Finding Minimum Spanning Trees in O(m a(m,n)) Time

Seth Pettie
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
seth@cs.utexas.edu

October 21, 1999

UTCS Technical Report TR99-23

Abstract

We describe a deterministic minimum spanning tree algorithm running in time O(m a(m,n)), where
a is a natural inverse of Ackermann’s function and m and m are the number of edges and vertices,
respectively. This improves upon the O(m a(m,n)log a(m,n)) bound established by Chazelle in 1997.

A similar O(m a(m,n))-time algorithm was discovered independently by Chazelle, predating the al-
gorithm presented here by many months. This paper may still be of interest for its alternative exposition.

1 Introduction

We consider the problem of finding a minimum spanning tree on a weighted, undirected graph. This problem
has been studied in its present form for many decades and yet to date, no proof of its complexity has been
found. The first MST algorithms were discovered by Boravka [Bor26] and Jarnik [Jar30] and for many
years the only progress made on the MST problem was in rediscovering these algorithms. (See [GH85] for
an historical survey of MST.) Kruskal [Kr56] presented an algorithm that rivaled previous algorithms in
terms of simplicity but did not improve on the O(mlogn) time bound first established by Bortuvka. Here m
(resp. n) is the number of edges (resp. vertices) in the graph.

The mlogn barrier was broken by Yao’s O(mloglogn) time algorithm! [Yao75], which was followed
quickly by Cheriton and Tarjan’s O(mloglog;n) time algorithm [CT76], where d = max{2, 7 }. The MST
problem saw no new developments until the mid-1980s when Fredman and Tarjan [FT87] used Fibonacci
heaps (presented in the same paper) to give an algorithm running in O(m 8(m,n)) time?. In the worst
case, (m,n) = log* n). Before the ink had dried on this result Gabow et al. [GGST86] upped the ante to
O(mlog B(m,n)), a result which stood for a decade.

Recently Chazelle described a non-greedy approach to solving the MST problem which makes use of the
soft heap [Chaz98a], a priority queue which is allowed to corrupt its own data in a controlled fashion. This
led to an algorithm [Chaz97, Chaz98b] running in time O(maloga), where o = a(m,n) is a certain inverse
of Ackermann’s function.

Pettie and Ramachandran [PR99] have just developed an optimal MST algorithm by breaking the larger
MST problem into manageable subproblems and finding the MSTs on these subproblems using optimal
decision trees. In the decision tree model, edge cost comparisons take unit time and all other operations
are free. The overhead for this algorithm is linear, thus its running time is asymptotically the same as
the decision tree complexity of the MST problem. Considering this result, in the analysis of our algorithm
we will not address the time spent on operations which do not involve edge cost comparisons. Henceforth,
running time refers to time under the decision tree model.

! Actually, Yao cites an unpublished algorithm of Tarjan running in O(m4/logn) time.
28(m,n) = min{i : log® n < 1

All algorithms mentioned thus far require a relatively weak model of computation. Each can be imple-
mented on a pointer machine® in which the only operations allowed on edge costs are comparisons. If more
powerful models of computation are used then finding minimum spanning trees can be done even faster.
Under the assumption that edge costs are integers, Fredman and Willard [FW90] showed that on a unit-cost
RAM in which the bit-representation of edge costs may be manipulated, the MST can be computed in linear
time. Karger et al. [KKT95] considered a model with access to a stream of random bits and showed that with
high probability, the MST can be computed in linear time, even if edge costs are only subject to comparisons.
It is still unknown whether these more powerful models are necessary to compute the MST in linear time.

In this paper we present a deterministic minimum spanning tree algorithm running in time O(ma(m,n)).
The increase in speed over [Chaz97, Chaz98b] is the result of dealing with “bad” edges* more intelligently,
which also calls for changes to the recursive structure of the 1997 algorithm. In addition, we believe our
exposition highlights the underlying elegance of the algorithm.

