communication has different requirements than
human-centric networks. Uplink is dominant for sending sensed data. Downlink is used
for command, configuration, and infrequent device updates. Throughput requirements are
reduced by orders of magnitude. Energy concerns become a first-order consideration for
battery-operated devices.
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To support the Internet of Things, numerous new networks have been created over
the last decade, each emphasizing different tradeoffs and capabilities. For typical indoor
settings Bluetooth Low Energy (BLE) [2] and 802.15.4 Zigbee [3] and Thread [4] networks
balance capability with low-energy operation. BLE enables direct communication with peo-
ple through smartphone BLE radios. Thread enables traditional IP-based networking. WiFi
has also reached down to embedded devices. The outdoor wide-area space has had even more
growth. Unlicensed-band technologies like LoRaWAN [5] and Sigfox [6] enable 1-100 kbps
communication over kilometers of range. Cellular, having previously focused on human-based
communication for smartphones, is reaching into the machine-to-machine space as well with
LTE-M and NB-IoT. The successes and failures in this space are still being determined.

The focus of this body of work is on wireless communication in particular, at both the
local and wide-area levels. Novel IoT networks are not yet deployed at scale and not yet well
understood. We approach this problem through a combination of modeling and deployment.
Modeling aspects of these networks can allow us to predict success or failure for specific
applications prior to deployment. We demonstrate the capability of novel IoT networks to
service application needs and suggest possible modifications for protocols.

1.1 Bluetooth Low-Energy Local Communication

In the domain of household communication, this work focuses on the use of Bluetooth Low-
Energy. Today, almost all smartphones have Bluetooth Low Energy (BLE) radios, as do
laptops, desktops, and wearables. BLE beacons (short-range broadcast transmitters) are
widely used as a method of enabling these consumer devices to detect the presence of inter-
actable objects and locations [7]. Academic projects are exploring the use of BLE as well
through applications such as long-term health tracking [8], environmental monitoring [9],
and indoor localization [10].

One communication mechanism that BLE provides is the advertisement—a simple, pe-
riodic, broadcast message intended for device discovery. Advertisements reduce or eliminate
listening costs for energy-constrained devices, avoid interference via channel diversity, and
are simple to implement and use in software. With advertisements, we can create a single-
hop, star-topology network in full compliance with the BLE specification that allows any
number of devices to send data to any number of gateways.

While they only provide unidirectional communication, advertisements are useful for
several applications. They facilitate the creation of beacons that notify the existence of
some resource. The short-range nature of BLE and lightweight nature of advertisements lend
themselves well towards location-based applications such as tracking and proximity-based
communication. They also fit the use case of periodic sensing. Placing sensor measurements
in advertisement payloads allows nearby gateways and smartphones to simultaneously re-
ceive and interpret the data. Despite these use cases, we find that communication over
BLE advertisements has not been rigorously explored in literature. Existing deployments
are often ad hoc in nature. In this work, we explore the BLE advertisement primitive to
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understand how well it performs under various conditions and how it can best be applied
towards emerging use cases.

To predict expected performance before deployment, models are needed that explain the
impacts of network configurations, such as transmission frequency and number of deployed
devices, on BLE advertisement networks. While advertisements are ALOHA transmissions
at heart [11], they are not identical to them. BLE advertisements are periodic, which means
that the probability of repeat collisions is greater than the normal ALOHA expectation. We
extend the efforts of prior work [12, 13] to analytically describe reception rates for periodic
transmissions in terms of BLE advertisement parameters. We borrow from literature [14]
to understand the energy costs of these configurations. We also experimentally validate our
models, demonstrating that they accurately represent reality through controlled studies.

While these models do not fully describe deployed networks, they are useful for de-
termining expected performance. The simple access control mechanism of BLE leads to
significant packet loss as the number of devices in a deployment increases, but we find that
through the addition of redundancy, data reception rates can remain high. Deployment-
specific factors, such as external interference or distance from nodes to the gateway, may
additionally hinder the connectivity of the network, but descriptions of network capacity
alone allow a baseline performance expectation to be determined. Furthermore, the mod-
els can be used to explore tradeoffs for new applications, such as contact tracing, before
deployment begins.

Another application of the models is the identification of when real-world deployments
are underperforming. We analyze a dataset collected from a previous deployment of sensors
using a BLE advertisement network [15] with 335 power meters [16] installed across nine
locations for an average of 68 days in each location. Given the deployment configuration,
we anticipate reception of up to 99% of measurements, but instead we find that network
performance falls far short. An investigation reveals the problem was not in the network,
but rather in shortcomings of the BLE receiver hardware and software used to create the
gateway. We explore the gateway issues, and in new deployments we show that with improved
gateways we can accurately predict average network performance, demonstrating the efficacy
of our models for planning successful sensor network deployments.

However, the communication environment of a deployed BLE device is difficult to pre-
dict in advance. It may change over months as additional devices are deployed or over
minutes as people move between locations. We demonstrate that armed with the ability to
model advertisement collisions, devices are capable of automatically adjusting to the density
of nearby transmissions, remaining reliable even under order-of-magnitude changes in traffic.

Building on the success of the original Bluetooth protocol, the Bluetooth Low Energy
standard has blossomed to a point of stability, reliability, and ubiquity. This work takes a
step towards deeply understanding BLE for sensor network applications, demonstrating that
BLE advertisements can be used as a reliable transport for real-world deployments.
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1.2 Low-Power Wide-Area Networks

With the growth in urban population, there is growing interest in making cities safer, cleaner,
healthier, more sustainable, more responsive, and more efficient—in a word, smarter. Sup-
porting this interest, there are numerous funding opportunities [17–19] and active research
projects [20–24], all targeting new technology to enable smarter cities. The hope is that
city-scale application can improve quality of life for a city’s inhabitants.

A key problem of city-scale sensing is communication. Particularly when deployed over
large areas, normal solutions no longer suffice. Manual data collection is too time-intensive.
Local WiFi networks likely are available in city-based deployments, but gaining access to
each administrative domain is an overwhelming complication. While cellular networks solve
wide-area communication needs for personal smartphones, the costs in terms of energy and
money are too high for numerous deployed devices. Novel network solutions are necessary
targeting the machine-to-machine communication over wide-area deployments.

Over the past few years, a number of low-power wide-area networks (LPWANs) have
emerged, focusing on the area of low-throughput, long-range communication that has long
been underserved. Their use of simple protocols and unlicensed bands allowed them to take
a first-to-market approach, and their ability to transmit at ranges over a kilometer while
drawing only a few hundred milliwatts enables exciting new applications. This work explores
several new Low-Power Wide-Area Networks (LPWANs) to understand their capabilities and
limitations. While they do not yet have a legacy of real-world deployments to draw experience
from, by modeling their throughput, range, and energy use we can gain insights into their
ability to serve application needs.

From our investigations, we argue that connectivity for the Internet of Things remains
an unsolved problem. Unlicensed-band, LPWAN technologies as they exist today can serve
only a narrow class of IoT applications. Furthermore, it is unclear if even the improve-
ments provided by recent research will be enough to expand these use cases. We find that
two technical challenges remain for LPWAN protocols to be broadly useful: capacity and
coexistence.

The first problem, capacity, is the available throughput shared by all devices on the
network. LoRaWAN, one unlicensed-band LPWAN, provides 60 kbps of total throughput
shared by devices over the range of several kilometers that a single base station can cover.
Individually, low-bandwidth and long-range are not a problem; together, however, they
prohibitively restrict the utility of the technology. To explore this, we define a metric called
bit flux, which measures the bit rate a protocol can provide over a unit area. Comparing the
bit flux requirements of applications and the bit flux that LPWANs provide, we find that
unlicensed LPWANs are only suitable for low-rate, sparse sensing applications.

The second problem faced by unlicensed LPWANs is coexistence. Even the limited
capacity that LPWANs provide assumes that there is only a single network operating in a
given area. The use of the unlicensed bands means this is unlikely to be true as the number
of IoT applications and stakeholders using these applications grows over time, especially in
urban areas. Unless coexistence between networks is addressed or the capacity of networks
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operating in the unlicensed band is increased to well above existing and future application
needs, contention is likely to lead to poor performance and ultimately a lack of use by future
deployments. In a competitive market, this could also result in a winner take-all density
arms race where the first widely deployed network de facto controls the band.

Recognizing both the problems and potential for solutions in this space, 3GPP has
been developing cellular standards targeting LPWAN applications, with the most notable
protocols, NB-IoT and LTE-M, now operational in the US and abroad. While higher in
cost, complexity, and power, our evaluation shows that these technologies meet many of
the capacity needs that unlicensed LPWANs currently do not, and they avoid problems of
coexistence by operating in licensed spectrum. They also provide coverage without requiring
gateway deployments, a valuable consideration for many applications.

Rather than wait until deployments make these concerns obvious, we demonstrate that
by modeling LPWANs, we can recognize these issues today and use them to inform and
motivate future research in wide-area, unlicensed-band communications. With the release of
these cellular technologies we are at a critical turning point in this space. We could drive to
improve the protocols of unlicensed LPWANs so they are sufficient for application needs, and
we could push for coexistence strategies in both protocol and regulation to ensure graceful
degradation of applications. Or we could watch as dense and critical applications shift away
from unlicensed LPWANs to cellular networks, taking with them the rich opportunity for
future innovation and research that has traditionally followed the ubiquitous use of unlicensed
bands.

1.3 Thesis Statement

We show that simple yet accurate models of local and wide area communications for wireless
Internet of Things networks that incorporate reception rate, energy use, and data throughput
enable us to accurately predict expected network performance for a given real world deploy-
ment, and that we can use performance predictions to both inform real time adaptations to
network conditions and determine the potential impact of protocol modifications.

1.4 Contributions of this Dissertation

This dissertation presents investigations into recent IoT wireless networks using models to
explore network capabilities and limitations.

In the local-area domain we focus on Bluetooth Low Energy advertisements, exploring
their capability for reliable communication. Reception rates and energy use for BLE ad-
vertisements are modeled to enable prediction of network behavior. Deployment results are
included to show capabilities and limitations of collision modeling and demonstrate the use
of models for real-time adaptation. This includes Chapters 2 to 4.
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Chapter 2 provides an overview of the Bluetooth Low Energy protocol including specific
details of parameters and configurations. While it focuses on the widely-deployed version
4.2, it also describes some considerations and new capabilities in BLE version 5.0. As we
focus on the BLE advertisement primitive, this chapter also explores existing use cases
for communication over advertisements. We define four classes of applications: beacons,
tracking, proximal communication, and periodic sensing.

Chapter 3 builds models for advertisement collisions and energy use. We first build
a model for packet collisions in terms of BLE parameters and then extend that to model
data reception rate. We demonstrate the validity of our models with empirical testing on
deployments of up to fifty devices. Finally, using the models we explore the effects of possible
modifications to the BLE protocol and demonstrate an introspective look into configuration
for an emerging application: contact tracing.

Chapter 4 applies these models to real-world deployments. It first explores the success
of a real-world deployment of plug-load power meters using BLE advertisements for data
transfer. This sensor was created in collaboration with Samuel DeBruin, Ye-Sheng Kuo,
and Prabal Dutta and presented at SenSys’15 [16]. Identifying gateway problems with the
deployment that limited packet reception, we statically plan and execute a new deployment
that meets expected success rates. Finally, we demonstrate the ability to use collision models
to automatically adapt to the transmission environment.

In the wide-area domain we focus on the unlicensed LPWANs Sigfox and LoRaWAN as
well as the cellular IoT networks LTE-M and NB-IoT. We present a new metric, bit flux, that
allows the throughput and range capabilities of a network to be compared to the data rate
and area requirements of a deployment. Applying this metric, we investigate problems with
unlicensed communication and demonstrate the possible impact of protocol modifications.
This includes Chapters 5 to 7. This work was developed through a collaboration with Joshua
Adkins, Longfei Shangguan, Kyle Jamieson, Philip Levis, and Prabal Dutta and presented
at MobiCom’19 [25].

Chapter 5 surveys popular LPWAN technologies. It describes two categories of net-
works: unlicensed LPWANs and cellular networks. For each, it discusses details of the
protocol including throughput and power considerations.

Chapter 6 develops models for network capabilities and application requirements. First
it develops theoretical upper limits for throughput and range. Then it presents our bit
flux metric that describes bit rate per unit area for networks and applications. Bit flux
is particularly useful in that it accounts for pervasive wide-area deployments that require
multiple gateways to service them. We wrap up with a discussion of pervasive applications
taken from literature and their bit flux.

Finally, Chapter 7 uses the bit flux model to explore the suitability of LPWANs, both
unlicensed and cellular. It demonstrates two problems facing unlicensed LPWANs: capacity
and coexistence, and explores possible solutions from literature that could be applied to
unlicensed protocols to improve them. A key takeaway is that unlicensed LPWANs are not
yet sufficient for the needs of city-scale applications. Sharing of unlicensed bands among the
many stakeholders of an urban region will require new research solutions.



7

Chapter 2

BLE Background

In exploring the capability of communication with BLE advertisements, we first turn our
attention to the Bluetooth Low Energy protocol. The protocol defines multiple communi-
cation methods, each of which have capabilities and tradeoffs. We then explore and classify
use cases of BLE advertisements to inform communication requirements.

2.1 Bluetooth Low Energy Overview

Bluetooth Low Energy (BLE) is defined by the Bluetooth Special Interest Group. While it
shares a name and has several similarities to classical Bluetooth networking, it is a distinct
protocol. This overview and analysis covers the Core 4.2 version of the specification, which is
in common use [2] and finishes with a brief discussion of potential impact of the 5.0 version
of the specification once it becomes widely adopted. We discuss the primitives that make up
BLE networking and explore some of the prior ideas for how BLE could be adapted to sensor
networking applications. Figure 2.1 depicts the major protocol elements of BLE advertising
discussed throughout this section.

2.1.1 Advertising

Advertisements are brief, periodic broadcasts sent by a device that often include some in-
formation identifying it. An advertisement event is made up of three advertisement packets
sent in rapid succession at periodic intervals. Each advertisement packet is followed by a
brief window for listening. This limited listening for end devices is the “low energy” part of
BLE, allowing devices to primarily sleep with their radios entirely off. Advertising in BLE is
nominally the method for device discovery. Reasonably frequent advertisement events enable
quick device discovery and interaction.

Advertisement packets include a maximum of 47 bytes: a fixed 16 bytes of preamble,
address, CRC, and other headers, and up to 31 bytes of payload. Sent over the 1 Mbps
physical layer, advertisement packets have an on-air time of 128–376 µs. While some payload
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Figure 2.1: BLE advertisement overview. During BLE advertising, the advertiser and scan-
ner are unsynchronized and operate independently. The scanner rotates listening across the
three advertising channels, changing channels every Tscan interval. Energy-conscious scanners
can separately configure tscan window which controls the duty-cycle of listening on each chan-
nel. At any point tstart an advertiser may begin sending advertisement events. Inside an
advertisement event, advertisers send an identical payload on all three channels. The delay
between advertisement events is controlled by Tadv interval, which dictates the minimum inter-
val as a random 0–10 ms tadv delay which is added to each interval. A scanner will successfully
receive an advertisement when the advertisement payload transmission and scan window
align, which occurs once on channel 39 in this example.

bytes have specialized purposes, such as a leading flags field or a company identifier, in
practice advertisers can send up to 31 arbitrary bytes.1

In an advertising event, identical advertisement packets are sent redundantly on three
channels to mitigate interference, with a listening period before changing channels. The
BLE specification reserves three channels for these advertisements, placed in the spectrum to
avoid WiFi channels 1, 6, and 11.2 Devices emit advertisement events at a set advertisement
interval, Tadv interval, (configurable from 20 ms to 10.24 s) plus a stochastic jitter, tadv delay

(selected uniformly from 0–10 ms). The injected jitter allows transmissions to be randomly
distributed in time and prevents collisions from repeating indefinitely.

Broadcasts are sent without any collision avoidance or channel sensing. As a network
of unsynchronized blind transmitters, the aggregate throughput of BLE advertisements can
thus be modeled as an ALOHA network [26]. The use of three advertisement channels
provides no collision avoidance in the common case as they are iterated in the same order
by all transmitters and there is no entropy in tlisten. In the absence of significant jitter or
fading, a collision on one channel will result in a collision on the others.

1This relies on the underlying platform permitting scanning applications access to the raw advertisement,
today accessible on all major desktop operating system and Android. iOS requires that the first four bytes
(flags and company identifier) be well-formed for applications to recover an advertisement.

2The advertisement channels are named 37, 38, and 39, but are not actually adjacent in the spectrum.
They are at 2402, 2426, and 2480 MHz respectively.
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2.1.2 Scanning

BLE scanners are devices listening for advertisements. Smartphones and gateways act as
BLE scanners to discover nearby devices. They listen on one advertisement channel at a
time, periodically rotating to the next channel.

The BLE specification allows scanners to set a configuration for the receiver duty cycle
on each channel, which can be scaled from 0 to 100%. In practice, gateways running on wall
power select 100% duty cycle to receive all advertisements. Power-constrained devices, such
as smartphones, can select lower duty cycles to conserve energy during long-term background
listening. Android, for instance, defines multiple scanning modes that applications can select,
which correspond to 10%, 25%, and 100% duty cycle scanning [27].

Reducing the scanner from 100% duty cycle can have a large impact on the success
of receiving data. Particular choices of scanning interval and advertising interval can result
in particularly long discovery latency [12, 28]. Some platforms, such as iOS, provide no
application control over the scan window [29] which can require advertisers to set aggres-
sive advertisement intervals to realize responsive designs, e.g. Apple recommends a 20 ms
advertising interval for discovery [30].

In practice, even scanning hardware set to 100% duty cycle does not achieve a perfect
reception rate. Perez-Diaz et al. study the performance of the major BLE chipsets, finding
that in practice receivers fail to receive packets for brief periods after switching channels,
while decoding received packets, and periodically throughout the duration of the scan [31].
The losses from these “blind spots” can be as high as 10% depending on packet size, adver-
tising interval, and scanning interval.3

2.1.3 Scan Requests

When a scanner receives an advertisement, it may choose to request additional data from
the advertiser by sending a scan request. During the advertiser’s listening period following a
transmission, if it receives a scan request, it responds by sending an additional advertisement
payload of up to 31 bytes, termed a scan response. Scan responses are generally used to
provide additional data, such as device name or service descriptions that did not fit in the
original advertisement payload.

