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sor when it is moved. When placed on the edge of a door, the sensor can be
used to detect door open and close events. . . . . . . . . . . . . . . . . . . . 95

7.2 CDF of the interval between door open events. Plotted on a log scale x-axis
is the CDF of time intervals between subsequent door opening events of a
door over a month period. Also shown are the recharge times for the solar
based energy-harvesting power supply in different lighting conditions. Sensors
in rooms with natural light would be able to detect most door open events,
and even in moderately lit rooms at least 65% of door open events would be
detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Door open events across a 24 hour period. Buzz was deployed on the door
of a lab with moderate lighting and no exterior windows. Each vertical line
represents a door open event as detected by a ground truth sensor and the
energy-harvesting Buzz sensor. The red dashed lines in the ground truth row
are door open events that Buzz did not detect. Buzz successfully detected
66 out of the total 100 door open events. This aligns well with our expected
detection rate from Figure 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4 Breeze airflow sensor. The solar energy harvester is placed near a light source,
such as a window, and a MEMs airflow sensor is placed near an air vent. When
the harvester has sufficient energy it samples the airflow sensor and reports its
readings. Decoupling the harvesting from the measurement point enables both
faster sampling and a smaller sensor. . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Airflow metered over time. A Breeze sensor is placed near an air vent as the
vent cycles on and off and changes its flow volume. The airflow sensor is
uncalibrated and therefore we don’t include y-axis units. While noisy, the data
from Breeze are sufficient to determine when air is blowing from the vent and
to determine when the flow changes. . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Light based occupancy sensor. The energy-harvesting sensor detects state
changes in the measured light by detecting when the sensor transitions be-
tween different harvesting rates. For example, in a room with only a single
source of light, the sensor can detect when the light turns on by observing
when the sensor transitions from not harvesting to harvesting. With more am-
bient light in the room this transition may not be as stark, but there will still be
a detectable change in harvesting rate. Timestamping to determine the rate of
harvesting is done with a real-time clock. . . . . . . . . . . . . . . . . . . . . 99

7.7 Light state over time. BigBen monitors the on/off state of a light fixture for
24 hours. It detects change events well and shows only a 40 s offset error from
ground truth, likely due in part to jitter errors when initializing the RTC. . . . 101

xvii



7.8 (a) shows a CDF of detected door events for a range of rechargeable energy
storage capacities. We assume 25 µW of harvesting between the hours of noon
and 2 AM, no harvesting between 2 AM and noon, 3 µW of leakage, and 1 mJ
per door event detection. We then analyze the door events from Figure 7.2
to determine how many events Buzz could detect with varying amounts of
onboard energy storage. (b) shows how many door events could be detected
or how long the sensor could last without harvesting and still detect the next
door event for a range of energy storage capacities. . . . . . . . . . . . . . . . 102

8.1 Energy-harvesting node architecture and interfaces between physical compo-
nents. The physical interface is effectively a shared bus as the various layers
(power supply, controller, and sensor) stack and share the same signals. Not
every layer must use every signal, however. For example, the power supply
has no use for the generic GPIO pins, but the sensor modules often use them
for ADC readings or a digital bus interface. . . . . . . . . . . . . . . . . . . . 105

8.2 Composing the components in this architecture can help realize new sensors
for different applications. A sensing system is composed of a harvesting fron-
tend matched with a control and wireless board plus any additional needed
sensors. The created systems can then be used to monitor different aspects of
a building. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.1 Multiple generations of Triumvi meters installed inside of circuit panels by
simply clipping them around the conductor to be monitored. . . . . . . . . . . 114

9.2 Triumvis charging before configuration. The Triumvi storage tray can charge
up to ten Triumvis, and it is also a convenient jig for setting the panel and
circuit knobs before deploying inside of a panel. . . . . . . . . . . . . . . . . 115

9.3 Circuit-level power breakdown for a house over the course of one day. The
time axis is in GMT/UTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.4 Energy breakdown by circuit for a house over one day. With Triumvi, the
power measurements can be used to disaggregate energy based on each circuit. 117

9.5 Number of measurements recorded for each circuit. Three circuits reported no
measurements, and circuit #13 reported very few (1281). . . . . . . . . . . . 117

9.6 Observed measurement rate of the Triumvis on each circuit. Shown are the
minimum, first quartile, median, third quartile, and maximum of the intervals
between samples from each circuit. Typically each sensor reports every 3.4
seconds. However, the maximum interval is significantly higher for many cir-
cuits because of intermittent loads. . . . . . . . . . . . . . . . . . . . . . . . 118

9.7 Time ranges over which the Triumvi sensors report readings. Each horizontal
bar indicates the time span over which the sensor reported measurements. The
data missing from even numbered circuits between 20 and 40 are due to the
absence of circuit breakers (and circuits) at those positions. . . . . . . . . . . 119

xviii



9.8 Reporting time for each circuit. The time is calculated as the delta between the
first packet seen from the sensor and the last packet seen from the sensor in the
dataset. We consider the length of the experiment to be the longest reporting
time (30 days). Most circuits reported at least occasionally for 25 days or
more. Six circuits reported over a much shorter window, which could be the
result of sensor failure or circuits with rarely used loads. . . . . . . . . . . . . 120

9.9 Short-term deployments in three homes. The energy consumed by each circuit
in three panel boxes and the aggregate was measured with our system and a
ground truth meter over the course of approximately 2.5 days. Across all of
the circuits, our system shows an average error of 3.7%, typically underesti-
mating the correct value. This level of accuracy is sufficient for many energy
audits, and is capable of providing insight on where additional metering may
be warranted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.10 The Ligeiro implementation of the indoor lighting Monjolo sensor. . . . . . . 121
9.11 For each sensor we estimate how long the light to which it is attached is pow-

ered per day. We assume a light is on if we receive two packets from the
Ligeiro in the same minute, and we average over the total number of days
between the first packet we saw and the last. . . . . . . . . . . . . . . . . . . 122

9.12 Using the estimate of daily on time, we then compare the cost of running the
light at that duty-cycle for a year using three different lighting types. For
comparison we assume all lights are a 60 W incandescent equivalent. This
type of analysis can be used to determine which lights are economically viable
to upgrade given a certain payback period. . . . . . . . . . . . . . . . . . . . 122

9.13 Overall packet reception ratio (PRR) for each Ligeiro node. Ligeiros transmit
an incrementing sequence number in each packet, and we use this to determine
the percentage of packets we received from each sensor. The variability in
reception rates is likely due to interference in the wireless spectrum, the range
between the sensor and the gateway, and intermittent gateway failures. . . . . 123

9.14 We observe the median transmission interval of each sensor to understand how
often the sensor can transmit when the light is on. Note the y-axis is on a log
scale. For most sensors the Ligeiros can transmit more frequently than once
every 10 seconds. The sensors that exhibit activations at a slower rate likely
are attached to lights that are infrequently or never used. . . . . . . . . . . . . 123

9.15 Comparing median transmission time to estimate light usage. For sensors with
median packet reception intervals that are below about 10 s, it is difficult to
correlate with light usage. However, if a sensor’s packets are received very
rarely and the median interval is much higher (greater than 100 s), as expected
the light can be assumed to be used very little or never. . . . . . . . . . . . . 124

9.16 Average and standard deviation of consecutively dropped packets. The bold
lines are the average number of packets that are dropped consecutively, and
the error bars is the standard deviation. Nearly all of the Ligeiros on aver-
age had fewer than 10 packets dropped before a successful packet reception.
This shows that packet failures are intermittent and prolonged outages are not
common. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xix



9.17 Histogram of the number of packet drop lengths seen by each sensor. Gener-
ally, no more than 50 packets are dropped consecutively. . . . . . . . . . . . . 125

9.18 Multi-radio gateway hardware and case. The gateway is powered by an Intel
Edison, and contains IEEE 802.15.4, BLE, Wi-Fi, GSM, and GPS wireless
radios. It also supports Ethernet, micro SD cards, and USB, and includes two
status LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.19 Software architecture for the gateway. At the top, a number of receiver blocks
are capable of accepting packets from a wide array of devices. The MQTT
broker on the gateway handles routing packets from the receivers, to various
processing blocks, and out to external services or databases. Additionally,
other services running on the gateway provide interfaces for discovering gate-
ways, writing applications, and interacting with devices. . . . . . . . . . . . . 127

9.20 Gateway-hosted webpages. The first shows circuits and Triumvis in real-time.
This helps with deployment by showing which Triumvis are reporting for
which circuits. The second allows for locally stored data to be downloaded
for offline processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.21 Cloud service architecture. The gateway forwards collected packets to the
cloud service, which uses a metadata repository to add metadata to incoming
messages, and stores data in an InfluxDB database. A user can then query the
database through the Grafana graphing and visualization interface. . . . . . . 129

9.22 Cloud-based graphing software. An example graph of Triumvi power data
using the Grafana graphing application. . . . . . . . . . . . . . . . . . . . . . 130

xx



LIST OF TABLES

2.1 AC metering related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8.1 Energy-harvesting node architecture properties for a variety of building moni-
toring applications. This table highlights a number of potential building mon-
itoring applications and the system properties that are likely sufficient for im-
plementing an energy-harvesting sensor for the particular application. Each
subsystem—power, trigger, sensing, and communication—needs one property
to enable a functioning sensor. Some applications are best suited by event de-
tection, some just need to detect harvestable energy, others are best served
with periodic sampling, but all support intermittent power supplies making
them candidates for energy-harvesting sensors. . . . . . . . . . . . . . . . . . 106

8.2 Common interface usage by shared components. The components in Fig-
ure 8.2 represent each column and the rows are each signal. The GPIO pins
are mapped to multiplexed pins on the processor modules to ensure they are
flexible enough to support a variety of sensor modules. For example, the air-
flow sensing board uses one GPIO to enable the airflow sensor, and one GPIO
as an ADC input to measure the sensor output. The timekeeping board uses
the GPIO pins as a digital bus to allow the processor module to communicate
with the real-time clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xxi



ABSTRACT

Industry forecasts project the number of connected devices will outpace the global popu-

lation by orders of magnitude in the next decade or two. These projections are application

driven: smart cities, implantable health monitors, responsive buildings, autonomous robots,

driverless cars, and instrumented infrastructure are all expected to be drivers for the growth

of networked devices. Achieving this immense scale—potentially trillions of smart and

connected sensors and computers, popularly called the “Internet of Things”—raises a host

of challenges including operating system design, networking protocols, and orchestration

methodologies. However, another critical issue may be the most fundamental: If embedded

computers outnumber people by a factor of a thousand, how are we going to keep all of

these devices powered?

In this dissertation, we show that energy-harvesting operation, by which devices scav-

enge energy from their surroundings to power themselves after they are deployed, is a

viable answer to this question. In particular, we examine a range of energy-harvesting sen-

sor node designs for a specific application: smart buildings. In this application setting, the

devices must be small and sleek to be unobtrusively and widely deployed, yet shrinking

the devices also reduces their energy budgets as energy storage often dominates their vol-

ume. Additionally, energy-harvesting introduces new challenges for these devices due to

the intermittent access to power that stems from relying on unpredictable ambient energy

sources. To address these challenges, we present several techniques for realizing effective

sensors despite the size and energy constraints. First is Monjolo, an energy metering system

that exploits rather than attempts to mask the variability in energy-harvesting by using the
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energy harvester itself as the sensor. Building on Monjolo, we show how simple time syn-

chronization and an application specific sensor can enable accurate, building-scale subme-

tering while remaining energy-harvesting. We also show how energy-harvesting can be the

foundation for highly deployable power metering, as well as indoor monitoring and event

detection. With these sensors as a guide, we present an architecture for energy-harvesting

systems that provides layered abstractions and enables modular component reuse. We also

couple these sensors with a generic and reusable gateway platform and an application-layer

cloud service to form an easy-to-deploy building sensing toolkit, and demonstrate its effec-

tiveness by performing and analyzing several modest-scale deployments.
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CHAPTER 1

Introduction

“If you can’t measure it, you can’t manage it” is a quote often attributed to Peter Drucker,
and while he meant it in the context of running a business, the sentiment applies much
more broadly. Only after understanding the current state is it possible to devise reasonable
improvement plans, and only after measuring the changes is it possible to evaluate their
success. Historically, the primary limitation to measurement was human bandwidth—any
measurement required a person to be involved. Today, however, that is not the case. Com-
puting has enabled monitoring far beyond what we could accomplish ourselves. And as
this computer driven monitoring continues to have a positive impact for business efficiency,
personal health, public safety, environmental sustainability, and a host of other areas, the
demand to increase what we can measure, and therefore manage, is going to continue to
grow long into the future.

One of the primary enablers of this growth lies with sensor technology. Sensors are
present in every new smartphone, new car, and new building made today. These embedded
monitors significantly enhance the operation of these objects, but as their numbers grow the
complexity of effectively utilizing them also increases. This shift in computing led by these
sensors and other pervasive computing elements presents far-reaching opportunities, but
also raises many new challenges.

1.1 The Trillion Sensor Power Problem

Some industry projections forecast that 200 billion sensors will be networked by 2020—an
order of magnitude increase from 2015 [58]. Within the next decade that number is pro-
jected to grow to a trillion, and within two decades we could see ten trillion networked
sensors [125], or well over 1,000 devices per person. This scale out in computing presents
exciting opportunities for smart cities, implantable health monitors, autonomous robots,
driverless cars, responsive buildings, instrumented infrastructure, and many other applica-
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tions where adding monitoring, control, automation, or sensing could dramatically change
or improve how those systems operate. For example, fine-grained monitoring of air pollution
could lead to policy changes for vehicle routing and improved health for city occupants.
Distributed power grid sensing in developing countries could better allocate maintenance
resources and lead to higher electricity reliability. Factories and industrial operations could
supervise their equipment to ensure their operation stays productive. While we are starting
to see this transition towards data-driven improvements today, growth in the number of
deployed sensors will accelerate, making these and many other applications possible.

With the device scale required to realize this diverse set of applications comes many
challenges related to successfully employing so many devices. Current methods of network-
ing, managing, orchestrating, discovering, and powering devices will likely not scale to
support the trillion sensor vision. Communication protocols for retrieving data from and
sending commands to devices will have to evolve as the number of networked devices
increases. Metadata management, device commissioning, and device replacement will be
amplified concerns that today are manageable in small numbers. Many applications will not
rely on a single device or type of device, but will instead require ensembles of devices that
are programmed together to achieve a goal, and these interconnections remain difficult to
express and program today. With a large number of deployed devices present in any given
space, simply discovering what resources are available for programmers, users, and even
other devices becomes a significant challenge.

But one critical issue is perhaps the most the most fundamental: how are these devices
going to be powered? Sensing, processing, communication, and actuation requires energy,
but providing energy to a trillion or more distinct physical points presents a significant
challenge. Current solutions for providing energy prove inadequate at large scale. Using
wall-power or frequent charging, as is typical with many classes of computing, including
servers, desktops, and smartphones, becomes intractable when devices heavily outnumber
outlets. The common approach to powering embedded sensors is by using batteries that can
provide the node with energy for a year or more. At scale, however, batteries present an
intractable maintenance overhead and tremendous waste. To illustrate, consider a typical
wireless sensor, like a Fitbit [43], that draws an average current of 150 µA. With a small
coin-cell battery, the sensor will last 60 days, but at trillion sensor scales, every person on
Earth will have to replace a sensor’s battery every 1.2 hours—an unsustainable proposition.

Clearly, realizing this level of device scale will require new techniques for powering these
devices. One promising option is to employ energy-harvesting, where the device collects
energy at runtime rather than being deployed with its entire energy allotment. These devices
scavenge energy from the environment from a variety of sources, including solar, heat,
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vibration, and others, to power themselves. The advantage of this approach is it can enable
perpetual operation: as long as the device can continue harvesting, it can continue sensing,
and without the need for battery replacement. This benefit comes at a cost, however, as
energy-harvesting also entails very limited energy budgets and intermittent and unpredictable
energy availability. We claim that reaching the scale of the trillion sensor vision will require
embracing energy-harvesting while also addressing the challenges of moving from the
stability and predictability of batteries to the intermittency and unpredictability inherent in
energy-harvesting operation.

1.2 Better Buildings: A Pressing Social Need

Of the numerous potential applications for pervasive and perpetual sensing, we identify one
that is ripe for additional sensing: improving existing buildings. In the U.S. alone, buildings
consume more than 40% of the total energy at a cost of more than $430 billion [136].
Reducing this demand could have a significant impact on reducing greenhouse gas (GHG)
emissions, and the U.S. Department of Energy’s (DOE) Building Technologies Office
estimates that reaching their goal of a 50% reduction in building energy use would cut
U.S. energy-related GHG emissions by about 20% relative to 2010 [136]. Furthermore,
the U.S. National Science and Technology Council has noted that “for the foreseeable
future, the greatest national energy saving potential lies with improvements to existing
buildings” [89], and the DOE’s 2015 Quadrennial Technology Review notes that it is
“essential to reduce energy consumption in buildings in order to meet national energy
and environmental challenges” [135]. With the goal of improving existing buildings to
reduce energy consumption, the important first question is “which improvements?” Many
reports identify that in order to reduce energy in buildings we must first understand how it
is being used, and that starts with metering key points in buildings [90, 91, 134]. In a well
instrumented building, every electrical circuit would be metered, including all large HVAC
equipment, all rooms would report occupancy count, every plumbing fixture would track
water usage, the state of all lights would be collected, and the ambient temperature, humidity,
and air quality throughout the building would be known.

Building monitoring and sensing is typically accomplished through a Building Manage-
ment System (BMS) which controls the building’s HVAC and other core systems. However,
not all buildings have these systems [94], and they overwhelmingly include limited sense
points, particularly with respect to energy consumption. Upgrading a BMS is often expensive
or infeasible, given the complexity of installing new sensors and wiring them to the BMS
control unit. An alternative sensing apparatus is required that can be easily added to existing
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buildings with minimal invasiveness while providing data streams about a building that can
be used to improve operational efficiently.

Many sensors that assist with this goal are wall- or battery-powered. Wall-powered
sensors are constrained in their deployment as finding outlets can be challenging and
running AC mains to them is expensive. Battery-powered nodes can be deployed more easily,
but are either compact (<15 cm3) with short lifetimes (≈ 12 months) due to limited battery
capacity, or are large and obtrusive (>150 cm3) with much longer lifetimes (>2 years) due
to being able to accommodate a larger battery.

Buildings present a rich application setting for a new tier of sensing and allow us to
ground our research in a practical context with real constraints. There is a clear societal
and environmental need for reducing their energy footprint, and in fact the the Energy
Independence and Security Act of 2007 in the U.S. sets a goal for all commercial buildings
to be net-zero energy by 2050. Buildings also have a large impact on building occupants,
as people spend approximately 90% of their time indoors [138]. Improving the ability of
buildings to operate more effectively and ensure occupant comfort is another important aspect
of future building technologies. However, many buildings do not have the existing systems
or monitoring capabilities to realize these improvements. Further, retrofitting buildings with
today’s technology solutions is often difficult, expensive, and aesthetically problematic. A
shift in the technological substrate that enables us to cost-effectively address these issues
can unlock significant potential in the buildings application space.

1.3 Energy-Harvesting Sensors for Buildings

Sensing in buildings is often accomplished with wired sensors added when the building was
constructed or renovated. Wired sensors are highly reliable and typically cost effective when
incorporated into an existing construction project. However, adding new hardwired sensors
independent of building upgrades is often infeasible. Battery powered sensors remove this
installation barrier, but add additional, and often unwanted, maintenance requirements for
battery charging or replacement to the overall building management. This dissertation argues
that the core technology shift for better sensors that see deployments at scale, even in existing,
unrenovated buildings, is changing from wired, expensive to install or battery-based, fixed-
lifetime sensors to energy-harvesting sensors with perpetual lifetimes. This change, however,
raises many new technical challenges for how we design, program, and utilize these sensors.

Energy-harvesting, from indoor photovoltaics, vibrations, thermal gradients, magnetic
fields, RF waves, and other sources, allows embedded computing systems to scavenge their
own energy and greatly extend their lifetimes. The tradeoff is these sources are often highly
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variable, both spatially and temporally, and raise two main challenges for system design:
energy intermittency (energy is not always available) and energy unpredictability (when
the energy will be available is unknown). Under battery power, devices schedule their compu-
tation, sensing, and communication tasks according to networking protocols and application
goals with the assumption that the battery can provide energy when needed to complete
a task. With energy-harvesting, energy may not be available when existing protocols and
applications require a certain task. Moreover, as devices scale down in size, so too does
their energy storage which, today, dominates node volume. Outdoors, plentiful sunlight and
a lack of size and aesthetic concerns facilitate energy-harvesting for networked devices,
but indoors nodes must be smaller (to be aesthetically compatible with the building) and
operate on orders of magnitude lower power budgets (as constrained by energy availability
and device size).

Often, outdoor energy-harvesting nodes have used batteries in conjunction with solar
panels to mitigate some of the effects of energy intermittency and unpredictability by
providing an energy reserve that can be used at night or on cloudy days. Using this technique
indoors, however, is challenging due to the smaller form-factor of the nodes and the cycle-life
property of batteries in which they have a limited number of cycles before their capacity
diminishes. With a large battery, a single cycle can support a sensor node for many days
or months. With the small batteries possible in small, indoor nodes, many cycles will be
required, wearing them out much faster. Therefore, using non-battery-based techniques for
managing intermittency and unpredictability are advantageous.

This dissertation explores several sensing techniques that enable building-scale sensing
while making energy-harvesting devices viable to build the toolkit shown in Figure 1.1. The
first of these techniques is to optimize existing hardware designs and software stacks for
low energy—and not just low-power—operation. This means that the device is not just on
average drawing very little power, but also that it must complete all atomic operations—
wakeup, sense, and send—while consuming only the minute amounts of energy that can be
collected and stored by the node in its tiny energy buffer. This requires substantial changes
to the power supply and startup behavior of system software.

The next technique takes a non-traditional approach to addressing the intermittency and
unpredictability concerns with energy-harvesting. Instead of attempting to mask the effects
of energy-harvesting, this technique instead embraces the intermittency and uses the rate
at which the node is able to harvest energy as a way to monitor the energy consumption of
building loads. This approach works as long as energy harvested by the sensor is proportional
to the energy consumed by the load, which is often the case for loads that are located inside
of a building.
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Figure 1.1: Energy-harvesting sensors for building metering and monitoring. Sensors mon-
itor key points in buildings, including lighting, electricity consumption, door state, and
ambient conditions. They leverage a shared gateway platform and cloud backend for data
collection and analysis. This building-centric toolkit leverages a variety of techniques to
enable perpetual sensors that can help improve buildings.

Another technique this dissertation explores is co-optimizing harvesting and sensing for
a very specific sensor type. By sacrificing generality, the sensing capability and accuracy of
an energy-harvesting node can be greatly improved by exploiting domain-specific features
of a particular sensor type. For instance, water use in a building is often bursty, and can be
measured by detecting on/off events rather than cumulative flow. AC current is typically
periodic (at 50 or 60 Hz) and measuring a single AC cycle can be used to estimate the power
draw of the load. Both of these examples are sensor specific, but with co-optimization an
energy-harvesting sensor can successfully leverage the physical properties to be effective.

The final technique is to decouple sensing from harvesting. Often, the phenomenon
to be measured is not related to a good source of harvestable energy, and existing energy-
harvesting systems overprovision their power supply to be successful. However, by relaxing
the coupling between the energy source and the process, parameter, or event being monitored,
more sense points within a building are possible with small form-factor devices.

Following these techniques—optimizing for low energy operation, embracing energy
intermittency, exploiting characteristics of the underlying signal, and decoupling harvesting
from sensing—we demonstrate that a number of building-centric energy-harvesting sensors
are feasible, that they yield useful data, and they open up new problems. This dissertation
also presents implementations of these design techniques, deploys them at modest scale in
real settings, and demonstrates how these sensors work in a building context.

6



1.4 Thesis Statement

Enabling the trillion sensor vision will require energy autonomous operation for the majority

of the sensors. An architecture that embraces and addresses the energy intermittency and

unpredictability resulting from energy-harvesting operation, by minimizing idle power and

active energy, embracing anycast and broadcast communications, and strategically deferring

energy-intensive operations enables small, unobtrusive, and inexpensive devices that can

address practical sensing problems and operate perpetually.

1.5 Contributions of this Dissertation

This dissertation presents novel techniques for realizing energy-harvesting sensors that target
real-world sensing needs inside of buildings and makes the following contributions:

First is an analysis of the energy availability indoors for harvesting. This frames the
constraints and opportunities for the energy-harvesting devices presented here, and for other
indoor harvesting and sensing systems. This work appeared at IPSN’12 and was done in
collaboration with Lohit Yerva, Apoorva Bansal, Thomas Schmid, and Prabal Dutta [153].

Using the constraints determined by experimental analysis of available energy, we
develop energy-harvesting sensors that are suited to the indoor environment. These devices
lead to a new sensing paradigm unique to energy-harvesting that embraces, rather than
attempts to mask, the intermittency due to harvesting. This sensing paradigm was presented
at SenSys’13 and developed in collaboration with Samuel DeBruin and Prabal Dutta [21],
and a version for hot water pipes was presented at EnsSys’14 and done in collaboration with
Branden Ghena and Prabal Dutta [14]. This paradigm creates a data stream from a sensor’s
ability to harvest rather than a discrete sensor. When the harvesting rate is proportional to a
physical phenomenon, timing information encoded in this output stream can be used as a
proxy to understand the underlying phenomena. Distilling the sensor to a power supply and
radio enables reductions in size and cost for the device, and transfers the burden of signal
interpretation to the nearby gateways or remote cloud servers. This indirect measurement
technique, however, can suffer from accuracy issues when the transfer function from energy
source to packet transmission rate is unknown. To address this issue, we present a technique
using a known global energy aggregate to disaggregate and attribute energy with the help
of the energy-harvesting sensors. This method was presented at e-Energy’14 and was joint
work with Meghan Clark and Prabal Dutta [16].

While sensing energy in a building, and particularly electricity consumption, a drawback
to using energy-harvesting devices is their lossy nature due to limited energy availability. We
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address this concern by carefully focusing on a particular sensor type and its relationship to
the underlying properties of the sensed signal. We explore this with an AC power meter that
uses a time synchronization scheme that enables tight synchronization between two signals
(AC voltage and current) to create a true power meter with high accuracy while leveraging
all of the benefits of energy-harvesting operation. This meter was presented at RTSS’14 and
was joint work with Prabal Dutta [13].

We then focus on deployability, and show how an energy-harvesting AC meter can be
optimized for deployment—and how energy-harvesting is critical to the meter’s ease-of-use.
Energy-harvesting enables very quick install times (approximately 30 seconds per circuit),
which reduces the overall cost and significantly lowers the barrier for getting submetering
data. This metering system, joint work with Ye-Sheng Kuo and Prabal Dutta, has been
submitted for peer review.

To complement metering energy sources, we also develop a toolkit of energy-harvesting
sensors for event detection and monitoring in buildings. We then analyze these devices for
commonalities, and find that a common architectural pattern emerges. This architecture
was presented at BuildSys’14 in collaboration with Prabal Dutta [12]. This architecture
simplifies creating new sensors by encouraging layering, reusable components, and clean
abstractions—leading to an ecosystem of modular, interchangeable components.

We also identify two networking options for energy-harvesting devices: single-hop
communication with an always-on receiver and as edge nodes in a wireless mesh network.
In both cases the key insight is to offload some of the energy costs related to communication
to devices with more predictable (although not necessarily plentiful) access to power.

We test these devices in actual deployments to understand how they operate in real-world
settings with respect to deployability and performance. We also describe the gateway and
networking architecture that make these deployments scalable.

Finally, we identify a variety of open problems and research opportunities that this work
brings into focus, including energy-harvesting sensors with multiple tiers of energy storage,
software layers for masking intermittent sensors, and frameworks for repurposing deployed
devices.
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CHAPTER 2

Background and Related Work

Energy-harvesting sensing for indoor environments builds upon a large corpus of work in
the ubiquitous sensing, wireless mesh networking, energy-harvesting, and energy metering
domains. Broadly, these subfields all aim to push computing beyond datacenters, desks,
and pockets and into the ambient environment. This is driven by the availability of smaller,
lower power circuits, microprocessors, and wireless radios that make it possible to decouple
computers from system administrators and users and deploy them at an unprecedented
scale. The motivations for this scale are similarly broad, spanning from human-focused
applications, to real-time monitored spaces, to longer-lasting devices, to data-driven decision
making. These technology drivers and application motivations form the foundation for the
new sensors presented in this dissertation.

2.1 Pervasive and Ubiquitous Sensing

Mark Weiser coined the term “Ubiquitous Computing” in 1988 to describe a computing
platform in which computers, sensors, and displays are embedded in the environment until
they become effectively invisible [143]. This vision imagines seamless interaction between
people, the environment, and embedded computation to enable new applications that are
otherwise impossible, including person and device localization, virtual surface interaction,
automated virtual and physical authorization, and pervasive real-time monitoring. Much of
Weiser’s and his colleagues’ focus at PARC centered around the human interface aspect
of the vision, including developing new interfaces for mobile computers, collaborative
interfaces for shared computers, and person-specific interfaces that can travel with the user.
But Weiser also noted that “the technology required for ubiquitous computing comes in three
parts: cheap, low-power computers that include equally convenient displays, a network that
ties them all together, and software systems implementing ubiquitous applications.” [143]
This short list of requirements actually encodes many complex and challenging problems
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that are even more challenging at the envisioned scale of ubiquitous computing. The work
in this dissertation aims to address a specific portion of the listed requirements, namely the
low-power computers that can be easily embedded in the environment at scale, by exploring
small, self-powered sensor platforms. These devices can provide many of the input data
streams that the ubiquitous computing applications require.

2.2 Wireless Sensor Networks

One aspect of the ubiquitous computing vision that has been explored in depth are wireless
sensor networks (WSNs), or spatially distributed sensor nodes that work together to monitor
or control a space [19, 42, 80]. Technology trends towards smaller, lower power, and less
costly processors enabled small, battery powered nodes that can be deployed widely and
expected to run autonomously for months to years at a time [15, 19]. With similar improve-
ments in low power wireless radios, these nodes exploit the density of their deployments to
transmit data through their neighbors and back to a gateway node, creating a mesh network
covering the deployment [45, 53, 105, 145, 147]. Deployments of WSNs have been used to
observe Redwood trees in California [132], sense vibrations on the Golden Gate Bridge [69],
track Zebras in Kenya [64], localize gunshots [115], monitor datacenters [74], and many
other sensing applications.