We would like to give due credit to Chazelle on two matters. First, the bulk of our algorithm was in place
in his O(malog a)-time algorithm [Chaz97, Chaz98b]. Second, he has independently lowered the complexity
of his 1997 algorithm to O(ma) [Chaz99]. There is no question that this result predates our algorithm.

2 The Soft Heap

The soft heap [Chaz98a] is a kind of priority queue that gives us an optimal tradeoff between accuracy and
speed. It supports the following operations:

e makeheap(): returns an empty soft heap.

e insert(S,z): insert item z into heap S.

e findmin(S): returns item with smallest key in heap S.

o delete(S,z): delete 2 from heap S.

e meld(S1,52): create new heap containing the union of items stored in
S1 and Sz, destroying S; and S3 in the process.

All operations take constant amortized time, except for insert, which takes O(log(2)) amortized time.
Here’s the catch: to make its job easier, the soft heap may increase the values of any keys, corrupting the
associated items and potentially causing later findmins to report the wrong answer. Once corrupted, an
item’s key may still increase, though never decrease. The guarantee is that after n insert operations, no
more than en corrupted items are in the heap. Note that because of deletes, the proportion of corrupted
items could be much greater than e.

3 Preliminaries

The input is an undirected graph G = (V, E) with a distinct cost associated with each edge. We make
no other assumptions about the costs, but require that any two may be compared in constant time. The
minimum spanning tree problem can be stated in just a handful of words: find the tree spanning the vertices
of G which is of minimum total cost.

Although we must minimize the total cost, edges may be certified as being inside or outside the MST by
observing just a subset of G. By the cycle property, the costliest edge on any cycle in G is not in the MST.
Assume for the purposes of contradiction that such an edge, call it e, was in the MST. Edge e separates
the vertices of the MST into two groups, meaning there must be at least one edge from the cycle, call it f,
which has one endpoint in each group. We can thus produce a tree of lesser total cost by substituting f for
e. Dual to the cycle property is the cut property which states that for any cut X C V(G), the cheapest edge

3The pointer machine model prohibits pointer arithmetic, so certain techniques such as table lookup cannot be used. See
[Tar79).

4Bad edges will be discussed in later sections. Briefly, the algorithm finds a spanning tree where the only edges that could
possibly decrease its weight are the bad ones. They are reconsidered in recursive calls in order to find the minimum spanning
tree.

with exactly one endpoint in X is in the MST. This follows directly from the cycle property since such an
edge cannot be the costliest in any cycle.

Traditional MST algorithms identify the minimum cost edge crossing a cut X by keeping all eligible edges
incident to vertices in X in a heap. We will use this same strategy, using a soft heap in place of a correct
heap. Edges identified in this manner will be in the MST of G 1} R, a graph derived from G by raising the
costs of all edges in R C E(G). How do the cut and cycle properties fare in this corrupted graph? Unless all
edges crossing a cut are uncorrupted (not in R), the minimum such edge is not guaranteed to be in MST(G).
Similarly, the costliest edge in some cycle is definitely not in MST(G) only if it is uncorrupted (all corrupted
edges in the cycle having higher costs than w.r.t the graph G).

Using these two properties for the purpose of classifying edges will not prove useful. However, we may
derive useful information about the MST by certifying that regions of the graph are contractible. We say
that a subgraph C is contractible if for any edges e and f, each having one endpoint in C, there exists a
path connecting e to f in C consisting of edges with costs less than either e or f. The notation G\C is used
to mean the graph G with the subgraph C' contracted into a single vertex ¢. Edges incident to one vertex in
C become incident to ¢ and edges internal to C' are removed. The following Lemma is very well known.

Lemma 3.1 If C is contractible w.r.t G, then MST(G) = MST(G\C)U MST(C).