Hernandez et al. propose that the presence of a scan request could be used as a form
of acknowledgment, allowing transmitters to reduce or cease transmitting for some duration
after receiving one, reducing overall contention in the network [35]. However, Harris and
Kravets explain how the BLE backoff protocol works against this idea [36, 37]. If a scanner
makes a request and does not receive a response, it assumes there was a collision with another
scanner and adds a random delay before requesting again. This backoff mechanism cannot

3For example, while the nRF52832 hardware is capable of tuning frequencies in 40 µs [32], in practice
the Nordic softdevice takes approximately 800 µs to switch scanning channels [33]. The popular Noble BLE
library sets a default scan interval of 10 ms [34]. Were one to scan with Noble atop a Nordic softdevice, the
scanner would have an effective duty cycle of only 92%.
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distinguish the case where the request (or response) collided with another advertiser, which
becomes increasingly likely as network density grows. This is further confounded as scanners
back off exponentially, thus even a modest number of collisions will result in an artificially
low number of scan request “acknowledgments”, incorrectly underestimating link quality
and necessitating yet more advertisements, exacerbating the problem. Rather than send
additional data in scan responses, Kravets et al. recommend splitting data across successive
advertisement payloads [37].

2.1.4 Connections

Connections are the method for high throughput, bi-directional communication in BLE. After
receiving an advertisement, a scanner can send a connection request to the advertiser. Both
devices then move into a hopping pattern across the 37 channels reserved for connections.
The scanner, which initiated the connection, becomes the master in charge of scheduling
connection events—when packets are actually exchanged. A master connected to multiple
peripherals schedules them with both time division and channel division multiplexing.

Theoretically the only limit to the number of connected devices is the ability to schedule
them. At connection time the master adds an offset, specified in 1.25 ms steps, to the start
time of the first communication event. As this offset is longer than the 80 µs minimum link
layer interaction, it dominates scheduling ability. The specification allows connection periods
from 7.5 ms to 4000 ms, which translates to a maximum number of 6 to 3200 devices that
can be connected to at one time without overlap.4

Real-world BLE chipsets are significantly more constrained than this theoretical limit.
The firmware on many BLE radios limits the number of simultaneous connections to less than
ten [38]. The open source MyNewt BLE stack supports the most simultaneous connections
of any we survey at 32 [39].

2.1.5 BLE 5.0

While this study focuses on the BLE 4.2 specification, BLE 5.0 has been released and is
beginning to see adoption [40]. BLE 5.0 does not fundamentally change any of the traditional
advertisement mechanisms. It does, however, add a new data transmission option, termed
periodic advertising, that enables devices to send multiple, large payload packets (up to
255 bytes), with the large payload possibly leveraging a faster or more robust physical layer.
Periodic advertisements are still initiated via the original BLE 4.2 advertisement mechanism,
however, and then jump to the connection channels to exploit the new features. Explorations
into periodic advertisements applicability for communication use cases seems well warranted.

Other improvements in the BLE protocol include randomized channel hopping during
advertising, which could greatly reduce collisions as discussed in Section 3.3.1, and power

4Interestingly, connections also permit devices to miss several events. In principle, masters could trade
reliability (and latency) for more connections by scheduling overlapping devices on separate frequencies and
rotating through them.
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control, which could reduce energy used while communicating. Another exciting improve-
ment is the “SyncInfo” field which allows a device to inform scanners of its advertisement
schedule. This could conceptually allow the creation of reliable, energy-efficient scanners.
These features could greatly improve future generations of IoT devices.

2.2 Advertisement Use Cases

There are several advantages to using BLE advertisements for communication. Advertise-
ments, and BLE in general, enable communication directly with people through the BLE
radios present in all smartphones. Anyone with a phone can easily discover and collect
transmissions from BLE devices, something other low-power networks have never accom-
plished. Second, advertisements are simple. For radios implementing BLE, the interface
for sending data over advertisements can be as straightforward as providing a payload and
interval. Even when used on top of a raw radio interface, BLE advertisements are fairly
straightforward to implement, not requiring tight timing or complex access control. Due in
part to this simplicity, BLE advertisements are very low energy. This makes them a good
choice for power-constrained devices, for example the emerging intermittent computing class,
which cannot reliably participate in scheduled networks as devices may not have energy when
needed [41, 42].

Finally, advertisements scale to many devices in a way that connections do not in
practice. While a single gateway can theoretically connect to many devices, BLE firmware
has much lower limits. Users report that common chipsets used in USB dongles allow less
than ten connections, regardless of connection parameters [38]. In contrast, there is no limit
to the number of devices from which a scanner can receive advertisements apart from channel
utilization. Future chipsets may allow for more simultaneous connections since the limitation
is not due to the protocol.

Using advertisements for data transport does not preclude the use of connections. In-
deed, connections may be very useful for infrequent and complex operations such as updates
to device configuration or firmware. In this study, we focus on the steady-state operation of
networks during data collection, assuming such bi-directional interactions are rare.

Several classes of BLE devices use advertisements as their primary method of com-
munication. Here, we discuss the classes: beacons, tracking, proximal communication, and
periodic sensing. For each we explain how the class uses BLE advertisements and specific
concerns for that class.

2.2.1 Beacons

Beacons use advertisements to broadcast a message to nearby smartphones. A retailer might
install beacons promoting the existence of the store to nearby devices. A beacon installed in
a conference room could transmit the room’s number and installed equipment. A bus stop
could use a beacon to broadcast a website with estimated arrival times for various buses.
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Figure 2.2: Protocol format for common BLE beacon types. The default BLE PDU is shown
in gray, with advertising protocol data unit in blue. Both iBeacon and Eddystone use BLE
advertisements to broadcast information. The iBeacon format uses a 16-byte UUID along
with major and minor numbers to identify devices and locations. The Eddystone URL
format allows a location for a web resource to be broadcast. Both beacon formats enable
the connection of physical objects and places to virtual identities and resources.

Beacons could be used as literal marketing advertisements as well, installed along sidewalks
like virtual billboards.

Beacons are frequently used to provide a virtual presence for something that exists in
the physical world. The Google Physical Web project uses beacons with URLs to connect
real-world objects and locations to web-based resources [43]. BLE advertisements are used
to get the URL to nearby smartphones, and all further communication happens over HTTP
(or other protocols further bootstrapped from HTTP).

While BLE advertisements do have specified formats for sending various types of data,
several beacon-specific formats have been created by third parties that more concretely
specify how to transmit unique IDs and URLs. The iBeacon protocol [44] was released by
Apple in 2013. It allows for the broadcast of a 16-byte UUID. Eddystone [45], a protocol
by Google in 2016, similarly enables 16-byte UUIDs. Eddystone can also be used to send
ephemeral IDs and to directly specify URLs up to 17 bytes in length. Figure 2.2 visualizes
the packet formats for Eddystone URLs and iBeacon UUIDs. Both of these specifications
include a “transmission power level” byte, which can used along with RSSI to estimate
distance from the receiving smartphone to the beacon.

2.2.2 Tracking

BLE advertisements are also used for tracking and localization systems. Tile trackers [46]
are a combination of battery, radio, and plastic enclosure that are intended to be connected
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to possessions like keys or backpacks. They emit periodic advertisements for the purposes
of finding those possessions, if lost nearby, with the use of a smartphone application. Tile
also crowdsources detection through its community of users to determine where an object
was last seen if lost outside of the home.

Apple “Find My” system uses BLE advertisements as a part of their device discovery
system [47]. When a device is reported missing, its ephemeral ID pattern is added to a list on
Apple’s servers. Whenever a new Apple device is detected with a BLE scan, the ephemeral
ID is checked against that list. Matches are tagged with GPS coordinates and anonymously
sent to Apple, which can forward that location to the device’s owner.

Localization systems want to not just detect a nearby object, but be able to precisely
locate it. Fingerprinting localization systems do so by first mapping signal strength from
a wireless network throughout a building. After the mapping is complete a device that
wishes to know its location can take a signal strength measurement and look up the lo-
cation. Projects like Redpin [48] and Ariel [49] use this method to achieve high-accuracy
room-level localization based on existing WiFi deployments. BlueSentinel [50] utilizes BLE
advertisements for fingerprinting by intentionally deploying beacons throughout a building
and mapping received signal strength from those advertisements. The system is shown to
have an accuracy of 84% at determining the room-level location of a user.

2.2.3 Proximal Communication

Proximal communication methods allow for interaction only between devices in close prox-
imity with each other. Ultrasonic, vibratory, and visible-light communication methods dom-
inate this space. However, the relatively short range of BLE, less than 50 m in most indoor
environments, makes it a possible medium for this type of communication. In practice, we
find that most BLE devices can only reliably communicate over distances of two to three
rooms in typical indoor environments. This means that two devices communicating over
BLE are likely to be near to each other.

Apple Continuity [51] leverages BLE advertisements for event notification between Ap-
ple devices. For example, when text is copied on a Mac, a BLE advertisement is sent
signalling that a copy operation has occurred. A nearby iPhone that, has been configured
to share clipboard with that Mac, upon receiving the advertisement checks Apple’s servers
for the updated clipboard contents. The end result is that a user can seamlessly copy text
on one device and paste it on another. Apple Continuity signals several types of events,
including WiFi hotspots, image capture, and cellular calls. Primary data transfer still oc-
curs over a normal internet connection, but BLE advertisements serve as notifications that
an event has occurred. This service has been the target of several security investigations,
reverse engineering the protocol and demonstrating privacy problems inherent to publicly
broadcasting device activities [52, 53].

The “Exposure Notification” system developed by Google and Apple in response to
COVID-19 uses a combination of proximal communication and tracking techniques to de-
termine when two people have been in “contact” [54]. In the system, all participating
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Figure 2.3: BLEES and PowerBlade. At left is BLEES: an environmental sensor capable
of sensing temperature, humidity, pressure, light, and acceleration. At right is PowerBlade:
a low-profile, plug-load power meter. Both sensors broadcast periodic measurements using
BLE advertisements.

smartphones send periodic BLE advertisements with ephemeral IDs. The smartphones also
perform a scan of their environment at least once every five minutes in order to collect ad-
vertisements from nearby devices. In the case of an infection, the ephemeral IDs used by
a smartphone over the last several days can be uploaded to the cloud, allowing other users
to determine if they have been close enough to receive packets with that ID and therefore
may need to be tested for infection. The system relies on BLE advertisements only being
detected when two devices are relatively close to each other, but also includes a transmission
power indication to potentially perform more accurate distance measurements.

2.2.4 Periodic Sensing

Finally, BLE advertisements also fit the goals of periodic sensing, a primary focus in this
work. This particularly fits the goals of consumer, indoor sensing devices for temperature,
light, or energy consumption. Many devices perform periodic sensing actions, and the period
of their BLE advertisements could be matched to that of the sensor. Rather than repeating
the same data, each message sent can contain a unique sensor reading, although to improve
reliability at the expense of latency and throughput, an advertiser could repeat the same
data for several packets in a row before updating the data. The frequency of advertising
packets is controlled by the advertisement interval, Tadv interval ∈ [20 ms, 10.24 s], plus a
random additional delay, tadv delay drawn uniformly from [0, 10] ms at each period. As a
reference point, the maximum theoretical goodput via BLE advertisement for one node is
thus 9.92 kb/s. The sensor data can be received by nearby smartphones in real time, or can
be collected by deployed BLE gateways, which would receive the advertisements, process the
data, and send measurements to the cloud.
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One particular issue with transmission of data over BLE advertisements is that it is
an inherently unreliable channel given the lack of acknowledgements. Through the use of
redundancy, data transmission can become probabilistically reliable, but there is still no
guarantee. This makes BLE advertisements particularly suited for low-priority, real-time
data where the loss of any particular measurement is not harmful.

Two particular sensors making use of BLE advertisements for communication are BLEES
and PowerBlade, shown in Figure 2.3. BLEES is a device from the University of Michigan
that collects various environmental sensor data: specifically temperature, humidity, pressure,
light, and acceleration [55]. In its default configuration, it takes measurements and sends
them over BLE advertisements once per second. PowerBlade is a plug-load power meter
meant to be deployed at scale in homes to study energy usage patterns across the long-tail
of household loads [16]. It produces new power measurements once per second and transmits
that value in three advertisements for redundancy.

2.3 Summary

In this chapter we have reviewed the BLE protocol, particularly focusing on capabilities and
limitations of the primitives it provides. Narrowing our focus towards BLE advertisements,
we explored four classes of use cases which are useful in guiding our thinking. Chapter 3
takes the next step in the investigation by creating the models of communication that will
be used to predict performance.
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Chapter 3

Modeling BLE Advertisements

To understand the capability of BLE to provide for application needs, we must understand
how the protocol behaves under varied conditions. As collisions are a dominant factor of
packet loss for BLE advertisements, we focus on modeling them. Predicting collisions allows
for packet and data reliability to be predicted in turn. We demonstrate the accuracy of these
models and later show that they are useful for informing real-world deployments in Chapter 4.

When thinking about low-power devices, this ability to predict is particularly useful
for providing reliability while not wasting energy unnecessarily. PowerBlade, for example,
has a 6 mW average power budget. Any of that spent on transmissions cannot be directed
toward sensing or computation. For devices, with limited battery supplies, each additional
packet transmitted limits total device lifetime. To that end, we also explore models for
advertisement energy use. The specifics of these will inevitably be hardware-specific, but
the general themes should apply broadly.

Finally, we investigate what models alone can tell us. We demonstrate lessons learned
for the BLE protocol as a whole and for emerging “contact tracing” applications.

3.1 Collisions

For BLE advertisers within range of a receiver, packet collisions are the primary reason for
communication failures. This is due to the uncoordinated, broadcast nature of advertise-
ments, leading to a probability of collision that is proportional to the number of devices and
duration of transmission. More devices in a single area means more packet collisions.

Modeling packet collisions is a straightforward step we can take to determine communi-
cation reliability. Here, we start with probabilistic model of packet collision from literature,
which is used to calculate packet reception rate. We then extend the model to determine
data reception rate in the presence of redundant transmissions. At each step along the way,
we use the models to explore ramifications for BLE advertisement communication. Finally,
we perform experiments to empirically validate the packet collision models.
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The theoretical models for advertisement networks are informed by several prior works.
The ALOHA system first describes the access control method that will later be used by
BLE [11]. Liu et al. first study the probability of collisions for BLE advertisements using
the Poisson distribution, much like ALOHA [26]. They calculate the delay before device
discovery rather than packet reception rates. Similarly motivated by neighbor discovery,
Jeon et al. create an iterative model for determining discovery latency [12]. Harris et al.
adopt a probabilistic model for packet collisions, similar to our own models but missing the
effect of the delay added to each interval [56]. Perez-Diaz et al. [31] include that random
delay, coming to the same result we do in Equation (3.1). Our models go beyond this
prior work by accounting for heterogeneous node configurations and observing the increased
probability of repeat collisions in BLE. Rather than just presenting models for collisions, we
also use BLE parameters to describe network reception rates.

3.1.1 Modeling Packet Reception

To begin creating a probabilistic collision model, we must state several simplifying assump-
tions. First, let us assume that distance and channel do not affect packet reception—that all
sensor nodes in the network are within range of the gateway receiving their data and that
the received signal strength from each is identical on all advertising channels. This is the
worst-case for collisions; in practice the capture effect will mitigate some collisions [57].

Next, consider a wall-powered gateway that is always listening and always able to
receive packets (such a gateway is quite reasonable, effectively tscan window = Tscan interval and
tscan window >> tretune). As explained in Section 2.1.1, because a collision on any advertising
channel will collide on all advertising channels and we are treating the propagation of each
channel as identical, we can therefore ignore the channel of the scanner altogether.

Literature describes the basic model for BLE advertisement collisions [31]. The proba-
bility of collision, Pc, defined using BLE advertisement parameters is:

Pc = 1−
(

1− 2× tadv
Tadv interval + E(tadv delay)

)N−1

(3.1)

The notation defined in Figure 2.1, except for N which denotes the number of devices. Note
that, because the delay is chosen in a uniform random fashion, its expected value is 5 ms in
practice.

The explanation for this model requires an understanding of collision and transmission
windows. We define a collision as any time a transmission occurs on the same channel that
overlaps any portion of another transmission. During an advertising event, an advertiser
requires tadv seconds to transmit one packet. If another device begins sending any time
during this transmission, or up to tadv earlier, this will result in a collision.

The next step towards a collision model is the probability that another transmission
occurs during this 2 × tadv window. If all devices were activated arbitrarily, then their
transmission times can be assumed to be independent and identically distributed. Even if
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Figure 3.1: Packet reception rates as deployment size increases. Both the worst case (31 byte
payload broadcast every 20 ms) and best case (0 byte payload broadcast every 10240 ms)
are displayed. The configuration for PowerBlade [16], a research BLE sensor node that
transmits a 23 byte payload every 200 ms, is also included as a real-world example. For small
deployments (fewer than 10 nodes), any configurations will likely result in acceptable PRR.
As deployments scale, however, they must balance desired throughput and reception rate.

devices begin broadcasting simultaneously, the addition of the random delay, tadv delay, means
that over time, node transmissions will become randomly distributed and independent. This
means that a transmission is equally likely at any point, and the probability of collision is
therefore the ratio of the collision window and the duration between advertisements (which
is increased by the expected value of tadv delay). This results in Equation (3.1).

Additional losses can be accounted for in this model. For example, we can consider
losses that come from interference with other technologies, denoted as Pi. We can express
the packet reception rate, PRR, more generally then as the probability of neither colliding
nor being interfered with:

PRR = (1− Pc)(1− Pi) (3.2)

In general, the BLE advertisement channels are positioned so they fall outside of the
bands of the normal WiFi channels (1, 6, and 11). Narendra et al. study BLE interference
from a single WiFi access point and find little to no packet loss when using BLE channels
that avoid the main WiFi channels [58]. However, empirical studies find that many real-
world WiFi deployments use every channel [59] and further interference may still be caused
by 802.15.4 traffic or other transmissions in the 2.4 GHz ISM band. As interference is an
independent factor, we simplify by assuming that Pi is zero for the remainder of this analysis
and focus on refining the estimate of collision probability, Pc. In general, our experience is
that this assumption seems acceptable in household environments, but should be checked in
areas where 2.4 GHz wireless technologies other than WiFi and Bluetooth are in common
use.
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Figure 3.2: Minimum advertising intervals to realize target packet error rates. Given a
fixed payload (here 31 bytes), to realize a target packet error rate the minimum advertising
interval must grow with the number of devices. Even small deployments require several
hundred milliseconds between transmissions to achieve a 1% packet error rate. Accepting
10% error rates allows sub-second intervals even as deployments expand to one hundred
devices.