This new opportunity for small computers to do long-term unattended monitoring opened
many research avenues. First, the community needed new hardware platforms that optimized
for low power operation and could last for months or years on a small battery. Next, new op-
erating systems and hardware abstractions [50], like TinyOS [73] and Contiki [28] balanced
tradeoffs between resource use (in terms of RAM and code space), expressiveness, ease of
programming, and energy. WSNs also needed sensors that could observe environmental
phenomena, but at power budgets that attempt to maximize system lifetime when using
a battery [33, 141, 151]. Once nodes could sense, they also needed to send, which led to
new radio technologies [48], low power MAC layers [1], and new networking and routing
algorithms [4, 26, 34, 45, 53, 146].

2.2.1 Hardware Platforms

Essential to the success of wireless sensor networks are the hardware platforms that balance
power limitations with performance requirements and enable higher-level operating system,
networking, routing, and application research [52]. Some early sensor motes include the
BTnode [9] and the TelosB [106]. These two nodes represent very different design points
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for sensor motes that illustrate some of the inherit tradeoffs for WSN platforms. BTnode
provides a minimal hardware feature set, focusing only on a microcontroller (MCU) and
radio. It does, however, include several I/O expansion ports for interfacing with external
sensor modules, user interfaces, or additional wireless radios. By minimizing the MCU
GPIO pins that are used internally, BTnode is able to provide considerable flexibility for
adding external modules. BTnode also uses a Bluetooth radio for its wireless connectivity.
This primary advantage that Bluetooth provides is that it is interoperable with many mobile
phones. These phones can then provide an interface for users of the node, as well as a
backhaul opportunity for data collection. In contrast, the TelosB takes a very different
approach. Its hardware is designed to be fully turnkey, and includes not just an MCU and
radio, but also a sensor suite and programming header. This allows the node to be fully
standalone without requiring additional modules or an external programming header. The
downside is that these additional components add considerable cost, and consume much
of the I/O interface to the MCU, limiting the potential for expansion and customization.
The TelosB uses an IEEE 802.15.4 radio [54] for its wireless interface. This radio provides
a very open platform for wireless networking and research, but typically requires custom
gateways and is difficult to interoperate with other existing systems.

While there are many points on this design space, BTnode and TelosB illustrate many
of the primary tradeoffs. While BTnode is very flexible and supports many customization
options, the lack of built-in sensors or other hardware makes it difficult to rapidly prototype
new ideas and perform feasibility tests. TelosB on the other hand, can be tested and deployed
as is, but its form-factor and minimal expansion options can make it difficult to package for
deployment. As for the radios, Bluetooth provides more existing connectivity options, but at
the cost of significantly higher power draw than 802.15.4 radios. 802.15.4 enables nodes
with longer lifetimes, but requires more deployment time and cost as there are not existing
networks the nodes can leverage for connectivity.

This range of tradeoffs, plus hardware advancements, has lead to many other hardware
platforms, including the iMote2 [87], and the Epic mote platform [32]. The iMote2 focused
on computational performance by increasing the RAM, flash, and CPU speed of the node
to levels an order of magnitude greater than comparable systems. The cost of this is its
power draw, where both its active and sleep current draw are an order of magnitude greater
as well. Epic optimized for ease of use across a range of use cases, including research,
prototyping, and deployment. By providing only a core set of hardware features (MCU,
radio, and non-volatile storage), independent power domains, access to a wide range of I/O
signals, and an extensive development board, researchers can easily experiment and measure
the board, hackers can use the development board to quickly try new ideas, and scientists
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can deploy the same module they used for testing as a solder-on addition to their custom
sensor board. However, because Epic only natively includes a few core components, users
of the module often have to recreate common circuits manually, for example a programming
interface, power supply, debugging LEDs, and antennas, adding additional time and expense.

Newer designs, such as Firestorm [3] and OpenMote [133], continue to provide exper-
imental platforms for research, but with updated hardware capabilities that support new
software systems. Again, the presence of multiple new platforms demonstrates the continued
tradeoffs in form-factor, radio interoperability, software support, power draw, and deploya-
bility. The common theme, however, is that these hardware platforms have been essential
for enabling the research community to develop new wireless sensor network protocols,
operating systems, and applications, while being able to iterate quickly and test in actual
deployments.

2.2.2 Wireless Mesh Networks

Wireless sensor networks are commonly battery powered and aim to transmit their data back
wirelessly. This makes them applicable in scenarios where wired power and networking
would be infeasible. To reduce the amount of energy spent transmitting wireless packets,
the nodes use short-range links (1-20 m) to reduce the transmit power required. To enable
a WSN to monitor a larger space, the networks typically organize into a mesh network in
which nodes sense and send, as well as route packets for other nodes.

To make mesh networking power efficient and to enable bi-directional communication,
many schemes have been presented for duty-cycled wireless communication. These schemes
attempt to minimize the time the wireless radio on the node must be active (either transmitting
or receiving) to reduce the power draw of the node, while still ensuring two (or more) nodes
can effectively communicate. At a high level, these medium access control (MAC) schemes
can be grouped into two categories based on whether the node trying to transmit initiates the
transfer, or the receiving node initiates the transfer by announcing it is ready to receive. The
first group is known as sender-initiated, and the second is known as receiver-initiated.

Two common examples of sender-initiated MAC layers are LPL [105] and X-MAC [10].
LPL requires the transmitter of a packet to transmit a long preamble before transmitting
the actual data. Potential receivers then periodically wake up, sample the channel, and then,
based on the energy on the wireless channel, decide if there is a pending transmission
they should stay awake for to receive. X-MAC extends this primitive in two ways. First, it
encodes the destination address in the preamble, so all non-recipient nodes that overhear
the transmission can return to sleep mode before receiving the actual packet. Second, the
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preamble is transmitted in a strobe fashion, allowing the receiver to interrupt the preamble
transmission to reduce the time each node must be active. These sender-initiated schemes
are advantageous because they are simple to implement, asynchronous, do not require a
coordinated sense of time, and require very little state to be shared between nodes (essentially
they just have to know the preamble length and channel sample frequency). However, using
preambles and periodic sampling both increases the amount of time the transmitter must
be active, and requires that the receiver periodically wake up and listen, even if there is no
incoming packet. Additionally, if during a receiver wakeup it detects energy on the channel
from interference and not a valid packet preamble, it will stay awake listening, even if
another node is not intending to transmit.

In the second group, RI-MAC [124] and A-MAC [30] are examples of receiver-initiated
MAC layers. In RI-MAC, nodes periodically announce they are able to receive by sending a
data beacon. When a node wishes to transmit, it activates its radio in receive mode, and waits
for a beacon from its intended destination. When it hears the correct beacon, it transmits the
data packet to the receiver. This removes the need for any long preamble to be transmitted,
reducing contention on the wireless channel and enabling more data traffic while remaining
energy efficient. A-MAC builds on this concept of a receiver-initiated MAC layer by having
the sender respond to a beacon or probe from the receiver not with the data frame, but instead
with a hardware ACK. The sender then transmits the data frame a short time later. This
allows the receiver, which has to consistently probe for receptions, to reliably go back to
sleep when there is no incoming data because unrelated channel energy or other contention
is unlikely to mimic an ACK frame. This minimizes wasted energy due to unnecessary
wake-ups.

These MAC layers, and many others [24, 36, 79, 86, 139, 152], enable a node to aggres-
sively duty-cycle its radio while still permitting link-layer communication. To enable an
actual network of low-power nodes capable of running real applications, additional protocols
are needed that support neighbor discovery, message scheduling, and packet routing within
the network. These too must be geared for low-power operation to support the battery-limited
power budgets of the nodes in the network. Examples of these higher-level protocols include
Time-Slotted Channel Hopping (TSCH) [55], Dozer [11], 6LoWPAN [85], IPv6 for low-
power nodes [53], the Collection Tree Protocol [45], RPL routing [146], and Thread [131].
These techniques, however, rely on the predictably of batteries as an energy store. Batteries
provide an abstraction by which a node can wakeup and transmit at any time, as long as the
average number of wakeups and transmissions is low. This allows wakeups to be precisely
and asynchronously scheduled to enable low-power mesh networks.
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2.3 Energy-Harvesting Sensors

Newer, low power microcontrollers, coupled with low power circuits and sensors, operating
systems that optimize for cold boot, sleeping, and wakeup, and aggressively duty-cycled
networking stacks, enable sensors that can be deployed maintenance free for more than a
year. However, this lifetime is very dependent on the size of the battery, and to ensure a
sufficient lifetime, the batteries are often over-provisioned. This increases the size of the
node while not eliminating a finite lifetime.

To avoid the fixed lifetimes, size penalties, and costs of batteries, some sensors have
moved to energy-harvesting power supplies in which energy to run the node is collected
at runtime rather than being entirely provisioned during node installation time. Energy-
harvesting operation can enable nodes to extend their lifetimes beyond what would be
possible with a battery.

2.3.1 Outdoor Energy-Harvesting

Many energy-harvesting sensor systems have targeted outdoor deployments where solar
energy is plentiful during the day. For example, Trio [31] is an outdoor sensor network testbed
based on the Prometheus energy-harvesting node [61]. To achieve continuous sustainability
at approximately a 30% duty-cycle, the node uses a 30 cm2 solar panel, and the node with
sensors and a supercapacitor is substantially larger. Heliomote [67, 111] uses a 49 cm2 solar
panel with an 1800 mAh rechargeable battery and also targets outdoor deployments. The
node’s duty-cycle is adaptive based on current harvesting conditions but is estimated to be
active about 20% of the time. The HydroWatch [127] weather node measures hydrological
cycles in forest watersheds and uses a 34 cm2 solar panel with a 6000 mWh battery. The
sensor node is well optimized with a very low duty-cycle of about 1%. Because of the nature
of the deployment in a dense forest, the solar panel provided minimal harvesting capability
(typically less than 50 mWh per day), and therefore the optimized sensor node was required
for the deployment to be sustainable.

The Trio and Heliomote examples are able to support relatively high duty-cycles because
they are largely unconstrained in size and benefit greatly from the energy density of solar
radiation. Outdoors, the practical and aesthetic limitations related to size are minimal, so
panels, nodes, and energy storage can all be over-provisioned with minimally adverse affects.
Even with these advantages and with at least some access to solar energy, the Hydrowatch
project found that a majority of its nodes in the network were unable to operate sustainably,
despite the optimized sensor node. As energy-harvesting sensor deployments move indoors,
many of these advantages no longer apply, and as Chapter 3 will show, the energy availability
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from solar radiation is significantly greater than from artificial indoor lighting.

2.3.2 Indoor Energy-Harvesting

Indoor sensing applications can also benefit from nodes with perpetual operation but size
and energy constraints are much more severe than in the outdoor arena. As such, various
projects exist that include indoor harvesters or optimizations for those circuits that recognize
the reduced harvesting potential indoors [6, 66, 110, 126, 140]. A harvester, however, is
not a complete sensing system and other projects, including many of the systems in this
dissertation, examine sensing systems that are based on energy-harvesting.

Hande et al. present an energy-harvesting wireless mesh router node [49] designed
to operate in a hospital environment near fluorescent lights. To enable the node to be an
effective router, it was designed to be always-on. To accomplish this, the node uses a large
number of solar panels (484 cm2 in total) and must be deployed in pairs as each node only
achieves a 50% duty cycle. In contrast, by not trying to emulate battery powered mesh
networks, the work in this dissertation avoids excessive solar panels.

DoubleDip [83] is a water flow monitoring system attached to pipes that uses an energy-
harvesting thermoelectric generator (TEG) as both a power supply and water event detector.
A sudden water flow event causes a temperature gradient to be present on the pipe and a
resulting spike in the output voltage of the TEG. DoubleDip detects this spike and records
a water event in the pipe. Harvesting from water pipes is not always a reliable source of
energy, however, and in four of DoubleDip’s six deployment scenarios, the node’s operation
consumed more energy than it was able to harvest. In contrast, this dissertation presents
techniques for enabling systems to scale their operation to the available energy.

Trinity [149], another indoor energy-harvesting sensor, is a system for detecting and
measuring airflow. Trinity uses one piezoelectric device to harvest and another, simpler
piezoelectric device as a sensor to measure airflow. Trinity’s runtime power draw and
harvesting capability are closely aligned to provide operation similar to a battery powered
node, but at a lower duty cycle. While this aids inter-node communication, it forces Trinity
to be relatively large to provide sufficient power. By reducing the operating requirements for
the sensor, the work in this dissertation is able to sense with much smaller devices.

The EnHANTS [46] project explores the challenges for a new tier of energy-neutral,
self-reliant nodes that are designed to track objects indoors. Their tags are custom fabricated
hardware in a flexible sticker design that can easily attach to everyday devices. To achieve
this form factor, the nodes are fully custom designed, which makes them exciting future
possibilities, but not complete nodes that are being tested or deployed today.
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The cubic millimeter [95] project aims to incorporate an entire sensor node within one
cubic millimeter of volume. This requires designing and fabricating custom chips for every
layer of the sensor node stack. While this hardware platform is at least an order of magnitude
smaller and lower energy than the systems presented in this dissertation, its custom nature
means it is not commonly available yet. In the future, the techniques presented in this
dissertation may be applicable to this new hardware class, enabling even less obtrusive
sensors for buildings.

2.4 Building Monitoring

Given the issues concerning buildings described in Section 1.2, there are many related
works that focus on building sensing technology to provide tools and methods for improving
building energy use and understanding the state of buildings, In this section we describe a
selection of sensing systems that are designed for buildings.

2.4.1 Ambient Sensing

There are a host of commercially available and research-level ambient sensors that monitor
general conditions, like temperature [71], humidity [119], light [121], and air quality [18,62]
inside of a building. These devices use a range of wireless protocols (e.g. Zigbee, Bluetooth
Low Energy, or Wi-Fi), support a range of interaction patterns (e.g. through a proprietary
gateway, using the local Wi-Fi network, or directly with a smartphone), and offer a range
of user interfaces (e.g. a cloud-powered website or a smartphone app). For a power source,
they mainly use batteries or are AC mains powered. In small numbers, this approach works
well as battery replacement is relatively infrequent (on the order of every six months to a
year), and the devices do not outnumber available plugs. At larger scale, however, or in a
commercial building these types of devices represent a much larger maintenance overhead.

EnOcean [40] offers a line of energy-harvesting ambient sensors that use a sub 1 GHz
wireless radio and typically a solar panel for harvesting. These can monitor indoor tempera-
ture, humidity, light, window position, and occupancy. These sensors are easier to maintain
than their battery powered counterparts, but do require a custom gateway nearby and, while
they are commercially available, they currently exist as evaluation modules instead of
consumer products.
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Meter Type Current Sensing Voltage Sensing Wireless Harvests Energy Runtime Calibration True Power Standalone
Watts Up? .net [142] Plug load Shunt resistor Direct No No No Yes Yes
WeMo Insight [7], ACme [60] Plug load Shunt resistor Direct Yes No No Yes Yes
TED [129] Entire panel Split-core CT Direct No No No Yes No
PowerCost [107] Entire hom Visual N/A Yes No No Yes No
SEM3 [117] Circuit level Split-core CT Direct No No No Yes Yes
Magnetometer [100] Circuit level Magnetometer RMS Yes No Yes Yes No
Virtualization [116] Plug load/circuit Current transformer Virtualized Yes No No Yes No
Stick-on [150] Circuit level Piezoelectromagnetic None Yes Yes Yes No No
EMF [112] Plug load Split-core CT Direct Yes No Yes Yes No
PowerBlade [22] Plug load Inductor Direct Yes No No Yes Yes
Pressac [108], PAN-10 [96] Circuit level Split-core CT None Yes Yes No No Yes
GREEN [118] Circuit level Giant magneto-resistive None Yes No Yes No Yes
PASEM [77] Circuit level Hall-effect Capacitive Yes No Yes Yes No

Table 2.1: AC metering related work.

2.4.2 Occupancy Detection

Tailoring HVAC systems for efficiency and occupant comfort requires knowing where
people are in a building to optimally direct resources. Also, many responsive applications
at a building scale require localizing occupants in the building. Systems for detecting
occupancy are often based on thermopile arrays [8], which can detect people using heat
signatures, or PIR motion sensors [78], which rely on detecting movement to infer occupancy.
These sensors are often bulky and power inefficient or require direct installation into ceilings
or walls, failing many of the size, maintenance, and installability requirements of building
monitoring sensors.

2.4.3 Electricity Consumption

When trying to monitor and improve the energy efficiency of buildings, a common first
step is to submeter loads to determine where energy is being consumed. Submetering at
the building, circuit, or plug load are all possible. Because power meters can often power
themselves from precisely what they are sensing, powering these devices is often not key
concern. Instead, deployability becomes essential, as power meters that are expensive, not
wireless, hard to install, inaccurate, inflexible, hard to calibrate, or difficult to configure
impose a high barrier to actually getting them deployed in buildings. Table 2.1 compares
power meters across a range of properties relevant to this metering domain. The remainder
of this section describes the related work in specifically AC power metering and how these
various categories affect the efficacy of various metering design points.

2.4.3.1 Plug-Load Meters

Plug-load meters [7, 60, 68, 75, 109, 120, 142, 144] are capable of providing high-fidelity,
accurate power measurements of individual loads and appliances. By their very nature they
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have access to AC mains power and therefore powering them is not an issue. However, size
is still important as large and bulky devices are difficult and often undesirable to deploy.
Recent efforts have been made to scale down the AC-DC power supply to enable power-strip
friendly power meters [22, 23] that can enable pervasive energy metering at the plug load
level in a building.

However, for loads that are hard to move (e.g. kitchen appliances) or built in (e.g.
lighting), attaching a plug load meter is difficult or impossible. Other techniques are then
required to get submetered data for these loads. Another common issue with plug load
meters is that they are typically active, meaning that they draw power even when the metered
load is off.

2.4.3.2 Whole-Building and Circuit Level Meters

An alternative to plug-load metering is whole-home or whole-building metering in which a
single meter monitors the power draw of the entire building. Two examples of this type of
device are the The Energy Detective (TED) [129], and Blue Line Innovations’ PowerCost
Monitor [107]. The TED uses a current transformer (CT) where a CT is clipped around each
phase of the main electricity line running to the building. The CTs are wired to a controller,
which taps into a spare breaker per phase to get access to the voltage signal and to power
the controller. The measured power data is then transmitted over power line communication
(PLC) or Ethernet to a gateway. The main drawbacks to this approach are that the installation
requires power to be shutoff to install the voltage contacts and there must be spare breakers
present.

The PowerCost meter takes a different approach, and leverages the existing home energy
meter from the utility. The sensor attaches to the meter and wirelessly replays the home’s
energy readings to a gateway inside of the house. This makes it much easier to install, but
the device is battery powered and needs periodic battery replacement.

When entire home or building is too course grained, meters can also be installed at the
circuit level. This both enables metering loads that do not plug in, such as HVAC equipment
or built-in lighting, and reduces the number of meters that must be deployed versus using
plug load meters. Panel and circuit level meters [41, 70, 82] provide reasonable sensing
insight while only having to be installed in panel boxes and not at every load. These, like
the TED, require running wires to current transformers on every circuit, and direct access to
the voltage phases through empty breakers. While these meters are well equipped to provide
accurate and high-resolution data, they can be difficult to install, particularly in retrofit
applications. Often, the installation cost of hiring an electrician and the downtime cost of
disconnecting power during installation dominates the total cost of installing the meters. To
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try to alleviate this, the next sections cover meters that attempt to balance ease-of-installation
with submetering resolution by exploring non-contact approaches to AC electricity metering.

2.4.3.3 Non-Contact Meters

Realizing that contacting the AC line for power metering incurs high installation costs and
limited deployment scenarios, many recent meters have explored various non-contact options.
Broadly, they fall in to two groups. The first includes a series of “stick-on” meters that
attach to the outside of circuit breaker (near the switch) and sense the electromagnetic field
generated by the current flowing to the circuit. The second group uses a current transformer
(CT), but does not require wiring the CT to a control box. This type of device clips around
the wire running to the breaker and uses the CT to measure the current. Some of these
devices use or are capable of energy-harvesting to further remove the need for additional
infrastructure or batteries during installation.

Patel et al. designed an externally powered house-level stick-on power meter using
magnetometers designed to be attached to the circuit breaker in the house [100]. The sensor
measures only current, which is later multiplied by RMS voltage by a PC. A similar design,
called GREEN [118], by Send et al. uses a giant magneto-resistive (GMR) magnetic sensor
to measure the current flowing through an individual circuit breaker. Unlike the Patel device,
it can be attached to individual breakers to meter individual circuits. Another stick-on meter,
this time using a piezoelectromagnetic (PEM) device [150], furthers this idea of stick-on AC
metering by using a sensor that can also act as an energy-harvester [97]. This enables the
PEM device to be self-powered when attached to the breaker. These three stick-on designs
all share a common drawback: because they do not have access to the voltage channel
they cannot accurately calculate true power. For reactive and switching loads, which have
non-unity power factors, this error can be significant.

A fourth stick-on meter, the PASEM device [77], uses a hall effect sensor to measure
current, but also adds a capacitive couping technique to sample the voltage channel. This
essentially creates a rough capacitor between the sensor and the metal internal to the breaker,
and allows the device to extract a voltage signal. When the breaker type and geometry is
well known, and the sensor is placed correctly, this voltage sensing technique can be as
accurate as 1% error. By obtaining the voltage signal, the PASEM device can calculate true
power. It cannot, however, power itself, so the sensors on each breaker must be wired back
to a power source.

All four of these meters are susceptible to interference and crosstalk from circuits
adjacent to the one they are metering. This means all of these designs include substantial
processing to mitigate this interference and go through a runtime calibration procedure to
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detect the extent of this interference. This calibration procedure often requires toggling
circuits or plugging in known loads to certain circuits. This calibration step significantly
complicates the installation procedure. While the devices may be simple to physically install,
calibration can significantly increase the total cost of using the stick-on sensors.

Two commercial solutions, the Pressac CT [108] and the Panoramic Power PAN-10 [96]
are energy-harvesting current meters based on current transformers (CT). The current
transformers clip on to a circuit, and use the CT to measure current and power the meters.
This removes the need for runtime calibration while retaining an easy to deploy form-factor.
These meters, like the “stick-on” PEM meter, lack access to the voltage channel, however,
and cannot calculate true power or power factor.

Finally, an approach proposed by Schmid et al. decouples current and voltage sens-
ing [116]. A CT measures current at one point, and a direct contact voltage sensor measures
the voltage signal at another. The voltage channel is then parametrized and transmitted to
the current sensor, which is time-synchronized with the voltage monitor and can synthesize
its own copy of the voltage signal. The final step of computing power is done offline. This
enables physically decoupling voltage and current measurements which reduces the impact
of needing direct access to voltage. We expand on this concept in Chapter 5 and show how
this decoupling can be a significant benefit for deployability.
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CHAPTER 3

Gecko: Adding Energy-Harvesting to Wireless
Sensor Networks

To bring energy-harvesting sensors indoors, the Gecko node seeks to use a harvestable indoor
energy source to perpetually power a sensor for indoor ambient conditions monitoring. This
would enable building operators, energy-efficiency advocates, and researchers to easily
instrument and monitor a building without the need to hard-wire sensors or replace batteries.
Bringing energy-harvesting sensors indoors requires both adapting the harvesting frontend
to available energy sources and matching total system energy costs to the energy budgets
provided by those sources. Section 3.1 covers some options for indoor energy-harvesting
sources.

After considering several possible options, we evaluate using indoor lighting as the har-
vestable energy source for this sensor node. Lighting is an attractive source as it is plentiful
in indoor spaces, and buildings are lit when occupied. Section 3.3 then explores options
for storing the harvested energy so it can be used for the sensing operation. Section 3.4
combines the two primitives (harvesting and storage) into a complete design for a wireless
energy-harvesting system. With a system capable of harvesting and wireless transmitting
periodic measurements, Section 3.5 identifies techniques for adding some wireless sensor
network primitives to the low energy operation of Gecko. Finally, Section 3.6 evaluates the
performance of the node, and in particular looks at the sample rate of the Gecko platform.

3.1 Energy-Harvesting Options

Several options for indoor energy-harvesting exist, including vibration, thermal gradients,
electromagnetic fields, airflow, ambient RF, and ambient light. Most, including vibration,
thermal gradients, EM fields, and airflow occur in only very specific locations and are most
useful when sensing specific pieces of equipment or particular locations. For exampling,
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Figure 3.1: Energy availability from indoor lighting. (a) shows the average irradiance of four
typical offices over the course of a partly sunny day (good) and a rainy day (bad). (b) shows
daily irradiation across 13 sensors deployed in four offices over a one week period including
sunny and rainy days. Although there is nearly a 50x difference in harvested energy across
space and time, a roughly 10 µW/cm2 lower bound average radiance exists.

monitoring radiant heating with energy harvested from thermal gradients effectively couples
the harvesting source and monitoring point.

For more general indoor monitoring, ambient RF and ambient light harvesting allow
for more flexibility when deploying sensors. The available energy is significantly different
however, with ambient RF only able to provide about 1 µW/cm2 [154] and ambient light
able to provide two or more orders of magnitude more energy per the same area. Given the
harvesting potential and ubiquity of light inside buildings, the Gecko design uses an indoor
photovoltaic cell as its energy-harvesting frontend. The next section evaluates how much
energy is available from this type of harvesting under different indoor conditions.

3.2 Indoor Lighting: Enough to Power Sensors

To measure the energy available from ambient light, measurements were taken the walls
inside several offices in a standard office building. Figure 3.1a shows the average irradiance
of four different offices (13 distinct locations) for a partly sunny (“good”) and rainy (“bad”)
day. The data shows that even on a rainy day, average irradiance largely exceeds 100 µW/cm2

during daylight hours, suggesting many indoor locations are viable for leaf nodes. Figure 3.1b
shows that daily irradiation can vary by more than an order of magnitude for a single
location.1 Most locations receive 1-10 J/cm2/day (or an average of 11-115 µW/cm2), which
is enough to ensure frequent leaf activity. Figure 3.2 shows the instantaneous, rather than

1Irradiation is accumulated irradiance per unit time, and it is measured in µW/cm2/day.
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Figure 3.2: Irradiance (on a log-linear scale) over a typical week in four offices, oriented in
four different directions. Each office is equipped with two to four typically wall-mounted
sensors, each facing in different directions within the office, to capture different light en-
vironments. The horizontal lines correspond to the irradiance necessary for a leaf node to
send a message every minute given the respective light source type. On most days, most leaf
nodes have enough light to send a message once a minute, but on some days, some do not.
This highlights the importance of node placement and solar cell sizing. It also illustrates the
need to support a wide operating dynamic range.

average, irradiance of the underlying data over a one week period. The traces also show
that during Friday and Saturday evenings, the North Office was illuminated, and during
Wednesday evening, the West Office was illuminated. This suggest evening or nighttime
human activity in those rooms. In all three cases of human activity, the light levels exceeded
100 µW/cm2.

The U.S. Department of Labor’s regulation on minimum office illumination [137] is
30 foot-candles, which corresponds to about 320 lux. The regulations are lower for indoor
corridors and hallways at 5 foot-candles, or about 53 lux. From our own experiments using
a commercial lux meter and a TAOS TSL230BR [128] light to frequency converter we find
that 50 lux of a fluorescent light corresponds to 18.6 µW/cm2, 100 lux to about 29.1 µW/cm2,
and 320 lux to 74.9 µW/cm2.

3.3 Energy Storage Options

Once energy is harvested by the photovoltaic front-end, it must be stored locally to aggregate
the harvested energy to a sufficient level to power sensor nodes, and to buffer the variability
inherit in the harvesting source. Energy storage options for small, low power electronics
typically consist of batteries, capacitors, and supercapacitors, each with their own trade-offs.
Batteries typically provide the best energy density per volume. This gives small devices
the best opportunity for maximum energy storage while minimizing volume. Capacitors
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Figure 3.3: Ragone plot of energy storage technology from established technology to
research prototypes. A thin film battery [101], a Panasonic lithium-ion battery [88], an
aluminum electrolytic capacitor [38], a tantalum capacitor [25], an activated carbon su-
percapacitor [38], a reduced graphene film micro-supercapacitor (MPG-MSC) [148], a
laserscribed graphene micro-supercapacitor with fumed silica nanopowder (LSG-MSC FS-
IL) [37], a fiber-based micro-asymmetric supercapacitor (ASC) [63], and a lithium-ion
hybrid capacitor (LAN25) [123] are compared. Batteries excel at energy storage and offer
one to two orders of magnitude better energy density per volume than other options, but
have limited discharge rates. Capacitors can supply power quickly, but are limited in their
capacity. Commercially available supercapacitors sit in the middle, and research prototype
supercapacitors are increasing both power density and energy density.

excel at power density and can supply the most power per volume of the storage options.
This benefits low power systems that need to rapidly transition between power states and
quickly access their energy store. Batteries have poor power density, and capacitors have
poor energy density, however. Supercapacitors sit in between, and provide higher energy
densities than capacitors and higher power densities than batteries. Figure 3.3 shows the
trade-offs between these two features for a range of energy storage options.

Beyond their ability to store and discharge energy, other concerns also factor into choos-
ing an energy storage technology. Batteries, for example, have a limited number of recharge
cycles before their capacity significantly diminishes. For an energy-harvesting platform
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where its normal option is harvesting and using energy, this limitation presents a significant
challenge. Thin-film batteries, advantageous for their dimensions (e.g. STMicroelectronic’s
EnFilm batteries are 0.22 mm thick [122]) are limited both in cycle life and energy capacity
(the EnFilm battery is only 700 µAh). Supercapacitors and capacitors often exhibit high
leakage currents, or the rate that energy stored by the device is lost due to the internal
conductivity of the capacitor. For very low power designs and harvesting regimes (i.e. tens
of µA of harvesting current), this leakage can be significant and inhibits the device’s ability
to accrue sufficient energy. Choosing a storage device for energy-harvesting system requires
managing these various trade-offs.

For building an indoor ambient sensor, the Gecko design uses capacitors as its primary
energy storage device. As a sensor that is continuously harvesting and using energy, the cycle
limitation of batteries discourages their use. Additionally, since indoor lighting conditions
can be highly variable, the energy income of the device is highly variable. In low lighting
conditions the leakage of supercapacitors makes them undesirable options. Capacitors are
also prone to leakage, but careful selection of the capacitor type can dramatically reduce
this effect. Towards this, Gecko uses tantalum capacitors which exhibit low leakage, at the
expense of increased cost. To compensate for the low energy density of capacitors, the design
is able to operate on small bursts of energy and has little capacity for long-term storage of
energy.