Proof: Edges in C which are not in MST(C), being the costliest on some cycle, are also not in MST(G)
since that cycle exists in G as well. We need only examine edges which are the most expensive on a cycle in
G\C involving vertex c. Let e and f be the two edges incident to ¢ in such a cycle. By the contractibility
of C, there is a path connecting e to f in C, the edges of which are cheaper than max{cost(e), cost(f)}.
Therefore, the costliest edge on any cycle in G\C is the costliest edge on a corresponding cycle in G.
O

This idea of contractibility is surprisingly robust when applied to corrupted graphs. Clearly Lemma 3.1
does not work as is. With a little adjustment however, we obtain a Lemma which is crucial to the correctness
of the algorithm.

Lemma 3.2 If C is contractible w.r.t G {} R, and Rc are those edges in R with one endpoint in C, then
MST(G) C MST(C)U MST(G\C 1 R¢) U R¢

Proof: First note that C' is also contractible w.r.t G f} R¢ since returning the edges of C' to their uncorrupted
state only lowers their cost. Edges in C' which are not in MST(C) are the most expensive along some cycle
and thus are not in MST(G) since the cycle exists there as well. Consider the edge e, the costliest on some
cycle in G\C 1} R¢ involving vertex ¢ (derived by contracting C'). If e is not corrupted, i.e. not in R,
then by the contractibility of C, it is also the costliest edge in some cycle in G 1} R¢, and thus in G as well.
However, if e is corrupted it is not necessarily the costliest edge in some cycle in G (though it is for some
cycle in G 1} R¢.) This forces us to reconsider all edges in R¢.

O

The Lemma given above is enough to show the correctness of the following generic algorithm.

1. Consider a graph Gy = G {I R derived from the input graph by corrupting all edges in R C E(G).
Partition G into contractible subgraphs, then contract each subgraph into a single vertex, forming the
graph G;. Repeat the partition-contraction step (creating graphs Ga,Gs,...) until the whole graph
contracts into a single vertex. Whenever a subgraph is contracted, corrupted edges with one endpoint
in that subgraph are marked as bad. They, as well as any other corrupted edges, remain corrupted.

2. Next, recurse on the non-bad edges of each contracted subgraph, returning its MST. Non-bad edges
should be restored to their original cost before the algorithm is applied recursively.

3. Finally, recurse on the graph consisting of the edges returned in step 2 and the bad edges found in the
step 1, returning them to their original cost. By repeated application of Lemma 3.2, this set of edges
contains the MST of the original graph G.

In the actual algorithm edges will be corrupted progressively, not in one swift stroke. However, let us
momentarily abstract away this aspect of the algorithm.

Figure 1: The contraction tree, partially built.

We can represent the contractions made in the first step by a contraction tree T. A node z in T with
height h represents both a vertex v, of G, and a subgraph of Gj,_1. The children of z in T represent those
vertices of Gj_1 contracted to form v,.

Building T efficiently is central to this algorithm but doing it bottom-up (or equivalently, top-down) does
not give us the desired running time (though it is possible to match the performance of the algorithm of
Gabow et al. [GGST86] using this method). We, however, will build T in post-order: the children of a node
z € T will be assembled from left to right in post-order followed by node z. If only some of z’s children are
complete we say that z is “under construction”. At any given time there will be no more than one subgraph
from each of G4,Gq4_1,--.,Go under construction, where d is the height of T. As soon as the subgraph of
G; has reached a critical size (which depends on i), it is contracted into a single vertex and added to the
subgraph of G; 1 under construction (which might cause it to contract, and so on).

We maintain a sequence of subgraphs X = (X7,..., Xj) which are under construction and currently have
at least one vertex. At all times h; > h;,; where h; is the height of X; in T. (This is in contrast to the
G;, which are indexed by increasing height.) Note that indices in this sequence do not directly relate to the
height of the subgraph in 7" since a subgraph is not represented until its left-most child is contracted. See
Figure 1.

Building T in post-order is no simple matter. In the next section we discuss the structure of X', how new
vertices outside of X’ are incorporated into it, and how to decide when subgraphs should be contracted This
is where Ackermann’s function comes into play.