In Figure 3.1 we use this model to explore the effects of number of devices, payload
length, and advertising interval on packet reception rate. Configuring devices for the high-
est throughput—full payloads transmitted at the highest frequency—results in the highest
probability of collision and therefore the lowest packet reception rate.

Certain applications may have acceptable packet error rates, PER, to meet their re-
quirements. We can solve Equation (3.1) to determine the minimum advertising interval
that satisfies a given packet error rate and number of devices:

Tadv interval =
2× tadv

1− (1− PER)
1

N−1

− E(tadv delay) (3.3)

Figure 3.2 plots the impact on latency as network density scales for various target error rates.
As expected for an ALOHA-style network, high throughput for many devices can only be
achieved by sacrificing reliability for any given packet.

One assumption made previously was that all devices on the network act identically.
But we can extend the model from Equation (3.1) to remove this requirement. Assume
a primary device with an advertisement transmission time of tadv0 and a second possibly
colliding device with a transmission time of tadvi . A collision occurs if the second device
begins transmitting any time during tadv0 or up to tadvi before the primary device begins
transmitting. If the transmission from the second device is uniformly distributed in time,
it is equally likely to occur during any point in its advertising interval. Generalizing this
second device to all nodes in the network, we can express the probability of collision with
the primary device, Pc0 , as:
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Figure 3.3: Probability of a repeat packet collision. A repeat collision occurs if the difference
in delays applied to each previous colliding transmission is less than the size of the collision
window. The difference in uniform random variables (the delays) creates a triangular distri-
bution, which can be integrated across the collision window to determine the probability of
a repeat collision. The resulting repeat collision probability is significantly higher than the
original probability of an uncorrelated collision.

Pc0 = 1−
N−1∏
i=1

(
1− tadv0 + tadvi

Tadv inti + E(tadv delay)

)
(3.4)

In practice, the variation on packet on-air duration (from 128 µs to 376 µs) is less im-
pactful than the variation on advertisement intervals (from 20 ms and up).

3.1.2 Modeling Data Reception

In real-world deployments, we are not interested in the reception of individual packets, but
rather the eventual recovery of their payload. If we want to increase the probability that
any particular payload is received, we can repeat it. Then, for data to be lost all redundant
packets sent must be lost.

A näıve model for this would use Pc as the probability for each failure. However, repeat
collisions in BLE are not independent. Given that the first packet collided, the probability
of a second collision is greater than a random collision. Indeed, absent tadv delay (or clock
drift), once a single packet suffered a collision all future packets would collide too, as long
as each device is using the same Tadv interval (i.e. a network of homogeneous devices). This
is a change from the traditional ALOHA analysis, which does not have an assumption of
periodicity, and results in an increased probability of a repeat collision.
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After a collision, a repeat collision occurs if the sum of the differences in initial trans-
mission times, advertising intervals, and selected random delays for two devices are less than
the duration of the advertisement. For the homogeneous deployment case (advertising in-
terval difference and average difference in initial transmission time are both zero), a repeat
collision occurs if the difference in random delays has not moved one advertisement outside
of the transmission time of the other. The difference of random delays creates a triangular
distribution which we can integrate to determine the probability of collision, as demonstrated
in Figure 3.3.

The full equation for the probability of a repeat collision is demonstrated in Equa-
tion (3.5). To simplify the math, we return to the assumption of a homogeneous deployment
of advertisers.

Prc = 1−

[(
1− 2

∫ tadv

0

1

tadv delay

− x

t2adv delay

dx

)
×

(
1− 2× tadv

Tadv interval + E(tadv delay)

)N−2
] (3.5)

Note that this does not account for the case where more than one node collides with the
primary transmission, which means it slightly underestimates the number of repeat collisions
that occur.

Figure 3.4 visualizes the impact of repeat collisions for the two-node case and finds that
the odds of a repeat collision range from 2% to 7%, more than twice as much as the näıve
ALOHA assumption. This increased probability of repeat collisions has a particular impact
on device discovery, possibly leading to extended periods when all packets from a device
collide.

To extend this to model the probability that data is received, note that the probability
of a second collision is the same as the probability of a third collision, and so on. The
probability of the first collision is the normal probability of collision from Equation (3.4),
while the second and onward are the probability of a repeated collision from Equation (3.5).
For a series of M total packets with the same data payload, we can express the data reception
rate, DRR, as the odds that the data is received at least once:

DRR = 1− (Pc)(Prc)
M−1 (3.6)

Figure 3.5 applies this model to demonstrate the impact of redundant advertising on data
reception rate. Even at the fastest advertising frequency, redundant transmissions allow
devices to overcome poor packet reception rates.

Redundancy is not always beneficial, however. To preserve the same data update rate,
devices sending redundant advertisements must advertise more frequently. This leads to
increased transmission contention, increasing the probability of a collision, and possibly
defeating the goal of more reliable receptions.
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Figure 3.4: Collision probability for two devices. The probability of a collision between two
BLE transmitters grows as the payload size of the packet increases. The general probability
of collision is plotted for several advertising intervals. The probability of a repeat collision
is increased due to the periodicity of BLE. Given a collision on the previous packet, the
probability of collision for the current transmission in BLE is twice as high as the normal
probability for even the fastest advertisement interval.

Consider an application that wishes to reliably transmit data each second. Is it more
reliable for each node to send five copies (once every 200 ms) or to minimize potential con-
tention and send only one copy (once every 1000 ms)? Figure 3.6 shows how the expected
data reception rate for these scenarios responds as network density grows. Advertising redun-
dantly is initially more successful than advertising slowly but at 432 devices in a deployment
there is a crossover. With more devices, the added contention from redundant packets ac-
tually reduces data reliability. Since we are considering deployments where all devices are
within range of each other, more than 432 devices is highly unlikely. For practical network
scenarios, redundant transmissions are the right choice for reliability.

The worst case for BLE collisions occurs when an event triggers data transmission,
a common architecture in sensing systems. Per the BLE specification, no random delay
is added before the first packet. This means all transmitting devices triggered from the
same event will collide on their first transmission. The probability of collision decreases
each interval through the addition of the 10 ms random delay. For such triggered systems, a
random delay should be added before beginning advertising to avoid this failure mode.

When calculating data reception rates, it is often acceptable to use the näıve model,
with Pc to the power of the number of redundant packets. Even though the odds of a repeat
collision are increased, that they only occur after a first collision has already taken place
makes then negligible in many real world scenarios. For example, for a deployment of 50
devices transmitting maximum-length advertisements every 200 ms, the largest absolute error
between the näıve model and the full model in Equation (3.6) is about 1%. For scenarios
where we are exploring very large deployments or modifications to the BLE protocol, as
discussed in Section 3.3.1, we will continue to use the full model. For scenarios where efficient



CHAPTER 3. MODELING BLE ADVERTISEMENTS 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

D
a

ta
 R

e
c
e

p
ti
o

n
 R

a
te

Number of Redundant Packets

100 devices (100 ms)
100 devices
50 devices
30 devices
10 devices
2 devices

Figure 3.5: Data reception rate for redundant transmissions. The number of redundant
packets transmitted is varied for multiple deployment sizes, each transmitting at a 20 ms
interval except the 100 device scenario which considers both 20 ms and 100 ms intervals. As
the density of a deployment grows, advertisers need to send a greater number of redundant
packets to maintain data reception reliability. Latency and throughput also affect reception
rate, slowing advertising from 20 to 100 ms improves reception at the expense of responsive-
ness and throughput. At zero redundant packets, the reception rate is identical to packet
reception rate. For higher values, reception of any one packet is enough to receive the data.
Sending redundant packets can significantly improve data reception when there is contention
in the network.

math is advantageous, such as calculating DRR onboard a microcontroller as discussed in
Section 4.3, we will revert to the näıve model.

3.1.3 Advertisement Network Takeaways

We find that advertisement-based sensor networks should be capable of achieving data recep-
tion rates over 99% given the right parameter selection. Such network benefit from the ease
of implementation afforded by the advertisement primitive, the ubiquity of BLE radios, and
the extensibility afforded by connections for infrequent maintenance tasks. To maximize the
performance of advertisement-based networks, advertisers should add packet redundancy.
Applications demanding very high density (100 or more devices in the same broadcast do-
main) and sub-second latency constraints may not be well served by advertisement-based
networks.

Additionally, the lack of acknowledgments makes any guarantees of performance prob-
abilistic. BLE advertisement networks can best be taken advantage of by applications that
may need a high probability of data reception, but do not require the successful reception of
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Figure 3.6: Data reception rate favors redundancy. Data reception rates are compared for
one network configured to send a packet every 1000 ms versus another configured to send five
redundant packets per second at 200 ms intervals across deployment sizes. A crossover point
occurs where the additional likelihood of data reception due to redundancy is not enough to
overcome the additional losses due to increased contention due to sending more packets, but
in practice this point requires more transmitters than the expected maximum deployment
size for many applications, making redundant transmission still useful.

any particular packet. For those scenarios, BLE itself may still be acceptable, but connections
are likely a better communication mechanism. Devices may, of course, mix modes by using
BLE advertisements for common, low-priority data and connections for rare, high-priority
data.

3.1.4 Empirical Testing

To validate the analytical model of advertising network performance, we test networks of
up to fifty devices and compare their performance with predictions from the model. For
advertising, we use a programmable beacon platform built atop the nRF51822 BLE radio [60].
To recover packets, we use a Bluetooth Protocol Analyzer [61] to eliminate any potential
variance from the Bluetooth stack. The analyzer listens on all three advertising channels
concurrently. All nodes are placed in a single room in a 10×5 grid with approximately 15 cm
spacing. The analyzer is placed approximately 1 m away from the grid. The experiment takes
place in a residential building, with general interference from other devices such as WiFi
or Bluetooth transmitters expected. We dwell in each configuration for several minutes,
discarding the beginning and end of each trace.

The experiment varies multiple configuration parameters. We sweep the number of
advertising devices from 3 to 50. For each deployment size, we test advertising intervals
from 100 ms to 10 s. To detect missing packets, each advertising payload is sent with a
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Figure 3.7: Analytical and experimental packet reception rate. Packet reception rate is
measured across a range of number of transmitters and a selection of advertising intervals.
Note that the y-axis ends at 0.6 PRR. We find that the analytical model tracks well with
reality, but that it overestimates the true reception rate, possibly due to interference.

monotonically increasing sequence number. The remainder of the packet payload is padded
to a total payload size of 31 bytes. Packets received with invalid CRC values are considered
missing.

To reduce jitter induced by receiving scan requests, all transmitters are configured to
not listen for scan or connection requests. Otherwise, the presence of nearby smartphones
scanning for BLE packets may influence the behavior of the experiment. As a side effect,
this limits the minimum advertising interval of the network to 100 ms per version 4.2 of the
BLE specification [2].

Figure 3.7 shows the results of measuring packet reception rate for this experiment.
Each point is the average reception rate across the three advertising channels for all de-
ployed devices. While 95% confidence intervals are calculated, they are too small to visu-
alize. Although the model for BLE advertising should be conservative (as it ignores the
capture effect), we find the model strictly overestimates performance in this experiment. We
hypothesize that this is due to interference with other transmitters such as WiFi, Bluetooth
Classic, or other BLE devices. This error is minimal, however, accounting for less than 5%
deviation from the expected result.

Figure 3.8 adapts the raw packet reception information to estimate data recovery rate
with redundant packets. Integer division of raw sequence number by a redundancy rate
(number of repeated packets) yields a new stream of possibly-redundant sequence numbers.
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Figure 3.8: Analytical and experimental data reception rate. Packet reception rate is mea-
sured across a range of number of redundantly transmitted packets for a selection of deploy-
ment sizes. series of deployment sizes. Note that the y-axis ends at 0.6 DRR. To create
an environment with many collisions, maximum sized packets are transmitted at 100 ms
intervals. The experimental results closely match the analytical model.

If a sequence number is seen at least once in this adapted stream, we count that data item
as having been received. For a redundancy rate of one, the results are identical to the 100 ms
interval line from Figure 3.7. Adding even modest redundancy quickly results in 100% data
reception rates. Again, we find that the experimental data tracks the analytical model.

3.2 Energy

BLE was created to be a “low energy” medium for devices. Particularly, the limited listening
requirements are a significant part of this. BLE radios are entirely off for the majority of each
second, reducing their power draw. This is important because energy is a first-class concern
for many Internet of Things devices, with sensing and communication often dominating the
energy budget. For devices on batteries, the less energy used in communication, the longer
the device’s overall lifetime.

While several works in literature investigate energy use in BLE [12, 62, 63], work by
Schrader et al. [14] takes an in-depth look at energy use agnostic to transceiver implementa-
tion. They find six distinct power draw phases of BLE advertisements that recur in multiple
different transceivers. These correlate to sleep, startup, transmit, tx-to-rx transition, re-
ceive, channel transition, and post-processing. The duration and cost of these phases varies
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based on transceiver implementation and advertising parameters. Longer packets require
more time transmitting, for example. Phases are sometimes completely omitted such as the
receive phase when transmitting non-connectably without support for scan responses.

One takeaway about BLE advertisements is modifying advertising interval only affects
the sleep phase. This means we can calculate the energy cost of an advertisement relative to
packet length, transmit power, and transceiver IC without any knowledge of advertisement
interval. The costs of redundancy are then a linear multiplier to this advertisement cost.

Using empirical data from Schrader et al. [14], we can determine the cost of an in-
dividual advertisement. We assume a maximum size advertisement (31 bytes of payload)
transmitted at 0 dBm. For the nRF51822 [60], a popular microcontroller SoC with BLE
support, sending a non-connectable, undirected advertisement uses 60 µJ of energy. For the
nRF52832 [64], a generational improvement on the nRF51822, sending a non-connectable,
undirected advertisement uses 52 µJ of energy.

Allowing BLE connections to be made adds an additional energy cost. This is due
to short listening windows (less than 100 µs) where the node checks to see if a connection
request is being made. That same reception window is used to listen for scan requests if
they are enabled. Again assuming a maximum size advertisement transmitted at 0 dBm,
the nRF51822 requires 77 µJ to send a connectable advertisement while the nRF52832 re-
quires 66 µJ. These represent a 28% and 27% increase respectively in energy consumed per
advertisement.

Given energy costs per advertisement, we can determine the expense of advertising at
a given interval. As advertisement intervals are a continuous notion rather than a discrete
event, it makes sense to present average power draw rather than energy consumption. The
power draw of advertising at a certain interval is then the single advertisement energy cost,
divided by the interval time. To be accurate, we must also take into account the sleep power
draw of the microcontroller. On the nRF51822 sleep draws an average of 11 µW, while on
the nRF52832 sleep draws an average of 5.8 µW. Figure 3.9 demonstrates average power
draw for an nRF51822 transmitting connectable advertisements at 0 dBm. It covers a range
of intervals from several packets per minute up to ten packets per second.

For some applications, the energy costs of scanning are also important. Listening is far
more expensive than transmitting due to the increased duration of radio use. Scanning for
advertisements uses an average of 30 mW when performed continuously. For applications
that infrequently scan, such as adaptation as discussed in Section 4.3, the energy use of
scanning can remain low despite the higher power costs.

To put the power draw into meaningful context, we can pair it with a battery and
determine total device lifetime. Note that in this case, we are not accounting for the costs
of sensing and computation. A CR2032 coin cell battery stores 325 mAh at 3 V of energy,
2500 J. For a device with an nRF51822 advertising connectably once per second, this results
in a 334 day lifetime, about a year. Adding redundancy and transmitting three packets per
second instead would result in a 121 day lifetime. This is a significant increase to support
reliability, and in reality a CR2032 has insufficient energy to support this task long-term.

Energy costs are greatly reduced by sensing and communicating less often. Sending a
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Figure 3.9: Average power consumption for transmitting at various rates. Connectable
advertisements are transmitted at 0 dBm on an nRF51822, with a sleep power draw of 11 µW.
Transmitting once per second results in an average power draw of 88 µW while transmitting
every 100 ms results in an average power draw of 781 µW. These result in lifetimes ranging
from a year to a month on a coin-cell battery.

single packet per minute leads to an average power draw of 13 µW with a lifetime of 2300
days. Since this lifetime is now dominated by sleep power draw, adding redundancy does not
have such a large impact on total lifetime. Sending three packets per minute has an average
power draw of 15 µW and a total lifetime of 1900 days.

3.3 Applying Models

Before we discuss deployments, it is valuable to take a look at what the models can teach
us in the theoretical domain. First, we take a look at the BLE protocol itself to see how
it could be modified and what the ramifications would be. Next, we take a look at an
increasingly important domain, epidemiology and explore the use of BLE advertisements
for contact tracing. Even before real-world deployments, we can gain valuable insights into
protocol and application design through the use of our simple models alone.

3.3.1 BLE Protocol

A common desire in BLE advertisements is to fit a larger payload in each packet. Using our
packet reception rate model, we can explore a change of payload from 31 bytes to 255 bytes
as shown in Figure 3.10. We plot packet reception rate an advertisement interval of 1 packet
per second for both payload sizes. At that rate, for up to 100 devices packet reception
rate never falls below 90% for normally sized packets. However, packet receptions greatly
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Figure 3.10: Packet reception rate for advertisements with expanded payload sizes. Normal
BLE advertisements have a maximum payload size of 31 bytes. Increasing that payload to
255 bytes instead would have a large impact on packet reception rates and therefore discovery
latency.

decrease for larger packet sizes due to increased collision windows, with only 65% of packet
received with 100 deployed devices transmitting 255 byte payloads. The increased packet
collisions caused by long payloads result in the loss data reliability, but would also result in
increased discovery latency for beacons.