As the technology for laser-scribed graphene [37] and other new supercapacitors matures,
this may enable new optimizations for energy storage in these devices that are not currently
possible, and potentially increase the performance of the techniques Gecko uses.

3.4 Leaf Node Design: Revisiting Core System Compo-
nents

To realize an energy-harvesting sensor node, core aspects of the system need to be revisited
in light of the limited energy budget of the platform. Specifically, this includes the power
supply, timekeeping, and the operation of the sensor.

3.4.1 Power Supply

The energy-harvesting power supply (Figure 3.4) integrates a solar panel, capacitors, over-
voltage protection, various trip and enable triggers, a latching circuit, regulator, voltage sense
circuits, and a rich interface to the power supply. We evaluate two different solar panels –
an IXYS XOB17-4X3 (crystalline silicon) and a Sanyo AM-1437 (amorphous silicon) –
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Figure 3.4: The power supply stores indoor solar currents of just a few microamps and
provides periodic burst of regulated voltage. The power supply exports several monitoring
and control signals to allow applications to tailor their operation to the key power supply
events.

for their response to different light sources. We chose (two 100 µF) tantalum capacitors as
the primary energy buffer due to their high energy density and low DC Equivalent Series
Resistance (ESR) compared to ceramic capacitors. The activity and overvoltage triggers
use low-current voltage supervisors from Panasonic and Microchip, which draw only 0.25-
0.5 µA, respectively. We use the MCP1640 boost converter with true load disconnect to
provide a stable voltage and switch power to the Epic Core. Finally, a FET-gated sense path
allows the microcontroller to measure the capacitor voltage.

3.4.2 Timekeeping

A real-time clock (RTC) provides a periodic time trigger to instigate leaf activity. Our leaf
node uses the NXP PCF2127A RTC [92], a temperature-compensated crystal oscillator
which runs at 32.768 kHz. This device offers excellent time-keeping stability (±3 ppm),
low current draw (0.65 µA) on backup battery, and flexible triggering options. Collectively,
these features support efficient synchronization between leaf and branch nodes. The RTC
also offers a battery-backed SRAM, which allows a node to maintain state across activity
cycles without keeping the microcontroller powered on. The prototype’s batteries can be
replaced with rechargeable super-capacitors to allow nearly infinite charge and discharge
cycles at the cost of long term time keeping.

3.4.3 Sensor Operation

The hardware goes through three distinct operating stages:
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Figure 3.5: (a) Operation of the energy harvesting power system. The capacitor voltage is
seen dropping from about 2.5 V to about 1 V. The boost regulator starts up and establishes a
3.0 V supply until the core requests shutdown after it finishes its radio transmission. Radio
Boot refers to the execution of the first instruction, enable radio regulator. (b) Stages of
an optimized TinyOS cold-boot overlaid with the processor and radio current. Our design
achieves cold-boot to packet transmission in less than 4 ms using all of the optimizations
discussed. The net effect is a reduction in TinyOS cold boot by a factor of 69× in time and
14.6× in energy.

Charge. From a fully-discharged state, the solar cells begin to charge the buffer capaci-
tors. Voltage supervisor U2, a Panasonic MS1382SEL rated to trip at 2.5 V, monitors the
capacitor voltage. Since the solar cell maximum power point occupies a fairly narrow range
of a few hundred millivolts, as Figure 3.6a and Figure 3.6b show, we are able to use fixed
voltage levels for the charge (and discharge) thresholds rather than needing or employing a
costly maximum power point tracking (MPPT) scheme.

Startup. When the capacitors reach U2’s trip voltage (Figure 3.4), U2’s output goes
high, initiating the active phase. Assuming EXT TRIG is low when this happens,2 P-FET
Q1’s source goes high, turning Q1 on, and passing the U2’s high output to Q2’s gate, turning
Q2 on. This drives Q4’s gate low, turning it on, and causing regulator U3’s VREG EN to be
driven high, initiating its startup. Instantly, the default on Q7 enables the bypass Q3. The
bypass latch (Q4 keeps Q3 on, which keeps Q4 on) keeps the voltage regulator enabled even
though U2 disables Q2, when the capacitor voltage eventually drops to 2.3 V (maximum
U2’s histeresis) as U3 goes into regulation. We use the MCP1640 boost regulator, which
provides high conversion efficiency near our startup threshold voltage, and a slightly wider
input voltage range as well for longer discharges, as Figure 3.6c shows. As U3 starts up and
goes into regulation, it too discharges the buffer capacitor

2This could be done efficiently by, for example: (i) connecting EXT TRIG to the output of the RTC’s
periodic interrupt or (ii) connecting VCAP FULL to an N-FET’s gate, EXT TRIG to an N-FET’s drain, and
GND to and N-FET’s source. We use option (i) and preprogram the RTC during hardware bringup.
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Figure 3.6: Solar cell current vs voltage, and power vs voltage, under low (12.7 µW/cm2),
medium (53.8 µW/cm2), and high (101.7 µW/cm2) indoor lighting levels. Although solar
cell output current varies by an order of magnitude, the maximum power point varies within
a small range of approximately 2.6 V to 3.0 V for (a) and 2.1 V to 2.3 V for (b), or about (10-
15%). This lets us use fixed-threshold voltage trip switches for charge/discharge operation
under typical indoor lighting conditions. (c) MCP1640 was choosen due to its efficiency over
a large input voltage range, and because it has output disconnect and low leakage current.

Active. After startup, the processor boots, configures the radio, takes sensor readings, and
transmits/receives packets. Once done, the processor drives SHUTDOWN high, which disables
the regulator and disconnects power to the Epic Core, saving unused energy. Figure 3.5a
details the operation of the startup and active stages.

3.5 Optimizing for Low Energy Operation

Low-energy and low-power leaf nodes need efficient and optimized system software sup-
port, and tight hardware-software interaction. Low-power operation begins in the first few
instructions the processor executes and continues through system startup, communication,
and sleep/shutdown. We detail some of the software operations that a leaf node employs to
maximize energy efficiency.

3.5.1 Parallelized and Optimized Software Startup

Typical low power wireless sensor nodes expect to power on from a cold boot a single
time, and spend most of their time in a low power sleep mode in order to prolong their
battery life. This means that the energy cost of that initial cold boot is insignificant versus
the energy cost of sleep mode over the expected lifetime of the node. However, in the Gecko
operating model, where the node is continuously cold booting and spends most of its time
completely powered off, the energy cost of startup becomes significant. We take careful
steps to minimize the energy cost of startup to optimize the energy profile of the node.
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The default TinyOS [73] distribution requires 237 ms and consumes 2.174 mJ from
power-on to Radio.sendDone(). Most of the time is spent waiting for the 32 kHz clock
to start oscillating. Adding an external 32 kHz source reduces the boot time to 48 ms and
1.81 mJ. Much of the remaining startup costs are spent initializing memory. Setting the
microcontroller clock speed to the maximum possible frequency (∼8 MHz in the case of the
MSP430F1611) before initializing memory reduces the cold-boot to 18.6 ms and 0.61 mJ.
This figure can be further reduced to achieve a cold-boot time of 3.4 ms and 149 µJ by
removing several layers of the TinyOS radio stack, parallelizing radio startup and memory
initialization, and using the bare radio interface to transmit a packet as shown in Figure 3.5b.

The Gecko software also employs concurrency to minimize latency during system
initialization (contrary to the far more typical serialized system initializations common in
existing systems). The radio initialization is started, for example, before the C runtime zeroes
out data memory, and the two operations proceed in parallel. Similarly, the packet to be
transmitted is pipelined into the radio’s transmit FIFO.

The result of these software optimizations is shown in Figure 3.5b. This figure shows a
detailed timeline of a cold-boot to packet transmission. The labels indicate stages of the boot
process. They are, from left to right, PoR: Power-on-Reset; First: first instruction; Main:
call of main(); Bootstrap: after call to platform bootstrap(); Init: after call of
PlatformInit.init(); Booted: first instruction of Boot.booted(); RadioDone:
Radio initialization done; ADCDone: ADC initialization done; Send: start of packet; Send-
Done: Return from send, ready to shut off. The corresponding latencies are: PoR to First:
0.17 ms, First to Main: 0.87 ms, Main to Bootstrap: 0.5 µs, Bootstrap to Init: 58 µs, Init to
Booted: 436 µs, Booted to RadioDone: 842 µs, RadioDone to AdcDone: 8.1 µs, AdcDone to
Send: 9.1 µs, Send to SendDone: 1.04 ms.

3.5.2 Synchronizing Energy-Harvesting Nodes

Another aspect of the system that must be optimized for Gecko’s low energy operation is
synchronizing the Gecko nodes. Typical node-to-node synchronization is done with running
timers set to expire at the same time on each node. When the timer fires on each node, they
expect the other node is also awake and able to send or receive a wireless packet. With Gecko,
however, because the node spends most of its time powered down, the core system does not
have the ability to keep a running timer active to schedule its next wakeup. Instead, we look
to other mechanisms for allowing these energy-harvesting nodes to synchronize. One such
mechanism is to use an environmental event that both nodes can detect simultaneously. For
example, if all of the lights in a room suddenly turn off, and the nodes in that room detect a
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Figure 3.7: Achieving initial synchronization. Methods for achieving initial synchronization
include both asynchronous neighbor discovery and synchronous event-triggered discovery.
(a) A free-running leaf transmits a packet when it has sufficient energy. A triggered leaf
transmits at a well-known interval. (b) Each point represents the duty cycle of each minute.
Each step in the graph corresponds to the discovery of a leaf node. Even while synchronized
with five leaf nodes, the branch node’s duty cycle only slightly increases from 2.45% to
2.75%. (c) A trace of synchronous event-triggered discovery is shown. Leaf (N1) and branch
(N2) nodes both respond to a sudden change in light level (triggered by a zero-power light
detector circuit), choose a short backoff, and transmit packets back and forth until the leaf
depletes the energy in its storage capacitor.

sudden transition from light to dark, they can use that as a trigger to wakeup and exchange
packets quickly before their energy reserves are depleted.

To explore the viability of basic event-triggered synchronization, we design a simple,
zero-power, light-activated trigger switch. It consists of a solar cell connected in parallel
with a burden resistor. The solar cell’s negative terminal is connected to an N-channel FET’s
source (and leaf GND), and the positive terminal is connected to the FET’s gate. The FET’s
drain is connected to the power supply’s external trigger or an interrupt line. This forces the
leaf node to cold boot, and the branch node to wake up from sleep, in response to a sudden
change in lighting. The nodes then exchange packets.

Figure 3.7c shows the operation of two nodes, a leaf (N1) and a branch (N2), in response
to an external trigger. The leaf node transmits first, and then the branch node responds. The
two nodes transmit packets back and forth until the leaf depletes its energy. This illustrates
that for sufficiently “sharp” triggers, like light, acoustics, or sudden movement, it is possible
for both leaf and branch nodes to synchronize.

3.5.3 Gecko to Low Power Mesh Communication

Energy-harvesting nodes like Gecko can also leverage other sensor network nodes that may
be installed in a building to help with networking and data collection. Existing mesh networks
of battery powered sensors can act as a backhaul for data generated by the energy-harvesting
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nodes. The challenge is synchronizing the Gecko nodes with the heavily duty-cycled battery
powered nodes. The battery powered nodes typically run a low power MAC protocol (e.g.
LPL [105], TSCH [55], ContikiMAC [27], or others) to schedule transmissions within the
network. However, due to the low energy operation of Gecko, it cannot participate in any of
these schemes. We need a method that allows the two different classes of nodes to establish
a shared wakeup slot while staying within the energy limitations of Gecko and duty-cycle
requirements of the battery powered nodes.

To accomplish this, the Gecko nodes uses its onboard RTC to wake up on a fixed period,
take a sensor reading, transmit a packet, and listen for inbound traffic. If a Gecko node
does not have enough energy to perform these operations, it simply skips one (or more)
activity cycles and simply resumes its activities when it has accrued enough energy. The
key is that the nominal activity period is fixed and has low jitter and drift. Branch nodes
learn of leaf node schedules using a low duty-cycle neighbor discovery protocol. Branch
nodes subsequently track the nominal wakeup times of leaf nodes and listen briefly (i.e.
20 ms, searching over a variable-length guard time) for leaf transmissions, and to deliver
any leaf-bound traffic.

We use a variant of the Disco [29] neighbor discovery protocol in which nodes transmit
beacons on eventually overlapping schedules. In our case, only leaf nodes transmit and only
branch nodes listen. The listen and transmission schedules are chosen such that the worst
case discovery latency is about 50 min and the discovery burden is small for both.

Leaf nodes transmit beacons during a 5 ms window (“slot”) every 60 s. This translates
to a nominal duty cycle of 83 ppm (or 0.0083%). Figure 3.7a shows a free-running leaf
transmits packets whenever it has sufficient energy but that a time-triggered leaf transmits
packets at multiples of 60 s, allowing a branch node to both employ a compatible neighbor
discovery schedule and predict future transmission times.

Branch nodes listen for beacons during a 5 ms window (“slot”) every 245 ms (or 49
slots). This translates to a nominal duty cycle of 2.04% but inefficiencies and latencies in
radio startup result in a higher duty cycle (2.5%), which translates to a roughly 1.5 mW
power load due to discovery. The baseline discovery power is higher than ideal, but using
newer radios that offer similar radio sensitivity at roughly 15% of the receive current, the
baseline discovery power could be reduced to about 500 µW. Given the nominal duty cycles
of 0.0083% and 2.04%, the worst case discovery latency is (5 ms)/(0.0083% × 2.04%), or
about 50 min (2940 s) in the absence of communications failure, as Figure 3.7b shows.
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3.6 A Viable Indoor Energy-Harvesting Sensor Node

By addressing the harvesting, energy storage, power supply, low power operation, com-
munication, and synchronization concerns of an indoor energy-harvesting sensor, Gecko
introduces a new type of leaf node that relies on scavenged energy for its main sense and
transmit functionality. We microbenchmark Gecko to understand the energy costs of the
main phases of its operation after the design has been optimized for energy-harvesting. This
provides a method for analyzing other sensing scenarios and harvesting frontends for how
effective they may be for a sensing system. We also measure the resulting sample rate of the
node in an indoor environment. While energy autonomy is advantageous from a deployment
standpoint, if the node is unable to sample at a sufficient rate the data stream may not be
able to support the types of applications that call for embedded sensing.

3.6.1 Wakeup, Sense, and Transmit Energy Consumption

Because Gecko is a node designed to rapidly cold boot, sense, and transmit a packet, we
evaluate it for how much energy is required for these steps. Figure 3.5b shows a trace of
Gecko’s current draw during a boot, sample, and send cycle. The entire operation consumes
149 µJ. The microprocessor boot consumes 5 µJ to get to a state where the first instruction
can run. The initialization phase, including setting up the c runtime, starting the radio
initialization, and configuring the embedded operating system consumes 68 µJ. This gets
Gecko to a state where it can begin its application-specific code. Sampling the sensors while
continuing to wait for the radio to initialize consumes 21 µJ. Finally, transmitting the radio
packet consumes 55 µJ.

As a note, this analysis only considers the energy consumed directly by the MCU,
radio, and sensors. The total energy needed to power a sensor node will be greater due to
inefficiencies in the harvester and power supply, as well as other losses in the system.

3.6.2 Sampling Rate in Indoor Environments

With a sensor that has a measurement rate proportional to its energy-harvesting source, the
activation energy required must be low enough to sustain a sample rate that is sufficient for
the intended applications. To evaluate this, we observe the rate Gecko is able to transmit
readings in various lighting levels, across various light source types, and with multiple
solar cell variants, with the results shown in Figure 3.8. Gecko is able to harvest and begin
transmitting packets at irradiance levels of about 20 µW/cm2, and can transmit once per
minute at approximately 40 µW/cm2. For ambient environmental monitoring, one sample
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Figure 3.8: Gecko sample and transmission rate for a range of indoor lighting levels and
multiple solar cell types. Gecko is able to work over three decades of indoor irradiance
levels. At an irradiance level of about 40 µW/cm2, Gecko is able to transmit once per minute
which is a standard sample rate for an indoor ambient monitoring sensor.

per minute is a standard measurement rate. In very bright conditions where the irradiance is
1000 µW/cm2, which in buildings would be in rooms with sunlight, the transmission rate
reaches about 30 packets per minute, or a 0.5 Hz sample rate.

3.7 Summary

By examining the energy available indoors to energy-harvesting nodes from lighting and
creating a sensor node capable of periodic measurements powered by energy-harvesting, we
show the feasibility of indoor monitoring with nodes that scavenge energy for themselves.
We also show that often low power wireless software stacks ignore cold boot time and
energy costs. Gecko optimizes for low energy operation and can operate on a limited energy-
harvesting power budget, demonstrating one pillar of the thesis statement. We also analyze
a networking scheme where a duty-cycle powered node can receive packets from energy-
harvesting nodes. The Gecko sensor prototype also highlights an interesting property of
energy-harvesting nodes: their sample rate is proportional to their harvesting source. We
more fully explore this relationship in Chapter 4.
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CHAPTER 4

Monjolo: Energy-Harvesting Energy Meters

Chapter 3 demonstrates the feasibility of powering networked sensor nodes with indoor
lighting. It also illustrates the energy intermittency characteristic of energy-harvesting nodes:
the node can only sample when its harvesting source is present, in Gecko’s case ambient light,
and after it has accumulated enough energy. This intermittency makes employing existing
low power sensors and software stacks challenging, but provides a unique opportunity for
energy-harvesting devices in indoor sensing contexts.

A key observation for indoor sensing is that the transfer and use of energy in a building

often emits a side-channel of energy that can be harvested. That is, the exact phenomena we
wish to measure—energy use in a building—can often indirectly power a simple sensor. By
designing a sensor that simply harvests from this side-channel until it has accrued enough
energy to wakeup and transmit a packet, I found that the resulting rate of packets can be
used to understand the underlying energy consumption source. Thus, the energy-harvesting
power supply is the sensor. The duty cycle of the sensor is proportional to the energy being
transfered or consumed. We call this mode of measurement the Monjolo principle, and
demonstrate that by exploring the energy-harvesting design space to one extreme—distilling
the sensor down to the harvester itself—we can create useful sensors that exploit, rather
than attempt to mask, the intermittency of energy-harvesting. This paves the way for scaling
down sensors to only a harvester and radio, which reduces size, complexity, and cost.

4.1 Monjolo Design Principles: Measurement Based on
Harvesting Rate

To illustrate the Monjolo design, we begin with a simplified version of Monojolo that makes
its basic operating principles clear. We then progressively relax simplifying assumptions
and introduce real-world concerns to yield a design that works in practice.
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Figure 4.1: Theoretical response rate for Monjolo.

4.1.1 Basic Operating Principle

The core operating principle of the Monjolo meter is quite simple: energy is harvested into
a reservoir at a rate proportional to the energy consumption of the underlying harvesting
source. When the reservoir—in this case a capacitor—has accrued a certain amount of
energy, the energy harvester activates a microcontroller and radio to quickly transmit a
packet using this harvested energy. The microcontroller then ensures that a fixed quanta
of energy is discharged from the reservoir over a fixed amount of time before allowing the
reservoir to begin recharging. When the reservoir reaches the threshold again, the wakeup
and transmission cycle repeats.

We claim that the interval between packets can be used to determine the underlying
energy consumption, even if the packet transmission rate does not scale linearly with the
consumption. As long as the packet transmission rate increases monotonically, and the
packets are quickly and successfully received by the data aggregator, we can estimate load
power from the inter-packet interval.

4.1.2 Monjolo Theoretical Model

To understand how the Monjolo principle may work in practice, we derive a model for how
the activation rate of the Monjolo sensor relates to the underlying harvesting source. We
start with the equation for charging a capacitor:

Q =CVb

(
1− e

t
RC

)
(4.1)

And then solve for t to get how long it should take to charge the capacitor that acts as the
energy storage for Monjolo.

t =−RC · ln
(

1− Q
CVb

)
(4.2)
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Substituting Q =CV , we can estimate the time to charge a capacitor given the input voltage
and the target voltage (Vc):

t =−RC · ln
(

1− Vc

Vb

)
(4.3)

To convert to activation frequency we invert t, and also add a delay for the runtime of the
Monjolo node while it is booting and transmitting a packet.

f =
1

−RC · ln
(

1− Vc
Vb

)
+ tRUNT IME

(4.4)

By choosing reasonable values for series resistance, the storage capacitance, the target
voltage, and the node runtime, we can estimate the Monjolo response, as shown in Figure 4.1.

4.1.3 Dealing with Data Loss

Using the design in Section 4.1.1, every wireless packet that is transmitted must be received
to accurately reconstruct the Monjolo curve and underlying energy consumption. If packets
are lost, the estimation error will increase and the energy will be underestimated. To mitigate
this source of error, Monjolo transmits a monotonically increasing counter value with each
packet transmission and the aggregator caches the last packet timestamp and counter value
received from each Monjolo sensor. The aggregator can then divide the difference in the
packet sequence numbers by the wall time elapsed to account for lost packets. This scheme
does not correct for the loss in temporal resolution from dropped packets, as any delay
between packets prevents the estimate from being updated. Also, we can only estimate the
average energy consumed during the period in which the packets are dropped by assuming a
constant draw.

4.1.4 Moderating Packet Delivery Rates

One problem with the Monjolo design is that its packet transmission rate is a function of the
measured energy: as the source it is measuring increases, so does the packet transmission
rate. Further, the Monjolo system in Section 4.1.3 has no long-term sense of time so it cannot
moderate its own packet delivery rate (its power is disconnected after each activation). If
multiple Monjolo sensors are colocated, this could in principle saturate the wireless channel,
resulting in data loss from packet collisions, or inequitable data delivery ratios.

We address this problem by decoupling the node activations from the packet transmis-
sions. Node activations continue to increment a counter, but the packet transmission rate
is capped. One challenge is how to cap the transmission rate, since this requires keeping
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track of time in the absence of steady source of power. Our solution notes each packet
transmission internally by charging a small capacitor. Over time this capacitor is slowly
discharged through a large resistor. If Monjolo’s digital core wakes up before the capacitor
has discharged to a low threshold, the core increments the counter but does not transmit a
packet. This RC timekeeping circuit provides a simple mechanism to keep time and squelch
packet transmissions.

Adding the RC timekeeping circuit decouples packet transmission frequency from the
measured energy. This means that the wakeup counter from any two packets, along with the
time difference between them, can be used to accurately determine the average consumption
over that interval. In addition to the activation counter, which can increment many times
between packet transmissions, Monjolo also keeps a sequence number that increments with
every packet, which enables the aggregator to detect dropped packets. One important note
about suppressing packet transmissions is that Monjolo itself must continue to consume
the same quanta of energy during each activation cycle regardless of whether it transmits a
packet or not.

4.1.5 Handling Non-linear Recharge Rates

Ideally the recharge rate of the reservoir capacitor – and by extension the activation rate
of Monjolo – would be linear with the energy source. However, even if it is not, if the
relationship could be described with a simple transfer function, it would allow for flexibility
in reporting value for which no exact calibration values exist. In practice, non-linearities in
the system mean that this relationship cannot be described by a simple analytical function.
We address this by fitting a model to the empirically-derived relationship between activation
rate and underlying energy use, and then use this model to estimate the corresponding energy
use from the instantaneous activation rate (or interval). We further elaborate on the transfer
function and on how we find and use this model in Section 4.2.2.

4.2 Monjolo System Architecture

Monjolo is comprised of two main components: the energy-harvesting sensor and a data
aggregator that computes the rate of activations. The sensor and the aggregator must be
withing single-hop packet transmission range of each other, but a single aggregator can
support many Monjolo sensors. The meter senses individual loads while the aggregator
converts the resulting activation rate to calibrated units that reflect the energy consumption
of the sensed load.
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Figure 4.2: Example Monjolo energy harvesting operation. A trace of the energy-harvester
charging up the main reservoir capacitor, Cstore. When the capacitor reaches 5.1 V, the
microcontroller boots up. The microcontroller samples the Vtimer line to determine whether
to send a packet or not. When the node wakes up at 5.6 s there is only approximately 0.6 V
on the timing capacitor, causing the node to send a packet before recharging Ctimer.

4.2.1 Hardware Platform

Each Monjolo sensor requires an energy-harvester suited for the energy consumption point
to be sensed and a radio. In its basic form, a Monjolo sensor transmits a packet when the
power supply has accrued enough energy to do so. This simplicity in Monjolo’s hardware
architecture enables its flexibility and can lead to very non-invasive and miniature hardware
implementations.

In the general purpose case, each Monjolo sensor also requires a method for ensuring a
fixed quanta of energy is used on each activation and a counter. In the Monjolo instantiations
in this work, a microcontroller manages the counting and radio transmissions. This increases
the energy cost of each activation, but simplifies development and prototyping, while also
increasing flexibility.

The general hardware architecture of a Monjolo sensor is comprised of an energy-
harvester, a capacitor-based power supply, a microcontroller, a rudimentary timing circuit,
and a radio. The examples in Section 4.3 include these basic components.

4.2.2 Sensor Operation

Figure 4.2 shows an example trace of Monjolo operation. As the energy-harvester harvests,
its charges a capacitor and increases the voltage on that capacitor, Vstore, until it reaches a
threshold at 5.1 V. A regulator then uses the capacitor voltage to supply a 3.3 V Vout rail
that powers the remaining board circuitry. This causes the microcontroller to boot up.

During boot, the microcontroller enables the radio to allow for consistent energy con-
sumption across Monjolo activations. After reading and writing non-volatile storage to
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increment the wakeup counter, the microcontroller samples the R-C timer by measuring the
voltage on the timing capacitor (Vtimer) to determine if sufficient time has passed since the
prior transmission. If the voltage on the cap is low enough, as it is in Figure 4.2 near 5.6 s,
Monjolo transmits a packet which causes the radio to issue an SFD pulse as indicated in the
figure.

The microcontroller then restarts the RC timer by turning on a MOSFET to recharge the
capacitor. If the node sent a packet, it updates the non-volatile memory with the sequence
number for the next transmission. Finally, with its tasks complete, the microcontroller leaves
the radio in receive mode to discharge the storage capacitor to a low voltage threshold, at
which point the power supply disconnects the Vout rail, allowing the harvester to recharge
the capacitor.

4.2.2.1 Concurrent Charging and Discharging

With unpredictable harvesting from the underlying energy source, it is possible that while
Monjolo is active the energy-harvester is still able to harvest energy. However, this can
potentially violate the constraint established in Section 4.1.1 that a fixed energy quanta must
be consumed over a fixed period of time during each activation cycle. If the harvesting was
always constant this effect would be cancelled out, but with variable harvesting different
amounts of energy can be consumed between the high and low voltage thresholds. If
harvesting during the active time slows the observed activation rate it can alias on to an
activation rate for a lower underlying energy consumption point, leading to an estimation
error.

To compensate for this situation, Monjolo nodes disable their harvester while in active
mode. This helps ensure a fixed energy quanta is used, and as a result more accurate and
reliable measurements, at the cost of lost harvesting potential during the time the Monjolo
node is active.

4.2.2.2 Wireless MAC Layer

Monjolo operates with a simple MAC protocol running in a star topology. Each node simply
transmits when it wakes up to an always-on data aggregator. We choose not to use a more
advanced MAC layer because Monjolo is unable to support any existing MAC protocol
that relies on scheduling wakeups between nodes. This limitation exists for two primary
reasons. First, Monjolo has no backup energy storage to supply an on-demand wakeup.
Therefore, it cannot activate at an arbitrary time as required by scheduled MAC protocols.
Second, Monjolo has no means of keeping a sufficiently accurate timer active to generate
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Figure 4.3: RPi Gateway. The gateway is an IEEE 802.15.4 packet receiver shield based on
the TI CC2520 radio paired with a Raspberry Pi mini-computer.

these on-demand wakeups. Since the microcontroller is disconnected from power between
activations, all timing information on the microcontroller itself is lost.

This limited MAC layer is acceptable for the Monjolo application. The new approach
to sensing advocated by the Monjolo principle – essentially a modern interpretation of
the well-established pulse counting method used by utility meters – trades accuracy and
reliability for simplicity of the node. Further, because Monjolo takes steps to avoid saturating
the wireless channel, and the impact of packet loss is only a transient reduction in temporal
precision and not a reduction in overall accuracy, a MAC protocol that ensures reliable or
collision-free data transmission is unnecessary.

4.2.3 Data Aggregator

To collect packets from the Monjolo sensors, we use a Raspberry Pi (RPi) [113] embedded
computer with a custom TI CC2520 radio shield. The CC2520 is an IEEE 802.15.4 compat-
ible radio and allows the RPi to receive packets from Monjolo nodes. Using the RPi as a
base station provides a platform capable of timestamping, processing, and forwarding the
data streams from Monjolo sensors.

To estimate the energy consumption where the Monjolo is measuring, the RPi listens
for all Monjolo packets. Upon reception, it computes the elapsed time since the last packet
and the difference in the counter value, and feeds that into the model that relates energy
to activation rate. The estimate is timestamped and transmitted to a server for storage,
aggregation, and further processing.
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(a) Lighting Monjolo (b) Inside sconce

Figure 4.4: Indoor lighting Monjolo. The power supply of Gecko is re-designed to be the
form factor of a commercially available solar panel and the remaining Monjolo hardware
components are sized to fit on a matching daughterboard. This sensor can easily and
unobtrusively placed near a light.

4.3 Monjolo Implementations: Sensing Energy Consump-
tion in Buildings

To demonstrate the Monjolo principle in practice, we develop several versions of the basic
sensor to monitor different energy consumption points within buildings. The first version, a
Monjolo for indoor lighting, is the natural extension of the Gecko project that combines the
harvester from Gecko with the other Monjolo hardware components. The second instantia-
tion, one for thermal gradients, targets primarily hot water consumption points in a building.
This Monjolo uses a thermoelectric generator as a harvester. The third Monjolo monitors AC
electricity use by individual loads and circuits. It uses a current transformer with a rectifier
as its harvesting front-end.

4.3.1 Indoor Photovoltaics Monjolo

Following the lead of the Gecko project, the Monjolo principle also works when the sensor
harvests from indoor lighting. The activation rate of the sensor is proportional to the intensity
of the lighting, and this can be correlated with the power draw of the lighting. The power
draw of lighting in buildings is often difficult to meter directly because it is often wired to
separate panel boxes from other circuits, driven by at different AC voltages, and difficult to
trace back to a central point. By simply placing an unobtrusive Monjolo sensor inside or
a near a light, as in Figure 4.4b, Monjolo provides an easy-to-deploy method for metering
built-in lighting.