The recursive structure of the algorithm is described in Section 5. In Section 6 we analyze the running
time, and in Section 7 we prove bounds on the number of bad edges generated whilst building 7. The
substantive changes to the algorithm of [Chaz97, Chaz98b] will be found in Section 5, along with a short
summary. Several other changes were made to simplify the description and analysis of the algorithm.

4 Building the Contraction Tree

Before getting into the details of building 7' we must define some terminology. Edges with one endpoint in
X are called ezxternal; those with both endpoints in X" are internal. Every external edge is either in some soft
heap, has been certified to be outside of MSF(G) and discarded, or has been marked bad and set aside. Note
that not all bad edges are set aside; some remain in soft heaps. When an edge makes the transition from
external to internal (after an outside vertex is added to X), it is deleted from the soft heap which contains
it, hence it cannot be corrupted further.

At any time during the construction of 7' the heap cost of an edge is the cost given to it by the soft heap
(which is its original cost if uncorrupted). The current cost of an edge is its heap cost if it is external or
bad, and its original cost otherwise. When there are no more external edges (i.e. T has been built), the final
cost is the current cost. To avoid possible confusion, let us stress that after T is built, the only pertinent

information about an edge is its original cost and whether it is bad or not. The heap costs of corrupted
edges are never used again and may be forgotton.
One may wish to verify the following truths, which will be taken as self-evident in the proof of correctness.

1. Heap costs never decrease.
2. For each internal edge, current cost = final cost = original cost if not bad.
3. For each bad edge, its final cost will be no less than its current cost.

Obviously we do not know the final cost of every edge until 7" is built. However, we will contract
subgraphs consistent with final costs, whatever they may be. To that end, we maintain the following
important invariant.

Invariant 1 Let g be the edge of minimum current cost between X; and X;i1. The current cost of g is
cheaper than the current cost of all external edges incident on X; for j < i, and internal edges between
distinct X;, X1, for j,5' <i.

It will not be difficult to maintain the invariant w.r.t. external edges. For internal edges we keep an edge
min-link(s, j) (for each pair 7, j) which is the edge of minimum current cost (= final cost) connecting X; to
X;. Internal edges which are not min-links will not be examined again until T' is built, and thus can be
ignored for the moment.

The two basic operations on X are the extension and the retraction (see Figure 1). We use them in concert
to construct contractible subgraphs whose size and density are well balanced, all the while maintaining
Invariant 1. In a retraction all corrupted external edges incident to X}, (the last subgraph under construction
in X') are marked bad; X}, which has height h in T', is contracted into a single vertex z; which is then added
to the subgraph of G, under construction. Generally this will be X;_; but if the height of X}_; and X}
differ by more than one, z; will simply be christened X having height h + 1. An extension consists of
selecting the external edge (u,v) (where u € X) of minimum current cost and adding v to X, followed by
a round of retractions if some subgraphs have reached their critical size. Extending X to include v can be
a simple operation. However, in order to preserve Invariant 1 we may need to prepare for v’s arrival by
performing a sequence of premature retractions followed by a fusion. The difference between a fusion and
a retraction is this: in a retraction the last subgraph X; is contracted and the resulting vertex is added
to X;_ 1. In a fusion, after X; is contracted, the resulting vertex and an existing vertex of X; i are then
contracted (or fused).

The procedure Build-T' (described later), decides how to order the extensions and retractions. Note that
a retraction can happen either because Build-T issued one, or prematurely as part of a complex extension.