In version 5.0 of the BLE specification, we see that there is indeed an increased ad-
vertisement payload size. However, it cannot be used on the normal three advertisement
channels and is instead relegated to the 37 connection channels now termed as “secondary
advertisement channels”. Devices broadcast normal-sized payload advertisements on the
original advertisement channels that then point a receiver to another secondary channel for
the increased length transmission. This somewhat strange protocol makes sense in the con-
text of increased packet collisions. Devices using longer payloads in BLE 5.0 are kept from
greatly reducing reception rates for non-longer-payload devices on the original advertising
channels. The increased collision possibility from longer packets is greatly offset by the large
number of secondary channels used.

Next, we are interested in exploring what a modification to the random transmission
delay appended to each interval would result in. The delay is chosen from a uniform random
distribution of 0 to 10 ms in all versions of the BLE protocol, between 26–78× the on-air
duration of an advertisement packet. A shorter delay could allow faster advertisement rates,
and therefore more data throughput.
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Figure 3.11: Data reception rates with modified random delay. The random delay appended
to each advertising interval is normally selected from 0 to 10 ms. If its maximum value were
to be reduced to only 1 ms, a significant increase in repeat collisions would occur, reducing
the benefit of redundancy towards data reliability. Also shown is the näıve model of data
reception rate, which cannot accurately account for increased repeat collision.

However, we find that reducing this delay from 10 ms to 1 ms would have a significant
impact on data reception rates. Particularly, repeat collisions would have a large increase,
which weakens the capability of two or three redundant packets to be sufficient for reliability.
This is demonstrated in Figure 3.11 for 50 device deployments transmitting a packet every
100 ms. While with 10 ms delay, only two packets are needed to reach 90% data reliability,
with delay reduced to 1 ms five packets are needed instead.

Also demonstrated in Figure 3.11 is the difference between the näıve and full models for
data reception rate. The näıve method of multiplying Pc for each redundant transmission
fails to account for increased repeat collisions in the 1 ms delay scenario.

Finally, we explore the use of multiple advertisement channels. As noted in Sec-
tion 2.1.1, BLE advertisements are transmitted on three channels to increase robustness
against RF interference. However, the three transmissions are always sent in the same order
without any entropy in timing, which means they provide no robustness against advertise-
ment collisions. A packet that collides on one channel will collide on the others as well.

A simple change, which is finally implemented in BLE 5.1, would be to allow adver-
tisement channel order to be selected at random. Random advertisement channel ordering
means that a packet collision can only occur if both devices are on the same channel during
a transmission. We can modify Equation (3.1) to account for this new robustness. The odds
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of a packet collision on a single channel are now reduced to a third of the original rate, as
shown in Equation (3.7).

Pc = 1−
(

1− 1

3
× 2× tadv

Tadv interval + E(tadv delay)

)N−1

(3.7)

3.3.2 Contact Tracing

Models for BLE collisions and energy use can also inform emerging applications. One prime
example is smartphone BLE-based contact tracing efforts. In epidemiology, contact tracing
finds all recent contacts of someone who has become sick to test them for disease as well.
This process is time consuming and manual, a clear target for technological improvement.
In smartphone-based contact tracing systems, phones exchange information when they are
in close proximity, creating a list of your recent contacts that can then later be notified
or notify you in the case of disease spread. This use case is an example of a “proximal
communication” application of BLE advertisements as discussed in Section 2.2.3.

A particular instance of smartphone-based contact tracing is the Apple/Google “Ex-
posure Notification” system [54]. In this system, each smartphone transmits advertisements
every 250 ms and scans for advertisers at least every five minutes, although the duration is
unspecified. Opportunistically, the service will use scans requested by other applications for
finer-granularity data.

Another take on this idea is the NIST Too Close for Too Long (TC4TL) challenge [65].
The competition seeks to explore the use of BLE advertisements for contact tracing by using
RSSI, possibly in combination with other sensors or signals, to create an accurate range
estimate for each possible contact. The end goal is to identify only contacts who have been
within a certain range for greater than a certain period of time. The datasets provided by
NIST lend some insight into their assumptions. They expect one data point per nearby BLE
device per second, with a scanning duration of four seconds per minute. Combining these
two contact tracing examples allows us to explore ramifications for likely contact tracing
configurations.

One question of interest is how many nearby devices can be detected with high reliability
in a single scan duration. We can investigate this question as an application of data reception
rate. A detection is equivalent to a data reception in this scenario over the duration of the
scan. So given an advertisement rate and scanning duration, we can determine maximum
number of devices while meeting a desired reliability.

One unknown is the reliability of smartphone scanning. As will be discussed in Sec-
tion 4.1.4, many scanners have challenges with reliable advertisement reception. Rather than
using the default equation for DRR, we use the revised version from Equation (4.1) utilizing
an optimistic loss of 7.8%. This is likely a significant overestimation as many smartphones
share antennas for WiFi and BLE use, multiplexing them in time, and therefore puts an
upper bound on number of devices.
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Applying the DRR equation for a four-second scan and advertisements every 250 ms
results in a redundancy of 16. Combining this with the gateway loss into Equation (4.1)
results in detecting 432 devices with 99% reliability. This is an extraordinary number of
devices in a single area for a scenario when contact tracing is necessary, suggesting that
scanning duration could be greatly reduced. For example, scanning for a single second
would allow 99% reliable detection of 98 devices, at one fourth of the energy cost.

This leads to a second question of how to determine the tradeoff between advertising
and scanning. Phones could advertise more often and scan for a shorter duration, or adver-
tise less frequently and scan for longer. The tradeoff here can be determined based on energy
per models discussed in Section 3.2. Each second of scanning costs approximately 30 mJ.
In comparison, each advertisement is approximately 60 uJ. So approximately 500 advertise-
ments can be traded for each second of scanning. These numbers are for microcontrollers,
but the order of magnitude applies to smartphones as well.

Assuming a desire to detect about one hundred devices in the nearby region with 99%
reliability, multiple choices of scan and advertisement interval are possible. Scanning for one
second every five minutes and continuously advertising every 250 ms results in a net average
power draw of 340 uW. Alternatively, scanning for 800 ms every five minutes and continuously
advertising every 100 ms results in a net average power draw of 680 uW, twice the cost. Or
instead increasing advertising interval to 500 ms with a scanning duration of 1.45 s per five
minutes results in an average power draw of 265 uW. The selection of these configurations
could minimize the service’s impact on overall phone lifetime while maintaining desired
reliability and number of neighbors.

3.4 Summary

We have demonstrated that modeling advertisement collisions can accurately predict packet
and data reception rates for real-world advertisement networks. Combined with a model
for energy use, we have further demonstrated the capability to explore protocol modifica-
tions and application configurations. Our findings show that the introduction of modest
redundancy should allow even large deployments to reliably communicate data over BLE
advertisements. We follow through on this prediction in Chapter 4 with an analysis of
real-world deployments. Our models will enable us to determine deployment issues when
they arise and will allow the optimization of advertisement configurations for environmental
conditions.
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Chapter 4

BLE Deployment Studies

Powered with models that allow us to predict and introspect communication performance we
now investigate real-world deployments of BLE advertisers. First, we explore PowerBlade,
a plug-load power meter that uses BLE advertisements to broadcast measurements. We
investigate existing data from PowerBlade deployments and identify gateway problems that
led to unreliability. We next demonstrate the ability to apply models to statically plan
deployments. Finally, we demonstrate an algorithm for deployed devices that enables them
to automatically adapt transmission rates in the field for reliable communication.

4.1 Powerblade Deployment

PowerBlade is a research power meter that measures voltage and current waveforms in real
time, transmitting the data via BLE advertisements [16]. PowerBlade’s design results in
a severely limited energy budget averaging less than 6 mW, making the use of traditional
mesh networking architectures difficult. Moreover, it is valuable for PowerBlade to interact
directly with users. BLE allows deployers to easily label devices and users to directly observe
the power draw of metered appliances using a smartphone application.

We deployed PowerBlade in eight residential homes and one commercial office to study
the contribution of various loads [15]. Table 4.1 describes the nine deployments, which
include 335 PowerBlades over 608 deployment-days and result in 1.5 billion recorded mea-
surements. Each location has occupants that live or work within it and includes other
ambient wireless transmitters, including WiFi and other unrelated Bluetooth devices. How-
ever, these deployments took place before the deployment of Apple Continuity, so we expect
few other BLE advertisers to exist in each household. We study the dataset collected from
the PowerBlade deployment to evaluate the performance of its BLE advertisement sensor
network and test the efficacy of our models on a real-world dataset.

In each location, one or more gateways are deployed to collect measurements. The
gateway consists of a BeagleBone Black running Linux with an attached USB Bluetooth
dongle [66, 67]. The Noble JavaScript library [68] drives the Bluetooth stack, and a simple
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Location
Duration

(Days)

Number of

PowerBlades

Expected

PRR

Expected

DRR

1 66 68 63.5% 96.8%

2 168 84 57.0% 94.5%

3 7 12 92.8% 100.0%

4 110 23 86.1% 99.8%

5 87 37 78.3% 99.3%

6 83 35 79.4% 99.4%

7 40 29 82.7% 99.6%

8 24 21 87.3% 99.8%

9 23 26 84.4% 99.7%

Table 4.1: PowerBlade deployment overview. 355 BLE power meters are deployed in nine
locations (averaging to 37 devices at each location for 68 days). Given the network con-
figuration, our models predict the data reception rate for most deployment locations to be
greater than 99%. This deployment provides an opportunity for measuring BLE advertise-
ment network performance in the real world and comparing to the theoretical expectations.

application atop Noble parses advertisements into data packets. Packets are de-duplicated
before being sent to a database backend. This data can be used to measure data reception
rates for the deployments. At one location (Location 4), raw BLE packets are collected in
addition to parsed measurements, allowing additional analyses of packet reception rates for
that deployment.

Each PowerBlade generates a new power measurement once per second. It transmits
with an advertising interval of 200 ms, sending four redundant packets for each measurement.
The fifth packet each second is an Eddystone beacon [45] that points to a user application
capable of interacting with the device. Each power measurement has an attached sequence
number, allowing missing measurements to be detected. A PowerBlade data payload is
27 bytes while the Eddystone payload is 26 bytes. The redundancy amount for each device
was chosen before the creation of data reception rate models, and was selected as an educated
guess about redundancy needs.

PowerBlade also enables scan requests and responses. The device name field is too
large to fit in the advertisement payload with the power data, so PowerBlade places it in
the scan response, allowing smartphones to identify it as a PowerBlade. The scan response
payload is 12 bytes. When transmitted, this can act as an additional source of collisions in
the deployment, essentially increasing the transmission time of packets when a scan request
is received. While the PowerBlade gateways do not need to collect scan response data, the
Noble library used to collect advertisements does not provide an option for disabling scan
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Figure 4.1: Data reception rate by deployment location. Data reception rate is determined
by counting sequence numbers received throughout the deployment duration and dividing
that by the expected count of sequence numbers. Expected DRR is marked as a black line
above each bar. While we expect a DRR of greater than 99% for the majority of locations,
we instead find that most locations receive between 50% and 80% of expected measurements.

requests. In retrospect, scan responses are unnecessary to the deployment. As discussed in
Section 2.1.3, scan requests and responses have a backoff design that is problematic in large
deployments. A redesign of the PowerBlade protocol with current knowledge would disable
them to save energy and increase reliability.

4.1.1 Expected Reception Rates

We can apply the models from Section 3.1 to predict performance. We use an average value
for tadv of 342.4 µs and Tadv interval is 200 ms. The number of redundant transmissions is four,
and we assume that all devices in a deployment are within transmission range of each other.

While the actual probability of a scan request occurring is unclear due to scanner backoff
policies, we can assume a worst case in which every advertisement has a corresponding scan
request. We can further assume that every scan request is properly received and results
in a scan response. We can model this worst case as an extension to the duration of the
collision window. So rather than 2×tadv, the numerators of Equations (3.4) and (3.5) become
2× tadv +2× tIFS + tscan req + tscan resp where tIFS is the inter-frame spacing of 150 µs, tscan req

is the scan request on-air duration of 176 µs, and tscan resp is the scan response duration for
PowerBlade of 224 µs.

Accounting for scan requests and responses in this manner, Table 4.1 lists the expected
packet and data reception rates for each deployment. While the deployment size is large
enough to produce more than 40% packet error in the worst case, all deployments are ex-
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Figure 4.2: Measurement loss probability. For each received measurement, we count the
number of immediately preceding measurements that were missed. A line is plotted for
each device in the deployment. As expected, the most common count is zero (the previous
measurement was received). However, brief streaks of one to several missed measurements
are not rare. Longer gaps become less common, until we consider very long gaps—19 or
more consecutive missed measurements. Large gaps suggest the possibility of infrastructure
or device failure during the deployment.

pected to have data reception rates above 90% and most expect above 99%. The diversity
of requirements leads to a tradeoff in system design where reliability can be guaranteed for
even the largest scenario but only at the cost of wasted energy in the smaller common-case
scenarios. This is an opportunity to apply an automatic adaptation scheme, as discussed in
Section 4.3.

4.1.2 Measured Data Reception Rates

We can determine the data reception rate for each deployment location by observing the
sequence number in each measurement, and then comparing how many unique measurements
were received to how many were expected. As shown in Figure 4.1, data reception rate is
significantly lower than expected. The best performance is in Location 4 with 83.4% DRR.

To attempt to identify why the network is underperforming, we can measure the data
loss pattern. Figure 4.2 shows the probability of occurrence for increasing lengths of missed
measurements for each device in the deployment. The most common number of missing
data is zero for all devices except one. As run length increases the probability falls off,
however there is a relatively high occurrence of very long runs of dropped measurements.
It is possible that long periods of dropped measurements represent infrastructure failures
rather than problems with devices. This includes problems such as gateway crashes and
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Figure 4.3: Data reception rate by deployment location with gaps removed. We liberally
remove any contiguous gaps longer than one hour in duration from the expect packet recep-
tions for each deployment. Expected DRR is marked as a black line above each bar. Even
if all of these gaps represent true infrastructure failures, they fail to account for all of loss in
reception rates.

network outages that are all too common in real world deployments [69].
To investigate whether infrastructure failures could be the source of most of the packet

loss in these deployments, we investigate packet loss ignoring large gaps in data. Figure 4.3
displays the updated data reception rates if we discount all gaps in data of an hour in
length of more. Upon investigation, Locations 1 and 3 each have multi-day gaps during
their deployment period, which are likely true outages. However, even liberally removing all
one-hour gaps does not result in satisfactory results, leading to suspicion that another factor
is at fault.

4.1.3 Packet Reception

To gain a better understanding for the difference between predicted and measured perfor-
mance, we can dig deeper into the performance of devices at Location 4. In that location,
raw packets were recorded in addition to measurements. This includes the reception time,
sequence number, and RSSI for each packet. We determine packet reception rate by counting
the sequence numbers received, including duplicates, and dividing by the number of expected
packets (four times the number of expected measurements). We discount any contiguous gaps
of more than an hour to remove the effects of infrastructure failures. This deployment also
tracks the room location in the residence where the PowerBlade was deployed. Location 4
contains a living room, kitchen, and bedroom. The living room and kitchen are adjacent,
while the bedroom is farther away. The gateway for this deployment is placed in the living
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Figure 4.4: Packet reception rate by device at Location 4. Devices are grouped by the room
where they are deployed, with the gateway being placed in the living room. Expected PRR
is the same for each device and marked as a black line. While all devices are within a short
distance from the gateway and should experience only about 14% packet loss, no device
performs this well and many devices perform far more poorly.

room.
For Location 4, the model expects a packet reception rate of 86.1%. Figure 4.4 gives a

breakdown of the measured PRR for each device, grouped by the room in which they were
deployed. Devices in the living room and kitchen, closest to the gateway, have the highest
reception rates in general. The maximum PRR seen is 80.8% for device number 3. Variation
in PRR between devices implies differences in path loss each is experiencing, as is expected in
real-world deployments. However, even the best performing devices are below the predicted
PRR, suggesting possible issues with packet reception. This is made worse by the fact that
expected PRR should be an underestimate. We would expect that due to the capture effect,
some devices close to the gateway would do even better than predicted.

Reduced signal strength due to distance and obstructions certainly causes some of the
packet loss that is observed. While we only have access to received signal strength indi-
cator (RSSI) measurements for successfully received packets, rather than continuous signal
strength measurements, we can examine the short-term trend of RSSI to see if variations are
a likely cause of packet loss. Figure 4.5 views RSSI measurements over an arbitrary minute
of the deployment for three devices in Location 4, including the best and worst performing
devices. We see modest fluctuations in RSSI values, which account for some of the missing
transmissions from Device 16. However, the magnitude of variation for the other two devices
is small enough to make poor signal strength an unlikely cause of missed packets. We note
that the conversion of actual signal to RSSI for this receiver is opaque, and it appears that
higher RSSI values exhibit greater quantization. Even if there is not quantization, the RSSI
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Figure 4.5: RSSI measurements from three devices over a minute. The received signal
strength fluctuates over a small interval from packet to packet. For Device 16 these variations
may be sufficient for its transmissions to fall below the sensitivity of the receiver (roughly
-95 dBm). For the other devices, variation in signal strength seems unlikely to be the cause
of missed packets.

of Device 3 would need to change by three times the amount seen in this trace to fall below
the reported sensitivity. Only a minute out of the entire deployment is shown for brevity,
but the results are similar on the scale of an hour, day, or week.

4.1.4 Gateway Analysis

With problems in data reception rate and packet reception rate among all devices, remaining
causes include RF interference and gateway issues. RF interference, while likely accounting
for some losses, is unlikely to affect all locations, especially when it has not been a significant
factor in other indoor BLE experiments. This leads to a focus on the gateway used to receive
BLE advertisements. It is possible that packets are being dropped by the USB dongle
hardware or firmware, in the Linux BLE stack, or in the Noble BLE library. To test for
this, we can compare the performance of various gateway configurations compared to the
professional scanner in a controlled setting.

Re-using the experimental setup from Section 3.1.4, we place twenty-five nRF51822
BLE beacons in a single room. At five different advertising intervals, we simultaneously
record the received packets from a sniffer and other gateway designs placed adjacent to
each other. Table 4.2 shows the percent error from the theoretical model for each gateway
configuration at each advertising interval tested.