Figure 4.5 shows how this type of Monjolo responds to both incandescent and fluorescent
lights over a range of light level settings and power draws. As expected, as the lighting draws
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Figure 4.5: Activation rate of indoor lighting Monjolo from incandescent and fluorescent
lights.
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Figure 4.6: Activation rate of Thermes at a range of pipe temperatures in 23 degrees C
ambient conditions. As the temperature difference between each side of the Peltier module
increases, so does the average rate of activations over the first five minutes of harvesting.

more power the activation rate of the Monjolo sensor increases.

4.3.2 Thermal Gradients Monjolo

Another instantiation of the Monjolo principle, and another critical sense point in buildings,
is Thermes (Figure 4.7, a sensor that meters heat or hot water pipes. Thermes uses a thermo-
electric generator (TEG) and the temperature differential between hot water flowing in a
pipe and the ambient air to harvest. The rate of harvesting is proportional to the temperature
differential and, by extension, the temperature of the water in the pipe, as shown in Figure 4.6.
To detect water events we note the rate at which the energy-harvesting power supply is able
to harvest.

To achieve this, a power supply attached to the TEGs stores harvested energy in a bank
of capacitors. Until the voltage of the capacitors reaches a certain level, the microcontroller
and radio are power gated, allowing for a faster recharge rate than maintaining sleep mode.
Once sufficient energy has been accumulated, the power supply activates the node which
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Figure 4.7: Thermes device attached to a pipe. Thermes is designed to be a bracelet that can
easily stick around a hot water pipe.

immediately transmits a packet. The node remains on until the stored energy reaches a lower
threshold, ensuring that a fixed amount of energy is used on each activation.

Due to the operating regime of this sensing style and the small energy budget that
accompanies it, the device itself knows little about what it is monitoring. Instead, an always-
on central receiver service accepts the transmitted packets and processes them to understand
properties of what is being sensed. The receiver calculates the rate of activations, or the rate
of harvesting, based on the timestamp of the packets. Further, the service is responsible for
estimating when the water event stopped and started. This is necessary both because there is
a delay between when the pipe begins to heat and when the power supply is charged, and
because the pipe will remain hot after the water stops causing additional activations.

The only state maintained on the microcontroller is an activation counter. This counter is
transmitted in every packet and protects the system against dropped packets by allowing
the receiver to calculate an average activation rate even if a packet is missed. Alternatively,
this counter can be leveraged to rate-limit packet transmissions. For example, a transmission
could occur every five activations, rather than on every activation.

This sensing style and design point allows for a small, wireless “bracelet” like device,
composed of a series of TEG devices, the power supply, and a computation core, to be
clipped around a pipe in order to monitor it. By not requiring a display, battery, or additional
sensors, the size can be kept small for unobtrusive monitoring.

43



(a) Eval Board (b) AC Monjolo Plug-load (c) AC Monjolo Split-core

Figure 4.8: Instantiations of AC Monjolo. An evaluation version allows for adjusting various
capacitance and operational settings to explore how design choices affect the system. The
plugload version uses an internal solid-core current transformer and can meter any plug-load.
The split-core version can clip around a wire in a circuit panel to meter the entire circuit.

4.3.3 AC Power Meter Monjolo

The third implementation of the Monjolo principle for monitoring buildings is an AC power
meter. The meter, shown in Figure 4.8b, uses a current transformer to harvest from the
electromagnetic field generated by AC current flowing to a load. Current transformers (CT)
produce an output voltage that is proportional to the AC current flowing in the wire they are
around. Typically this signal is measured directly, but for Monjolo it is rectified and used as
the energy-harvesting frontend. This harvester is both suitable for the Monjolo operation and
allows the meter to be non-contact: the AC line does not have to be interrupted nor tapped
into. This, along with a split-core CT, enables a circuit-level version (Figure 4.8c) that can
easily clip around a wire in a circuit panel for quick deployment. The meter also works with
plug-loads, but the load does have to be temporarily unplugged to install the meter.

With harvesting from an AC wave, however, there are additional complexities related to
ensuring a successful Monjolo meter given the underlying harvesting characteristics. The
remainder of this section details the meter’s implementation as well as the challenges and
workarounds for this type of harvesting frontend.

4.3.3.1 Energy-harvesting Power Supply

The AC Monjolo’s energy-harvesting power supply serves as the system’s only sensor. The
power subsystem harvests energy from the primary AC load and accrues enough energy over
time to wake up and transmit a packet. The aggregator uses the frequency of these wakeups
to infer primary power. The following constraints are necessary for proper operation: (i) the
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Figure 4.9: Transfer function of the current transformer used in the energy-harvesting power
supply when connected to a 430 Ω resistor. The power the coil can deliver varies non-linearly
as the load power changes. This affects the activation interval of the sensor, causing the
activation rate to be non-linear with load power.

system must be able to harvest energy over the full spectrum of possible load powers, (ii)
the activation rate must be a monotonically increasing function of the load’s power draw,
and (iii) the power supply must never supply so much power as to enter an always-on state.
In an always-on state, the harvester can supply more power to the system than the system
can dissipate. This saturates the harvester, eliminates the wakeups, and leaves the system
without its one sensor.

To achieve these goals with low power and space overhead, we employ the CR Magnetics
CR2550, a 1:3000 turns-ratio current transformer [17]. The CR2550 magnetically couples to
the load’s supply wire, and supplies the Linear Technology LTC3588 energy harvester [76].
We find that six turns of the primary coil, for a turns ratio of 1:500, ensures that the minimum
input voltage requirement of the LTC3588 is met at a primary load power of 17 W and the
system still alternates between charge/discharge states at 480 W. Hence, AC Monjolo can
meter loads from 17 W to at least 480 W. This range could be extended further by increasing
the primary turns and increasing the energy quanta consumed in each cycle. Figure 4.9
shows the delivered power from the coil across a 430 Ω resistor, which draws an average
current that is close to that of the LTC3588 load. The curve is non-linear at load power levels
below 200 W and this non-linearity manifests itself in AC Monjolo’s activation rate.

The LTC3588 energy harvesting integrated circuit has two piezo inputs and uses an
internal full wave rectifier to charge a capacitor over time. By disconnecting one of these
inputs and shunting it to ground, the user can force the LTC3588 to only perform half-
wave rectification. We use this mode and employ half-wave rectification to minimize the
AC Monjolo’s internal power draw. Using full-wave rectification would only increase the
activation rate, and thereby increase the average power draw, while just slightly improving
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the granularity of the power measurements.
After the AC waveform is rectified, the LTC3588 employs a boost converter to increase

the low amplitude signal to charge the storage capacitor (Cstore). When this capacitor reaches
the threshold voltage of 5.1 V (for a 3.3 V output), the LTC3588 enables a buck converter to
supply this output on the Vout rail. When the voltage on Cstore drops to 3.8 V, the LTC3588
disables Vout and continues to charge Cstore back to 5.1 V.

Two capacitors play a critical role in system performance: Cstore and Cout, the latter
a capacitor on the regulator’s Vout line. The values of these capacitors affect the system
operation and measurement granularity. Increasing the value of Cstore increases the time
required to recharge and reduces granularity, but it also increases the runtime duration
of each activation cycle. Increasing the value of Cout reduces voltage ripple on Vout and
increases runtime, but also increases ramp-up time for Vout.

We evaluate several options for the capacitance Cstore with the goal of finding the
minimum capacitance with which the system can complete all of its required tasks. Because
the power delivered by the current transformer for a given load power is fixed, capacitance
can affect only the activation rate but not overall system power. The activation duty cycle,
and by extension the average power draw, is fixed because the period and runtime scale
proportionally as the value of Cstore changes. Therefore, the minimum possible capacitance
needed to run the digital core is optimal. A higher capacitance reduces granularity without
reducing power draw. For our system’s operating range of 17 W to 480 W, we empirically
determine that a value of 500 µF for Cstore provides high granularity and sufficient time to
complete all operations, including updating the counter, sampling the timing capacitor, and
transmitting a packet. We use a tantalum capacitor for Cstore because tantalums have low
leakage and high charge storage density.

We evaluate three possible choices for the output capacitance: 47 µF, 200 µF, and
247 µF. We observe that although runtime does increase with increased input capacitance,
the effective runtime actually decreases due to the increase in ramp-up time. Since all three
values sufficiently reduce voltage ripple, we find the optimal value to be 47 µF for our
particular design point.

4.3.3.2 Analog Packet Suppression Timer

To suppress rapid packet transmissions, AC Monjolo employs an RC timer. The digital
core charges a capacitor (Ctimer) after each packet transmission. This capacitor discharges
over time, allowing a sensor to keep an approximate sense of elapsed time since the prior
packet transmission. At every activation, AC Monjolo samples Vtimer and suppresses packet
transmissions if the capacitor has not discharged to a low threshold level.
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Our implementation of AC Monjolo charges a 2.2 µF electrolytic capacitor which
discharges both through its own leakage and through a 4.7 MΩ resistor. The capacitor is
sized to limit the inrush current while offering for a multi-second discharge delay. The
value of the resistor creates a time constant of about 10 seconds. We find that for the RF
conditions and deployment density in our lab, a reasonable inter-packet interval is about
5 s, but designing for a τ of 10 s allows each AC Monjolo sensor to enact a higher delay in
software, if needed, such as when there is a high density of sensors.

4.3.3.3 Digital Processing Core

AC Monjolo’s digital core consists of three main components: a microcontroller (TI
MSP430F1611), an IEEE 802.15.4 compatible radio (TI CC2420), and FRAM (Ramtron
LM25L04B). The microcontroller and radio are elements of the Epic Core [32]. The FRAM
handles the non-volatile storage of the activation counter and packet sequence number.
FRAM is preferred to flash or EEPROM for its high-speed reads and low-energy writes. To
reduce power, the flash chip on the Epic Core is removed.

The software on the node is optimized for fast and simple operation. Each activation
consists of an FRAM read and write, an ADC sample, and a potential radio transmission.
Because the LTC3588 disconnects the Vout rail when the Vstore voltage falls below a low
threshold, the microcontroller colds boots during each activation cycle. This both simplifies
the software and corrects transient errors, as the subsequent boot resets the microcontroller
state.

4.3.3.4 Concurrent Activations and Charging

The choice of the LTC3588 has interesting ramifications for overall AC Monjolo operation.
First, the LTC3588 does not disconnect the input power source while the output is enabled.
When the current transformer input voltage exceeds the minimum LTC3588 input threshold,
the LTC3588 will supply current to Cstore as usual. Unfortunately, this violates the constraint
established in Section 4.1.1 that a fixed energy quanta must be consumed over a fixed period
of time during each activation cycle. Because the LTC3588 is able to charge Cstore faster
at higher load wattages, the duration and energy depletion of each wakeup will increase
with larger primary loads. The change in the wakeup duration introduces error into the
power estimation algorithm, which is based on activation rate. If a ∆P increase to a primary
load Pload causes the same increase in both the AC Monjolo activation rate and duration,
then the overall packet transmission rate of both Pload and Pload +∆P will be identical and
indistinguishable.
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Figure 4.10: The charging cycle of two AC Monjolo sensors with a half-wave rectifier. AC
Monjolo #1 has a slightly higher load attached and is able to charge up slightly faster than
AC Monjolo #2. However, after the discharge phase both AC Monjolo sensors start charging
at the same point in time, causing their wakeup frequency to equalize with only a slight phase
shift. This lack of continuous charging leads to a stair-step relationship between activation
rate and load power, which can result in a loss of precision, particularly at high load powers.

To compensate for this situation, we add two pull-down MOSFETs, one on each output
leg of the energy-harvesting current transformer, with the MOSFET gates connected to the
regulator’s Vout line. This causes the LTC3588 to disconnect its own inputs when its buck
converter is enabled and the digital core is active, thus ensuring a fixed discharge time and
energy during each activation.

4.3.3.5 Quantization Issues from Harvesting AC

A by-product of using an AC input signal as the energy harvesting source is that there is
a period during each 60 Hz cycle when the current transformer output does not meet the
minimum LTC3588 input voltage, so AC Monjolo cannot charge. This seemingly benign
observation has deep implications for AC Monjolo’s ability to map different load powers
to distinct activation rates. To better explain this phenomenon we use a slightly stylized
illustration of the charging cycles of two AC Monjolo sensors as shown in Figure 4.10.
In this simulation, AC Monjolo #1 is connected to a slightly higher power load than AC
Monjolo #2. Therefore, its input AC waveform is also slightly higher in magnitude. We
also assume for the simplicity of the illustration that each Monjolo node transmits a packet
during every activation cycle.

Both Monjolo nodes require three cycles of the 60 Hz wave to charge, with the higher
power circuit connected to AC Monjolo #1 reaching 5.1 V slightly sooner. It follows that
the data aggregator will receive AC Monjolo #1’s packet equally sooner. Both capacitors
discharge at the same rate (a rate which is a fixed property of the system) and finish
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discharging during a negative “off” half-cycle. At this point both AC Monjolos must wait
until the next “on” cycle to start recharging. This delay means that although AC Monjolo
#1’s packet will consistently arrive moments before AC Monjolo #2’s, both will wakeup and

transmit at the same rate. The result is that all load powers that cause AC Monjolo to finish
discharging in the same “off” period quantize to the same activation rate.

This quantization phenomenon has a more pronounced effect at higher load powers,
where the LTC3588 requires fewer cycles of the 60 Hz wave to recharge Vstore. In this
operating regime, the amount that the primary load must increase in order to increase the
input power such that one fewer 60 Hz cycle is required to meet the activation threshold is
much larger than at much lower loads. Stated differently, the amount each charge cycle must
additionally contribute to Vstore to drop from 100 charge cycles to 99 charge cycles is much
lower than the amount of extra energy required to drop from 10 cycles to 9. This manifests
in the stair-step effect visible at higher load powers in Figure 4.11a. For instance, as the load
increases from 445 W to 465 W, the resulting AC Monjolo activation rate remains constant.

Figure 4.11a does not exhibit crisp steps, however, because of the consistent time duration
and energy use during the AC Monjolo discharge phase. Without the enhancements described
in Section 4.2.2.1, once AC Monjolo begins discharging, it continues to discharge until it
reaches a point in time at which the rectifier is in an “off” state. That is, AC Monjolo uses any
“on” state to prolong its wakeup duration and does not discharge Cstore until the subsequent
“off” state. This forces every wakeup interval to delay until it can take the next step up.
Figure 4.11b shows that without the MOSFETs, the quantizing effect is significantly worse.
By satisfying the consistent discharge requirement, the quantizing effect can be mitigated
for many load power ranges, illustrating precisely why the consistent discharge requirement
is necessary for this design.

Using half-wave rectification exacerbates the quantizing effect because it increases the
duration of the “off” cycle. In practice, however, we notice that using half-wave rectification
only displays pronounced steps at a load power greater than 270 W, and the effect on percent
error is relatively small – at most ±5% of the true value.

4.4 Monjolo Evaluation

We use the Monjolo implementations to evaluate how well the Monjolo principle works as
the base of an energy meter. The primary evaluation metric is the accuracy of the meter with
respect to how well the system reports energy or power consumption. We must ensure the
data created by the meter is actionable, but we do not intend the meter to produce revenue-
grade measurements. The other key evaluation metric is the update rate of the meter, or how
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Figure 4.11: Frequency of Monjolo activations over a range of loads. (a) shows that as the
primary load’s power increases from zero to 475 W, the activation rate increases from zero
to 8.5 Hz. Although not linear, this monotonically increasing relationship between activation
rate and load power suggests that Monjolo may be a viable approach to metering a range
of AC loads. In (b), the activation rate is quantized. If the LTC3588 energy harvester is
permitted to continue to supply energy to Cstore during the discharge phase of operation, then
the quantizing effect inherent in the system is substantially more pronounced. Particularly at
high load powers, the steps span a nearly 50 W range, which dilutes precision and introduces
±5% error.

often a measurement is produced. With energy-harvesting and power proportionality, the
meter’s reporting rate is dependent on the underlying energy source. If for common loads
this rate is too slow, the meter is not viable in actual scenarios.

We also evaluate Monjolo by returning to the model from Section 4.1.2 and comparing
how well it predicted the actual operation of the Monjolo meters.

4.4.1 Sensing Accuracy

To evaluate how accurate Monjolo is as an energy meter, we focus on a particular implemen-
tation, namely the AC Monjolo. In this section, we observe the end-to-end accuracy of the
meter by comparing the final reported power measurement from the AC Monjolo system
with the reading from a calibrated ground truth AC meter. The Monjolo is calibrated against
a unity power factor load for these tests.

To start, we test on a fully resistive load, by using a test rig that randomly selects power
values for the AC load and switches after random intervals. This highlights AC Monjolo’s
response to different load powers and a range of power transitions. Figure 4.12 shows the
results of a 30 minute run of this application. AC Monjolo tracks ground truth very closely
when the load is constant with an error of only 1%.

We also examine how Monjolo works with reactive loads by running AC Monjolo against
ground truth for four other loads, as shown in Figure 4.13. These loads exhibit a variety of
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Figure 4.12: Accuracy of AC Monjolo’s power measurements over a range of different
loads. When the load is constant, AC Monjolo’s error is very low at only 1%. When the
load changes, AC Monjolo’s relatively slow response time causes sharp instantaneous error
while the data aggregator waits to receive a packet informing it that the load has changed.
When the load is very small, as it is at t = 500 s, AC Monjolo is unable to transmit and the
resulting error is quite large, although a less naive power estimation algorithm would be
able to correct for this. Ignoring the few sections where AC Monjolo is drastically incorrect,
AC Monjolo shows an average error of 3.7% across a randomly varying resistive load.

different real-world power profiles. For loads with rapid changes in their power draw, AC
Monjolo averages the power draw and is unable to report the swings. Also, for loads with
non-unity power factors, AC Monjolo generally over-estimates power draw. This is likely
because it is measuring not just true power but also reactive power. AC Monjolo is able to
track the actual power draw of the various loads but continues to overestimate.

When well calibrated, Monjolo can be highly accurate, as demonstrated with the resistive
load case for AC Monjolo. Compensating for the errors present with reactive loads may be
possible with additional calibration, or by informing the data aggregator of the power factor
of the measured load in advance. The following chapters show how hardware and software
improvements to the AC Monjolo design can also enable higher accuracy.

4.4.2 Activation Rate

Another important metric for all energy-harvesting sensors is activation rate, or how often
they are able to measure. If harvesting is too slow the resulting data stream may not be able
to support higher-level applications and algorithms. Again we look to AC Monjolo, and
compare its two implementations: the plug load version with a solid-core current transformer
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Figure 4.13: AC Monjolo performance on loads with non-unity power factors. Each figure
shows the ground truth power and power factor measurement of the load, and AC Monjolo’s
estimate of the power. If the power factor remains constant, AC Monjolo estimates the power
with a constant offset, as shown in 4.13a and 4.13b. The heat gun in 4.13c is an interesting
case when the high frequency oscillations cause AC Monjolo to estimate an average value.
The fluctuating power factor in 4.13d causes AC Monjolo to sharply overestimate, but it
quickly recovers. While non-unity power factors cause AC Monjolo to lose accuracy, we
believe the magnitude offset can be compensated for with other mechanisms.
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Figure 4.14: Activations/second for two coils over a range of resistive loads. The first coil is
a solid-core current transformer (CT) with 10 windings of the AC phase line around it. The
second is a split-core CT. Below 5 W for the solid-core and below 117 W for the split-core
the device is unable to harvest enough energy to activate and therefore is unable to perform
any metering. Beyond that, as the load power increases, the ability for the node to harvest
increases.

with several secondary turns, and a circuit-level version with a split-core current transformer
and a single secondary turn.

To quantify how often an energy-harvesting power meter can perform a measurement,
we sweep over a range of power draws using a fully resistive test load and monitor the
activation rate of the sensor. The results are shown in Figure 4.14. For the solid-core version,
the node is able to activate once the load reaches 5 W, and it activates more rapidly as the
load power increases. At 100 W the sensor activates roughly once per second, which because
the sensor needs two activations to take and transmit a measurement, equates to a maximum
sample rate of 0.5 Hz.

For the split-core version, fewer windings mean a higher power load is required for
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Figure 4.15: Theoretical response rate for Monjolo compared to observed response for AC
Monjolo.

the node to begin activating. At approximately 117 W, the power supply is able to harvest
sufficient energy to begin sampling. As in the solid-core design, the sample rate increases
with load power. Because the split-core design clips around a wire it is most suitable for
metering entire circuits. At the circuit level, the power of multiple loads will sum and the
higher minimum measurement power will have less effect than with individual loads.

4.4.3 Comparison to Theoretical Model

We revisit the theoretical model for Monjolo in light of the observed response seen by the
implementations. The comparison when values measured from the AC Monjolo are inserted
into the model is shown in Figure 4.15.

4.5 Deltaflow: Correcting for Uncalibrated Pulse Streams

When well calibrated, Monjolo sensors can meter with sufficiently high accuracy. However,
in many cases it is not feasible to calibrate a Monjolo for a specific load. To compensate, we
explore a system that attempts to compensate for errors from individual meters by leveraging
an aggregate energy draw signal. We then treat the Monjolo sensors attached to loads that
contribute to the aggregate as generic pulse sensors. Each pulse sensor operates according
to a simple principle: the higher the power draw of the load, the greater the frequency
of the pulses. The Deltaflow system uses these pulse streams as hints about each load to
disaggregate the aggregate measurement into each individual load’s contribution.

The Deltaflow system architecture is shown in Figure 4.16. A power meter that is
monitoring aggregate energy flow upstream from the target loads (e.g., a utility meter)
reports aggregate measurements to the Deltaflow server. Additionally, the individual loads
to be metered are instrumented with a suitable pulse sensor that transmits a representative
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Figure 4.16: System architecture. The Deltaflow server takes in aggregate power draw mea-
surements and the activation frequencies of energy-harvesting sensors attached to individual
loads. By augmenting aggregate power measurements with sensor activation (or pulse)
frequencies that are correlated with power draw, Deltaflow determines the individual energy
consumption of the sensed loads. The system is able to function even if some loads remain
unsensed.

pulse stream to the Deltaflow server. By augmenting the aggregate measurements with pulse
frequencies that change as the individual load’s power draw changes, the Deltaflow server
characterizes the sensor’s response to changes in the power state of the load it is attached
to. The server uses these models of the sensors to perform calibrated disaggregation and
provide power draw estimates for the individual loads being monitored.

4.5.1 Dissagregation Methodology

The Deltaflow server receives two input streams: aggregate ground truth measurements (e.g.
Watt or Whr) and pulse frequencies from each sensor attached to the instrumented loads.
The server uses each of the pulse streams to decompose the aggregate measurements into
the contributions from each load.

4.5.1.1 Sensor Calibration

The server starts by trying to estimate a calibration function for each sensor. This calibration
function must be determined at runtime, and not a priori, for two main reasons: manufactur-
ing differences, and sensor placement, which is unknown until after installation yet affects
the response of the lighting Monjolo. We determine the sensor specific calibration function
by first noting that the sensor pulse frequency, si, of load i is a function of the power draw of
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load i

si = fi(pi) (4.5)

Examples of this relationship are shown for AC Monjolo sensors in Figure 4.11a and for
lighting Monjolos in Figure 4.5. Given that we know si and want to determine pi, we can
express the relationship as:

pi = f−1
i (si) = gi(si) (4.6)

Then, given a pulse rate, we can determine a power estimate for each sensed load using
the calibration function gi.

To determine each gi we use information about how the pulse streams change when the
aggregate measurements change. However, to avoid searching through the infinite space
of possible functions, we choose a general form of gi with which to work. We additionally
assume that the general form will be the same for every instance of a particular type of sensor.
Requiring foreknowledge of the function for each class of sensor is reasonable because it
can be determined once, at design time. This shifts the burden of configuration from sensor
users to manufacturers.

We use datasets of the Monjolo activation rates to estimate the sensor calibration function.
We find that the best-fit functions are second-order polynomials, and therefore make the
assumption that the calibration function can be approximated by a monotonically increasing
polynomial of degree two or less. Thus Equation 4.6 becomes:

pi = αis2
i +βisi + γi (4.7)

Now, to determine the calibration function, Deltaflow need only choose the coefficient
parameters αi, βi, and γi for each sensor that best fit with historical data.

4.5.1.2 Monjolo Sensors on Every Load

To determine the polynomial coefficients, we start with the simplest case: assume all n loads
comprising the aggregate are metered. If we let Mt be the ground truth aggregate meter
reading at time t and let si,t be the pulse frequency for sensor i attached to load i at time t,
then we have the relationship:

Mt =
n

∑
i=1

pi(si,t) (4.8)

Using the least squares method, let M be a vector of aggregate measurements Mt taken
at different times t. Let A be a matrix of calibration function terms derived from pulse
frequencies, where each row Ai is a vector of all the terms in each sensor’s calibration
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function at time t, stripped of their coefficients.

Ai =

[
s2

1,t s1,t 1 s2
2,t s2,t 1 . . . s2

n,t sn,t 1
]

(4.9)

Let −→x be the vector of coefficients where xi, j is the coefficient of the jth term in the
calibration function for sensor i.

−→x =

[
α1 β1 γ1 . . . αn βn γn

]
(4.10)

Given data points for aggregate power draw and sensor pulse frequencies from some m

different points in time, Equation 4.8 can be written in matrix form as:

M = A−→x (4.11)

M =


s2

1,t1 s1,t1 1 . . . s2
n,t1 sn,t1 1

s2
1,t2 s1,t2 1 . . . s2

n,t2 sn,t2 1
...

...
... . . . ...

...
...

s2
1,tm s1,tm 1 . . . s2

n,tm sn,tm 1





α1

β1

γ1
...

αn

βn

γn


(4.12)

With these definitions, we can formulate our optimization problem as:

min−→x
||M−A−→x ||22 (4.13)

The solution to this problem is the value of −→x —i.e. the set of coefficients for our
calibration functions—that gives load estimates that best match our aggregate readings.

Note that while our calibration functions may be non-linear, by providing the values of
each non-linear term we have reduced calibration to a linear least squares problem. Use of
the l2 norm makes the regression more susceptible to noisy outliers than the l1 norm, but
it is much easier to compute. Outlier identification techniques can be used if the system
converges to an unsatisfactory result.
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Figure 4.17: Effect of hidden loads. The change in aggregate power at time t0 is attributed
to the load metered by Sensor 1 whose frequency changes at that time. The aggregate also
changes at t1, but since neither sensor changes, we attribute the change at t1 to a hidden
load and ignore state C. This allows us to discard the effects of non-aliasing uninstrumented
hidden loads.

4.5.1.3 Compensating for Unmetered Loads

The above approach describes finding the calibration coefficients in the ideal case when all
loads are instrumented. Unfortunately, that approach does not work if even a single load is
left uninstrumented, as Equation 4.8 no longer holds. The aggregate Mt now becomes the
sum of both sensed loads and hidden loads.

Mt =
n

∑
i=1

pi(si,t)+
k

∑
i=1

hi,t (4.14)

Let us assume that there are no aliasing hidden loads—that is, no hidden load changes at
the same time as a sensed load. In that case, we can choose to select just those data points
that represent states where sensed loads changed. Figure 4.17 illustrates such a situation. At
time t0 the pulse frequency of Sensor 1 changes along with the aggregate. However, at time
t1, the aggregate changes but both Sensor 1 and Sensor 2’s frequencies stay the same. We
attribute the change in aggregate power to a hidden load and ignore state C. We examine
aliasing loads further in the discussion section.

For a data set in which between any two times t = 0 and t = 1 only sensed loads change,
the following holds true:

M1−M0 =

(
n

∑
i=1

pi(si,1)+
k

∑
i=1

hi,0

)
−

(
n

∑
i=1

pi(si,0)+
k

∑
i=1

hi,0

)

∆Mt =
n

∑
i=1

pi(si,1)− pi(si,0)

∆Mt =
n

∑
i=1

(αis2
i,1 +βisi,1 + γi)− (αis2

i,0 +βisi,0 + γi)
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∆Mt =
n

∑
i=1

αi(s2
i,1− s2

i,0)+βi(si,1− si,0) (4.15)

When calculating the change in estimated load power draw, the constant term γi drops
out of the model. However, due to the energy-harvesting nature of our pulse sensors, we
know that when the load power draw pi is zero, the pulse rate si is also zero. This means
that γi must be zero as well for all i. Our calibration function is now of the form:

pi = αis2
i +βisi (4.16)

If we define a new matrix ∆A such that

∆Ai =

[
(s2

1,t1− s2
1,t0) (s1,t1− s1,t0) . . .

]
(4.17)

then
∆A−→x = ∆M (4.18)

Solving the optimization problem

min−→x
||∆M−∆A−→x ||22 (4.19)

will give us the coefficients for all of the calibration functions. Many existing libraries
provide optimizers that can easily solve optimization problems of this formulation. In our
implementation we used the non-negative linear least squares function provided by Python’s
SciPy library.

4.5.1.4 State Identification

The data points used to construct the optimization problem critically determine the perfor-
mance of the regression. For example, when a load changes power states, the aggregate may
reflect the change sooner than the pulse sensor which only activates once enough energy has
accrued to power the sensor, thus causing a synchronization error. We find that identifying
steady states in the data (using heuristic thresholds) and selecting a median or mean data
point to represent the state compensates for this error. These data points are then used to
determine the deltas between distinct adjacent stable states when constructing the calibration
Equation 4.18.
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(c) Deltaflow Estimates

Load Ground Truth (Wh) Estimated (Wh) Error (%) Ground Truth (%) Estimated (%) Error (%)
(A) Desktop Computer 14.39 20.17 40.17 14.22 17.23 21.16
(B) 60 W Bulb 17.22 18.18 5.57 17.02 15.53 8.75
(C) 24” Monitor 16.63 23.8 43.11 16.44 20.33 23.66
(D) Smartphone 1.92 1.87 2.60 1.89 1.59 15.87
(E) 150 W Bulb 51.02 53.04 3.96 50.43 45.31 10.15

(d) Results

Figure 4.18: Deltaflow performance on a realistic tree of loads. Figure 4.18a shows the
hierarchy of loads and the corresponding sensors. Figure 4.18b shows the ground truth
power traces for the aggregate and each load. Figure 4.18c shows the Deltaflow estimates for
all five loads and an estimated aggregate for comparison purposes. Figure 4.18d shows the
breakdown of overall energy usage by each load and the estimate provided by Deltaflow, as
well as the percent of the total energy usage each load represents. While the error for loads
(C) and (E), which change power states at similar times, is high (>40%), Deltaflow handles
loads that transition independently successfully. Also, Deltaflow is able to successfully
integrate streams from multiple types of pulse counting sensors.

4.5.2 Deltaflow Performance

To evaluate Deltaflow, we mimic a realistic load tree as one might find in a residential or
commercial building by constructing a load hierarchy and instrument it with pulse sensors
as shown in Figure 4.18a. The five loads at the leaves of the tree are (A) desktop computer,
(B) 60 W incandescent light bulb, (C) 24” monitor, (D) smartphone charger, and (E) 150 W
incandescent light bulb. The 150 W light bulb is monitored with a lighting Monjolo sensor
and the other four loads are attached to AC Monjolo sensors. Three split-core current
transformer sensors monitor the aggregate and each main branch of the tree. Each load and
the aggregate is also metered with a ground truth meter, so we have full knowledge of the
power draws.

Figure 4.18b shows ground truth power for each load as well as the aggregate, and
Figure 4.18c shows the resulting estimates of power draw from the Deltaflow system and the
sum of the estimates to form an estimate of the aggregate. The primary error in Deltaflow’s
results is overestimation. Notably, between t = 20 min and t = 28 min, all loads except for
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(D) are off, causing the ground truth aggregate to be very low. However, Deltaflow estimates
the off loads at a higher power state, causing the estimated aggregate to be significantly
higher. This error primarily stems from the design of the pulse meters. When no current is
flowing to each load, the energy-harvesting pulse meters are unable to report any pulses.
Without data from the pulse streams, Deltaflow does not update its estimate for the load
power until it receives a new pulse, which it then uses to backfill the missing data. This
causes it to overestimate during periods in which most loads are turned off and there are no
transitions. To compensate for this error, heuristics could be added that predict the likelihood
the load is off given no incoming pulses and update the estimates accordingly. Alternately,
the pulse sensors could be modified to report their state if they detect a sudden loss in
harvestable energy income.

To quantify how Deltaflow performs in a use-case likely to be relevant to consumers, we
explore how well Deltaflow estimates kilowatt-hours (kWh), the unit of energy by which
consumers typically buy their electricity. Further, we evaluate how well Deltaflow is able
to disaggregate the total kWh consumed into the percent contribution of each load. This
information would be particularly useful for a consumer to determine where to direct effort
when seeking energy efficiencies. Figure 4.18d shows this breakdown. The percent error of
the estimated kWh values for loads (B), (D), (E) is under 6%. These loads tended to change
independently of other loads, allowing Deltaflow to better determine their calibration func-
tions and disaggregate the total to these loads. Loads (A) and (C), however, are likely used
together and transitioned power states at similar times. This adversely affects Deltaflow’s
ability to successfully disambiguate two loads leading to the relatively high (¿ 40%) errors in
the kWh estimation. These errors would likely be reduced with a longer running experiment
that exhibits a greater number of transitions that Deltaflow could use for calibration.

Also included in Figure 4.18d is a breakdown of each load based on the fraction of
the total kWh each load consumes. While the errors in absolute kWh are still present
in the breakdown, general trends about load consumption are still clear in the Deltaflow
estimates: load (E) dominates the contributions of the other loads, loads (A), (B), and (C)
have approximately the same contribution, and load (D) is an insignificant fraction of the
total. These results show that Deltaflow supports critical comparative analyses of this nature
that are essential for determining how best to invest constrained resources toward increasing
efficiencies.

Figure 4.18 also demonstrates the effectiveness of integrating pulse meters that are based
on different types of sensors and energy-harvesting front ends. Monitoring load (E) with
only a lighting Monjolo node does not hinder Deltaflow’s ability to disaggregate the load.
Although we use only three different kind of pulse sensors in these experiments, we envision
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many other kinds might be used in the future to monitor not only electricity, but water and
gas as well.

4.6 Summary

With Monjolo, we show that for a certain class of energy sensing, an effective sensor can
be derived from the energy-harvester itself. This enables very simple sensor hardware that
drives down the cost of energy sensing and enables simple and straightforward deployments.
Each meter uses a broadcast packet to reach a nearby gateway which can then calculate the
packet rate. This broadcast communication technique demonstrates another aspect of the
thesis statement that enables nodes to address energy intermittency and unpredictability.
Monjolo also provides a template for adapting the method to other energy consumption
points by choosing a different energy-harvester. We also show how incorporating a single
aggregate meter into the system can lead to increased performance of the Monjolo sensors.
For AC energy metering, Monjolo excels at the circuit level where it can be easily clipped
around a wire in a circuit panel. However, because the AC Monjolo does not have access to
the voltage channel, its accuracy suffers with non-unity load power factors. More extensive
calibration on a per-load basis can compensate for this reduced accuracy, but that increases
the deployment complexity and cost.

In Chapter 5, we build on the baseline AC Monjolo meter by embracing the aspects that
ease deployability, namely the clip-on, non-contact metering frontend, while adding a virtu-
alized voltage technique that provides the meter with the AC voltage waveform parameters.
This allows for much better accuracy without runtime or load-specific calibration.
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CHAPTER 5

Gemini: Accurate Non-Contact Power Metering
by Virtualizing Voltage

Adding energy-harvesting to indoor sensors can enable maintenance-free operation and
opportunities for greater scale than with battery or wall-powered sensor nodes. In the context
of buildings, one important feature to measure is the electricity consumption of loads. Access
to real-time power measurements can direct energy reduction efforts, identify equipment
faults, and enable new smart building applications. A major challenge to deploying existing
meters at building scales is the cost of both the meters themselves and their installation.
Many existing meters require panel box replacement, require shutting off power, or require
a calibration process. These factors significantly increase the barrier of entry to obtaining
power meter data in existing buildings that are not submetered.

New power meter designs may be able to address some of these issues. As Chapter 4
notes, energy-harvesting in the context of AC electricity metering can enable current trans-
former (CT) based non-contact meters that easily clip around the wire to be measured. This
form-factor can easily fit inside of existing panel boxes and is non-disruptive because it does
not require a circuit panel shutdown. With the AC Monjolo design, however, measurement
accuracy for loads with non unity power factors suffers because the Monjolo sensor only
observes current and has no access to the voltage channel. True power measurement requires
time synchronized sample-by-sample multiplication of the current and voltage waveforms,
and without voltage data any phase shift between the two signals will result in potentially
significant errors in the power calculation.

Gemini addresses this issue by enabling an energy-harvesting current-only sensor to
obtain a representation of the voltage channel. The sensor can then reconstruct the voltage
signal locally and perform a true power measurement. This increases the accuracy of the
power measurements while perserving the clip-on, non-contact deployability benefits of
the Monjolo design. Also, because Gemini uses a CT for both harvesting and current
measurement, it can directly measure the current waveform and therefore does not require

62



EH

EH

EH

Load B

Load A

Load C

AC

V? VAC<A,φ>

Receiver

Cloud

Power

1

2

3

IAC

IAC
IAC

VAC V

Figure 5.1: Gemini overview. A single voltage monitor (V) continuously monitors the voltage
channel of the AC circuit. Energy-harvesting power meters (EH) use current transformers to
meter each load. To calculate true power, the EH meter requests the voltage parameters from
the voltage monitor, samples the local current waveform, synthesizes the voltage waveform,
computes power, and transmits the result to a receiver which forwards the data to the cloud.
Maintaining timing across domains is key to the success of this approach.

runtime calibration after the meter is installed.
The key to achieving this functionality is virtualizing the voltage channel, wirelessly

transmitting it, and ensuring it is correctly phase-aligned with the current channel. This
enables a non-contact meter which cannot measure voltage directly to still calculate true
power. The remainder of this chapter describes the core components of the system, how
current and voltage are synchronized on the energy-harvesting node, and the resulting
accuracy of the system.

5.1 Gemini: Decoupling Voltage and Current Measure-
ment

In contrast to traditionally integrated power meters, Gemini’s design employs distributed
voltage and energy-harvesting current monitors, connected wirelessly, to cooperatively
calculate power. Distributing the current and voltage acquisition in this way greatly simplifies
the installation of power meters as the two signals are often not easily accessible in the same
location.

Figure 5.1 shows the primary components of the system, the voltage monitor (V) and the
energy-harvesting power meter (EH), which work in tandem to measure power. The voltage
monitor continuously monitors the voltage channel and provides a virtualized representation
of the voltage waveform to the energy-harvesting nodes on-demand. Each energy-harvesting
node measures its local current waveform and multiplies that by the voltage waveform
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(a) 40 W Incandescent

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0  5  10  15  20  25  30  35  40  45  50
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

V
o
lt
a
g
e
 (

V
)

C
u
rr

e
n
t 
(A

)

Time (ms)
Voltage Current

(b) AC Fan

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0  5  10  15  20  25  30  35  40  45  50
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

V
o
lt
a
g
e
 (

V
)

C
u
rr

e
n
t 
(A

)

Time (ms)
Voltage Current

(c) 3D Printer
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(d) Refrigerator
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(e) MacBook Pro
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(f) Dimmed Light Bulb
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(h) Audio Receiver

Figure 5.2: Voltage and current waveforms of eight loads. The current waveforms vary
wildly, but the voltage waveforms are consistently sinusoidal and can be represented by one
or just a few Fourier coefficients. The sinusoidal nature of the voltage waveform makes it
a better candidate to be virtualized, thus supporting our architectural choice to virtualize
voltage.

obtained from the voltage monitor to calculate true power. The energy-harvesting node then
transmits the power data to the cloud via a receiver.

5.1.1 Virtualizing Voltage

To realize this split metering architecture, and to successfully calculate power with Gemini,
either the current measuring device must learn about the voltage waveform from the voltage
monitor or vice-versa. In our design, we transmit information about the voltage waveform to
the current sensor to calculate power. The reason for this is that the voltage channel is more
easily parametrized than the current channel. That is, voltage can be modeled with phase
information and one or a few Fourier coefficients. Figure 5.2 provides some intuition for
this distinction by showing the voltage and current waveforms for several loads. The voltage
waveform is consistently sinusoidal while the current exhibits significant harmonic distortion.
Because sending raw waveform samples is infeasible due to limited packet payloads and
energy resources, virtualizing the voltage channel and transmitting its smaller parameter set
is the preferred approach.

Another tenet of the Gemini design is that only a small number of voltage monitoring
sensors are required to support a much larger number of current sensing power meters. This
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Figure 5.3: Comparison of two voltage waveforms at physically disparate points in the same
electrical system. Measuring the voltage at two different loads with different power draws
on different circuits tapped off of the same leg of a transformer results in voltage waveforms
that are nearly identical. This suggests that measuring voltage at a single watchpoint is
sufficient for calculating the power draw of multiple loads.

holds if the local voltage measurement can be replaced with a voltage measurement obtained
elsewhere in the load tree. To verify this, we sample the voltage waveform at two points
on the same leg of a transformer from two different circuits behind two different electrical
panels with a 300 W load on one point and a 1.5 kW load on the other. The resulting voltage
waveforms are shown in Figure 5.3. The waveforms show no phase distortion and a slight
amplitude variation, suggesting that remotely sensing voltage is viable. One other important
factor related to voltage measurement is that the phase of the voltage channel local to the
power meter (which is not measured) must match the phase of the virtualized voltage channel
used for power calculation.

5.1.2 Energy-Harvesting

To meet the ease-of-installation constraint, the current sensor must be able to sample the
current waveform while remaining non-contact. To power the sensor, we are unable to use an
AC mains based AC-DC converter because that requires tapping into the circuit, and we do
not use batteries because of their size and the maintenance burden of replacing them. Instead,
we use an energy-harvesting power supply that uses the output of a current transformer to
charge a capacitor. This approach is largely borrowed from the Monjolo meter [21].

This power supply is necessarily intermittent; harvesting from a current transformer does
not supply sufficient power to run a sensor node continuously. It is also unpredictable, as
variable-power loads will alter the operation of the harvester. This causes the power supply
to limit the sample rate of the meter based on how quickly and often it can recharge.
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Figure 5.4: Voltage and current waveforms. Ground truth current and voltage waveforms are
shown above their synthesized/sampled counterparts. The voltage waveform is synthesized
from the parameters sent by the voltage monitor and the current waveform is sampled from
the current transformer monitoring the load. The discrete waveforms are multiplied together,
point-by-point, to compute the load’s power draw.

5.1.3 Power Meter System Operation

Power is calculated by the energy-harvesting current sensor. The sensor begins by requesting
information about the voltage channel from an always-on voltage monitor. After sending
the request, it samples the current waveform until the voltage monitor responds. It then
synthesizes a discrete representation of the voltage channel properly phase-aligned to the
sampled current waveform, as shown in Figure 5.4. It multiplies the voltage and current
samples together and averages them to find the instantaneous power draw of the load.
Harvested energy permitting, the current sensor sends the power measurement to a receiver
which timestamps and forwards the data to the cloud, otherwise the sample is stored for
future transmission.

The receiver is an always-on listener that may be a dedicated gateway for the low-power
wireless network or it may be a mains-powered node, such as a voltage monitor, which can
forward the packet on behalf of the meter.
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(a) Voltage Monitor (b) Energy-Harvesting Node

Figure 5.5: Sensing hardware prototypes. The voltage monitor is a plug-load form-factor
meter that can plug in to an outlet near a circuit panel box to retrieve the local voltage
signal. The energy-harvesting node is prototyped with a solid-core current transformer but
the hardware design extends to a split-core CT without modification.

5.2 Implementation Details

This section describes the hardware components that comprise the voltage and current
sensors, as well as specifics of the software algorithms running on the meters.

5.2.1 Voltage Monitor

The voltage monitor continuously records and can on-demand report parameters of its local
AC voltage signal. Our implementation uses a TI CC2538 SoC [130] for computation and
wireless communication, and an Analog Devices ADE7753 [2] for AC voltage waveform
analysis.

The voltage monitor stores the peak voltage of the most recent AC cycle and locally
timestamps the most recent rising zero-crossing of the voltage waveform. This allows the
voltage monitor to make a simple parametrization with the phase and magnitude of the
voltage waveform for dissemination to interested clients. The ADE7753 also provides
access to digital samples of the entire voltage waveform allowing for more sophisticated
parametrizing schemes to be used in the future.

The voltage monitor provides the parametrized voltage information as a service. An
interested client sends a wireless packet to the voltage monitor requesting the parametrized
values. The monitor immediately replies with the magnitude and phase of the voltage signal.
Because we do not assume a synchronized timebase between the client and monitor, the
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Figure 5.6: Transmitting AC voltage phase information. After the energy-harvesting node
requests the voltage parameters, the voltage monitor responds with parameters of the voltage
waveform such as Fourier coefficients, phase, and frequency. Phase is encoded as the time
offset (t0) between the response packet’s SFD signal and the voltage signal’s most recently
rising zero-crossing. The energy-harvesting node uses its local timestamp of the SFD signal
to phase align the current waveform samples to the voltage channel without requiring
synchronized clocks.

phase information is transmitted as a time offset between the start of frame delimiter (SFD)
signal of the outgoing reply packet and the most recent rising zero-crossing of the voltage
waveform, as shown in Figure 5.6. The transmitter and receiver establish a common time
reference by assuming the SFD signal asserts simultaneously on both devices.

The receiver uses its local SFD timestamp and the rising zero-crossing time offset
provided by the voltage monitor to align the voltage and current waveforms. Any delays in
packet transmission and processing are ignored because all offsets are calculated from the
synchronized SFD signal.

5.2.2 Energy-Harvesting Current Sensor and Power Meter

The energy-harvesting device (Figure 5.7) is responsible for sampling the AC current
waveform and calculating the instantaneous power draw of the load or circuit.

5.2.2.1 Power Supply and Coil Circuit

The energy-harvesting power supply is based on the Monjolo power meter’s design [21].
The harvesting source is the AC output of a current transformer that is wrapped with 10
windings of the AC phase line. This AC signal is fed to a Linear Technology LTC3588 [76].
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Figure 5.8: Energy-harvesting operation. VCAP is the voltage on the 600 µF capacitor and
VCC is the 3.3 V supply voltage.

The LTC3588 is configured to charge a 600 µF capacitor bank to 5.25 V and then enable
a 3.3 V output regulator that powers the main system. When the main storage capacitors
discharge to below 3.8 V, the regulator is disabled, the storage capacitors begin recharging,
and the system runs on the charge stored in the 57 µF output capacitor until the voltage
drops too low and the system is forced off. One iteration of this cycle is shown in Figure 5.8.

In our implementation, a second current transformer is used for sampling the current
waveform. The output of this current transformer is connected across a burden resistor and
fed first into a biasing circuit and then into an ADC (shown in the top of Figure 5.7). The
burden resistor affects the scaling factor between the actual current waveform and the current
transformer output and increasing the burden resistor increases the peak-to-peak output
voltage. To ensure sufficient resolution of the voltage signal from small primary loads we
use a 160 Ω resistor. Selecting a smaller burden resistor is necessary for larger loads as the
ADC saturates. The biasing circuit is required to shift the output of the current transformer
from being centered around 0 V to being centered around 1.65 V. This ensures that all output
waveforms up to 3.3 V peak-to-peak can be successfully sampled by the ADC.
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Figure 5.9: State machine for the energy-harvesting power meter. Nodes use the timing
capacitor to rate-limit sampling and determine when to compute power.

5.2.2.2 Computation Core

The energy-harvesting node is based on the Epic sensor node module [32] which provides a
microprocessor and radio. Our design adds a 4 Kb Cypress FM25L04B FRAM module [20]
for persistent storage between activations, and a parallel resistor-capacitor circuit for roughly
timing the period of activations to rate-limit activations for high-power loads, as in the
Monjolo design [21].

5.2.2.3 Operation

The energy-harvesting node’s operation follows the state machine shown in Figure 5.9.
Upon activation, it reads the FRAM to determine if a power measurement was calculated on
the previous activation and needs to be transmitted. If so, it transmits the power value to a
receiver, transitions to the done state, and waits for the power supply to exhaust. If there is
no stored power result, the node samples the voltage of the timing capacitor to determine
the approximate elapsed time since the last activation. If the capacitor voltage is above a
threshold, the node simply sits idle until the power supply capacitors discharge and the node
is forced off again. If the voltage is below the threshold, the node continues operating. This
rate-limiting prevents a node from saturating the wireless channel by transmitting packets
too frequently. We size the timing resistor and capacitor to limit power calculations to no
more than once every five seconds.

When an energy-harvesting node determines that it should calculate power, it requests
the voltage parameters from a voltage monitor. After transmitting the request, it begins
sampling the current waveform every 40 µs while awaiting a response from the voltage
monitor. The response from the voltage monitor arrives approximately 16 milliseconds after
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the request, which allows the energy-harvesting node to sample a full period of the current
waveform. Upon packet reception, the energy-harvesting node ceases sampling and begins
calculating the average power over the prior AC period.

The response packet from the voltage monitor contains the offset from the SFD signal
of the response to the last rising zero-crossing of the voltage waveform in terms of the
local clock on the voltage monitor. To convert that offset to the local clock of the energy-
harvesting node, the node computes the number of current waveform samples since the
voltage zero-crossing. It then uses a precomputed array of sine wave samples to multiply
the current waveform samples with the synthetic voltage waveform to obtain the power
waveform. The power waveform samples are then averaged to calculate the average power
draw. Due to the limited energy budget from the energy-harvesting power supply, the power
calculation is stored in FRAM and not transmitted immediately. On the next activation the
result is transmitted to the cloud. This imposes a small time delay for the power measurement
but allows the system to operate within its energy budget.

5.3 Gemini Evaluation

Evaluating the Gemini power metering system focuses on the accuracy of the meter, but also
covers how timing errors and current-voltage mismatch errors affect the system.

5.3.1 Accuracy: 8.7% Average Error, 2.2 W Absolute Error

To evaluate Gemini’s performance as a power meter, we sweep over a range of resistive
loads (i.e. loads with unity power factor) and measure how well Gemini tracks ground
truth (as measured with a PLM-1LP [103]), as shown in Figure 5.10. For resistive loads
below 5 W the energy-harvesting meter is unable to accumulate enough energy to activate.
Between 5 and 95 W, the estimated power tracks ground truth well with an average absolute
error of 0.61 W and average percent error of 1.2%. Above 95 W the peak-to-peak output of
the current transformer exceeds the 3.3 V ADC reference and clips, causing greater error.
Reducing the value of the burden resistor would allow for these larger loads to be metered.

While Gemini performs well for purely resistive loads (such as incandescent light bulbs),
many loads do not have a unity power factor and a purely sinusoidal current waveform. To
evaluate Gemini with such loads, we meter four AC loads with both Gemini and a ground
truth power meter. The experimental traces are displayed in Figure 5.11.

3D Printer. The printer starts in an idle state before heating the extruder head between
minutes four and six, then actively prints before returning to idle at minute 24. Gemini tracks
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Figure 5.10: Accuracy over a range of resistive loads. We meter a range of loads with a
unity power factor using Gemini. The x-axis shows the ground truth power draw of the
load. In the bottom graph, Gemini’s estimate is overlaid on the line representing an ideal
device. The middle graph shows the percent error of the estimate, and the top graph shows
the absolute error of the estimate. The average percent error is 1.2% and the average absolute
error is 0.61 W. The error grows when the load is greater than 95 W due to ADC clipping of
the current waveform. These results demonstrate that Gemini is a viable power meter for
resistive loads.
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(c) Smartphone Charge

 0

 30

 60

 90

 120

 150

 0  10  20  30  40  50  60  70  80
 0

 20

 40

 60

 80

 100

P
o
w

e
r 

(W
)

%

Time (m)
% Error
Power

PF
Estimated

(d) Desktop

Figure 5.11: Power metering accuracy for four real-world loads. We meter four loads with a
ground truth meter and Gemini. Gemini is able to mirror ground truth well with the highest
error appearing when loads either rapidly change power draw or when loads draw very little
power (e.g. drawing ~1 W). For instance, because (c) has a low power draw, the average
percent error is relatively high at 17.2%, but the average absolute error is only 1.0 W. The
highest average absolute error is 4.9 W for (d), mostly due to the current waveform clipping
after the 55 minute mark. These test cases demonstrate Gemini’s viability as a power meter
for real-world loads that operate within Gemini’s (configurable) operating range.

these transitions well, even being able to sample the increasing power transition between
idle and heating. Rapid swings in the power draw between 50 and 70 W cause spikes in
Gemini’s percent error as the energy-harvesting power supply limits the sample rate of
Gemini causing spikes to be reported late or missed all together. Overall, however, Gemini
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reports an average percent error of 4.9% and an average absolute error of 2.2 W.
24” LCD Monitor. The monitor is cycled between the on, off, on, and standby modes.

During the on mode, Gemini is quite accurate with an average error of 0.85% and average
absolute error of 0.67 W. In the standby and off modes Gemini overestimates, but the overall
total average error is still only 9.7% and 0.68 W. A key result of this test is that Gemini
continues to operate even when the monitor is drawing only 0.5 W in the low power states.

Charging Smartphone. In this test the power factor is roughly constant at 0.58. Again
Gemini tracks the slowly decreasing power draw well. The average percent error is relatively
high at 17.2%, but because phone chargers draw little power, the overall average absolute
error is only 1.0 W.

Desktop Computer. The final load is a desktop computer that starts in sleep mode, enters
normal operation for 55 minutes and then plays video for 20 minutes. At the beginning, the
energy-harvesting power meter is able to activate even as the load draws only 1.1 W. During
normal operation, Gemini performs well, albeit with the same spikes in error as the load
power changes rapidly like in the 3D printer case. In the final phase of the test, when the
desktop plays a video, Gemini underestimates slightly. This is, as in the fully resistive case,
due to clipping of the current waveform when sampling it with the ADC. Even with the
clipping error, however, the overall average error is 6.3% and 4.9 W.

For a rough comparison of Gemini’s error to commercially available meters, we compare
the reported specifications of several of them with the empirical data collected using Gemini.
The Watts Up? .Net [142] claims a 1.5% error, the Kill-A-Watt [68] reports a 0.2% error,
and the PLM-1LP [103], our ground-truth meter, cites a 0.5% error.

5.3.2 Misaligned Current and Voltage Errors

The Gemini design hinges on the accurate transfer of timing information about the phase of
the voltage waveform from the voltage monitor to the energy-harvesting meter. Timing errors
due to clock offsets, clock drift, or queuing delays cause phase errors between the synthesized
voltage and sampled current waveforms on the energy-harvesting meter, resulting in power
calculation errors. To characterize the effect of such errors, we introduce artificial timing
delays by shifting the voltage waveform when calculating the average power of the eight
loads in Figure 5.2. Figure 5.12 shows power estimation error as a function of the timing
error. In the extreme, with ±180° phase error, or 8.33 ms timing error, we observe at least
200% error in the power calculation. This demonstrates that minimizing timing error is
critical to Gemini’s operation.
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Figure 5.12: Effect of timing offsets when calculating power. Even 1 ms of phase error can
result in 50% measurement error.

5.3.3 Correctly Matching Current and Voltage

Buildings typically have two- or three-phase power systems, meaning circuits on different
legs of the transformer will have voltage phase offsets between them. In order to correctly
calculate power, Gemini must match the correct voltage phase to the load being metered.
Loads with a highly displacement based power factor could make selecting the correct voltage
channel ambiguous. In practice, however, two factors make this type of error unlikely. First,
many loads have switching power supplies which exhibit harmonic distortion to their current
waveforms but little displacement. Second, higher power loads are required to include power
factor correction which manipulates the current waveform to appear more like a resistive
load.

5.3.4 Design Limitation

The Gemini design demonstrates that with proper attention to detail, simple versions of
complex protocols (e.g. time synchronization) are possible in small energy-harvesting
systems. This capability is particularly advantageous for circuit level power metering because
the non-contact nature of the sensor eases installation complexity. However, the design still
has a number of drawbacks. First, the meter relies on a wireless link between the current
and voltage sensors. If this link is disrupted due to interference, or the voltage monitor is
placed too far away from the current sensor, Gemini fails to successfully take measurements.
Additionally, Gemini leverages two current transformers: one for the harvesting and one for
current sensing. This adds cost and size, making deploying the sensors more difficult.
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Figure 5.13: Power calculations with different phase errors. The instantaneous power for
the eight loads in Figure 5.2 is calculated with the current and voltage waveforms correctly
aligned and with the current waveform shifted as would happen if the incorrect voltage leg
of a transformer was used. In all eight cases the correct result is the greatest positive result,
suggesting that using max() as a heuristic is often sufficient for correctly selecting the
voltage channel

5.4 Summary

Existing power meters are limited in their ability to solve the critical problem of electrical
submetering in buildings. Installation challenges, maintenance headaches, and metering ac-
curacy hamper the widespread adoption of submetering. Gemini addresses these challenges
by offering clip-on installation, energy-harvesting operation, and accurate power measure-
ment. Gemini combines virtual sensors and energy-harvesting meters to yield a novel design
point in the metering space. Gemini also addresses the drawbacks with prior approaches
by decoupling and distributing the AC voltage and current measurement acquisitions, and
recombining them over a low-bandwidth, time-synchronized, wireless channel, to offer non-
invasive real, reactive, and apparent power metering. By strategically avoiding more complex
time synchronization schemes and instead leveraging the synchronization possible with a
single wireless packet, Gemini is able to provide accurate results on an energy-harvesting
energy budget. This supports the thesis statement by showing one example of deferring
energy-intensive operations to enable an energy-harvesting sensor. Gemini represents a
significant advancement from previous designs that are difficult to install, require periodic
battery maintenance, or cannot calculate true power.

However, Gemini does still require a two part installation (the current meters and the
voltage monitor), and wireless contention in rooms with many circuits could cause system
failures in real-world scenarios. Further, correctly matching voltage and current phases
could present a significant deployment challenge. The next chapter on the Triumvi meter
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attempts to address these concerns. Triumvi is a truly standalone meter that leverages the
deployability benefits of the Gemini and Monjolo energy-harvesting meters.
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CHAPTER 6

Triumvi: A Truly Deployable Energy-Harvesting
Power Meter

The Gemini design demonstrates that by fine-tuning the relationship between sensor opera-
tion and physical properties of the underlying phenomenon, energy-harvesting sensors can
be accurate and reliable, and even have better deployability properties than other designs.
With AC power metering specifically, the total cost of obtaining the data is often dominated
by installation costs and not by the meters themselves. Many systems require invasive
installations, often including interrupting the power, wiring to and possibly adding new
circuit breakers, and even adding a new panel box. This chapter introduces Triumvi, a new
approach that is a completely standalone meter that harvests energy to power itself, meters
current and detects voltage phase locally, calculates true power, and encrypts the data before
wirelessly transmitting it. This enables Triumvi to simply clip around wires in a panel box,
allowing a circuit to be metered in less than 30 seconds.

The Triumvi design is inspired by previous investigations into the power metering design
space, but is the first meter to address the challenges of integrating the subsystems while
improving on every facet from previous designs. Compared to previous power meters,
Triumvi is smaller, requires fewer capacitors, requires only a single current transformer,
does not require runtime calibration, adds a switching circuit for repurposing the current
transformer, provides data confidentiality, and ensures reliable accuracy, all while eliminating
the limitations of previous designs that prevent promising systems from being deployable.

The fully non-contact, self-powered Triumvi device can operate as a long-term instrument
inside of a circuit panel. Triumvi’s simple clip-on installation, and its expansion ports,
however, allow Triumvi to extend to other deployment paradigms as well. For instance, a
group of Triumvi sensors could perform “energy audits” to collect short-term data without
the expense and overhead of installing a built-in panel meter, or to meter key circuits of
interest. Triumvi also includes an optional expansion pack with a battery to enable short-
or medium-term deployments while mitigating the variability inherit to energy-harvesting.
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Figure 6.1: Triumvi system overview. Meters clip to wires exiting circuit breakers and harvest
energy to power themselves, detect voltage phase, sample AC current, and wirelessly transmit
true power measurements. Optionally, they share charge, measure synchronously, or use
an external voltage signal or power source. The nearby gateway collects the measurements
and publishes them to local users, existing BMS/SCADA systems, local storage, or cloud
services. This metering system, with its easy-to-install sensors that support flexible metering
options, leverages the benefits of energy-harvesting operation to make effective circuit-level
energy meters.

The expansion ports also allow Triumvi to adapt how it senses, for example by converting
the meter to a three-phase meter. By extending the Triumvi design to a metering platform,
Triumvi enables a high degree of deployment versatility.

6.1 Triumvi: Standalone Meter with Integrated IV Sens-
ing

The accuracy and deployability goals of Triumvi inform the three main requirements of the
meter:

1. That it be an accurate true power meter.
2. That it be non-contact.
3. That it be standalone.

Each requirement has a particular effect on the design. The first, accuracy, requires sample-by-
sample multiplication of voltage and current waveforms to calculate true power. Therefore,
Triumvi must have access to both the current and voltage waveforms. In order to be non-
contact and easily clipped around a circuit inside of a panel box, Triumvi must not use a
traditional AC-DC power supply which requires direct contact to the AC mains. And to be a
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standalone device it must be capable of calculating power on its own to reduce complexity
and cost.