“Original Gateway” is the configuration used in the original PowerBlade deployments,
a USB BLE dongle with the Noble BLE library. We find that this gateway configuration
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Advertising Interval (ms) 100 500 1000 5000 10000

Deviation from Theoretical Performance (%)

Original Gateway, Noble -46.6 -42.8 -39.5 -36.4 -34.4

Modified Gateway, Noble -32.9 -27.2 -23.9 -21.3 -18.3

nRF52DK Gateway, Noble -33.3 -22.6 -17.1 -14.4 -12.3

ESP32 Serial -8.3 -14.2 -12.9 -12.4 -11.6

nRF52DK Serial -4.3 -9.9 -8.9 -8.5 -7.8

Professional Sniffer -1.3 -3.0 -2.7 -3.4 -3.1

Table 4.2: Additional packet loss in tested receivers. 25 BLE beacons are set in a single
room advertising data. For a series of advertising intervals, all packets are recorded by: a
BLE gateway identical to the ones used in the PowerBlade deployment, a modified gateway
with an increased scan interval, a gateway with an increased scan interval and different
BLE hardware, an ESP32 BLE scanner over serial, a nRF52DK BLE scanner over serial,
and a professional BLE sniffer. Packet reception rates are improved most by avoiding the
Linux BLE stack and Noble library and instead streaming data directly from a scanning
microcontroller. However all configurations tested do introduce some packet loss above that
predicted by the theoretical models, which needs to be accounted for.

performs far more poorly than the professional scanner with a 30 to 40 percentage point
lower reception rate.

A low scan interval on the gateway could result in frequent scanning gaps while channel-
switching [31]. “Modified Gateway” increases the scan interval in the Noble library from
10 to 100 ms, resulting in some improvement, but still 20–30% loss. A different potential
source is problems with the receiver hardware or firmware. Using an open-source HCI stack
implementation [70], we configure a nRF52 development kit to receive packets for the Noble
library with an increased scan interval. “nRF52DK Gateway” shows these results, which
still demonstrate loss of 10–30%.

The most successful technique tested is to avoid the Noble library and Linux BLE
stack altogether and instead stream advertisement data directly over a serial connection
from a BLE scanner. We investigate the nRF52 development kit and the ESP32, both ARM
microcontrollers combined with BLE radios. For the nRF52, we find 7.88% additional packet
loss on average from the theoretical model.

Overall, we find loss due to both the scanning hardware and software. The particular
choice of hardware and libraries used in the PowerBlade deployments, while the straightfor-
ward path, introduced the most packet loss of any configuration tested, likely accounting
for many of the packet reception problems discovered in the deployment. Here we find that
the ubiquity of BLE is a double-edge sword. Gateways are easy to build due to available
commercial BLE dongles and installable radio stacks, but the presence of multiple layered
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and opaque stacks makes understanding the flow of data and tracking down the source of
possible losses difficult.

4.2 Statically Planned Deployments

While the results from the unplanned PowerBlade deployments are poor, combining knowl-
edge of BLE advertisement models with the experimentally determined packet loss expected
at the gateway can allow deployments to be accurately predicted. We demonstrate this
through an additional two deployments, planned in advance to result in different reception
rates.

4.2.1 Revising Deployment Parameters

An expected loss due at the gateway can be accounted for in our model of predicted data
reception rates similarly to loss due to interference. Equation (4.1) shows the probability of
receiving data sent M total times where Pl is probability of packet loss at the gateway, Pc

is the probability of a collision, and Prc is the probability of a repeat collision.

DRR = 1− [1− (1− Pc)(1− Pl)] [1− (1− Prc)(1− Pl)]
M−1 (4.1)

Given this new model, we can now accurately plan deployments with knowledge of their
data reception rates in advance. The first deployment we plan targets a 99% data reception
rate and is referred to as the “99%” deployment. Assuming 7.88% loss at the gateway (the
average for the nRF52 development kit over serial), 25 devices deployed, and new data once
per second, we can solve for expected data reception rate given a number of redundant
packets per second. Sending one packet per second (no redundancy) has a DRR of 90.6%,
two has a DRR of 98.2%, and three has a DRR of 99.6%. We select three total packets
per second (one every 333 ms) to reach a predicted data reception rate of over 99% for our
planned deployment. For the second deployment, we target a deployment with 80% data
reception rate and refer to it as the “80%” deployment. With the same number of devices
and expected loss at the gateway, an advertising interval of 112.5 ms with no redundancy
should lead to this outcome due to packet collisions.

Twenty-five PowerBlades are deployed throughout an apartment, attached to devices
and plugged into outlets. A gateway using a nRF52 development kit over a serial connection
is deployed at the intersection of the kitchen and living room. Nodes in the bedroom are the
furthest away from the gateway, transmitting through a wall for the shortest-path link. The
PowerBlades are first configured for the “99%” deployment and data is collected for 24 hours.
Following that, devices are reprogrammed for the “80%” deployment and then replaced in
the same locations for an additional 24 hours.
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Figure 4.6: Data Reception rate for each device in the “99%” deployment. A gateway is
deployed between the living room and kitchen of an apartment, with a bedroom adjacent
through a wall. Expected DRR is marked with a black line. The majority of devices have
greater than 99% data reception rate as predicted. Some devices, especially those further
away, suffer degraded performance due to poor connectivity.

4.2.2 Deployment Results

The results of the real-world deployments are messier than the managed setup used for em-
pirical testing, but far more predictable than the unplanned BLE deployment as we minimize
and account for gateway issues. Figure 4.6 shows the results of the “99%” deployment. Out
of the 25 deployed devices, 15 have a greater than 99% data reception rate, with another 3
greater than 98% and a median data reception rate of 99.6%. Devices in the bedroom are
furthest away from the gateway and also have the highest prevalence of weaker than expected
reception rates. Devices 19 and 20 are physically close to the gateway, but positioned behind
a microwave, which likely results in weak signal strength.

We can also view the results of the “99%” experiment as average PRR for each minute
of the deployment. Figure 4.7 demonstrates PRR for all 25 devices in the deployment. Many
devices have high packet reception rates throughout the experiment, matching our expected
PRR of 90.6%. An interesting event that can be observed in the PRR traces is the bedroom
door which closes for the night around 10 hours into the experiment. Devices 1, 7, and 15 all
respond to this event in different ways: improving, degrading, or stabilizing their reception
rates.

Without changing the locations of deployed devices, the “80%” deployment has a pre-
dicted data reception rate of 80% and a measured median data reception rate of 78.5%. 8
devices have reception rates within the range of 76–84%, as displayed in Figure 4.8. An
additional 7 devices have reception rates better than predicted, in the range of 84–90%.
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Figure 4.7: PRR over 24 hours for the “99%” deployment. Average PRR for each minute
is plotted for all 25 PowerBlades in the deployment. The grid line above each ID is 100%
reception rate for that device and 0% reception rate for the ID above it. With redundancy,
98% of data was received from 18 of the 25 devices. Poorly performing devices, like device
1, exhibit variability in PRR that suggests poor connection to the gateway.
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Figure 4.8: Data Reception Rate for devices in the “80%” deployment. The predicted
reception rate is 80%, marked with a black line, and the majority of devices meet this
expectation. Several devices close to the gateway perform better than expected, likely due
to the capture effect. Without changing the locations of devices, the resulting data reception
is poorer than in the “99%” deployment as expected due to more frequent packet collisions
without redundant transmissions.

Looking at the received signal strength for all devices in the deployment, we believe the cap-
ture effect is the cause. Prior work evaluates the capture effect in BLE, finding that stronger
colliding packets can be received successfully at any point during the weaker packet (not just
if transmitted during the preamble) as long as the packet is 14 dB higher in strength [57].
We find that in our “80%” deployment, all devices above 84% reception rate are also above
this threshold in comparison to at least two of the other deployed devices. Device 22 is the
strongest case of this, with its transmissions averaging 14 dB higher signal strength than
transmissions from 12 other deployed devices.

Neither deployment was successful in predicting the reception rates for all devices,
and in each some devices have particularly poor reception. Although reduced reception does
correlate with distance, determining in advance which devices will perform poorly is difficult.
Even between the two planned deployments we find that which devices do poorly changes,
for example devices 1, 8, and 19. Devices 1 and 2 are also deployed only inches from each
other, but have wildly different results in the “99%” deployment case.

While prediction is difficult, detection of these poorly performing devices is made simple
through the application of reception rate models. In these cases, devices could be adjusted
or replaced to improve signal strength. Alternatively, a second gateway could be deployed
in the bedroom, which would improve reception rates without any changes to the deployed
devices.
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4.3 Adapting to the BLE Environment

In the prior examples, we statically configured advertisement parameters based on our ex-
pectations of transmission contention. In many real-world scenarios however, the number of
communicating devices is often not known in advance. This is especially true for long-term
deployments, where new devices may be added or old devices removed over time. Automat-
ically adapting to the environment would allow a device to ensure reliable communication
under any scenario, while also minimizing transmissions and therefore conserving energy.

4.3.1 Measurement Method

The first step of adapting to the environment is measuring it. Many BLE radios support
dual mode operation, where a device can be both an advertiser and a scanner. By entering
scanner mode, the device can receive all valid BLE advertisements being broadcast around
it. Doing so for a certain period will give a good sense of what the transmission contention
looks like. Usefully, the ability to do a brief scan is part of the BLE API on microcontrollers
and smartphones. Which means that this method will work on almost all devices.

One unfortunate issue with the basic scanning method is that it does not receive BLE
advertisements with bad CRC values. This means that by default a scanner does not know
how many transmissions were lost due to collisions. Unfortunately, packets with bad CRCs
are usually discarded at the lower layers of the BLE library and not made available to
applications. Modified BLE libraries would be needed to receive all packets. If an application
has access to the radio hardware, another improvement would be to listen for all traffic on the
channel, rather than just BLE advertisements. This would allow measurements to account
for interference from other protocols as well.

4.3.2 Measurement Frequency

The next question is how frequently measurements should be taken. Knowledge of the
deployment scenario could provide insight into how often the transmission environment is
expected to change. The largest driver of rapid environmental changes are people. Wearable
devices like Fitbits and personal devices like iPhones use BLE advertisements to communicate
and go wherever their owner does. In locations like lecture halls, the environment can be
expected to change hourly as groups of students come and go. In locations like shopping
malls or subway stations, any particular device may only be in transmission range for a
few minutes. For household and office buildings where the flow of people is smaller, their
personal devices are unlikely to be the dominant source of transmission contention compared
to a deployed sensor network. Knowing which of these environments are being measured can
lead to a reasonable measurement frequency selection.

Another take is that measurements and adaptation should be based on how long a device
can afford to either be unreliable or to expend excess energy. Devices that are extremely
concerned with reliability should measure more frequently, and may transmit additional
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redundant packets above modeled requirements to ensure reliable communication between
measurements. Devices that are more concerned with energy savings should scan more
frequently when transmitting a high number of packets, hoping the environment has changed
and energy can now be saved.

Measurement frequency can also be automatically varied. A device would begin sensing
periodically at some default rate. If the measurements are changing more than some accept-
able margin, increase the sensing rate. If the measurements are stable over multiple periods,
decrease the sensing rate. For this method it is important that the sensing period does not
align with time-of-day. Measuring each day at 11:00 AM may result in a similar number
of transmissions, while every six hours could show large variation due to the movement of
people.

4.3.3 Measurement Duration

A final measurement question to discuss here is how long to measure for. In the original
BLE specification, the longest allowable advertisement period was 10.24 s. Obviously a device
could transmit slower than that if desired, and more modern iterations on the specification
allow any maximum interval. Combine that with movement of devices and any listening
duration will be insufficient to identify all devices in the area.

However, not all advertisement rates matter. If a device transmits once per second,
collisions with devices transmitting once per minute will be incredibly rare. It should be
sufficient to listen for up to some small multiple of the base desired transmission rate, where
slower transmitting devices will be a negligible source of collisions.

It is also possible to listen to only a small window in time and to then extrapolate. Due
to the uniform random delay, at steady state BLE advertisements are randomly distributed
in time. So sampling any tenth of a second is likely to contain one tenth of the advertisements
sent per second. Packet transmissions are not instantaneous, so this subsampling reduces in
accuracy as the window becomes closer in size to a packet duration (maximum of 376µs).
Also, since we count in discrete packet receptions, small variations can lead to large error
when extrapolating.

Reductions in sampling duration result in advantageous energy savings, but ultimately
result in loss of accuracy. Simulation can help us explore this tradeoff. Assuming perfect
reception of all BLE advertisements transmitted, colliding or not, Figure 4.9 demonstrates
the error in estimated collision probability for varying listen durations. Four different trans-
mission rates are selected, which could transmitted by many or few devices interchangeably.
Listening for at least 200 ms provides an error of less than 5% when estimating collision
probability (and therefore decided transmission redundancy).

4.3.4 Measurement Energy Cost

While scanning is a much higher energy cost than transmitting, periodically performing a
brief scan for advertisements can be a low energy cost if rare and brief enough. Scanning for
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Figure 4.9: Error in collision estimation due to limited measurement windows. Sampling
for an entire second gives a true measurement of transmissions per second. Sampling for a
percentage of a second allows for extrapolation to an estimated measurement, at the cost of
reduced accuracy. A measurement duration of a least 200 ms gives an approximation of true
contention that is accurate to within 5% while only using roughly a fifth of the energy.

one second every ten minutes increases an nRF51822’s average power draw by about 70 µW.
This is a similar cost to that of increasing advertisement rate by one packet per second.
For applications expecting rapid changes in the environment, this may be a reasonable price
to pay. As discussed above, this scanning rate could be greatly decreased to daily or even
weekly, diminishing the energy cost to a fraction of the cost of a transmission per second.

4.3.5 Adaptation

Two steps are needed for adaptation: estimation of collision probability and determination
of redundancy. Given a reasonably accurate measurement capability, the receptions can be
transformed into an estimated packet reception rate. Then that packet reception rate can
be used, along with a desired data reception rate, to select transmission redundancy.

As calculations will be performed on microcontrollers, some simplifying assumptions
are helpful. First, we can utilize the näıve model for packet collisions, as mentioned in
Section 3.1.2. This will increase error slightly, but is unlikely to have a major impact on
redundancy selection.

For another simplification, we can measure packets per second, rather than actual
devices and advertisement intervals. The difference in collision rate between sending, for
example, 200 packets from a single device or 2 packets each from 100 devices, is around
1%. Accounting for the duration of the packet is a more important factor for determining
collisions, but packet size is provided to higher layers of most BLE libraries.
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Combining these simplifications, Equation (3.4) can be revised to a product across all
received packets of the device’s own on-air duration (tadv0) plus the received on-air duration
(tadvi), divided by the scan duration (tscan).

estPc = 1−
Packets∏

i=1

tadv0 + tadvi
tscan

(4.2)

After calculating an estimated probability of collision, a desired data reception rate
can be used to determine redundancy configuration. Algorithm 1 demonstrates the steps
for doing so. Eliding repeated collisions, DRR is a product of PRR for each redundant
transmission. In a microcontroller setting without floating point support, this same algorithm
can be used with fixed point arithmetic instead without significant loss in accuracy. An upper
limit on redundancy can also be imposed based on maximum acceptable energy use.

Algorithm 1 Pseudocode to determine redundant transmissions.

1: procedure CalculateRedundancy(estimatedPRR, desiredDRR)
2: drr ← estimatedPRR
3: advCount← 1
4: while drr < desiredDRR do
5: drr ← 1− ((1− drr) ∗ (1− estimatedPRR))
6: advCount← advCount + 1
7: end while
8: return advCount
9: end procedure

A concern with automatic adaptation is stability if many devices were employing the
same algorithm. There are regions of stability where a number of devices can all be following
the same algorithm and meet the same reliability. Adding enough devices will move the entire
deployment to add an additional transmission per second. Eventually, this can go out of
control, where the addition of transmissions harms overall reliability. The number of devices
this occurs at depends on the desired DRR.

Table 4.3 demonstrates the maximum deployment size and stable regions for 90%, 95%,
and 99% desired DRR. For example, 80 total devices are stable at 3 transmissions per second
with 99% DRR (assuming data is generated once per second). 140 devices, however, are not
stable at 99% DRR, but would stably meet 95% DRR with 2 transmissions per second. High
reliability deployments of over 100 devices in a single area unsurprisingly need to investigate
other protocols.

4.3.6 Experimental Results

We implement the discussed algorithm on an nRF51822 in order to test it. The “adaptation
device” scans for one second every ten minutes, acting as a BLE scanner. It generates a new
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Desired DRRTransmissions

per Second 90% 95% 99%

1 140 68 13

2 252 168 70

3 276 203 107

4 274 212 126

5 265 211 134

6 253 206 138

7 241 200 138

Table 4.3: Number of simultaneous devices supported at a desired data reception rate.
Assuming all devices are following the same algorithm for determining redundancy, the
number of devices that can be supported depends on the desired DRR. As more devices are
added, additional transmissions are needed from each to maintain the same reliability. At a
certain point, shaded grey in this table, additional devices cause a failure in the algorithm
where more transmissions lead to reduced reliability. Deployments kept at less total devices
in a single broadcast domain than this number will be stable.

data point each second and starts off transmitting one BLE advertisement per second. After
performing each scan, it adjusts its transmission rate to reach 99% DRR. We additionally
account for expected gateway losses when calculating packet loss as discussed in Section 4.2.1.

The environment the adapting device is deployed in has 20-100 BLE advertisements
per second (background noise from nearby iOS devices). We additionally enable up to 49
other BLE transmitters, all placed within two meters of the adapting device, in order to
increase noise in the environment. Additional transmitters are changed between ten-minute
scan periods and transmit ten packets per second each. A gateway is placed within two
meters of the adapting device to collect results.

Figure 4.10 demonstrates the results from this test. The top plot (in green) visualizes
the number of BLE transmissions per second in the nearby environment. The spikes in trans-
mission count near the start are due to nearby iOS devices, which increase advertisement
rate considerably when being interacted with. From time range 15–35 minutes, twenty addi-
tional transmitters are added to the environment, from time range 35–45 they are disabled,
and from time range 45–65 all transmitters are enabled.

The middle (orange) and bottom (blue) plots respectively display the number of ad-
vertisements per second sent by the adapting device and the resulting data reception rate
for the adapting device. Vertical dashed lines every ten minutes denote when the adapting
device scans the environment and then adapts its transmission rate. Grey regions from 0–12,
15–22, and 45–52 minutes mark points where the adapting device has underestimated the
environment and poor performance is expected. Data reception rate is measured as a running
average of the last 100 seconds, causing a lag after adaptation before reliability improves.
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Figure 4.10: Runtime adaptation to the BLE environment to maintain target reliability. Over
a 90 minute experiment, the number of BLE advertisements transmitted varies from around
20 to more than 500. One adapting device is deployed in this environment, scanning and
modifying its behavior every ten minutes (marked by vertical dashed lines). Recorded for this
adapting device are the number of advertisements it sends per second and the data reception
rate (as a running average of the last 100 samples) for those advertisements. Regions marked
in gray (before the 10, 20, and 50 minute marks) are periods when the adapting device is
underestimating transmissions in the environment and poor performance is expected. After
the device’s next scan of the environment, it increases its redundancy to account for these
additional transmissions in the environment and maintain 99% data reception rate. When
the device has overestimated the environment, it reduces redundancy to save energy. The
addition of simple adaptation capability allows the adapting device to maintain reliability
even when the transmission in the environment change by an order of magnitude.

Initial background transmissions are enough to warrant the transmission of two packets
per second to maintain 99% DRR. With more than 500 transmissions at once, sending four
packets is necessary for 99% DRR. Sending only three packets would have resulted in 95%
DRR. Sending two packets or a single packet would have resulted in 86% or 63% reception
rates respectively. As the environment reduces in contention, the adapting device follows that
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Figure 4.11: Actual and estimated transmissions during adaptation experiment. Actual
transmissions are measured with a BLE gateway. Estimated transmissions are calculated
by the adapting device every ten minutes based on the results of a one second BLE scan.
Packet collisions will lead to invalid CRCs, which results in the packet being dropped rather
than provided to the scanning device. This in turn results in an underestimate of the
environment. With 500 total transmissions, this underestimate is as large as 35% error. For
smaller transmission totals, collisions occur less frequently and the estimate is more accurate.
Alternative scanning methods that receive packets with invalid CRCs may be necessary to
support dense deployments.

as well, eventually returning to two transmissions per second at the end of the experiment.
The adapting device uses BLE scanning to receive nearby advertisements. This means

that packets with invalid CRCs (due to collision for instance), are not provided to the device
firmware. This leads to an underestimate of the actual transmission environment. Figure 4.11
demonstrates the actual versus estimated transmissions during the adaptation experiment.
Note that the estimate is only calculated every ten minutes.

With a dense transmission environment, such as at 50 minutes into the experiment, the
adapting device has 35% error in measuring the environment. This error could lead it to select
less redundancy than necessary and ultimately reduce DRR. For very dense environments,
reception of invalid packets may be necessary for reliable environment estimation.

4.4 Summary

Deployments of BLE devices illuminate two valuable takeaways about the future use of
BLE advertisements for communication. First, that reliable communication is possible over
advertisements. Second, that improvements to existing tools are needed to support this use
case for advertisements. Here, we also propose future research directions that are revealed
through this work. In Chapter 5 we turn our attention to the wide-area domain of wireless
IoT communication.
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Reliable communication is possible. Our deployments demonstrate that reliable data
transfer over advertisements is possible, even in relatively crowded environments. Deploy-
ments can be statically configured in advance or can rely on runtime adaptation to meet
reliability desires. In both cases, we demonstrate that 99% data reception rates are possible
with 3–4 redundant transmissions. Combined with ease of use and the ability to commu-
nicate with smartphones and other personal devices, we believe this makes BLE a useful
mechanism for many wireless sensing applications.

Improvements to tools are needed. In multiple cases, we discovered that the assump-
tions of various tooling were hampering the use of advertisements for scenarios other than
discovery. Hardware and software for BLE communication should be capable of reliable
packet reception, even with many transmissions per second. While it is possible to make a
reasonably reliable scanner today, the obvious method of connecting a USB BLE dongle to
a single-board Linux computer is not it.

Additionally, the assumptions of BLE libraries limit adaptation. An ideal measurement
of transmissions would return all BLE traffic received, not just valid packets. This would
allow a better estimate of the environment and better adaptation. While it is possible to
use raw access to the hardware for microcontroller-based solutions, other systems such as
smartphones are limited to the capabilities of the libraries they are provided. Removing
artificial limitations on advertisement collection would better support additional uses, such
as reliable communication.

Future research directions. One direction for future research is the improvement of
reception rates in multi-gateway scenarios. Research from the LPWAN domain such as
Choir [71] have the potential to be applicable here. Can packets which are only partially
received by a single gateway be combined with data received by other gateways to reconstruct
the data?

Another research direction is the combination of advertisements and connections for
communication. In the general, periodic case data would be transmitted in advertisements.
For rare data or infrequent large data uploads, a brief connection could be established to
handle the transmission. What is the best protocol for managing multi-gateway deployments
creating ephemeral connections with BLE devices? What are the energy costs of infrequent
connections?
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Chapter 5

LPWAN Background

The Internet of Things expands beyond the area of a single household and into city-scale de-
ployments. To meet the communication needs of these devices, low-power wide-area networks
(LPWANs) have been developed that promise communication ranges of kilometers with rela-
tively low energy demands. We begin our exploration of LPWANs with an overview of what
protocols exist in the space and what their capabilities and limitations are. A summary
of protocols and their features is presented in Table 5.1. We will describe each of them,
although the focus of this work is on Sigfox, LoRaWAN, and the cellular IoT protocols.

Network

Technology
Sigfox LoRaWAN

Symphony

Link
Weightless 802.11ah LTE-M NB-IoT

Frequency

Band
915 MHz 915 MHz 915 MHz 915 MHz 915 MHz

Licensed

Cellular

Licensed

Cellular

Signal Rate 0.6 kbps 1–22 kbps 0.2–38 kbps 0.6–100 kbps
100 kbps–

347 Mbps

300–

1000 kbps
27–65 kbps

Range 1–50 km 1–25 km 1–25 km <10 km <1 km Several km Several km

Modulation
DBPSK/

GFSK
CSS CSS

GMSK/

OQPSK

BPSK/QPSK/

16/64/256QAM

QPSK/

16QAM

BPSK/

QPSK

Access

Scheme

Unslotted

ALOHA

Unslotted

ALOHA

Slotted

ALOHA

TDMA/

FDMA

TDMA slots

with CSMA/CA

SC-FDMA/

OFDMA

SC-FDMA/

OFDMA

Active TX

Power
50 mW 400 mW 400 mW 150 mW Unknown 1800 mW 800 mW

Network

Deployment
Managed

User or

Managed
User

User or

Managed
User Managed Managed

Protocol

Standard
Proprietary

LoRa

Alliance
Proprietary

Weightless

SIG
IEEE 3GPP 3GPP

Table 5.1: Survey of LPWAN technologies. Each of these technologies provides low-
bandwidth, low-power, long-range communications targeting IoT devices. The list includes
unlicensed LPWANs as well as the cellular IoT protocols LTE-M and NB-IoT.
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5.1 Unlicensed LPWANs

Low-power, wide-area network protocols, such as Sigfox [6] and LoRaWAN [5], utilize unli-
censed communication bands to provide long-range communication. These technologies were
the first to directly target large-scale machine-to-machine communications.

Not all unlicensed bands are the same. Different regions levy differing requirements on
their use. In the US, technologies use the 915 MHz ISM band (902–928 MHz). This band
requires frequency hopping across channels, with a maximum dwell time of 400 ms. There
is no limitation on total usage though. In Europe, devices use channels around 868 MHz.
Here the requirements focus on a limitation of duty cycle. Depending on the exact channel,
the maximum transmission duty cycle of each device is limited to 10%, 1%, or 0.1%. In
general, the European unlicensed band has far fewer channels and is more limited than
the unlicensed bands in the US. Other regions have similar requirements, but vary in the
specifics. The protocols we discuss here are therefore each families of protocols, with specific
implementations for each region. We will focus on the capabilities of this protocols in the
US unlicensed bands.

5.1.1 Sigfox

A major player in the unlicensed LPWAN space is Sigfox [6], a proprietary standard targeted
at infrastructure monitoring. Sigfox utilizes ALOHA-style transmissions [11] from devices in
the network which can be received by any gateway—any device may transmit whenever it has
data. Radios are left off for the majority of the time, with messages sent to the device received
during a brief listening window following each transmission. A 14 dBm Sigfox transmission
draws 100 mW, which drops to 150 µW in idle mode [72].

Sigfox utilizes narrowband transmissions that trade bitrate for distance to an extreme
extent. The physical layer bitrate for Sigfox is 600 bps in the US, and the protocol retrans-
mits each packet on two additional channels to increase reliability [6]. To meet dwell time
requirements with a limited bitrate, packets are correspondingly small. The maximum uplink
payload size is 12 bytes, and the maximum downlink payload size is 8 bytes.

There is no particular limitation on the number of Sigfox devices connected to a single
network. A single gateway is capable of receiving transmissions sent simultaneously by up
to 270 devices [73], but in combination with an unslotted ALOHA MAC layer, Sigfox is only
capable of about 4 kbps of goodput across an entire network.

Unlike many other unlicensed networks, Sigfox is solely a proprietary network. Sigfox
does not support arbitrary users deploying their own networks. Instead partnered network
operators deploy connectivity in various regions [74]. In turn, academic research focusing on
the network has been limited, with almost no work that solely utilizes Sigfox. Commercial
deployments continue, however, and as of 2020 Sigfox networks are deployed in most major
cities in the US and in large regions surrounding Los Angeles and Chicago.

Sigfox’s particularly low bandwidth targets limited data applications, such as gas and
electric usage metering. The focus on a predominantly uplink network combined with slow
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throughput makes firmware updates likely impossible.

5.1.2 LoRaWAN

LoRaWAN [5], another popular LPWAN protocol, is an open network standard built on
top of the proprietary LoRa chirp-spread-spectrum physical layer. LoRaWAN, like Sigfox,
uses an ALOHA access control model. Also like Sigfox, rather than solely communicating
with a single gateway, devices broadcast data which can be received by any gateway on
the network. Each transmission is followed by two listening windows which can contain
an acknowledgement or any other downlink destined for the device. While transmitting at
20 dBm, a LoRaWAN transceiver draws about 400 mW, but otherwise it can remain in an
idle state indefinitely in which it draws approximately 5 µW [75].

In the US, LoRaWAN transmissions hop across 64 channels and additionally select a
spreading factor from five possibilities, allowing devices to trade off range and throughput.
A single LoRaWAN device using the data rate with the most throughput (data rate three:
125 kHz bandwidth with spreading factor 7) is capable of about 5 kbps of goodput. Packet
size varies based on the data rate (due to maximum dwell time constraints), but has a
maximum of 256 bytes for upload or download.

Gateways are capable of receiving packets from different channels or spreading factors
simultaneously if the gateway has a sufficient number of decoders. In practice, even if a
gateway monitors all 64 channels it would only be capable of decoding at most 64 packets
simultaneously. LoRaWAN’s access control strategy of unslotted ALOHA reduces total
capacity to 18% of maximum channel capacity in the optimal case [11], resulting in a little
less than 60 kbps throughput for an entire network. Anyone who purchases a LoRaWAN
gateway can operate their own network, but LoRaWAN is capable of managed network
deployments as well, and several operators have deployed networks [76, 77].

LoRaWAN is an open standard managed by a nonprofit association, the LoRa Alliance.
Combined with accessible transceivers and unlicensed network deployment, this has made
LoRaWAN particularly attractive for academic research. A number of papers have been
published recently that improve LoRaWAN gateways [71, 78], propose alternative access
control methods for LoRaWAN [79, 80], or simulate LoRaWAN networks [81, 82]. One
particularly active area of research involves combining LoRa and backscatter techniques to
improve range of backscatter technologies [83–86].

LoRaWAN targets city-scale sensing applications such as parking enforcement and gas/-
electric use metering. The ability to deploy user-controlled networks also lends towards use
cases in agricultural and industrial settings, where a network can be deployed to service a
controlled area.

5.1.3 Other protocols

The domain of unlicensed LPWANs is still a growing space. A number of competitors have
risen and are continuing to mature. While they do not yet command the academic and
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commercial interest of Sigfox and LoRaWAN, they present interesting selections of different
configuration points in the unlicensed space.

Symphony Link Similar to LoRaWAN, Symphony Link is a proprietary network protocol
built on top of the LoRa physical layer. It allows for long-range, low-bandwidth commu-
nications, on the unlicensed 915 MHz ISM band in the US. Using the same physical layer
as LoRaWAN, it has a similar range and bit rate depending on configuration. Connections
are made to a network, rather than an individual gateway, also similar to many existing
LPWANs.

Unlike Sigfox and LoRaWAN, however, Symphony Link manages access control with
a slotted ALOHA scheme. Downlink messages are sent at periodic intervals during which
devices are listening and are followed by uplink windows which all devices can choose to
contend for. Downlink messages contain acknowledgements for any messages from the pre-
vious interval that a gateway received. The maximum payload size for uplink and downlink
packets is 256 bytes.

Weightless Weightless is a series of open protocols for long-range, low-bandwidth com-
munications developed by Weightless-SIG. The Weightless-P is a protocol for bidirectional
unlicensed-band communication. All communication in this protocol goes through gateways,
with devices making connections to a single gateway in the network at a time. Weightless-P
divides the spectrum into 64 channels and uses both channel and time division to sched-
ule transmissions. The gateway broadcasts schedule information, allocating time slices and
channel hopping sequences to devices for uplink and downlink.

The specification also includes Weightless-W which uses TV whitespace bands and
Weightless-N which uses narrowband communications (similar to Sigfox). We find Weightless
to be particularly interesting as it implements several of the recommendations we suggest in
Section 7.2. Academic and commercial interest in Weightless, however, has lagged, as has
the availability of hardware.

802.11ah The IEEE has also standardized an unlicensed-band LPWAN as part of the
WiFi family: 802.11ah, branded HaLow. It focuses on shorter ranges, hundreds of meters,
but also operates in the 915 MHz unlicensed band in the US. It is not interoperable with
traditional WiFi, and requires new hardware to support the modified frequency band and
modulation schemes.

Like traditional WiFi, 802.11ah devices connect to a single access point with no direct
communication. Up to 8191 devices can connect to a single access point, which divides
devices into groups and schedules their transmission slots with TDMA. Within a transmis-
sion slot, several devices contend for data transfer using traditional CSMA/CA techniques.
Packets sent over 802.11ah use traditional WiFi security solutions, namely WPA2 and TLS.
Expected bit rates range from hundreds of kilobytes per second to hundreds of megabytes
per second.
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802.11ah targets applications where machine-to-machine communication is needed, but
WiFi is either too high power or too complicated to suffice. Smart home applications are
particularly interesting. Like Weightless, HaLow adopts a more mature approach and energy-
intensive approach to managing its devices in order to provide more throughput and relia-
bility. However, lack of real-world hardware remains a large barrier to use in deployments.

5.2 Cellular Networks

Cellular technologies are also important to the LPWAN story. GPRS, part of 2G GSM,
was a popular network for machine-to-machine communications before reaching end-of-life
in the US, and is still popular in the rest of the world. After a standards lag, new cel-
lular networks are now available that target IoT use cases by design. These technologies
offer an interesting comparison to unlicensed-band LPWANs and they have begun to see
adoption by the research community. Due to their use of licensed frequency bands, cellular
networks cannot be deployed by arbitrary users, but rather must be managed networks run
by telecommunications companies.

A challenge that remains for these managed networks is proper market pricing. Net-
works have been rolled out by Verizon, T-Mobile, and AT&T throughout the US [87–89], but
pricing models vary wildly. Especially for exploratory deployments, costs need to be accept-
able for both small and large deployments in order for cellular networks to meet application
needs.

5.2.1 GPRS

The General Packet Radio Service (GPRS) as a part of 2G serves as waypoint from which
long-range machine-to-machine communications began. GPRS is capable of providing pay-
load uplink of up to 80 kbps for common class 12 modems. Combined with a large number
of channels (124 for the US 900 MHz band and 374 for the US 1900 MHz band) this allows
it to theoretically provide a network throughput of 30 Mbps shared among all devices in a
cell. GPRS does not provide the same kind of low-energy operation that modern LPWANs
do, however, as it requires frequent paging responses to stay connected to a network, which
results in high average power. As an example, the SIM800H GPRS modem draws about
4 mW in its lowest power connected mode and over 1 W while transmitting at maximum
rate [90].

5.2.2 LTE-M

LTE-M is a recent LTE protocol that targets machine communications, standardized in
3GPP release 13. Also known as LTE Cat-M, LTE Cat-M1, or eMTC, it provides communi-
cation through traditional cellular networks but with reduced power needs and throughput
capability. LTE-M’s maximum bandwidth is lower than traditional LTE protocols (1.4 MHz
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vs 5–20 MHz), but it can otherwise coexist in the same band as traditional LTE categories.
The range of LTE-M is improved over prior cellular technologies with a maximum coupling
loss (link budget) of 156 dB [91] compared to 144 for GPRS and normal LTE, resulting in a
several kilometer range.

Devices communicate directly to nearby cell towers, rather than with each other. Taking
into account various protocol overheads, a single half-duplex LTE-M device is capable of
sending payload data at a rate up to 375 kbps. For a 20 MHz bandwidth network, up to 16
devices could transmit simultaneously for a total network throughput of 6 Mbps.

One large difference of LTE-M compared to traditional LTE communication is the
ability to enter power saving modes that enable a device to stay connected to the network
for long durations (minutes to days) without activating its radio to send keep-alives or
receive packets. While the power use during communication is high—1400 mW peak during
transmissions and 380 mW while maintaining a connection—these power saving modes allow
the total energy use to remain low with sleep modes of 30 uW [92].

5.2.3 NB-IoT

The other new LTE machine-to-machine protocol, LTE-M, supports even longer range and
smaller bandwidth use at a cost of even lower throughput. A single device in an NB-IoT
network is capable of a payload upload rate of 62.5 kbps while using 200 kHz of bandwidth.
Maximum coupling loss is further increased to 164 dB resulting in a range that could extend
beyond 10 km.

An advantage to operators is that NB-IoT is narrow enough to be deployed in the
guard band at the edge of cellular channel allocations. This allows operators to support
IoT needs without impacting their existing bandwidth allocations and is how T-Mobile
has deployed NB-IoT throughout the US [89]. Assuming a single guard band deployment,
the network throughput is equivalent to the single device throughput for NB-IoT. NB-IoT
supports similar power saving modes as LTE-M, reaping similar energy savings when not in
use.