The result is a design consisting of three main components illustrated in Figure 6.2: an
energy-harvesting power supply based on a current transformer, a circuit for repurposing the
current transformer for current measurement, and a capacitive coupling circuit for measuring
voltage. Energy-harvesting allows the meter to be non-contact, while the current and voltage
sampling circuits allow it to be accurate and standalone.

6.1.1 Energy-Harvesting Power Supply

The energy-harvesting power supply is responsible for powering the sensing and communica-
tion cores of the device. Harvesting is based on rectifying the output of a current transformer
(CT) that is clipped around the AC phase line running to a breaker in a circuit panel. When
the circuit is drawing current the electromagnetic field it generates induces a current in
the transformer, which is rectified and used to charge a bank of capacitors. This design is
extended from previous work [13, 21] that uses current transformers for energy-harvesting.

By harvesting energy to power itself, Triumvi avoids issues with other power sources.
First, it removes the need for the meters to be wired to a power supply. This supply may be
a breaker, which likely adds the expense of an electrician to install it, or an external power
supply plugged into a nearby outlet, which may not be available. Alternatively, the meters
could be battery powered, which permits the standalone form factor, but imposes a lifetime
constraint and maintenance requirement.

In certain cases, however, these alternative power sources may be advantageous. The main
drawback to energy-harvesting from the AC lines is that harvestable energy is proportional
to load current, and as a result the maximum sample rate of the meter is dictated by the
load of the circuit. Short-term deployments may be able to avoid this limitation by making
use of a battery (and the provided reliable sampling interval) as long as the deployment
is within the battery’s lifetime. Deployments with stricter sampling requirements needs
may be willing to forgo some of the deployment simplicity of the base Triumvi system by
wiring a dedicated power source to each meter to ensure a consistent sample rate. Therefore,
we ensure the Triumvi platform includes support for these options. External power from a
battery or dedicated supply can be provided through the expansion header on the Triumvi
board.
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Figure 6.2: Triumvi system block diagram. The three main system components (harvesting,
current, and voltage) use inputs from the split-core current transformer and voltage sense
conductor to provide the processing core power, and scaled current and voltage signals, to
compute AC power. The core’s real-time clock (RTC) and low-energy memory (FRAM) can
time-stamp and store data locally when the network is unavailable. An expansion header
allows external voltages to be used (for the voltage channel signal or to power the meter, if
higher accuracy or resolution is required).

6.1.2 Multiplexing the Current Transformer

Triumvi uses the same current transformer from the power supply circuit to also measure
current. Triumvi is able to selectively enable a burden resistor across the CT inputs to
facilitate accurate point-by-point sampling of the current channel. The key to enabling the
burden resistor while maximizing harvesting capability is careful design of the circuit that
switches between the two modes. Simply inserting FETs between the CT and burden resistor
is insufficient as the CT output voltage can be too high to reliably enable or disable the
FETs, causing leakage that prevents harvesting or affects current measurements. Instead,
our design is able to completely disable the burden resistor when harvesting.

When measuring current, the output of the CT with the burden resistor is fed into an
instrumentation amplifier. The amplifier biases the CT output around the midpoint of the
ADC that is sampling the signal. The microcontroller can now measure current simply by
sampling the ADC.

Triumvi’s ability to multiplex the current transformer is critical for the meter to achieve
its goals, as no other options for acquiring the current signal are sufficient. Using a second
CT—one for harvesting and one for sampling—would make the device too large to easily
install, and add cost. Using a shunt resistor requires direct contact to the circuit, and using a
sensor, like a hall effect sensor, to detect the electromagnetic field would reduce accuracy
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and impose a calibration step, both of which are unacceptable for a deployable power meter.
Therefore, Triumvi must implement the multiplexing circuit, even with the slight interference
the additional circuitry adds to the CT signal.

6.1.3 Voltage Measurement

Real-time access to the AC voltage channel is critical for power meters to be able to
accurately meter loads with non-unity power factors. Triumvi uses a capacitive voltage
sensing technique where a flat conductor is placed near the wire to be metered runs. This
forms a capacitor between the sensing conductor and the wire.

Lorek et al. [77] used a similar design for monitoring voltage on the outside of the breaker
itself, and demonstrated that this technique can accurately measure voltage with about 1%
error. However, this measurement technique does require calibration, as the geometry of
the breaker, the layout of the sensing device, and the installation placement all affect the
measurement. In Triumvi’s case, the gauge of the wire and the orientation of the wire running
through the CT affect the measurements. To remove the need to perform runtime calibration
of the voltage input, we extract only phase information from the voltage signal. The phase
of the voltage signal is less affected by orientation than the amplitude.

To extract phase, the raw signal from the capacitive voltage monitor is amplified and
biased around VCC/2. This is fed into a comparator which outputs a square wave where each
transition marks a zero crossing of the AC voltage signal. This entire voltage monitoring
circuit is power gated until voltage measurements are needed.

From the phase information, Triumvi assumes a sinusoidal voltage signal at the nominal
voltage amplitude. Prior work has shown that the voltage signal remains sinusoidal even
with the presence of large loads [13, 116]. Amplitude, however, does vary over the course
of a day, causing some error in the resulting power calculation. While present, this error is
substantially less that the error resulting from not having voltage phase information. We
predefine the nominal voltage of the circuit to be measured when programming the Triumvi
device.

As with the current measurement, this method of acquiring voltage is the only viable
option for Triumvi. The traditional method, direct contact, is not feasible given deployment
constraints, and virtualization of the signal (as in Gemini [13]) imposes too many failure
points by distributing voltage acquisition. The capacitive coupling technique, while itself
limited, is the best available option.
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Figure 6.3: Triumvi state machine. Once Triumvi has booted due to sufficient energy, it
iterates through setup, measure, and reporting phases before waiting for its energy store to
replenish.

6.1.4 System Operation

Triumvi follows the state machine shown in Figure 6.3. The device starts in harvesting
mode and charges the storage capacitor until it has accumulated enough energy to perform a
measurement.

When this threshold has been met Triumvi first enables the voltage measurement circuit
and allows it to stabilize. Next, the system enables the current measurement circuit—which
disables harvesting—and again waits for stabilization. With the voltage and current mea-
surement circuits enabled, Triumvi begins sampling the current waveform after the next
rising zero-crossing of the voltage signal, which synchronizes the two signals. After sam-
pling for one AC cycle, Triumvi disables the voltage and current measurement circuits and
Triumvi begins computing power. When the result is ready, it encrypts the measurement and
wirelessly transmits the payload.

After completing the entire measurement, the microcontroller enters sleep mode and sets
a timer to wake itself for the next measurement. If there is sufficient harvesting during this
period the sample will occur normally, otherwise the microcontroller will be powered off
and will reboot when energy is available.

Triumvi includes two extensions to the base system operation. First, Triumvi includes
onboard non-volatile storage and can store measurements rather than transmitting after
every sample. This allows Triumvi to collect samples and transmit less frequently. Locally
storing is a less energy-intensive operation than transmitting, allowing Triumvi to increase
its sample rate, at the cost of less real-time operation. Further, Triumvi can maximize its
sample rate by only locally storing measurements, which can be downloaded later.

Additionally, Triumvi includes a real-time clock (RTC). This allows Triumvi to not only
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(a) Config Board (b) Expanded Meter (c) High Current Meter

Figure 6.4: Triumvi configuration expansion board and high current version. This configu-
ration attachment contains three knobs for setting which panel the meter is in, and which
circuit it is metering. It also includes an optional battery, a recharging circuit, and 2.5 mm and
3.5 mm jacks for charge sharing, synchronous measurements, external power, and external
voltage waveform signals. The large load meter can measure 20 A to 1000 A loads.

store power measurements, but also energy accumulation. The RTC is also powered by a
supercapacitor, enabling it to keep time even if Triumvi is unable to harvest, which preserves
the accuracy of the total accumulated energy. Calculating energy allows Triumvi to provide
two additional services. First, recording and transmitting energy values helps mitigate issues
resulting from dropped packet transmissions. While a dropped packet causes a loss in the
resolution of the power metering data, transmitting accumulated energy in addition allows
the backend system to determine the average power when packets are missed. The second
service Triumvi can provide is interval metering where Triumvi can record total energy
consumed by the circuit at different intervals during the day. For example, Triumvi can
report energy consumption for every half-hour throughout the day.

6.1.5 Three Phase Loads

Many loads in a building are not single-phase loads. For instance, electric stoves, HVAC
equipment, and industrial motors are all split-phase or three phase loads. Accurately metering
multiple phase loads requires taking simultaneous measurements across all three phases of
the load. The system can meter three phase loads by clipping one meter on each phase, but
because of the unpredictable energy-harvesting the samples from each phase are unlikely
to be synchronized. To enable synchronized sampling, two or more Triumvi meters can
be wired together into a Wired-NOR configuration. While the meters are charging, they
each use their storage capacitors to pull the shared line high. When each meter is charged
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and ready to take a measurement, it pulls the line low through a diode. When all connected
meters have done this, all of the nodes will see the line go low and proceed with their power
measurement in a synchronized fashion.

6.1.6 Large Loads

Metering and monitoring large industrial equipment (in the range of 20 to 1000 A), such
as arc furnaces, water pumps, and large motors, can be used for peak-demand shaving and
equipment fault detection, but the same meter cannot be used for residential-scale loads
and these large consumers. To demonstrate that the metering approach can scale to larger
loads, we develop a Triumvi meter that can support up to 1000 Amps (Figure 6.4c). The
meter design scales while only requiring changes to the biasing resistors for the amplifier
circuits. The larger range also enables a function that is difficult on the smaller meter: battery
recharging. Due to the higher load currents, the Triumvi meter can recharge its onboard
battery to permit sampling while the metered load is off.

6.1.7 Detailed Load Analysis

Some applications require more insight than just power or power factor, and actually need the
raw AC current waveform for more advanced power analysis or power quality monitoring.
Our system supports these applications by transmitting the raw current waveform samples
when requested. Each Triumvi meter is able to collect and transmit samples of the current
waveform for an entire AC cycle (a total of 120 samples) on each activation.

6.1.8 Upgrades for Proven Deployments

Because of the flexibility in the system design, the meters can be upgraded in situ if a trial
deployment proves successful and the additional labor cost is justified. This progressive
approach is a substantial departure from other systems that require the entire cost to be borne
up front.

The first upgrade involves providing power for the sensors to enable a more reliable
sampling interval. One option for this is to enable charge sharing between Triumvi meters.
In this configuration, the sharing meters have their harvesting capacitor banks wired together
so that each harvester is charging the cumulative energy store. This allows a meter with
a higher harvesting potential to subsidize other meters. Another option is to provide an
external power supply for the meters and daisy-chain the power supply wires between the
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Figure 6.5: Gateway hardware. The Triumvi gateway contains an Intel Edison [57] and a
dedicated CC2538 [130] co-processor for receiving the 802.15.4 packets from Triumvi.

meters. This upgrade enables reliable sampling but does not require replacing the already
deployed and configured sensors in the panel box.

The other option for an in situ upgrade is providing the voltage channel information
externally to each meter. This too does not require removing or replacing the existing meters
and enables higher accuracy when calculating power. To implement this option, wires are
connected to an unused breaker, run to a combined power supply and voltage isolation
circuit, and then daisy-chained to each installed meter.

6.1.9 Network and Gateway Operation

When reporting data for real-time analysis, each Triumvi meter expects an always-on gateway
(Figure 6.5) within range to receive measurement packets. As the energy-harvesting can be
unpredictable, reliably scheduling transmissions at a certain time slot is not always possible.
The gateway both logs the power data locally, and is able to forward packets to a central
data collector. One backend the gateway supports is EmonCMS [39], which is an open
source tool that supports collecting and visualizing energy data, as well as power to energy
conversion and other stream processing features. This tool provides real-time monitoring of
power data streams.

In addition, the gateway provides local “walk-up” access to power meter data for the
circuit panel. The gateway aggregates data from all reporting Triumvi devices and provides
the power data as a webpage. This allows for quick spot-checking power draw of nearby
circuits.
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6.1.10 Deployment Considerations

A portion of the Triumvi design is related to features that support Triumvi configuration and
deployment. First, Triumvi includes a reset button that clears any stored aggregate energy
measurements on the meter. This allows Triumvi to simply be reset or to be re-initialized if
the meter is moved to a new circuit. The reset button must be held down until the meter has
power to operate.

Second, to correctly interpret the data from the Triumvi devices, they must be correctly
labeled with which panel box and circuit they are metering. To facilitate this, Triumvi
includes an optional configuration expansion board, shown in Figure 6.4a, that exploits the
structured nature of panel boxes and includes three knobs for setting the panel ID and circuit
number the Triumvi is attached to. With these set, Triumvi tags each data packet it transmits
with the measured circuit number and panel box ID. This removes a potentially cumbersome
deployment step of manually recording and later entering the meter-to-circuit mapping.
It also simplifies all future data processing as services, such as the walk-up gateway and
backend data analytics, do not need to maintain their own device mappings. Pushing this
meta information directly onto the deployed devices not only makes the deployment easier,
but also promotes flexibility when building applications on top of the data stream.

6.1.11 System Variations

The base Triumvi system can be extended to accommodate different application requirements
and scenarios. First, if a deployment has relaxed installation requirements and requires
higher accuracy, the voltage signal can be externally monitored and the zero-crossings
can be reported to each Triumvi through the expansion header. Similarly, if a higher or
reliable same rate is required, each node can be powered through the expansion header, and
energy-harvesting will be disabled.

If a reliable sample rate is necessary and the deployment is not intended to be permanent,
an expansion board can be attached to Triumvi that includes a battery. In Figure 6.4a, the
configuration board shown includes an optional rechargeable battery and charging circuit.
The battery provides reliable power to facilitate a steady sample rate, while not encumbering
the installation process.

Triumvi can also operate without a gateway or network connectivity for a short-term
deployment using its local logging feature and its RTC for timestamping. When the Triumvi
units are retrieved their data can be downloaded and analyzed.
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Figure 6.6: Current transformer multiplexing circuit. This circuit is responsible for switching
the CT between harvesting and measurement operation. When EN is high, the MOSFETs
connect the inputs of the CT across the burden resistor through diodes D1-D4 and enable
current sampling. When EN is low, the PMOS FETs stay off, preventing any current flow
through RBRDN and enabling harvesting. Multiplexing the current transformer is essential
for saving size and cost by requiring only a single CT.

6.2 Triumvi Implementation

Triumvi’s implementation centers on the energy-harvesting circuit, the circuit that switches
the current transformer from harvesting to measuring, the microcontroller and software that
calculates power, and the power reporting transmission.

6.2.1 Energy-Harvesting Circuit

The energy-harvesting circuit is a well established design based on the LTC3588-1 [76] and
prior work [13, 21]. The LTC3588 rectifies the incoming signal from the TT 100-SD [72]
CT and uses 300 µF of capacitance for energy storage and an additional 100 µF capacitor
for output buffering. The output of the harvester feeds a 3 V LDO for powering the rest of
the system.

6.2.2 Current Transformer Multiplexing

When Triumvi is taking a measurement and must switch the CT into measurement mode,
the CT multiplexing circuit is responsible for applying a burden resistor across the inputs of
the CT. Importantly, it must also completely disconnect the burden resistor when harvesting.
Figure 6.6 shows the main components of this circuit.

The mode of the CT is set using the EN line. When EN is high, the CT is in measurement
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Figure 6.7: Current and voltage trace of a Triumvi measurement. The voltage on the storage
capacitor, PGOOD, VCC, and the current draw of the microcontroller are shown while
Triumvi measures power. At the start (time equals zero) Triumvi enables the voltage mea-
surement circuit and waits 300 ms (this initial event and waiting period are omitted from the
figure but included in timing and power calculations). It then enables the current measure-
ment circuit and waits 50 ms for the output to stabilize. Next it waits for a rising zero-crossing
of the AC voltage signal before sampling the current for 16.6 ms. After sampling it computes
power, forms an encrypted packet, and transmits the packet.

mode, and when EN is low the harvester is operational. In harvesting mode, EN being low
turns off the NMOS FETs, causing the gate of the PMOS FETs to float to the same voltage
as the input from the CT, causing the PMOS FET to be off. This disconnects RBRDN from
the CT as the only remaining path through D2 and D3 is blocked by the diodes. When EN is
high, the NMOS FETs are on, pulling the gates of the PMOS FETs low and enabling the
PMOS transistors. This completes a path for current to flow through RBRDN. During half of
the AC cycle when point A is at a higher voltage than point B, current flows through D1,
across RBRDN, and then through D2. During the other half of the cycle the opposite happens,
as current flows through D4 and back through D3. In measurement mode the harvesting
circuit is still connected, but the introduction of RBRDN causes the input voltage to be too
low, effectively disabling the harvesting circuit.

6.2.3 Calculating and Reporting Power

When sufficient power is available, the TI CC2538 [130] microcontroller coordinates the
circuits and measurement inputs to take an AC power reading. Figure 6.7 shows the timing
of Triumvi’s operation. Triumvi starts by enabling the voltage detection circuit and waiting
for 350 ms for the zero-crossing detector to stabilize. After 300 ms have elapsed, the current
measurement circuit is enabled and Triumvi waits for the remaining 50 ms for that circuit to
stabilize as well. When both channels are ready, Triumvi waits for a rising zero-crossing
of the voltage signal and then begins sampling the current channel at 7.2 kHz for one
period (which for a 60 Hz signal is 120 samples). After sampling, the voltage and current
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Figure 6.8: Installation time for 14 circuits. As Triumvi devices are configured with the panel
ID and circuit number, and clipped around the correct circuit, they begin transmitting power
measurements. Each mark represents a received packet, and the start time of each horizontal
line marks when the Triumvi for that circuit was installed. Based on the start time of the last
circuit, installing 13 meters took about seven minutes for a familiar, but inexperienced user.
Including the time for removing and reinstalling the front panel (required for all CT-based
installations) and first circuit install, we can reasonably assume a half hour to instrument a
14 circuit panel.

measurement circuits are disabled (causing the power supply to resume harvesting), and the
microcontroller begins computing power. A pre-computed sine wave for voltage is phase
aligned to the sampled current based on a factory calibration of the phase offset between the
voltage sense circuit’s output and the actual AC voltage zero-crossings. After multiplying
the two signals point-by-point, the power signal is averaged to compute true power.

With the completed power measurement, Triumvi prepares to transmit the reading while
sufficient energy remains. First, it adds a nonce to the outgoing data and encrypts the payload
using AES. Then it transmits the reading to a wireless gateway within range. The compu-
tation, encryption, and transmit phase takes 4.34 ms. The current Triumvi implementation
uses a 2.4 GHz 802.15.4 [54] transceiver for communication, but alternative radios could be
used instead to achieve the same goal.

The entire measurement and report takes 380 ms and 1.7 mJ. When completed, Triumvi
sets a timer and enters sleep mode. The timer is set to wake the device for the next mea-
surement, and its interval is based on a heuristic of the previous interval and the last power
measurement. If this device is first starting after installation or a period of no harvesting,
this timer defaults to 4 seconds.

6.3 Triumvi System and Deployment Strategy

To provide one measure of the deployability of the non-contact and self-contained Triumvi
meter, we measure how long it takes to install 14 clip-on meters (Figure 6.8). Each Triumvi
meter was equipped with the configuration expansion board and battery. The marks on
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Figure 6.9: Activation rate as a function of primary load. Triumvi’s measurement rate is
observed for a range of loads with power factor of 1.0. Below 1.25 A, Triumvi is unable
to harvest enough power to successfully measure, but Triumvi can sample at nearly 0.5 Hz
with loads above 3 A, which is rate-limited to mitigate wireless channel congestion.

each horizontal line indicate received packets and start when after the meter was set to the
correct circuit and the meter was installed. The interval between the start of each line is
approximately 30 s, and the installation took about seven minutes. Factoring in overhead for
accessing the panel, it is likely an average deployment could be completed in less than a
half hour.

This short installation time makes the Triumvi system well suited to both long-term
deployments and short-term “energy audits”. Whereas other systems require invasive in-
stallations (turning off power) or include long lead times (hiring an electrician), Triumvi’s
installation costs are low enough to make the system feasible for a one day or one week
deployment. Such a deployment could substantially guide decisions as whether to pursue a
longer or more complete deployment.

6.4 Triumvi Performance

We measure the core performance of Triumvi by examining its accuracy with real loads and
in comparison to a current-only version.

6.4.1 Measurement and Harvesting Range

One primary drawback of using energy-harvesting for power metering is that sample rate
is tied to the load being measured. To understand the sample rate Triumvi can provide, we
observe its packet transmission rate across a range of loads. Figure 6.9 shows the resulting
activation rate. Below 1.25 Amps, (or 150 W at 120 V), the meter cannot harvest enough to
activate. At 1.25 A, the meter can report a measurement approximately every 10 seconds.
This rate increases until the load is drawing 3 A, where the Triumvi measurement rate is
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Figure 6.10: Triumvi accuracy with three real-world circuits. Triumvi is compared against
ground truth for three circuits representative of three different environments where circuit
panel meters may be deployed. The circuit in 6.10a contains two desktop computers, four
monitors, and various lab equipment, as may be present in an office building. Even with
a power factor consistently below 0.9, Triumvi is able to meter the circuit with 5.13%
RMS error. 6.10b shows a circuit with LED lighting, surround sound audio, and a desktop
computer, as may be present in a residential setting. Triumvi slightly under-reports power
and overall RMS error is 6.47%. The third circuit, 6.10c, contains a rack of servers as
may exist in a more industrial setting. The servers are a very constant load which Triumvi
underestimates but otherwise tracks well, including two spikes around 170 minutes into the
test. For that circuit, Triumvi displays only 3.89% RMS error. These traces demonstrate
Triumvi’s ability to meter real-world circuits.

capped at approximately one packet per two seconds. This cap is intended to reduce the
channel contention when many Triumvi meters are co-located.

6.4.2 Accuracy

To evaluate the accuracy of Triumvi as an overall power meter, we meter three real-world
circuits with Triumvi and a PLM-1LP [103] ground truth meter. The traces, shown in
Figure 6.10, reflect circuits likely found in three different building types: office, residential,
and industrial. Over all three traces, Triumvi provides power measurements with 5.16%
RMS error when the meter is able to harvest and take samples. The error comes primarily
from an offset present during the steady-states in Figure 6.10b and Figure 6.10c and, as is
common with energy-harvesting power meters, from spikes when the load suddenly changes.
Triumvi must continue harvesting until it is able to measure and detect the change in load
power.

For all three circuits, the power factor is always less than 1.0. Even with the aggregation
of many loads, some containing power factor correction, real-world circuits do not have
unity power factors and calculating true power is essential for accuracy. While Triumvi’s
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Figure 6.11: Triumvi error with and without voltage phase information. For a range of loads
with power factor of 0.85, the RMS error of Triumvi’s power measurement using only RMS
current and using sampled current plus voltage phase information is shown. Without any
voltage information the error averages 18.5% RMS, and with phase information the average
error is 2.5% RMS.

accuracy is slightly lower than commercial-grade panel meters, Triumvi is not intended to
provide revenue-grade metering. Some error is acceptable when addressing the submetering
problem. However, in non-ideal cases (non unity power factor loads) without the ability to
calculate true power, the error would grow to outside of an acceptable range.

To further investigate the accuracy of Triumvi, we explore the accuracy benefits of
having voltage phase information on power calculations. We run Triumvi again with loads
ranging from 100 W to 1000 W and power factors of 0.85. In the first run, Triumvi reports
true power, and in the second it reports just RMS current and is later multiplied by RMS
voltage. The RMS error of these power measurements is shown in Figure 6.11. The RMS
error over the range is on average 7 times better with voltage phase information instead of
using just RMS current.

While it can measure phase, the Triumvi design assumes a constant voltage amplitude.
The resulting upper bound error from the voltage fluctuations common in buildings is
also shown in Figure 6.11. This error, while still present, is significantly lower than the
error caused by no voltage information. Even with the error present, the Triumvi design
significantly reduces measurement accuracy when compared to current-only meters.

6.5 Summary

With Triumvi, we show how carefully integrating components from previous work on energy-
harvesting power meters with a new current transformer multiplexing circuit, voltage sensing
technique, charge sharing, and synchronization, plus improvements in metadata association,
can create a deployable and standalone energy meter. Triumvi is accurate, even under
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displacement and harmonic power factors, and yet can be deployed in under 30 seconds per
circuit. While the core sensing technique is often the focus of new meters, Triumvi shows
that focusing on deployment ease can significantly improve the device and is also feasible
on just an energy-harvesting power budget.

The improvement from AC Monjolo, to Gemini, and then to Triumvi also highlights how
carefully tuning the system can lead to a very usable energy meter even with a non-traditional
power supply. Triumvi is an example of a small and unobtrusive sensor designed for a
practical sensing problem that benefits from the techniques described in earlier chapters, and
demonstrates an important aspect of the thesis statement. In the following chapters, we take
a broader perspective to explore how else energy-harvesting sensors can be useful indoors.
We also investigate how continuing to share modular energy-harvesting components, as with
these power meters, can aid in the rapid development of easy-to-deploy energy-harvesting
sensor systems.
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CHAPTER 7

Beyond Energy: Building Up the Building
Sensing Toolkit

Triumvi, and the Gemini and AC Monjolo meters it builds upon, demonstrates how an
energy-harvesting sensor can provide accurate power measurements, while scaling a deploy-
ment to a building-level footprint. While energy consumption is an important parameter
to monitor, many smart building applications requires more input data streams than just
power. Recent work into smarter and more efficient buildings proposes many avenues for
improvement, including building control algorithms [5, 98], dataset analyses [44, 59, 65],
feedback mechanisms [104, 114], and personalized HVAC systems [51, 81]. A common
thread through these strategies is that they require sensing devices to feed information about
the state of the building and its occupants into models or algorithms. More easily acquiring
these data streams, particularly in retrofit situations, lowers the barrier to implementing these
new strategies.

To make these data streams easier to obtain, we propose leveraging energy-harvesting
technology for the sensors to reduce the cost and complexity of installation. Energy-
harvesting reduces the cost of deploying and managing sensors by eliminating the need to
provision for mains power or periodically replace batteries. It also reduces the intrusiveness
and improves the aesthetics of the sensors by enabling them to be smaller in size. These
sensors can be easily installed in a building by attaching them at key sense points. As we
show, however, this increased deployment ease comes at a cost: the unpredictability of
the energy supply results in reduced data accuracy and fidelity. Augmenting the sensors
with small and inexpensive energy storage devices could address these drawbacks, but suck
devices do not exist as commercial products with unlimited cycle life today.

The remainder of this chapter studies three such building monitoring sensors, all built
with energy-harvesting power supplies. Beyond their sensing modalities, these devices differ
from the energy-harvesting power meters by decoupling the energy-harvesting source from
the phenomenon to be measured. This approach is advantageous when the sense point is not
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Figure 7.1: Vibration sensor. A zero-power piezoelectric wakeup trigger activates the sensor
when it is moved. When placed on the edge of a door, the sensor can be used to detect door
open and close events.

a viable harvesting source or when a more fruitful harvesting source is physically nearby.
This chapter also evaluates the sensors to understand how energy-harvesting affects their
resulting data streams.

Buzz, Breeze, and BigBen are energy-harvesting sensors designed to monitor different
aspects of building operations that could increase building efficiency or occupant productivity.
These sensors provide concrete examples of how small energy-harvesting sensors can
perform in the context of a specific application domain. They are also intended to be a
launching point for future sensors that leverage some shared components, such as the power
supply, processor board, or wakeup triggers, but observe other aspects and events of a
building.

7.1 Detecting Door Open and Close Events

One aspect of building usage that can be useful to monitor is door open and close events.
This can be used as one input to infer occupancy, as a trigger to turn lights on, or as a tool
for general building usage analysis.

7.1.1 Buzz: Vibration and Sharp Motion Detector

Our first sensor, named Buzz and shown in Figure 7.1, operates as a vibration sensor. It uses
a piezo-film vibration sensor [102] that, when vibrated, generates enough voltage to activate
the trigger on the power supply. Once activated, the sensor uses its onboard radio to transmit
a packet announcing that the vibration event occurred.

One application of this sensor is door monitoring. Buzz is attached to the door and when
the door opens and closes it vibrates the sensor enough for the door open event to be logged.
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Figure 7.3: Door open events across a 24 hour period. Buzz was deployed on the door of a
lab with moderate lighting and no exterior windows. Each vertical line represents a door
open event as detected by a ground truth sensor and the energy-harvesting Buzz sensor. The
red dashed lines in the ground truth row are door open events that Buzz did not detect. Buzz
successfully detected 66 out of the total 100 door open events. This aligns well with our
expected detection rate from Figure 7.2.

Similarly, the sensor can be attached to chairs to detect when the chair becomes occupied.

7.1.2 Buzz: 65% of Events Detected

We configure Buzz, the vibration sensor, to detect door open events. This application lends
itself naturally to the event trigger mechanism. The primary limiting factor of this sensor is
the recharge rate of the power supply: if a door opens before the supply has recharged from
the last open event, the sensor will be unable to detect the second opening. To estimate how
the recharge rate enforced sample rate would affect the sensor’s ability to detect when a door
is opened, we analyze the time between subsequent door open events for a door over a one
month period. Figure 7.2 shows the CDF of the interval between subsequent door openings
plotted with the x axis in a log scale. Also marked in the figure are the approximate sensor
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Figure 7.4: Breeze airflow sensor. The solar energy harvester is placed near a light source,
such as a window, and a MEMs airflow sensor is placed near an air vent. When the harvester
has sufficient energy it samples the airflow sensor and reports its readings. Decoupling the
harvesting from the measurement point enables both faster sampling and a smaller sensor.

recharge rates for the doors in the lab and office. In the office with natural light the sensor
would miss only 2% of door open events. In the lab with normal lighting the sensor would
have missed 35% of door open events over the month period. The missed door events would
all have been within two minutes of each other, however, and it is feasible that finer temporal
resolution may not be required for high-level building management algorithms.

To test Buzz in practice, we attach the sensor to a door over a 24 hour period. We also
use a mains powered door opening sensor for ground truth. Detected door openings versus
actual door openings are displayed in Figure 7.3. Buzz is largely effective at detecting door
open events, catching 66% of the openings. Openings that occurred after a long period of no
activity were missed, likely due to the power supply being unable to charge when room was
unoccupied and the lights were off. Also, events that occurred in rapid succession did not
allow Buzz enough recharge time, causing those events to be missed as well.