5.3 Summary

In this chapter we have created a classification for LPWANs. This separation of unlicensed-
band communication and cellular technologies will inform our thinking as we model capabili-
ties. Next, Chapter 6 creates a metric that unifies the requirements of pervasive applications
and the capabilities of wide-area networks.
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Chapter 6

Modeling Wide-Area Communication

With the goal of exploring how well LPWANs can serve application needs, we set out to create
models for understanding networks and applications. We first determine the throughput,
range, and power characteristics of each network. Next, we introduce a new metric, bit flux,
which unifies range and throughput for networks and applications. We apply this metric to
both previously described networks and to a newly presented set of pervasive applications
that cover a wide range of general application requirements.

6.1 Network Characteristics

Of particular interest for this study are the range, throughput, and energy costs of each
network. We group maximum network throughput and range together, as they will eventually
combine to create a bit flux value for the network we discuss in Section 6.2.

All of these measurements are theoretical rather than experimental. In practice, we
are assuming more throughput capability and far more range than will be realized in real-
world deployments. For LTE technologies in particular, range and throughput are traded
to maintain connection with poor signal quality. Predicted upper bounds are still useful,
however, in understanding capabilities. While deployments may or may not meet the desires
of applications on the edge of serviceability, they certainly will not succeed for desires outside
the upper bound of the network capabilities.

6.1.1 Throughput and Range

Figure 6.1 plots maximum throughput versus maximum range for the networks we describe.
2G GPRS is plotted as context for the capabilities of other networks. We select Sigfox and
LoRaWAN as popular protocols within the unlicensed LPWAN space. Ranges span from
2–12 km while total network throughput spans 4–30,000 kbps.

We determine network throughput as the total uplink payload bits per second provided
across many devices connected to a single gateway. While the maximum throughput for
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Figure 6.1: Range and network throughput for several IoT network technologies. Maximum
range is estimated from uplink path loss using the Hata model [93]. Network throughput is the
uplink payload bitrate shared by all devices connected to a single gateway, accounting for access
control overhead. While all emphasize long range and low throughput, each network technology
has different capabilities based on its particular protocol choices.

a single device in a network is important, for the kinds of large-scale, machine-to-machine
applications we describe individual devices do not stress the network. Instead it is the de-
ployment of many devices, each individually with small throughput needs, that cumulatively
can exceed the network capacity. Calculating network throughput begins with the maximum
goodput for a single device, increased by the number of devices a single gateway can con-
currently support and reduced by the cost of contention with other deployed devices in the
same network.

To determine maximum range, we start by determining the maximum path loss for
each protocol given transmit power and receiver sensitivity for existing hardware. Transmit
distance is then estimated using the Hata model [93] for protocols at 915 MHz and the Hata
model PCS extension [94] for cellular protocols operating at 1900 MHz. In both cases the
models are configured for medium-sized cities with end device and gateway heights of 1 m
and 100 m respectively.

6.1.2 Power Comparison

While our evaluation of networks focuses on throughput and range, power is a first-order con-
cern for the networks and applications we consider. Many IoT devices are battery-operated,
with communication a large drain on their limited energy supply. A typical measurement
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of communication energy use is bits per joule, but that metric functions particularly poorly
for comparing protocols with very different amounts of overhead. While the cost of each
bit transmitted over LTE protocols is quite low, the energy spent reestablishing a network
connection upon wakeup from sleep needs to be accounted for as well for a fair comparison
to protocols like LoRaWAN which do not have such connection overhead.

Instead, we compare protocols by presenting average power for sample application work-
loads: spanning 84 bytes per hour to 1000 bytes per day. This data requirement is on the
low side for LTE-M, which would be more efficient with larger payloads. Meanwhile, this
requirement is high for Sigfox, which must fragment the payloads across many packets. We
believe this application workload is sufficient for at least providing a sense of the power
tradeoff between these networks.

Estimating average power allows us to account for both the transmission and the ad-
ditional overhead of maintaining the communication protocol. Calculating average power
for Sigfox and LoRaWAN is straightforward and we do so based on datasheet numbers for
existing hardware [72, 75]. For LTE-M and NB-IoT, we present numbers based on prior
literature, which models expected power draw based on expected latencies at multiple total
path loss choices [95]. We present the numbers for both a relatively good connection (144 dB
total path loss) and at maximum range (164 dB). For reference, the maximum path loss for
Sigfox is 155 dB while LoRaWAN (at data rate three) has a maximum path loss of 143 dB.
Table 6.1 presents the average power for several applications ranging from one 84 byte pay-
load every hour to one 200 byte payload every day. LoRaWAN has the lowest overall average
power for each application case, around an order of magnitude better than LTE-M or NB-
IoT in a good connection and two orders of magnitude better than the cellular technologies
at maximum range.

6.2 Network Bit Flux

To understand how well a network can support pervasively deployed applications, we de-
velop a new metric, bit flux, which measures a network’s throughput over its coverage area.
Specifically, we measure bit flux in units of bit per hour per square meter.

bit flux =
network throughput

coverage area
=

bit/hour

m2
(6.1)

This measure, which is the two dimensional version of a metric first proposed by Mark
Weiser [96], is valuable because it considers how much capacity an application would require
from shared networking infrastructure over a large geographical region. Importantly, this
metric captures both the capabilities of networks and the requirements of applications. A
network that provides a higher bit flux than the application requires is capable of serving
the connectivity needs of that deployment.

Bit flux is more useful than network throughput alone for deployments with multiple
gateways. Just comparing network throughput to application data rate is sufficient for deter-
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Network

Technology

Average Power (uW)

84 Bytes

Per

1 Hour

84 Bytes

Per

4 Hours

200 Bytes

Per

24 Hours

1000 Bytes

Per

24 Hours

Sigfox (155 dB) 110 29 11 56

LoRaWAN (143 dB) 12 3.0 1.1 5.1

LTE-M (144 dB) 50 25 12 13

LTE-M (164 dB) 2200 620 150 440

NB-IoT (144 dB) 62 22 13 15

NB-IoT (164 dB) 1800 520 100 240

Table 6.1: Average power for each network across example application demands. Expected power
is presented for cellular protocols both with good connectivity (144 dB) and at maximum range
(164 dB), while Sigfox and LoRaWAN are measured only at their maximum ranges. Application
demands span from 84 Bytes each hour to 200 Bytes each day. LoRaWAN performs the best in
all application cases, around an order of magnitude better than the cellular protocols in good
connectivity. Sigfox must fragment payloads across many packets for all application examples,
resulting in higher average power. The additional costs of more complicated physical layers and
access control mechanisms lead to an increased power draw for the cellular protocols, particularly
when at maximum range. NB-IoT performs better than LTE-M at maximum range, but both
perform similarly otherwise.

mining whether a single gateway can support a deployment within its coverage area. Once
an application spans the deployment regions of multiple gateways, however, this sufficiency
analysis becomes difficult because the capability of each gateway needs to be individually
compared to the needs of the devices deployed within its coverage area. By looking at
throughput capabilities and needs averaged over an area, bit flux can be used to compare
the needs of applications of any size to the capabilities of networks with any number of
gateways, as long as the deployments of each are relatively homogeneous in density.

Bit flux also accounts for networks that take advantage of spatial reuse. Reducing
gateway range increases network capacity by allowing for more concurrent transmissions at
the cost of more deployed gateways. This concept is a common method for increasing cellular
network capacity, and many LPWANs have some capability for power control to support it.
Because bit flux accounts for coverage area, networks with the ability to shrink coverage area
can increase their bit flux accordingly. This means that when applied to networks, bit flux
does not result in a single value but a function.

Figure 6.2 demonstrates the increase in bit flux for long-range networks as maximum
range decreases. For each network, there is both a maximum and a minimum range that
can be achieved based on the maximum and minimum transmit power of existing hardware.
As shown, reducing range for a network has the capability of improving its bit flux by
several orders of magnitude. Due to much higher throughput, LTE-M has a higher bit flux,
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Figure 6.2: Throughput per unit area (bit flux) as range is varied through power control.
Plotted are the bit per hour per square meter for each of the unlicensed-band and cellular
LPWANs we discuss. Using power control, networks can reduce their coverage area, increas-
ing their bit flux and allowing them to satisfy the needs of more applications at the cost of
the deployment of additional gateways. The minimum and maximum ranges are limited to
the power options found in existing hardware for each technology.

even at maximum range, than Sigfox or LoRaWAN at their minimum range. Additionally,
LoRaWAN offers a subset of the capabilities of NB-IoT, which has a larger range of power
control configurations.

An important limitation of bit flux is that it only measures technical capability, rather
than feasibility. While a LoRaWAN network has similar throughput to local area networks
such as 802.15.4, LoRaWAN by default covers a much larger area and therefore would provide
a significantly lower bit flux. While short-range networks like 802.15.4 could service the
throughput needs of city-scale deployments, the need to deploy many gateways or use high-
power transmitters would likely make them unrealistic networking choices.

An additional problem lies in the amount of bandwidth required to support an appli-
cation. A network may be able to support the throughput needs of an application but be
doing so only by utilizing the entire bandwidth of the frequency band it occupies. In this
case, no other networks could coexist within that same frequency band and geographic loca-
tion. We explore network feasibility, in terms of number of gateways and bandwidth usage
in Section 7.1.
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Application
Single Location

Throughput (bps)
Single Location

Radius (m)
Pervasive Bit

Flux ( bph
m2 )

Zebranet [97] 53 75 0

Trash can monitoring [98] 0.38 370 0.003

Hospital clinic [99] 11 20 0.02

Volcano monitoring [100] 520 1,500 0.2

CitySee [101, 102] 20,400 5,700 1

Electricity metering [103, 104] 51,389 6,180 1.5

Habitat monitoring [105] 10 10 9

H1N1 [106] 18,000 60 43

IMT-2020 [107, 108] 35,556 564 128

Macroscope [109] 12 4 221

GreenOrbs [102, 110] 5,600 80 1,000

Table 6.2: Throughput, radius, and bit flux of sensing applications published in past sensor
networking proceedings and the IMT-2020 standard [107]. The single location metrics show
the requirements to deploy an instance of each application, while the pervasive metric as-
sumes that the application is deployed at scale in its target environment. With throughput
and bit flux spanning many orders of magnitude, these applications impose highly varying
requirements on their underlying networks. While many networking technologies may meet
the throughput requirements of a single application, they often do not have the capacity to
support one or more of these applications at scale.

6.3 Pervasive Applications

The “Internet of Things” describes a wide and diverse range of applications. To understand
and quantify their networking requirements, we survey notable application papers from the
sensor networking literature, and consider their networking requirements in two deployment
scenarios. The first, single location case, assumes the application is deployed to the fullest
extent in a single location. We report the throughput and range required to support these
deployments by multiplying the number of nodes in the deployment by the amount of data
per measurement by the sampling interval.

A single instance of an application is often not consistent with the ubiquity targeted by
the IoT. Therefore, we also consider the pervasive case for each application, which assumes
that the application is scaled to be fully deployed in its target environment. For example,
while a single location case may describe an application that monitors a single building, the
pervasive case would including monitoring for all buildings of that type throughout a city.
The applications vary tremendously in deployment area, so we employ the bit flux metric
to compare them in terms of bits per hour per square meter. The networking requirements
for the eleven applications we survey are shown in Table 6.2, and are described below, along
with the assumptions for their pervasive deployments.
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• Zebranet [97] is one of the earliest sensor network research deployments. It places
GPS tracking collars on zebras that asynchronously send location data over a wide-
area network. The incredibly low density of wild Grevy’s Zebras results in near zero
bit flux over a wide area, with peak throughput coming from monitoring all zebras in
a large herd [111].

• Trash Can Monitoring [98] reports when trash cans are full in a deployment of
197 monitored trash cans throughout New York City’s Times Square. Each trash can
reports approximately twice a day, and we assume the same frequency and density for
a pervasive deployment.

• Hospital clinic [99] measures patient vital signs in a 32 bed hospital clinic in St.
Louis, USA. At scale all patients in the 2915 hospital beds in St. Louse would be
monitored [112].

• Volcano monitoring [100] senses seismic tremors across 16 devices on Reventador
volcano in Ecuador, streaming data when an event is detected. The pervasive case
covers a volcanic area at the same sensor density.

• CitySee [101, 102] measures air quality from 1196 devices deployed in Wuxi, China,
and we assume the same sensor density for a pervasive deployment.

• Electricity metering [103, 104] in San Francisco, USA. Approximately 370,000 smart
meters throughout the city report 250 byte readings once every four hours.

• Habitat monitoring [105] measures microclimate and occupancy of bird burrows with
32 sensors on Great Duck Island off the coast of Maine, USA. A pervasive deployment
would monitor the estimated 5000 Storm Petrel nests on Great Duck Island with 7500
sensors [113].

• H1N1 [106] measures a single-day human contact graph of 850 people for modeling
flu epidemiology in a school in San Francisco, USA. A full deployment would measure
interactions for the 80,000 students in San Francisco [114].

• IMT-2020 [107, 108] defines performance characteristics of 5G technologies. For ma-
chine-type communications it defines a connection density of one million devices per
km2 each transmitting a 32 byte packet every two hours.

• Macroscope [109] monitors the microclimate of a redwood tree with 33 sensors on
a tree in Sonoma, USA. A full deployment would place sensors on all trees in an
old-growth forest, at a density of about 20 trees/acre [115].

• GreenOrbs [102, 110] measures ecological data from 330 devices in a forest near
Tianmu Mountain in China. We assume pervasive deployment at the same sensor
density.
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The eleven applications differ by many orders of magnitude in their throughput and
bit flux requirements. Applications that cover a dense phenomenon, such as the redwoods
Macroscope, have a relatively high bit flux even with low throughput, while applications that
cover a large area (CitySee) or measure a sparse phenomenon have a low bit flux despite
their high throughput. In terms of bit flux, the applications fall into two major categories.
Sparse environmental or human monitoring require one bit per hour per square meter or
less (Zebranet, trash can monitoring, volcano monitoring, CitySee, electricity metering, and
hospital clinic). Denser monitoring (habitat monitoring, H1N1, Macroscope, GreenOrbs,
and IMT-2020) requires one to several orders of magnitude more bit flux.

6.4 Summary

Bit flux is capable of measuring both networks and applications. Powered by our models
of network throughput and range, any network with a higher bit flux than required by an
application will technically be capable of serving that application’s needs. However, the
ability to theoretically serve an application does not mean that doing so in a real-world
setting would be reasonable. Chapter 7 explores combinations of networks and applications
to determine where problems will likely arise and to understand possible solutions to those
problems.
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Chapter 7

LPWAN Capabilities

Armed with the ability to model the capabilities of networks and the requirements of appli-
cations, we investigate how well they match up. First, we dive deeper into two case studies to
see how well they are served by LPWANs. Identifying challenges for unlicensed LPWANs, we
also explore possible modifications that could improve capabilities. Through the application
of our models, we can determine capabilities and limitations of networks prior to significant
deployments.

7.1 Network Suitability

To satisfy an application a network must provide equal or greater bit flux than the bit
flux of the application in a pervasive deployment. This assumes a uniform distribution of
application devices as well as a uniform distribution of gateways. If a network does not
meet the bit flux needs at its maximum range, it can reduce range and increase the number
of gateways deployed to increase capacity. For each application, Table 7.1 displays which
networks could serve its data needs for the pervasive case. For the Zebranet application,
all networks we investigate suffice due to the low data rate over an extremely wide area.
Similarly, all networks can handle the load of the trash can monitoring application because
its data rate is so low. On the other side, GreenOrbs can only be satisfied by the cellular
IoT solutions due to the density of deployed sensors.

However, the capability to serve the needs of an application does not mean that doing
so would be reasonable. The open circles on Table 7.1 denote circumstances where over 20%
of a network’s bit flux capacity would be spent on a single application or where reduced
range would be required to meet the bit flux needs. Using a majority of total network
capacity means using the majority of the bandwidth in the frequency allocation that network
occupies. For example, saturating the capabilities of a LoRaWAN network means saturating
the throughput of all 64 LoRaWAN channels, a significant portion of the 915 MHz ISM band.
This is not a realistic scenario for wide-area deployments in urban locales.
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Application Sig
fox
Lo

Ra
WAN

NB
-Io

T

LT
E-
M
2G

GP
RS

Zebranet [97]

Trash can monitoring [98]

Hospital clinic [99]

Volcano monitoring [100]

CitySee [101, 102]

Electric metering [103, 104]

Habitat monitoring [105]

H1N1 [106]

IMT-2020 [107, 108]

Macroscope [109]

GreenOrbs [102, 110]

Table 7.1: Sufficiency of a networking technologies to meet the pervasive bit flux requirements
of each application. A circle indicates sufficiency, however an open circle indicates that range
reduction is required for suitability, where suitability is defined as providing greater than five
times the bit flux required for each application. The degrees of range reduction required to
meet these cases varies significantly. For instance LTE-M can easily meet 5× the capacity
of the IMT-2020 standard with greater than 4000 m range, however NB-IoT must reduce its
range to less than 1000 m to provide this same capacity.

7.1.1 H1N1 Case Study

To put this idea into more concrete numbers, we first take a deeper dive into the H1N1
application. In the pervasive example, we imagine the application deployed throughout the
city of San Francisco. Figure 7.1 displays the bit flux measurements for each network and
the H1N1 application. The application is plotted as a horizontal line at 43 bph/m2. Any
network above the line is capable of meeting application needs. LTE-M and 2G GPRS are
capable of meeting application needs at any range. LoRaWAN and NB-IoT must reduce
range and deploy additional gateways in order to serve this application. Sigfox, hurt by
limited throughput, is incapable of serving the H1N1 application at any range.

Figure 7.2 shows for each network the number of gateways that would be necessary
to serve its throughput needs. The number of gateways is plotted as a line rather than a
point because the network could vary its range through power control, changing the number
of gateways necessary for coverage. This is plotted against the proportion of total network
capacity the application would be using for gateways deployed at that density with optimal
power control. LoRaWAN, for instance, could serve the H1N1 application throughout all of
San Francisco with only 24 gateways, but it would use all of its capacity for this application
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Figure 7.1: Bit flux for networks and the H1N1 application. LTE-M satisfies application
needs, but only while devoting most of the network to the application. NB-IoT and Lo-
RaWAN are capable of satisfying application needs with range reduction and the deployment
of additional gateways. Sigfox is incapable of meeting the needs of the H1N1 application
under any configuration.

alone. Even with the greatest reduction in range, LoRaWAN would still use 50% of its
capacity for the H1N1 application. In practice, this would dedicate a significant chunk of
the ISM band towards this application alone.