7.2 Monitoring HVAC Vents

Occupant comfort is an important goal of a building’s operation, yet existing HVAC systems
are often very course grained with zones that cover multiple rooms. To gain more insight
into how the building HVAC system is operating, and to detect potential faults, a building
operator may need to monitor individual air vents.

7.2.1 Breeze: Airflow and Air Vent Meter

Breeze (Figure 7.4) uses an analog MEMS airflow sensor [93] and opportunistic triggering
to detect when an air vent is blowing air. The airflow sensor is placed near the vent to be
monitored and the solar cell and power supply are placed in a nearby location conducive
to photovoltaic harvesting. After each recharge, the power supply triggers automatically.
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Figure 7.5: Airflow metered over time. A Breeze sensor is placed near an air vent as the
vent cycles on and off and changes its flow volume. The airflow sensor is uncalibrated and
therefore we don’t include y-axis units. While noisy, the data from Breeze are sufficient to
determine when air is blowing from the vent and to determine when the flow changes.

Upon booting, the device powers the airflow sensor and waits for the output line to stabilize
before beginning to sample the sensor at 1 kHz. After each sample the measurement is
stored locally. This continues until Breeze depletes its stored energy reserves. On the next
recharge and activation, Breeze averages the measurements it sampled on the last activation
and wirelessly transmits the result. For airflow sensing this split operation is acceptable if
subsequent activations occur quickly enough that the samples do not become out of date
before they are transmitted. In our deployment we expect the power supply to be near an
abundant source of energy, allowing for activations separated by no more than 5 s. If this was
not the case, we could enlarge the energy store on the power supply to allow for sampling
and transmission on the same activation, although at the expense of longer intervals between
sampling.

Breeze is also an example of an energy-harvesting sensor where it is advantageous to
decouple harvesting and sensing. Harvesting from air vents is possible, but typically requires
a physically larger harvesting unit than from lighting. By separating these tasks, the overall
size of the sensor can be reduced.

7.2.2 Breeze: 0.125 Samples/Second

To demonstrate external sensing on an energy-harvesting node we developed Breeze, a sensor
that periodically measures airflow. To evaluate Breeze, we placed its airflow sensor near an
air conditioning vent and its power supply very close to an overhead light. Again, to collect
ground truth we placed a mains powered sensor on the same vent. Figure 7.5 shows the
results from the two sensors. Because Breeze is uncalibrated we omit the absolute magnitude
from its samples. The on-to-off transition at the 42 minute mark and the corresponding drop
in Breeze’s readings shows that Breeze is, at a minimum, able to detect the on/off state of
the vent. When the volume of airflow increases, at 2:06, Breeze’s readings drop. This occurs
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Figure 7.6: Light based occupancy sensor. The energy-harvesting sensor detects state changes
in the measured light by detecting when the sensor transitions between different harvesting
rates. For example, in a room with only a single source of light, the sensor can detect when
the light turns on by observing when the sensor transitions from not harvesting to harvesting.
With more ambient light in the room this transition may not be as stark, but there will still
be a detectable change in harvesting rate. Timestamping to determine the rate of harvesting
is done with a real-time clock.

because Breeze measures air speed, and the volume rate limiting is occurring at the vent.
Since the HVAC unit continues to supply the same amount of air, the increased opening at
the vent causes the air to move slower. Breeze was attached very close to an overhead light
for this experiment and averaged a sample period of 7 s. When light is available, Breeze
is a suitable sensor for airflow detection. When the lights are off or no daylight is present,
Breeze will be unable to sample.

7.3 Monitoring Interior Lighting

For energy efficiency analyses, and as another input for occupancy detection, monitoring the
light usage in a building can be particularly useful. Also this may be useful as a planned
study without gateways and with manual data collection to inform if energy efficiency
upgrades are warranted.

7.3.1 BigBen: Light/Occupancy Sensor

Our third sensor is a lights on/off sensor named BigBen (Figure 7.6). BigBen is designed to
be installed very close to a light source allowing BigBen to do light state detection directly
with the power supply: if the power supply is able to harvest then the light must be on.
BigBen does not measure light intensity, but rather the binary state of the light. Specifically,
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it detects when the light is on based on when activations occur and when the light is off
based on the lack of the trigger firing. When the light is on, many triggers will occur that
signify that the light has simply remained on. Rather than store this redundant information,
BigBen only makes note of when the light goes from off to on or vice-versa.

Due to the intermittent nature of BigBen, a state change of the light manifests as a
change in the time between activations. If BigBen is activating at a certain rate and that
rate suddenly drops, the light turned off, and if the rate suddenly increases, the light turned
on. Detecting these rate change events presents an interesting challenge: how does BigBen
know if the activations rate changes? Each activation appears identical and by default there
is no time keeping. To address this, we supplement BigBen with a low-power Micro Crystal
RV-3049-C3 [84] real-time clock (RTC) powered by a small (17 mAh) battery. This provides
a reliable time source that BigBen can use to timestamp each activation. Now calculating
activation deltas, and therefore light change events, is straightforward.

Using the RTC provides an additional advantage: change events can be timestamped
against a global clock. This is useful because BigBen logs light change events locally rather
than transmitting them. By having access to the RTC, BigBen can provide information
about when the lights turned on and off, not just how many times. BigBen logs rather than
transmits because it was designed to monitor rooms with poor connectivity over a short
period of time (∼3 months). This makes retrieving data from all of the sensors feasible. If
the trial run demonstrates that light monitoring is worthwhile, the sensor can be redeployed
and configured to transmit rather than log.

When lighting state can be considered a proxy for occupancy, BigBen can serve as a
reasonable occupancy detection sensor. This is based on the observation that many rooms in
buildings and offices contain motion sensitive lights. That is, when motion, and therefore
people, are detected in a room the lights stay illuminated, and when no motion is detected
the lights automatically turn off. BigBen can detect these light changes and use them to
roughly infer when the room was occupied. This is still an estimation, but in certain cases it
may be a suitable method for deploying an energy-harvesting occupancy sensor.

7.3.2 BigBen: 40 Second Time Jitter

We deploy BigBen, our timestamping sensor that senses only based on its ability to recharge
and eschews connectivity for local logging, on a light that is illuminated automatically only
when there are occupants in the room. At the end of the measurement period the data is
dumped from the node’s storage and compared against the control system’s ground truth
commands as shown in Figure 7.7. In a 24 hour evaluation period, BigBen tracks ground
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Figure 7.7: Light state over time. BigBen monitors the on/off state of a light fixture for
24 hours. It detects change events well and shows only a 40 s offset error from ground truth,
likely due in part to jitter errors when initializing the RTC.

truth state changes very well, with only a constant 40 s timestamp error.
Because BigBen does not transmit immediately after detecting a lighting change, it

must timestamp the events itself, and this requires an RTC powered by a small rechargeable
battery. To estimate how long BigBen will be able to successfully timestamp light change
events we compare the battery and the RTC. We use a 17 mAh battery and the RTC [84]
draws 800 nA, which means the RTC will run for approximately 2.4 years. In practice,
however, we expect BigBen to serve as a temporary sensor which will be replaced with a
networked device before the battery completely discharges.

7.4 Energy-Quality Tradeoffs

As the evaluations of each of these sensors shows, the tradeoff for perpetual and deployable
sensing based on small energy-harvesting power supplies is some reduced data fidelity. This
changes the typical paradigm for how sensors are used. Often sensor data are considered
reliable. In the energy-harvesting case, however, events can be missed, or the sensor can
stop reporting simply because the lights are off, and not because the event is not occurring.

To compensate for this, two potential methods might exist for hiding the underlying data
issues from the sensors. First is a hardware addition to the sensor. By adding a backing energy
store (perhaps from Section 3.3), the node may be able to mask some of the variability by
diverting excess harvested energy to the backing energy store, and using that to detect events
when the capacitors are not sufficiently charged. Figure 7.8a shows a CDF of estimated door
events captured with Buzz augmented with additional rechargeable energy storage. With
1 mJ of storage (i.e. the assumed amount of energy to detect one door event), we estimate that
Buzz could detect about 70% of the door events. As the amount of energy storage increases,
Buzz can harvest additional energy between door events (when the lights are on) and store
this energy to use when door events occur in rapid succession. When Buzz can store about
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Figure 7.8: (a) shows a CDF of detected door events for a range of rechargeable energy
storage capacities. We assume 25 µW of harvesting between the hours of noon and 2 AM,
no harvesting between 2 AM and noon, 3 µW of leakage, and 1 mJ per door event detection.
We then analyze the door events from Figure 7.2 to determine how many events Buzz could
detect with varying amounts of onboard energy storage. (b) shows how many door events
could be detected or how long the sensor could last without harvesting and still detect the
next door event for a range of energy storage capacities.

168 mJ of energy (a 37 mF capacitor at 3 V or 16 µAh battery at 3 V), it should be able
to capture all door events in the Figure 7.2 test case. Additionally, energy storage should
allow a Buzz node to detect events even after periods of darkness (e.g. after a weekend or
vacation period). Figure 7.8b shows how many hours of darkness the node could tolerate
(and how many door events it could detect) with a certain amount of fully charged energy
storage capability. For instance, Buzz would need about 3,630 mJ of stored energy to detect
the first door opening after two weeks of darkness.

The second relies on a software layer above the sensors. This approach treats the data
streams from the energy-harvesting sensors less like typical data streams and more like
hints. Then, by combining hints from multiple sources, and potentially a model learned over
time, the system outputs a much higher confidence signal about the conditions or events
occurring in a building. These improvements may enable many of the reliability guarantees
of traditional sensors while also preserving the energy-harvesting deployability benefits.

7.5 Summary

With these additional sensors, the energy-harvesting sensor toolkit for monitoring buildings
continues to grow. This toolkit can help characterize buildings by providing a measurement
apparatus to understand how a building is currently operating, understand buildings by
correlating events and energy consumption, and improve buildings by providing data streams
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to smart building algorithms and applications. The common characteristic that enables this
is their deployability, driven by using energy scavenged from the environment to power the
devices. Some devices in the toolkit defer energy-intensive operations (e.g. sending a radio
packet), a technique in the thesis statement, and all of the devices are small, unobtrusive, and
inexpensive and designed for practical sensing problems as specified in the thesis statement.

This growing toolkit also provides an opportunity to examine commonalities across the
various devices. While the increased usability and reduced maintenance costs are advanta-
geous, relying on energy-harvesting complicates the design and implementation of these
sensors. By finding and isolating similarities, some parts of the design may be reusable.
This would simplify creating new sensors by being able to leverage known and working
components. We explore this approach more fully in the following chapter, arriving at an
integrated modular architecture for energy-harvesting sensor systems.
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CHAPTER 8

An Integrated Modular Architecture for
Energy-Harvesting Sensor Systems

In Chapter 3 we discussed an ambient environmental sensor, in Chapters 4 to 6 we covered
energy meters, and in Chapter 7 we explored event detection sensors. These sensors all have
in common that they use energy-harvesting power supplies and target indoor monitoring,
but the details of how they accomplish their goals vary, and in some cases significantly. This
exposes an issue with energy-harvesting devices. Designing these systems often requires
considering the entire device stack, from the power supply to the microcontroller and sensors
to the software, at every step in the process. The traditional embedded systems abstractions
break down, and power supply details leak into the design of every other part of the system.
This makes creating energy-harvesting devices much more challenging than other embedded
devices. However, these sensors also identify new architectural patterns that are common to
all of these devices.

8.1 Architectural Overview

By examining the commonalities in the energy-harvesting sensors presented here and in
related work, we derive an architecture that captures the core layers present in all of the
devices. The overall node architecture is depicted in Figure 8.1. Each sensing device is
comprised of four main subsystems: the energy-harvesting power supply, a node triggering
mechanism, the primary sensing apparatus, and a data communication module. Each sensor
accrues energy at run time with a suitable energy-harvesting frontend. The architecture
specifies minimal constraints on the power supply for successful system operation, however,
the harvesting supply determines the sensing capabilities and performance of the overall
device. Power supplies that range from ones that can supply the device continuously to
anemic ones that offer very limited, intermittent runtimes are supported. Application goals
define the power supply requirements.
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Figure 8.1: Energy-harvesting node architecture and interfaces between physical components.
The physical interface is effectively a shared bus as the various layers (power supply,
controller, and sensor) stack and share the same signals. Not every layer must use every
signal, however. For example, the power supply has no use for the generic GPIO pins, but
the sensor modules often use them for ADC readings or a digital bus interface.

The trigger mechanism is responsible for activating the computational, sensing, or
communication resources on the sensor, depending on application needs. The trigger may
fire as soon as sufficient energy is available or in response to an external event, such as a
door opening.

An on-board sensor may be used to monitor some building condition. The sample rate is
bound by the power supply harvesting rate and the range of usable sensors is governed by
the energy store. Low power sensors that can obtain a reading quickly are best suited for
this architecture.

Finally, the data communication module conveys the information collected by the device
to a central building control system or other data management service. This can be handled
in real-time, batched, or logged locally and transfered in bulk at a later time.

8.2 Design Space of Energy-Harvesting Indoor Sensors

With the general layers shown in Figure 8.1, we use common indoor sensing applications
to identify the design options available for each layer when instantiating a physical sensor.
Different environmental factors, monitoring or detecting goals, and data rate requirements
will guide which options are best for a particular application. Table 8.1 highlights the main
options for each subsystem and a series of potential building-based sensor applications.
A mark in a column for a particular sensor application indicates that that option is viable
for that application. The next section provides a more detailed breakdown of the range of
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Sensor Application
Power Trigger Sensing Communication

Sustained Intermittent Periodic Opportunistic Event External Event Energy Immediate Batch Log

Door X X X X X

Occupancy X X X X X X X X X

Temperature X X X X X X X X X

Light X X X X X X X X X X X

Motion X X X X X X

Air Quality X X X X X X X X

Water Usage X X X X X X X X X X

Solar Radiation X X X X X X X X

Chair Occupancy X X X X X

Table 8.1: Energy-harvesting node architecture properties for a variety of building monitoring
applications. This table highlights a number of potential building monitoring applications and
the system properties that are likely sufficient for implementing an energy-harvesting sensor
for the particular application. Each subsystem—power, trigger, sensing, and communication—
needs one property to enable a functioning sensor. Some applications are best suited by
event detection, some just need to detect harvestable energy, others are best served with
periodic sampling, but all support intermittent power supplies making them candidates for
energy-harvesting sensors.

options.

8.3 Architectural Layers and Abstractions

For each layer in the architecture, we identify potential options for a node’s design and
tradeoffs for selecting each option. To realize a viable sensor within this architecture, each
layer must be represented by at least one option.

8.3.1 Energy-Harvesting Power Supplies

The power supply is responsible for harvesting energy for the node’s operation. Depending
on the harvester’s capabilities and node power requirements, the power supply may be
continuous, i.e. its power output is equal to or greater than the average power draw of the
node, or it may be intermittent, i.e. it is only capable of powering the node for short periods of
time between charging cycles. The architecture supports both paradigms, however, particular
applications may require one or the other.

A common harvesting source for indoor applications is small (∼5 cm2) photovoltaic
solar cells because when a building is occupied it is typically lit. These photovoltaics can
often be sized to fit node dimension constraints or average power requirements. Larger solar
cells in sufficiently lit environments are capable of supporting continuous operation, while
smaller solar cells can only provide intermittent power Chapter 3. Other indoor harvesting
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sources have similar tradeoffs, including airflow based [149] and water pipe based [83].
Optionally, the power supply system may include backup energy storage to buffer

variations in harvesting capability, much as the power grid does with renewable sources.
A rechargeable battery or supercapacitor could be charged with excess harvested energy
when the harvesting source is plentiful and discharged when it is needed, such as at night
in the case of the solar cell. The stored energy may also be useful to continuously power a
real-time clock or other timebase or to provide a burst of energy to power a wireless radio
for bulk data transfer.

One important property of the power supply that enables the proposed architecture is a
trigger, latch, and shutdown mechanism. Typically, energy-harvesting power supplies supply
power on their output rails immediately when power is available. In the case of continuous
supplies, power is always available. For some applications this may be useful, but others
may only want to consume the limited energy reserves after a period of time has elapsed
or an event has occurred. To support this, the power supply must have the capability to
store energy without activating the remainder of the sensor until a trigger pin is asserted.
Upon assertion, the power supply latches and keeps the power rail activated until energy is
exhausted or the device requests that it be disconnected by asserting the shutdown pin. The
power supply should also be capable of disabling this feature and supplying the power rail
immediately after energy is available. This key property enables successful node operation
and event detection with energy budgets on the order of millijoules.

The power supply is a very important subsystem as its characteristics and capabilities
directly affect the operation of the entire sensor. The sample rate, supported sensors, and
measurement capability of the device are directly based on the output and duty cycle of
the node’s power supply. In this way, the power supply’s characteristics define many of the
constraints on the rest of the sensor, such as the runtime duration, maximum instantaneous
power draw, per-event energy consumption, and other operational limitations. Therefore, the
power supply and application must be well paired to ensure a successful device.

8.3.2 Triggers: Decoupling Harvesting from Computation

The trigger subsystem determines when the sensor should take a sample, perform some com-
putation, or make note of an event. Using the trigger abstraction and an event based model
to control the operation of the device allows the architecture to natively support intermittent
power supplies as the intermittency can behave as a trigger. Different applications will use
different types of triggers to best accomplish their sensing goals. Trigger types fall into three
main categories: periodic, opportunistic, and event based.
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The periodic trigger is a trigger designed to fire at a regular interval. If the harvesting
source is predictable and the sensor has some timebase, it may be feasible to have the trigger
activate periodically in order to take regular samples. This periodicity matches how many
battery-powered sensors operate when monitoring an environment and provides a fixed
sample rate. If the harvesting potential changes there may not be sufficient stored energy
to sample and the sample will be lost, just as a sample can be lost due to faulty packet
transmission in a battery powered network.

The opportunistic trigger is based on an intermittent power supply. This trigger is
activated by the power supply detecting that the stored energy has surpassed a threshold and
supplying power to the rest of the sensor. This allows the device to sample at the maximum
rate allowed by the intermittent power supply and not be limited to a precomputed rate that
optimizes for average power. If harvestable energy is abundant, the sensor will potentially
be able to sample faster than the rate budgeted for a battery-powered node.

The event based trigger activates the sensor in response to an external event. This
allows the device to store up energy from an intermittent power supply until the event occurs.
Detecting the event will likely require dedicated hardware that is capable of asserting the
trigger pin on the power supply in response to the desired event occurring. Also, the rate at
which the node can detect events is bounded by the rate the power supply can charge as the
trigger is only active when there is sufficient energy to otherwise activate.

8.3.3 Sensing on a Limited Energy Budget

Certain building monitoring applications may need one or more dedicated sensors to fulfill
the application’s goals. Others may just rely on the trigger mechanism for sensing: the mere
occurrence of the trigger provides the desired event detection. Yet other applications may
simply rely on the ability to harvest energy or not.

Applications that employ dedicated sensors must ensure the sensors fit into the energy
budget provided by the power supply. Most sensors will likely not be active continuously, but
instead for very short intervals when power is available and sensing is warranted. Coupling
sensing with event detection may be useful, and the trigger mechanism can provide a useful
rate limiting for sensing: when the trigger fires, sample the sensor. This motivates using
sensors that require little time between power-on and valid measurements. Once the sensor
has been sampled it can be power-gated again allowing for a quicker recharge.

Using the trigger as a sensor is useful for applications that must detect events, such as
doors or windows opening and closing, lights turning on, airvents activating, and chairs
being sat on. These applications can rely solely on a trigger mechanism activating the output

108



rail of the power supply to sense a particular phenomena. It is possible this sensing style
may be combined with a dedicated sensor to both detect an event and measure the conditions
at the time of the event. For instance, a temperature reading may be taken immediately after
a window open event to gain insight into the motivation for opening the window.

In some cases the ability of the power supply to harvest at all may be sufficient for the
application’s sensing needs. Similar to Monjolo (Chapter 4, the mere presence of energy
from which to harvest can often be a sufficient sensor. For example, a solar cell powered
device placed close to a light can tell when the light is on simply based on when it is able to
harvest. Further, the relative rate of harvesting may provide additional information such as
the brightness of the light. In this way, an energy-harvesting sensor can be constructed with
no true sensor at all.

8.3.4 Data Communication or Storage

The final operating phase is to communicate, store, or otherwise handle the result from the
sensing subsystem. To best enable real-time data processing and visualization, one option is
to transmit the data immediately after sampling. This would likely require a wireless receiver
to be within range and always listening. We propose this is feasible with a combination of
gateways designed to bridge low power networks and the Internet, and other, mains-powered
sensors, such as power meters, distributed throughout the building that can forward the data
packets.

If delaying data transfer from the sensing device to the building control or data manage-
ment service is tolerable for a certain application, batching multiple samples and transmitting
the group may be a superior solution. This could potentially allow the harvesting device
to save power by transmitting a single packet with multiple readings and incurring less
payload overhead, and therefore transmit time and power, rather than sending multiple data
packets each with their own headers and other overhead. Buffering packets may also allow
the device the flexibility to probe for online receivers at each activation and, if possible, join
a wireless network temporarily or pair with a device capable of relaying its data.

If a network with which to transmit the data is unavailable, the device has the option of
logging the samples locally into some nonvolatile storage, such as flash or FRAM. This has
the advantage of being a stand-alone sensor, but the drawbacks of requiring a data retrieval
system and being limited by the storage space available for data. Likely this would require
physically retrieving the sensor, downloading the stored data, and reinstalling the device.
Other schemes may be feasible, such as a targeted wireless retrieval mechanism where a data
mule [99] individually activates each device and requests its data. The device could store the
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Figure 8.2: Composing the components in this architecture can help realize new sensors for
different applications. A sensing system is composed of a harvesting frontend matched with
a control and wireless board plus any additional needed sensors. The created systems can
then be used to monitor different aspects of a building.

energy it would otherwise use for periodic transmissions to enable the bulk wireless transfer.

8.4 Architectural Evaluation

We argue that with this architecture we can compose a range of sensor systems that specialize
in various sensing applications. Figure 8.2 shows how these different layers can be combined
to create different types of sensors for different applications. The choices in each column
allow for adapting the sensor to application needs. The harvesting frontend should be selected
to maximize harvesting potential while meeting deployment and size needs. The processor
and radio boards should be selected for computational power required, as well as the radio
interface best suited for packet reception and user interface. Any additional sensors or
triggers can be added based on the sensing requirements. The result is an energy-harvesting
system composed of existing components that can be deployed to monitor specific points of
interest inside of buildings.

8.4.1 System Architecture In Related Work

Some previous work has also identified the need for eliminating batteries from indoor sensing
devices by moving to energy-harvesting power supplies. While these projects presented an
energy-harvesting approach to a particular application, they can be well described as a part of
our node architecture. We highlight two such projects here—DoubleDip, and Trinity—and
describe how their designs help support our architecture as a viable framework for building
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VCAP X X X X
Overvoltage X X X X

Shutdown X X X X
Trigger X X X X X

VCC X X X X X X X X
GND X X X X X X X X X

GPIO1 X X X X X
GPIO2 X X X X X
GPIO3 X X X X

Table 8.2: Common interface usage by shared components. The components in Figure 8.2
represent each column and the rows are each signal. The GPIO pins are mapped to multi-
plexed pins on the processor modules to ensure they are flexible enough to support a variety
of sensor modules. For example, the airflow sensing board uses one GPIO to enable the air-
flow sensor, and one GPIO as an ADC input to measure the sensor output. The timekeeping
board uses the GPIO pins as a digital bus to allow the processor module to communicate
with the real-time clock.

energy-harvesting sensors.
DoubleDip [83] is a water flow monitoring system attached to pipes that uses an energy-

harvesting thermoelectric generator (TEG) as both a power supply and water event detector.
A sudden water flow event causes a temperature gradient to be present on the pipe and a
resulting spike in the output voltage of the TEG. DoubleDip detects this spike and records
a water event in the pipe. DoubleDip blurs the lines between a sustained power supply
and an intermittent one by including a backup battery. A DoubleDip node that has limited
opportunity to harvest can still respond to water events by powering itself from the battery,
however, the system design caters to intermittent operation. It uses an event based trigger
(a water flow event), an accelerometer as an external sensor once it has detected water
movement, and transmits data immediately or batches and waits for sufficient power to be
available. Again, intermittency is masked by waiting for an event-based wakeup before
performing any sensing or computation.

The other design is another indoor energy-harvesting sensor named Trinity [149], a
system for detecting and measuring airflow. Trinity uses one piezoelectric device to harvest
and another, simpler piezoelectric device as a sensor to measure airflow. Trinity’s runtime
power draw and harvesting capability are closely aligned to provide operation similar to a
battery powered node, but at a lower duty cycle. While this aids inter-node communication,
it forces Trinity to be relatively large to provide sufficient power. Because of Trinity’s
harvesting capabilities we consider its power supply to be sustained. It uses a periodic sensor
to initiate sensing, a dedicated vibration sensor for measuring airflow, and is able to transmit
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after sampling. Trinity is the most similar to a battery powered node and demonstrates that
our architecture supports applications where the node design is less limited by intermittency.

8.5 Summary

With this architecture, comprised of a harvester, trigger, controller, and sensor, energy-
harvesting sensor systems can be decomposed into their component layers. By adding
well-defined interfaces between the layers, the subcomponents can be independently created
and tested. This allows for systems to be built out of shared components, much like in many
traditional embedded systems. This building-block approach makes designing a new sensor
for a particular sensing goal easier by allowing component reuse, and should increase the
overall utility of energy-harvesting sensors to improve buildings. This architecture also
encompasses many of the aspects of the previous chapters to support the main points in
the thesis statement. In the next chapter we explore how the devices created within this
architecture are able to address practical sensing problems while operating perpetually.
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CHAPTER 9

Deployment Experiences

The previous chapters describe a range of energy-harvesting sensors with varying sensing
goals. To understand how well these devices work in practice, we deploy them in real-world
contexts and evaluate how they perform. As noted in the thesis statement, a main motivation
for this class of sensors is that they can address practical sensing problems. This chapter
explores the performance of a selection of the presented sensors. We analyze how the data
they create can provide valuable insight. We also explore the limitations of energy-harvesting
devices and describe the additional layers of the overall sensing stack that are required for
these deployments to be successful: the gateway and cloud tiers. Gateways collect the
transmissions from the sensors, do optional local data processing, and either store data
locally or push it to the cloud. The cloud is responsible for data archiving, as well as data
processing and presentation.

9.1 Non-Contact Energy-Harvesting Energy Metering

The first sensor we examine is the Triumvi circuit-level power meter. As the culmination
of a series of improvements to the baseline Monjolo-style AC electricity meter, Triumvi is
designed for ease-of-deployment and metering accuracy. We run four deployments of the
Triumvi meters: one in a house and three in different apartments. The house deployment is a
month-long trial with complete circuit coverage reflecting a realistic residential setting for the
Triumvi meters. We analyze various aspects of the resulting dataset to understand not only
how well the power meters performed, but also how well the devices as energy-harvesting
sensors performed. The apartment deployments represent “energy audits,” or short-term
deployments where sensors are used in a diagnostic fashion to identify opportunities for
improvement or for more extensive sensing. Each deployment lasts 24 to 72 hours and
includes a ground truth meter (an eGauge EG3000 meter [41]) against which the energy
measurements are compared.
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Figure 9.1: Multiple generations of Triumvi meters installed inside of circuit panels by
simply clipping them around the conductor to be monitored.

9.1.1 Installation Overhead and Deployment Speed

One of the primary arguments for using energy-harvesting with power metering is its ability
to ease the installation burden by allowing for non-contact sensors. To understand how this
feature translates to an actual deployment, we analyze the installation statistics for the house
deployment.

Installing Triumvi requires several steps: 1) Removing the front panel of the circuit
panel box; 2) Dialing in the correct configuration settings on each Triumvi; 3) Clipping
the correct meter around the correct circuit; and 4) Replacing the circuit panel cover. If the
deployment requires charged Triumvis that use a battery to provide reliable samples, the
Triumvi sensors must be charged prior to installation. To aid with charging and configuring,
Figure 9.2 shows ten Triumvis in a storage tray that can both charge Triumvis and provide a
convenient method for configuring the ten devices before installation.

The configuration trays are used for the house deployment. This aids the deployment
because the panel ID and circuit ID settings can be “dialed-in” to each meter all at once. The
meters are then installed in the panel. The entire deployment, including removing the panel
box front panel, configuring and installing 32 Triumvi sensors, and powering on the gateway,
takes 34 minutes. The other deployments are similarly quick when installing the Triumvi
meters, but adding the ground-truth meter significantly increases the deployment time.

9.1.2 Dataset Efficacy

To evaluate the deployment of Triumvi in the house, we analyze various metrics related to
energy-harvesting operation and energy sensing.
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Figure 9.2: Triumvis charging before configuration. The Triumvi storage tray can charge up
to ten Triumvis, and it is also a convenient jig for setting the panel and circuit knobs before
deploying inside of a panel.

As an overview of the deployment, we plot the power traces from 28 circuits and measure
the aggregate for a one day period within the study, as shown in Figure 9.3. This shows
several features common to household power usage. First, most of the circuits remain
relatively constant with a low power draw. Second, one circuit contains a clear cycling on-off
behavior at a regular period. That is typical for a refrigerator which must cycle during the
entire day. Third, are bursty, short-use loads, like toasters, microwaves, or dryers. These have
high power draws when active, but are typically used infrequently so their energy use as a
proportion of the aggregate is often minimal. Lastly, as we expect, the house has a higher
aggregate power draw when occupied and the occupants are awake.

Power draw is often useful for detecting activities and patterns, but from an energy
reduction viewpoint, integrating power to calculate energy provides a simpler mechanism
for comparing different loads or circuits. Figure 9.4 shows the breakdown of the energy used
by each circuit in the one day monitoring period. Circuit #29 is the largest consumer, which
is most likely the refrigerator. The energy breakdown also allows for targeted investigations
into energy consumption. Rather than identifying each circuit and the attached loads initially,
only those circuits with substantial energy consumption need to be investigated.

For the deployment in the home, ground truth power data is not available. To provide
one measure of the validity of the data, we compare the aggregate consumption measured by
the Triumvi meters on the incoming power feeds with the sum of all of the metered circuits.
We find that the two aggregate meters (two are needed because it is a two-phase system),
sum to a measured 13.8 kWh for the day. The cumulative energy from the individual circuits
totals 14.1 kWh, or a 2.2% error. This puts the likely error well within the error range for
each Triumvi meter and suggests a certain level of precision across the sensors.
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Figure 9.3: Circuit-level power breakdown for a house over the course of one day. The time
axis is in GMT/UTC.

9.1.2.1 Dataset Metrics

In total, we collected 1,693,966 measurements over a 30 day span. Figure 9.5 shows the
breakdown of the measurement count across the circuits. Most sensors reported about 50,000
measurements, with a few never reporting. Some sensors were on high-power circuits or the
aggregate and were able to harvest and transmit more reliably.

To get a sense of the completeness of the data set, we inspect the packet frequency of
the two aggregate meters. It may be reasonable to assume that the aggregate power draw (or
half of the aggregate power draw) of a home is enough to power a Triumvi even as loads
are switching on and off. For the aggregate meters, we consider the meter to be active if
it sends a packet at least once every five minutes. For aggregate meter “A2”, we find that
over the course of the deployment it was active 56.8% of the total time. For “A1”, the active
time was 40.8%. These numbers are lower than anticipated. This could be due in part to the
gateway intermittently failing, the Triumvi meters intermittently failing, the RF environment
changing and causing different packet reception rates, the home periodically not drawing
enough energy for Triumvi to harvest, or, likely, some combination. Additional investigation
is required to better isolate this issue.
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Figure 9.4: Energy breakdown by circuit for a house over one day. With Triumvi, the power
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Figure 9.5: Number of measurements recorded for each circuit. Three circuits reported no
measurements, and circuit #13 reported very few (1281).

9.1.2.2 Triumvi Activation Rates

As with the other energy-harvesting systems in this work, we measure the activation rate of
the Triumvi sensors deployed in the home. Figure 9.6 shows the median interval between
packets for each Triumvi on each circuit. Typically, each meter transmits every 3.4 seconds
(equating to a 0.3 Hz activation rate). Even the meters which rarely activate have this
median frequency. This suggests that Triumvi’s internal rate limiting is large enough that
the minimum threshold for harvesting is enough to sustain the 0.3 Hz rate. We also observe
very short intervals between packets, which is likely due to reception errors, and very long
intervals likely due to times when the load is off or drawing so little power that Triumvi
cannot harvest.
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Figure 9.6: Observed measurement rate of the Triumvis on each circuit. Shown are the
minimum, first quartile, median, third quartile, and maximum of the intervals between
samples from each circuit. Typically each sensor reports every 3.4 seconds. However, the
maximum interval is significantly higher for many circuits because of intermittent loads.

9.1.2.3 Sensor Participation

We observe the active time for each Triumvi as defined by the window of time between the
first measurement from the device and the last. Figure 9.7 shows a bar for each Triumvi
when we saw measurements from that sensor. Figure 9.8 shows the effective length of each
bar in days. Most sensors were active across the entire deployment, while some were only
active for a limited period (approximately a week) and others were only active at the start of
the deployment. This could be due to sensor failure or the onboard battery exhausting its
charge on an unused or rarely used circuit. More investigation is required to find the actual
cause.

9.1.2.4 Energy Calculation

To look further into how well Triumvi can measure total energy, we analyze the energy
audits from the apartments. In a more constrained test we are able to include a ground truth
meter to which we compare the results. Figure 9.9 shows the energy breakdown for the
three apartments. Overall, our system displays 3.7% error when measuring energy. Most of
the error is from underestimating the actual energy use, which may be attributable to our
prototype using a CT rated for 100 A which has low accuracy for very low primary loads. A
larger toolkit of core Triumvi devices scaled for different amperage circuits may address
this issue, and constitutes future work.
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Figure 9.7: Time ranges over which the Triumvi sensors report readings. Each horizontal
bar indicates the time span over which the sensor reported measurements. The data missing
from even numbered circuits between 20 and 40 are due to the absence of circuit breakers
(and circuits) at those positions.

9.2 Monjolo Indoor Light Sensing

The second sensor we evaluate through real-world deployments is the indoor lighting Mon-
jolo sensor. In contrast to the AC Monjolo, which suffers from calibration issues, and the
thermoelectric Monjolo, which suffers from saturation issues, the lighting Monjolo is an
effective sensor for monitoring lighting. Because the meter is small, it can be deployed
unobtrusively very close to a light. This greatly increases its harvesting potential while
also limiting its activations to only when the light is on. Also, many lights have only two
states: on and off. Therefore, light state detection can be achieved by just observing the
presence of packets from the sensor. This can be expanded to detecting energy by recording
the manufacturer’s stated power draw of the light bulb and multiplying that figure by the
amount of time the light is powered. Further, since there may be many lights in a building
but individual switches often control many lights, entire banks of lights can be metered by a
single Monjolo sensor.

To see how this design works in practice, we develop an implementation of the Monjolo
design called Ligeiro and shown in Figure 9.10. Ligeiro includes a version of the power sup-
ply described in Chapter 3 and a Bluetooth Low Energy (BLE) radio for sending activation
packets. We use BLE for its combination of low energy operation that the Monjolo sensor
can support and for its interoperability with smartphones. The sensor is housed in a case
that is magnetically attached to a light fixture for ease of installation.

We deploy 42 Ligeiro sensors for approximately a month to observe how this sensing
technique works in practice.
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Figure 9.8: Reporting time for each circuit. The time is calculated as the delta between the
first packet seen from the sensor and the last packet seen from the sensor in the dataset.
We consider the length of the experiment to be the longest reporting time (30 days). Most
circuits reported at least occasionally for 25 days or more. Six circuits reported over a much
shorter window, which could be the result of sensor failure or circuits with rarely used loads.

9.2.1 Installation Overhead

Installing a Ligeiro sensor is as simple as sticking it to a ferromagnetic surface near a light
with the solar panel facing the light. If the deployment requires using the bulb wattage to
estimate energy, the wattage of each bulb monitored by the Ligeiro must be recorded as
well. For this, we leverage the fact that bulbs are labeled by their manufacturer with a rated
wattage.

9.2.2 Sensor Performance

With Ligeiro sensors we can determine when a light is on and how much time a light is on
per unit time. These data streams can feed various applications such as occupancy detection
and energy disaggregation. For the 42 deployed Ligeiros we calculate the amount of time
that the attached light is on. The results are shown in Figure 9.11. Six of the lights are never
turned on during the deployment. We include them because we do observe packets from the
sensors, but the transmissions are very sporadic and are likely from ambient or natural light
and not from the attached light. A majority (21) of the lights spend on average less than an
hour on per day across the deployment period. The remainder (15) are on for more than an
hour a day, with sensors “2e” and “1a” on for 5 hours and 9.4 hours per day, respectively.

This data can be used to estimate the cost of using these lights in terms of energy costs,
and can be used to analyze the payback period for upgrading lights. For instance, estimating
$0.1222 per kWh (the national average in the U.S [35]), and 60 W for an incandescent light
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Figure 9.9: Short-term deployments in three homes. The energy consumed by each circuit in
three panel boxes and the aggregate was measured with our system and a ground truth meter
over the course of approximately 2.5 days. Across all of the circuits, our system shows an
average error of 3.7%, typically underestimating the correct value. This level of accuracy is
sufficient for many energy audits, and is capable of providing insight on where additional
metering may be warranted.

(a) Ligeiro (b) Ligeiro in Case (c) Ligeiro Measuring Light

Figure 9.10: The Ligeiro implementation of the indoor lighting Monjolo sensor.

bulb, 14 W for a fluorescent light bulb, and 7 W for an LED light bulb, we can compare
the yearly costs of running each of the lights in the deployment with the different lighting
technologies. Figure 9.12 shows the cost of using each light in the study (assuming it is or
is equivalent to a 60 W incandescent light) for a year with the three main types of lighting.
To analyze the payback period for upgrading to LED lighting, assume the replacement
LED light bulb is $5.00. For the light that is on for over seven hours per day, moving from
incandescent to LED would have a payback period of just over three months. Going from
fluorescent to LED would require about 2.1 years to recover the cost of the bulb, which
is well within the lifetime of an LED bulb. As a point of comparison, consider the light
attached to sensor “24”. That light is on for 1.5 hours per day on average, and would require
about 1.4 years to pay back the switch from an incandescent bulb to LED, and about ten
years to move from fluorescent to LED. If the bulb is already fluorescent, it is likely not
financially worth the switch in that instance.
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Figure 9.11: For each sensor we estimate how long the light to which it is attached is powered
per day. We assume a light is on if we receive two packets from the Ligeiro in the same
minute, and we average over the total number of days between the first packet we saw and
the last.
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Figure 9.12: Using the estimate of daily on time, we then compare the cost of running the
light at that duty-cycle for a year using three different lighting types. For comparison we
assume all lights are a 60 W incandescent equivalent. This type of analysis can be used to
determine which lights are economically viable to upgrade given a certain payback period.

This type of analysis can accurately guide capital expenditures relating to lighting
upgrades. The sensors, by being easy to retrofit into existing buildings, can enable data
driven decision making without the cost of expensive audits or the guesswork of estimating
usage and on-time.

9.2.2.1 Packet Reception Rate

To understand the performance of these energy-harvesting sensors, we use a sequence
number in the transmitted packet to detect dropped packets and calculate the fraction of
transmitted packets that are received by the gateways, also known as the packet reception
rate (PRR). Figure 9.13 shows the PRR from each sensor. Given the limited energy budget
of the sensor and the broadcast-only communications, we expect some packet loss. We see
that the reception rate ranges from 4% to 83%.
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Figure 9.13: Overall packet reception ratio (PRR) for each Ligeiro node. Ligeiros transmit an
incrementing sequence number in each packet, and we use this to determine the percentage
of packets we received from each sensor. The variability in reception rates is likely due to
interference in the wireless spectrum, the range between the sensor and the gateway, and
intermittent gateway failures.
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Figure 9.14: We observe the median transmission interval of each sensor to understand how
often the sensor can transmit when the light is on. Note the y-axis is on a log scale. For most
sensors the Ligeiros can transmit more frequently than once every 10 seconds. The sensors
that exhibit activations at a slower rate likely are attached to lights that are infrequently or
never used.

We also again observe the activation rate of the energy-harvesting sensors. Figure 9.14
shows the median packet transmission interval for each sensor during the entire deployment.
Note that the y-axis is on a log scale. Most of the sensors have a median transmission interval
of 10 seconds or less. This is expected as most packets are transmitted when the light is on
and therefore the harvesting source is plentiful. However, the sensors that were placed on
lights that were never detected to turn on exhibit much higher median intervals as they were
likely harvesting with sporadically available ambient light. This discrepancy is essential for
classifying the light as on or off using just the activation rate of the sensor.

We also compare the median received interval to light usage, and show the correlation
in Figure 9.15. For sensors with relatively frequent packet reception rates it is difficult
to discern any information about the attached light. However, for sensors with long gaps

123



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1  10  100  1000  10000

A
v
e
ra

g
e
 M

in
u
te

s
/D

a
y
 O

n

Median Packet Interval (s)

Figure 9.15: Comparing median transmission time to estimate light usage. For sensors with
median packet reception intervals that are below about 10 s, it is difficult to correlate with
light usage. However, if a sensor’s packets are received very rarely and the median interval
is much higher (greater than 100 s), as expected the light can be assumed to be used very
little or never.

between received packets, the light can be assumed to be unused.
To get a sense of the coverage of the Ligeiro data in time, we investigate the number of

consecutive packets that are transmitted from each sensor but not received by a gateway.
This allows us to understand if the Ligeiro data is still reliable even with the relatively low
packet reception rates. For example, if a sensor had a PRR of 50%, it is possible that nearly
all of the packets were received during the first half of the study and very few were collected
in the second half. This would indicate that the load on time averages are incorrect due to
long periods of missed packets. However, if the packets are dropped very intermittently,
the data processing backend can compensate. For example, when packets are rapidly being
transmitted because the light is on, dropping packets in that interval can be compensated for
by observing the packet rate over the interval in which the packet was dropped.

Figures 9.16 and 9.17 show how many consecutively missed packets are observed from
each sensor. In Figure 9.16 we see the average burst length of the packet losses as well as
the standard deviation in the error bars. On average, fewer than ten packets are dropped
before successfully receiving from a sensor. Figure 9.17 shows a histogram of the number
of consecutively dropped packets for each device. There is a long tail of dropped packets,
likely due to a malfunctioning gateway at one of the deployment sites, but the majority of
outages last for less than 50 packets.
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Figure 9.16: Average and standard deviation of consecutively dropped packets. The bold
lines are the average number of packets that are dropped consecutively, and the error bars
is the standard deviation. Nearly all of the Ligeiros on average had fewer than 10 packets
dropped before a successful packet reception. This shows that packet failures are intermittent
and prolonged outages are not common.
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Figure 9.17: Histogram of the number of packet drop lengths seen by each sensor. Generally,
no more than 50 packets are dropped consecutively.

Figure 9.18: Multi-radio gateway hardware and case. The gateway is powered by an Intel
Edison, and contains IEEE 802.15.4, BLE, Wi-Fi, GSM, and GPS wireless radios. It also
supports Ethernet, micro SD cards, and USB, and includes two status LEDs.
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9.3 Gateway Support Infrastructure

Deployments of these energy-harvesting sensors require a nearby gateway to collect, store,
analyze, archive, or retransmit packets for the sensors. Figure 9.18 shows the latest hardware
version of our gateway platform. The gateway is responsible for accepting packets on both
Bluetooth Low Energy (BLE) and IEEE 802.15.4 low-power wireless interfaces, and can
relay those packets to the cloud using Ethernet, Wi-Fi, or GSM radios.

9.3.1 Single-hop Networking

The energy-harvesting sensors we have deployed rely on a single-hop link to a gateway. This
requirement stems from the limited energy stores on the energy-harvesting nodes and the
optimizations to the operation of these sensors.

While traditional wireless sensor networks envisioned gateways being difficult or ex-
pensive to deploy, particularly in outdoor or remote environments, in frequently occupied
buildings this is no longer the case. The main limiting factor to deploying a gateway in
buildings is mains power availability. We have found that sharing an outlet with existing
equipment (e.g. projectors, Wi-Fi routers) provides a convenient method for powering gate-
ways. The other need a gateway has is an Internet connection for configuration, updates,
and data backhaul. Today, in buildings this is often not a challenge. Wi-Fi or Ethernet are
often ubiquitous. In the event they are not, our gateway also supports a cellular Internet
connection.

Using single-hop networking also dramatically simplifies the network operation and
overhead of deploying a new sensor. The gateways must simply be always-on listeners to
collect any transmitted packets. They do not need to coordinate a network, assign addresses,
or facilitate routing. The sensors then do not have to maintain schedules or routing tables, they
can simply transmit when their energy permits. This reduces the complexity of the sensor
software. It also aids new device deployment as the node does not need to be configured with
a series of network- or deployment-specific parameters that are common to more advanced
network and routing protocols. This approach does require a comprehensive deployment of
gateways to support the deployed devices. However, we anticipate that future Wi-Fi access
points will include support for low power radios (and indeed commercial products with this
feature are already starting to appear) and that an additional deployment of gateways will
not be required.
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Figure 9.19: Software architecture for the gateway. At the top, a number of receiver blocks
are capable of accepting packets from a wide array of devices. The MQTT broker on the
gateway handles routing packets from the receivers, to various processing blocks, and out to
external services or databases. Additionally, other services running on the gateway provide
interfaces for discovering gateways, writing applications, and interacting with devices.

9.3.2 Gateway Software Architecture

The gateway software architecture is designed to be a flexible platform to support many
different types of sensors and deployment needs. The architecture, diagrammed in Fig-
ure 9.19, is centered around an MQTT broker and supports many data input receivers,
onboard processing blocks, and remote publishing protocols.

The gateway’s main purpose is to receive packets from deployed devices. Typically,
there are two main challenges for doing this. The first is ensuring the gateway and device
speak the same protocol, and the second is ensuring the gateway can understand the data
format the device is using. A typical approach is to have a well specified protocol and data
format that the device can follow to ensure that it is interoperable with the gateway. This is
problematic, however, because the breadth of existing devices makes it challenging, if not
impossible, for a single standard to emerge. To compensate, our gateway takes a different
approach. Our gateway understands a range of wireless protocols and makes no assumption
about the data format that individual devices use. Instead, devices point to a small snippet of
code, in our case JavaScript, that can parse and interpret the data from the node and convert
it to the internal data format of the gateway. This then allows devices to effectively configure
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(a) Deployment UI (b) Data Download

Figure 9.20: Gateway-hosted webpages. The first shows circuits and Triumvis in real-time.
This helps with deployment by showing which Triumvis are reporting for which circuits.
The second allows for locally stored data to be downloaded for offline processing.

the gateway at runtime with the tool needed to understand their data.
Ideally, device creators would author these conversion files. However, that is not a

requirement and the gateway can support third party converters to help build a critical mass
of supported devices.

Once the data are collected and parsed, the gateway can push them to other internal
processing blocks, to applications running on the gateway, or to cloud-based services for
monitoring, archival, or visualization. For Triumvi, the gateway supports two key features.
First, the gateway hosts a webpage (shown in Figure 9.20a) that shows which Triumvis are
reporting and which circuits they are attached to. This helps when deploying to make sure
things are responding as intended. Second, the gateway locally logs Triumvi data so that
it can be stored and retrieved without the gateway needing to be connected to the Internet.
Figure 9.20b shows the web interface for downloading local Triumvi data.

Another service the gateway provides is a method for Triumvi nodes to query the gateway
for the current time. This allows Triumvi nodes to reset their onboard real-time clocks (RTC)
to the correct time. Triumvis have a supercapacitor backed RTC that can maintain time
for about a month. If the supercapacitor’s stored energy is depleted, the RTC will lose its
sense of time and the Triumvi will ask the gateway for an updated timestamp. Because
Triumvi has limited runtime due to its energy-harvesting power supply, the gateway must
be able to respond to a time request very quickly while the Triumvi still has energy to
receive the packet. To ensure this, the gateway uses a co-processor with a built-in wireless
radio. The co-processor handles returning the correct time to the Triumvi, and because the
co-processor includes the radio it can ensure a quick turnaround between receiving the
request and transmitting the correct time.
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Figure 9.21: Cloud service architecture. The gateway forwards collected packets to the
cloud service, which uses a metadata repository to add metadata to incoming messages, and
stores data in an InfluxDB database. A user can then query the database through the Grafana
graphing and visualization interface.

9.3.3 Data Collection, Processing, and Visualization

Once data is collected by a gateway, it is often pushed to the cloud for storage, processing,
and visualization. The architecture for the cloud service is shown in Figure 9.21. To continue
to ensure that devices are easy to deploy, our infrastruture does not require any configuration
when a new device is added. The parsed data packets from the device are transparently
stored in the cloud.

We use InfluxDB [56] as our primary cloud data storage. We chose InfluxDB because
it is designed for timeseries data and it supports multiple data types including booleans
and strings. The support for multiple data types is essential for us to ensure generality for
arbitrary devices. While InfluxDB is an effective time series data store, it has no mechanism
for appending metadata to incoming records. Often, it is beneficial to store data about the
deployed device, such as where it is or what it is sensing. Rather than distribute metadata to
each gateway and have the gateway append it to each data packet, we add middleware to the
cloud receiver for InfluxDB. This middleware inspects each incoming packet and checks if
there is any metadata for the device that generated the packet, and if so, appends the correct
metadata before inserting the record into the database.

To visualize data we use Grafana [47], a platform for visualizing time series data. Grafana
pulls directly from InfluxDB and makes it easy to create graphs, tables, and other charts
from the device data streams. An example graph is in Figure 9.22. These graphs can be built
up into dashboards that allow at-a-glance monitoring of multiple aspects of a deployment.
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Figure 9.22: Cloud-based graphing software. An example graph of Triumvi power data
using the Grafana graphing application.
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CHAPTER 10

Conclusion

Ubiquitous computing, the Internet of Things, wearables, industrial monitoring and their
driving applications are going to continue to create a proliferation of sensors in the built
environment. Effectively using these devices, and extracting the value they promise, is
going to require overcoming many challenges related to how the devices are deployed,
programmed, networked, and integrated. Another key challenge that is going to continue to
grow in importance as these devices continue to significantly outnumber people, is how they
are going to be powered.

Using AC mains power for devices is effective, but difficult to scale, due to the limited
number of plugs, the limited location of outlets, and the physical size of AC-DC power
supplies. Batteries provide much more flexibility, but require periodic maintenance when
their energy store is depleted. As the number of devices grows, this maintenance overhead
will be untenable. This makes a third option, energy-harvesting, an attractive one. With
energy-harvesting, devices scavenge for their own energy after they are deployed. This can
enable perpetual sensing where the device operates for as long as it is installed.

Energy-harvesting, however, also comes with tradeoffs. Scavengable energy is often
intermittent, unpredictable, and available only in small quantities. This makes existing
sensors and protocols difficult to use, as they typically assume a reliable source of energy.
To overcome these challenges, while enabling perpetual sensing, we introduce a series of
designs for energy-harvesting systems that enable useful sensing while operating on energy
harvested at a rate of just microwatts. The first design, Gecko, uses optimized hardware
and software to enable an ambient monitoring sensor that can sample once a minute using
energy harvested from indoor lighting. Gecko also demonstrates a technique for using
energy-harvesting sensors in conjunction with battery powered mesh networks.

As an energy-harvesting sensor, Gecko’s sample rate is tied to the available energy, and
this relationship is explored more fully by the Monjolo class of sensors. Monjolo devices
monitor energy consumption by observing how rapidly they are able to harvest energy, and
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we demonstrate versions that use lighting, AC electricity, and heat sources. To improve
the accuracy of the AC Monjolo, we develop Gemini, an energy-harvesting energy meter
that uses a virtualized voltage signal to obtain accurate AC energy measurements. Triumvi
extends this design into a standalone device with many configuration options to support an
array of deployment scenarios.

We also investigate sensors that monitor other aspects of buildings, including door
openings and closings and air vent usage. These sensors decouple harvesting from sensing
by harvesting from energy sources unrelated to their sensing goal. With this growing toolkit
of sensors, we define an architecture, centered around a trigger interface that decouples
harvesting from the sensing application, to enable reusable components between energy-
harvesting systems. This enables new sensors to be rapidly developed by defining a common
physical interface and enabling sharing of key hardware components.

These energy-harvesting sensors not only demonstrate the potential of computing with
an energy-harvesting power budget, but are also designed to address a real problem: how
do we make existing buildings more energy efficient? All of the devices are designed to
operate indoors by scavenging energy available in typical buildings. This sensor suite can
then be used to instrument a building to better understand how it is using energy, and, more
importantly, where it is wasting energy. To show how these sensors perform when deployed,
we also perform multiple deployments at modest scale and evaluate the energy-harvesting
sensors. We find that they are indeed easy to deploy and capable of continuous data collection,
but also that the resulting data streams require additional processing, including detecting
when the load is off and converting activation packets to estimated power, to hide the
limitations of energy-harvesting sensors.

The systems presented often argue for an extreme design point where the entire sensor
runs on a small bank of capacitors. This raises potential questions, however, as to what
extent the systems could benefit from additional energy storage, and what physical device or
devices should be used for the energy storage? Future work could include exploring more
complex designs with a hierarchy of energy storage to enable more sensing applications.

Other avenues for future work include developing new systems that help energy-
harvesting sensors—which are often sporadic in their sample rates or limited in their pro-
cessing capabilities—interact with existing higher-level systems such as machine learning
algorithms or stream processing pipelines. This overlay system could run in the cloud or
the gateway and would provide a sensor abstraction that upper layers expect but use energy-
harvesting sensors as the data sources. Related, often energy-harvesting sensors require
the processing that may normally happen on the node itself to be performed elsewhere
for energy reasons. However, adding small snippets of processing code is actually often
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complicated as user-friendly runtimes for this often do not exist. Having a platform for easily
and scalably processing these data streams would also help mask some of the drawbacks of
the underlying energy-harvesting sensors.

As with any sensor deployment, even as the devices become simpler to deploy, mini-
mizing the number of required sensors reduces the cost and overhead of the deployment.
Additionally, with the promise of perpetual computing comes the potential for the devices
to be deployed for long periods of time. The requirements for the deployed devices might
change over time as applications and goals change, and the energy-harvesting devices need
some provision for altering their operation to match. Doing this on an energy-harvesting
platform, however, is not straightforward and will require new techniques suitable for low
energy systems.

While single-hop, unreliable networking is appealing from a simplicity standpoint and
helps enable energy-harvesting based data collection, packet drops lead to lost data and their
cause is difficult to diagnose. The receiver, the wireless channel, and the sensor could all
be responsible and better tools are needed to gain more introspection. Also, the energy and
performance tradeoffs among reliable (or not) packet transmission, local packet storage,
local processing and compression, data timeliness, and data loss need to be further explored.
Perhaps the redundancy in the unreliable, fire-and-forget operation used by the nodes in
this dissertation is sufficient for the applications they target. Alternatively, it may be more
effective to periodically ensure reliable data transfer, even if this requires the node to be able
to timestamp locally stored packets.

At most the sensors in this dissertation encrypt their payloads with an AES cipher,
but future devices will need a more robust approach for security and privacy. However,
implementing this on the limited energy budget of an energy-harvesting sensor will require
new techniques, potentially integrating checkpointing schemes for energy-loss tolerant
processing and support from the nearby gateway. Bootstrapping and commissioning will
also present challenges as accruing enough energy for a typical key exchange or setup
procedure may prove to be a lengthy process.

Likely future ubiquitous energy-harvesting sensor deployments will require new pro-
cessing, management, and security frameworks, multi-level energy storage, and reusable
hardware platforms to be successful, but the systems presented in this dissertation are a start
towards not relying on batteries yet enabling key applications at the scales we expect.
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[115] J. Sallai, A. Lédeczi, and P. Völgyesi. Acoustic shooter localization with a minimal
number of single-channel wireless sensor nodes. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’11, pages 96–107,
New York, NY, USA, 2011. ACM. URL:
http://doi.acm.org/10.1145/2070942.2070953,
doi:10.1145/2070942.2070953.

[116] T. Schmid, D. Culler, and P. Dutta. Meter any wire, anywhere by virtualizing the
voltage channel. In Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building, pages 25–30. ACM, 2010.

[117] Siemens Embedded Micro Metering Module. http://w3.usa.siemens.com/
powerdistribution/us/en/product-portfolio/power-monitoring/
energy-management-products/Pages/embedded-submetering-module.aspx.

[118] R. Send, Q. Xu, I. Paprotny, R. White, and P. Wright. Granular radio energy-sensing
node (green): A 0.56 cm3 wireless stick-on node for non-intrusive energy monitoring.
In SENSORS, 2013 IEEE, pages 1–4, Nov 2013.
doi:10.1109/ICSENS.2013.6688133.

[119] SensorPush: Humidity & Temperature Smart Sensor.
http://www.sensorpush.com/products/ht1.

[120] Smarthome iMeter Solo. http://www.smarthome.com/2423A1/
iMeter-Solo-INSTEON-Power-Meter-Plug-In/p.aspx.

[121] Stack Responsive Light Bulbs. https://www.stacklighting.com/.

[122] STMicroelectronics. EnFilm: Thin-film batteries.
http://www.st.com/en/power-management/
enfilm-thin-film-batteries.html?querycriteria=productId=SC1107.

[123] X. Sun, X. Zhang, H. Zhang, N. Xu, K. Wang, and Y. Ma. High performance
lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional
cathode electrodes. Journal of Power Sources, 270:318 – 325, 2014. URL:
http://www.sciencedirect.com/science/article/pii/S0378775314012002,
doi:http://dx.doi.org/10.1016/j.jpowsour.2014.07.146.

[124] Y. Sun, O. Gurewitz, and D. B. Johnson. Ri-mac: A receiver-initiated asynchronous
duty cycle mac protocol for dynamic traffic loads in wireless sensor networks. In
Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems,

145

http://doi.acm.org/10.1145/2528282.2528284
http://dx.doi.org/10.1145/2528282.2528284
http://doi.acm.org/10.1145/2070942.2070953
http://dx.doi.org/10.1145/2070942.2070953
http://w3.usa.siemens.com/powerdistribution/us/en/product-portfolio/power-monitoring/energy-management-products/Pages/embedded-submetering-module.aspx
http://w3.usa.siemens.com/powerdistribution/us/en/product-portfolio/power-monitoring/energy-management-products/Pages/embedded-submetering-module.aspx
http://w3.usa.siemens.com/powerdistribution/us/en/product-portfolio/power-monitoring/energy-management-products/Pages/embedded-submetering-module.aspx
http://dx.doi.org/10.1109/ICSENS.2013.6688133
http://www.sensorpush.com/products/ht1
http://www.smarthome.com/2423A1/iMeter-Solo- INSTEON-Power-Meter-Plug-In/p.aspx
http://www.smarthome.com/2423A1/iMeter-Solo- INSTEON-Power-Meter-Plug-In/p.aspx
https://www.stacklighting.com/
http://www.st.com/en/power-management/enfilm-thin-film-batteries.html?querycriteria=productId=SC1107
http://www.st.com/en/power-management/enfilm-thin-film-batteries.html?querycriteria=productId=SC1107
http://www.sciencedirect.com/science/article/pii/S0378775314012002
http://dx.doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.07.146


SenSys ’08, pages 1–14, New York, NY, USA, 2008. ACM. URL:
http://doi.acm.org/10.1145/1460412.1460414,
doi:10.1145/1460412.1460414.

[125] T sensors summit for trillion sensor roadmap.
http://www.tsensorssummit.org/Resources/TSensors%20Roadmap%20v1.pdf, 2013.

[126] Y. K. Tan and S. K. Panda. Energy harvesting from hybrid indoor ambient light and
thermal energy sources for enhanced performance of wireless sensor nodes. IEEE
Transactions on Industrial Electronics, 58(9):4424–4435, Sept 2011.
doi:10.1109/TIE.2010.2102321.

[127] J. Taneja, J. Jeong, and D. Culler. Design, modeling, and capacity planning for
micro-solar power sensor networks. In 2008 International Conference on
Information Processing in Sensor Networks (ipsn 2008), pages 407–418, April 2008.
doi:10.1109/IPSN.2008.67.

[128] TAOS. Tsl230brd programmable light-to-frequency converters.

[129] TED: The Energy Detective. http://www.theenergydetective.com/.

[130] Texas Instruments CC2538. http://www.ti.com/product/cc2538.

[131] Thread Group. Thread. http://threadgroup.org.

[132] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the redwoods.
In Proceedings of the 3rd International Conference on Embedded Networked Sensor
Systems, SenSys ’05, pages 51–63, New York, NY, USA, 2005. ACM. URL:
http://doi.acm.org/10.1145/1098918.1098925,
doi:10.1145/1098918.1098925.
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