Another case where capability does not equate to reasonableness is in terms of the
number of gateways required to cover an application deployment. For example, NB-IoT
could cover the H1N1 application case while only using 1% of its network bit flux, however,
doing so would require the deployment of 2000 gateways throughout San Francisco. While
this deployment size is not totally implausible based on new femtocell efforts [116], sufficient
motivating applications would need to exist before a service provider would invest in such a
dense deployment.

The resulting range of the network after power control should be used as a final con-
sideration for a reasonable deployment. Several of the networks we describe are capable of
reducing end device power until the resulting range is only several hundred meters. In these
situations, a deployment of WLAN technologies, such as WiFi or 802.15.4 should be consid-
ered instead of an LPWAN as they can provide much greater throughput at lower energy
budgets.

7.1.2 Electricity Metering Case Study

We also take a similar deep dive into the electricity metering application. In this application,
each household electric meter sends approximately 250 bytes every four hours. While this is a
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Figure 7.2: The proportion of the network capacity used by the H1N1 application for varying
gateway density. As shown in Figure 6.2 and Table 7.1, networks can increase bit flux
through power control to service certain applications at the cost of a decrease in range
and a subsequent increase in gateway deployment density. LTE-M networks can service
the application throughout San Francisco, USA (120 km2) with only a few gateways and a
small proportion of their total network capacity. LoRaWAN and NB-IoT can also serve the
application, but only by allocating a significant proportion of their capacity to it or deploying
many gateways.

rather low data rate, it is made up for with scale. The deployment area of this application is
all of San Francisco, which has approximately 370,000 deployed electricity meters, resulting
in a bit flux of 1.5 bph/m2.

As this application has a lower bit flux requirement, more networks are capable of
servicing it. LoRaWAN, LTE-M, and 2G GPRS all meet its needs without range reduction.
NB-IoT can do so with modest reduction, while Sigfox needs significant range reduction but
is still capable of meeting the required throughput, as displayed in Figure 7.3.

When viewed as a matter of gateways and proportion of network usage in Figure 7.4,
we see an interesting story. To reach a reasonable percentage of the network devoted to this
application, Sigfox must deploy dozens of gateways. LoRaWAN could cover the city with
only two or three gateways, but doing so would devote 50% of the ISM band towards the
electricity metering application. NB-IoT has a near identical tradeoff. LTE-M has an easier
go of it, with less than 1% of network capacity spent on this application even with only one
or two gateways.
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Figure 7.3: Bit flux for networks and the electricity metering application. Networks above
the application requirement line, such as 2G GPRS, LTE-M, and LoRaWAN meet its require-
ments without modification. NB-IoT and Sigfox are also capable of servicing this application,
but require a range reduction.

7.1.3 Are LPWANs Sufficient?

The first takeaway from this analysis is the relative success of cellular IoT technologies.
NB-IoT and LTE-M could, at least conceptually, meet the needs of every application we
describe. Their high throughput and wide coverage areas allow them to cover the needs of a
low-throughput applications with a single deployment, but also affords them the opportunity
to over-provision gateways to handle high-throughput applications. In the H1N1 case, LTE-
M could cover all of San Francisco with a single gateway using 22% of the capacity of that
entire band. Or, it could cover all of San Francisco with 24 gateways and only allocate 1%
of the band capacity to that single application.

Even though their use for pervasive applications seems promising from a capacity stand-
point, cellular technologies do have their own challenges, the most notable being fees to access
the network and the higher average power requirements discussed in Section 6.1.2. Some IoT
devices may have flexibility in their design to accommodate an increased energy demand in
trade for network performance and reliability, but this will not be true for all applications.

For unlicensed LPWANs, we find two challenges in network suitability. The first is an
issue of capacity. For several of the applications we describe, LoRaWAN deployments are
unable to transport the data necessary even at minimum range. Even when LoRaWAN and
Sigfox can meet the bit flux requirements of an application, they only do so with a dense
deployment of gateways using a majority of the unlicensed bandwidth available. To handle
pervasive application needs, unlicensed-band LPWANs will need to increase their capacity.
This problem is primarily one of implementation. The selection of the ALOHA access control
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Figure 7.4: The proportion of the network capacity used by the electricity metering appli-
cation for varying gateway density. LoRaWAN and NB-IoT have similar tradeoffs, where
a single gateway could cover the entire deployment region but would require the devotion
of more than half of the network’s throughput. They may also deploy additional gateways,
with the deployment instead of ten gateways utilizing less than 10% of network capability.

mechanism, for instance, greatly reduces network throughput.
The second challenge, as demonstrated by the high percentage of bit flux needed to

satisfy some applications, is one of coexistence. A network cannot assume that it is deployed
in isolation. Especially in the context of city-scale deployments, many networks will be
running in the same physical region. For long-term success, technologies making use of the
unlicensed band are going to need to share it, either by using so little of the band that
multiple networks can naturally coexist or by actively coexisting with other networks. This
problem is a fundamental one for long-range networks in unlicensed bands.

These two problems, capacity and coexistence, do not mean LoRaWAN or other unlicensed-
band, long-range technologies are unsuitable for all applications; with little contention, sens-
ing deployments in remote areas with sufficiently low bit flux are well-provided for by unli-
censed LPWANs. However, to succeed for pervasive applications in urban areas, solutions
to these challenges will be necessary.

7.2 Network Solutions

If capacity of the unlicensed band and the networks that use it is not sufficient to provide
for the desired applications, contention within a network and between networks, can lead to
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poor throughput and unpredictable reliability. A number of solutions have been proposed
to increase the capacity of individual LPWAN networks, some of which would also decrease
the impact of collisions with coexisting networks. Researchers have also proposed active
coordination between networks and widening the unlicensed band.

This section enumerates these techniques. We focus on LoRaWAN as the majority of re-
search projects target it, but the resulting techniques are applicable to many unlicensed-band
technologies. Weightless [117], for example, already utilizes TDMA and FDMA techniques
for managing access control.

7.2.1 Improving Transmission

Modifying LoRaWAN’s access control mechanism could result in greatly increased capacity
for a single network, although it would not greatly increase the ability of a network to coexist
with other networks beyond the decrease in total channel usage. Polonelli et al. describe
a method for layering ALOHA slots on top of the existing LoRaWAN protocol [79]. They
utilize acknowledgements for device synchronization with the gateway similar to Symphony
Link.

Alternatively, channel access can be explicitly scheduled. Trüb et al. demonstrate two
possible TDMA schemes that could be employed for LoRaWAN systems which could improve
network throughput to 60%, or three times that of unslotted ALOHA [80]. Neither work
measures the increase in energy cost for implementing such schemes. For dense networks
which would experience many packet collisions under ALOHA-style access control, however,
the energy cost for scheduling may be lower than the cost of repeated transmissions. Ac-
cess control changes would need modifications to software on both gateways and devices, a
challenge for existing deployments.

7.2.2 Resilient Reception

Methods for better receiving packets in the presence of noise not only increase the capacity
of a network, but also increase resiliency to the presence of coexisting networks.

DaRe [118] performs convolutional erasure coding on LoRaWAN application-layer data
such that a lost packet can be recovered from other packets. Application layer coding may
be one method for increasing data reception rates while requiring software changes to the
gateways and end devices. Applying a code rate to payloads would increase energy use as
on-air time increases.

Choir [71] leverages radio imperfections in frequency, time, and phase to simultaneously
receive several transmissions. While Choir suggests that this could enable as much as a 30×
increase in network capacity, NetScatter finds that this technique would enable no more
than 5-10 simultaneous transmitters [86]. Charm [78] uses coherent combining to increase
reception rates for transmissions weak in signal strength. This could also serve to increase
resiliency to collisions, however we do not know the exact magnitude of this improvement.
Deployment of systems like Choir and Charm require modifications to gateway hardware and
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Figure 7.5: Increased deployment of gateways results in higher packet reception rate due to
the capture effect. Shown is the reception rate for packets sent by 100 devices on the target
network. As the total number of deployed devices, most not on the network, increases,
collisions cause packets to be lost. Increasing the number of gateways deployed throughout
the same area results in more packets received as some overcome collisions due to the capture
effect.

software, but can be deployed without modifying existing devices and without any increase
in energy.

We may also rely on the capture effect to improve reception rates. This causes a packet
with stronger signal strength to be received despite a collision with a weaker signal, and
can be achieved by densely deploying gateways without reducing the transmit power of
end devices. To evaluate this technique, we simulate a deployment of LoRaWAN devices
coexisting on a single channel using a modified version of LoRaSIM [81]. In our simulation,
devices and gateways are deployed randomly across a 5 km region and devices send a 20 byte
packet once per minute on average. As shown in Figure 7.5, when a network of a single
gateway and 100 devices is deployed alongside 1000 devices on another network, the gateway
receives 27% of transmissions, however when 10 gateways are deployed in the same scenario,
the reception rate increases to a 57% due to the capture effect.

7.2.3 Increasing Bandwidth

An increase to the amount of bandwidth usable by unlicensed systems would result in in-
creased capacity for all networks operating in the band. There has been progress towards
making additional unlicensed spectrum available in the US, specifically TV bands around
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600 MHz [119]. The amount of TV white space bandwidth available for unlicensed use de-
pends on local channel usage, which varies widely based on location and population density.
Still, one simulation finds that an average of 80 MHz could be available in cities in the
US [120], triple the 26 MHz currently allocated to the 900 MHz ISM band.

While existing LPWAN transceivers have support for some of the TV whitespace fre-
quencies, firmware changes on both devices and gateways would be necessary to exploit this
hardware. Additionally, protocols would need to adopt the ability to determine which TV
channels are available in a particular deployment area.

7.2.4 Coexisting through Coordination

Ultimately unlicensed-band collisions are inevitable between networks, and all the more
inevitable due to the number of stakeholders present within the range of an LPWAN. If the
underlying capacity of the band is not enough to meet the needs of its users, some form of
coordination may be the only hope of increasing capacity and creating predictable and fair
performance.

This coordination could be done in both the frequency and time domains. Some pro-
tocols, such as WiFi, divide the frequency domain with protocol-specified limits of single-
network bandwidth, ensuring some minimum number of networks can coexist. This tech-
nique is more difficult for unlicensed LPWANs, which may have to coexist with many more
networks due to their range, and would additionally further limit their throughput.

Coordination becomes simpler for managed networks run by only a few service providers.
A limited number of network operators could provide communication in the unlicensed bands,
such as is occurring with Sigfox. A dominant regional provider could result in de facto
ownership of the band, as other smaller network deployments would have to work around
them. Removing the option for anyone to put up a gateway and create their own network
would be a loss of some of the value of the unlicensed bands, however.

Techniques to enable coordination through inter-network communication have also been
considered. De Poorter et al. present a design for an LPWAN management framework that
includes cross-network and cross-technology optimization [121], however it requires synchro-
nization of heterogeneous devices to enable layered TDMA schemes. WiSHFUL demon-
strates a similar scheme, which changes access control mechanisms to reduce cross-technology
interference [122].

To be successful, coordination needs buy-in from the majority users of network capacity.
Regulations, such as the 1% per-device duty cycle limits in the EU are one mechanism
to enforce this coordination, however per-network rather than per-device limits may be
necessary to prevent takeover by a deployment of many devices.
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7.3 Summary

Our investigation of LPWANs has illuminated problems for unlicensed LPWANs. They
face challenges in both capacity and coexistence. Capacity issues may already be solved, if
modifications from the research world are pulled into the protocols. Coexistence problems
remain unsolved and represent a valuable domain for future research. In contrast, cellular
IoT networks suffer from neither of these concerns, positioning them to possibly dominate the
LPWAN domain. Here, we summarize the problems facing unlicensed and cellular LPWANs
along with possible solutions. We also present future research directions.

Capacity problems in unlicensed LPWANs can be addressed. Capacity issues are
a purely technical one. To minimize energy use and come to market quickly, Sigfox and
LoRaWAN kept to simple design choices such as ALOHA access control. Research solutions
already approach capacity issues from a number of directions. The remaining difficulty, and
it is a challenging one, is to decide which are most important and most palatable. Are
additional energy costs for a scheduled medium too burdensome for battery-powered sensor?
Is the addition of TV white spaces acceptable for US deployments?

A combination of existing research could suffice for improving network capacity. Re-
viewing the techniques we have described, simple TDMA mechanisms could increase capacity
by 3×, simultaneous reception by 5×, coherent combining by 1-2×, and increasing band-
width to the predicted TV white space availability by 4×. Together these implementation
changes might therefore generate a two order-of-magnitude improvement to LoRaWAN ca-
pacity, pushing it to be on par with LTE-M in capacity (and probably looking a lot like an
LTE protocol in design).

Few of these techniques are free. Many, particularly modifications to access control
mechanisms, would increase the energy cost of communication. One of the biggest strengths
of existing unlicensed band networks like LoRaWAN is how low power they are, but the
reality is that additional energy costs will need to be paid in order to provide connectivity for
higher-throughput applications in urban areas. Exactly where in the tradeoff space between
capability and energy cost future networking technologies ought to fall is still unclear, but
we believe the question is worthy of exploration.

Coexistence concerns for unlicensed LPWANs are more challenging to address.
Unfortunately, capacity solutions alone would be insufficient to solve unlicensed LPWAN
problems. Coexistence solutions, which licensed-band cellular technologies can ignore, will
also be necessary. Especially in urban areas, the range of LPWANs mean that multiple
stakeholders will necessarily overlap. Cellular technologies avoid this through management
of which devices are allowed on their network and how much traffic they can send. Too many
stakeholders may overwhelm cellular capacity, but the result will be a total failure for some
stakeholders rather than a partial failure for everyone.

The coordination mechanisms necessary to overcome co-existence problems are less clear
and less studied in prior work than capacity issues. An additional concern is that buy-in
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from all deployed networks is necessary. One bad actor could cause a source of interference
for all coordinating networks.

One approach is to avoid coexistence problems altogether. In industrial or agricultural
deployments, it is quite possible that a little power control could limit the network to covering
an area solely owned by a single stakeholder. This may be a successful domain for LoRaWAN
networks deployed with the current protocol.

Cellular IoT technologies are well situated to serve pervasive applications. While
they were much slower in development, LTE-M and NB-IoT are now deployed throughout
the US and many other regions. LTE-M particularly has a much higher capacity than
unlicensed LPWANs like Sigfox or LoRaWAN, which allows it to successfully serve more
applications. NB-IoT plays an interesting role of longer range and lower throughput. Due to
their managed nature and deployment on licensed bands, cellular networks avoid the issues
of coexistence, allowing market forces to decide which applications can use their frequency
resources.

Two concerns that could hold cellular IoT back are power and access fees. Transmission
remains relatively high power, possibly too high for some battery-based systems to source.
Sleep periods can lead to low-energy operation, but only with the selection of higher latency
as the radio is off for minutes or hours at a time. Finally, for deployments to choose cellular
IoT technologies, access costs for both small and large deployments must be reasonable.
What this means in terms of dollars is still very undecided, and it is unclear if network
providers will adapt to deployment needs.

Future research directions. One direction of future research is the creation of protocols
for enabling reliable coordination of shared mediums, like unlicensed bands. How can such
a design ensure good performance even without complete buy-in from all users of the band?
What are the energy costs of coordination mechanisms?

Deployments of cellular IoT devices to understand their performance in real-world sce-
narios is another strong direction for future research. How should devices best leverage
high-power communication to provide low-energy, high-latency communication? How does
the tradeoff of throughput and range perform in different environments? Can indoor deploy-
ments be augmented with cellular connections?
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Chapter 8

Conclusion

In this work, we have explored the capabilities and weaknesses of several recent IoT-focused
networks. We have demonstrated that modeling aspects of these networks allows us to gain
insights into their performance prior to large-scale deployments.

With BLE advertisements, we have demonstrated that simple models of packet colli-
sions can accurately predict network performance for real-world deployments. We have used
these models to investigate the potential impacts of modifications to the protocol and explore
possible configurations for real-world applications. We have also demonstrated that using
models for BLE advertisement collisions, devices can automatically adapt their configura-
tions to network conditions, ensuring reliability with minimal wasted energy.

BLE advertisements are frequently used in development because the enable simple
communication with smartphones. This work shows that reliable communication can be
built on top of these simple advertisements. This supports the development-to-deployment
cycle by allowing the same protocol to be used in both testing and real-world scenarios.
Advertisements also provide benefits by allowing simultaneous reception by any number
of gateways and smartphones in range, a redundancy win. As we show, however, tooling
to support advertisements for communication is still lacking. The simple, straightforward
method of gateway construction leads to significant packet loss. With modifications, and
future engineering effort, BLE advertisements can be leveraged for reliable deployments.

We then turned our attention towards the domain of city-scale sensing. Our new metric,
bit flux, combines data throughput and range to model the capabilities of networks and
requirements of applications. We use this metric to investigate unlicensed-band and cellular
networks that target machine-to-machine use cases. We first demonstrate issues with existing
networks and then explore potential modifications that could improve them.

For unlicensed communication like Sigfox and LoRaWAN, we demonstrate that the
protocols as existing today support too little throughput for many wide-scale applications.
This is a design choice. Recent research has demonstrated a variety of methods for improv-
ing network capacity An additional problem is that the unlicensed band must by necessity
be shared by any deployments wishing to use it. With kilometers of range and urban de-
ployments, this means many networks will need to coordinate their use of the band. This



CHAPTER 8. CONCLUSION 79

is a fundamental problem for unlicensed communication, and it is one worthy of additional
research. Without solutions, deployments will find that their expected capacity is greatly
reduced in the real world. This may lead to an exodus to cellular technologies, which now
support the requirements of machine-to-machine communication with LTE-M and NB-IoT.
We hope the research community will rise to this challenge to support city-scale applications
on unlicensed bands.

Through our investigation of low-energy wireless networks, we have presented methods
for predicting network performance at both the local and wide area scales. We have shown
that these models can predict successful use cases and potential failure points for networks,
enabling successful deployments and demonstrating the importance of improvements to the
protocols. We hope this work will allow researchers to better navigate the tradeoffs available
to them and guide protocol designs that will enable the next generation of Internet of Things
devices.
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