Retraction
Let X}, be the last subgraph under construction in X.
Mark bad all corrupted edges incident on Xy.
Contract Xy, let the resulting vertex be xy.
Let X and X;_; have height hy and hg_1 resp.
If hk,]_ = hk +1 then
X1 = X1 U{zp}

k=k-1
Otherwise

Xy = {zr}

hy =hr+1

Update the min-links

Simple Extension
Let (u,v) have minimum current cost among external edges.
If u € X}, and current-cost(u, v) < min-link(¢, §) for all 4, j
Then Xy11 = {v}.
Let X1 have height zero in T'.
Find min-link(i,k+1) for all 7 < k.
k=k+1
Otherwise perform a Complex Extension.
Complex Extension
Find min ¢ s.t. min-link(4, j) < current-cost(u,v) (for some j).
Perform retractions until X, is last subgraph in X.
Contract X;41 into a single vertex z.
Perform a fusion:
Let (w, z) be min-link(i,i + 1), w € X.
Contract the edge (w, z). This is the fusion edge.
Edge (u,v) is now cheaper than all min-links, hence a
simple extension can be performed.

It is not too difficult to see that a simple extension preserves Invariant 1. By our choice of edge (u,v), it
must have current cost less than any other external edge, and by being eligible for a simple extension its cost
must be less than all min-links. When (u,v) is added to X, its current cost may only drop (if it is corrupted,
but not bad), hence Invariant 1 is preserved.

If the edge (u,v) was ineligible for a simple extension, then some subset of the min-links had costs less
than (u,v). The solution, in essence, is to perform retractions until these min-links do not exist. This
operation should seem very suspicious since the algorithm depends upon the contraction tree being built in
such a regimented manner. However, it turns out that complex extensions are quite desirable and in the end
save us a lot of work.

The key to the complex extension is the fusion (see Figure 2). Let ¢ be minimal s.t. for some j, min-
link(%,) is less than the cost of (u,v). Consider the state of affairs just after we have contracted the subgraphs
Xiv1,Xit2,..., Xy into a single vertex z, and let (w,2) be min-link(z,7 + 1). Since (w, 2) is contractible
w.r.t. final costs (see Lemma 4.2), we can safely contract it; call the resulting vertex fuse(w,z). Note that
this is not a retraction, hence no new vertices get added to X;. The effect of a fusion on the contraction
tree is to create a dummy node fuse(w,z) whose children correspond to w and z. We do not recalculate
the height of nodes in T after a fusion; the dummy node in 7T is just meant to document that w and z were
contracted. See Figure 3.

Lemma 4.1 At all times and for all i, X; is contractible w.r.t. current costs.

Proof: Consider some X; just before it acquires another vertex by way of a retraction, and assume inductively
that X; is contractible. Let (u,v) be min-link(i,7+4 1), where u € X; and v is the vertex derived by contracting
Xit1- Consider a pair of edges e and f = (v, w) incident on X; U{v}, and a path PU{(u,v)} connecting e to
f where P is the cheapest path connecting e to (u,v) in X;. By Invariant 1 the current cost of (u,v) is less
than that of e, and by the contractibility of X;, the costliest edge in P is also less than e. Hence, X; U{v} is
contractible w.r.t. current costs. Any future corruption of external edges will not affect the contractibility
of X; U {’U} O

Lemma 4.2 Let C be a subgraph or fusion edge contracted while building T, then C is contractible w.r.t.
final costs.

Proof: Suppose C' = X; at the time of its contraction. For edges internal to X;, their current cost equals
their final cost. By Lemma 4.1 X; is contractible w.r.t. current costs. Since all external corrupted edges
incident to X; are marked bad upon its contraction, their final cost can never be less than their current cost,
thus C is contractible w.r.t. final costs.

Current cost of edges indicated by height on the page.
Min-links cheaper than (u,v) indicated by dotted lines.

S~ —

Just before the fusion.
(u,v) is the cheapest external edge

(w,z) is the only min-link cheaper

than (u,v).
Xi-1 X Xi+1
Just after the fusion.
\ (w,z) has been contracted.
The number of vertices in X;
remains the same.
Xij-1 Xi Xit1

Figure 2: A complex extension, step by step.

Figure 3: A fusion’s effect on the contraction tree.

Consider the case when C' = (w, z) is a fusion edge, where w € X;. By construction C is the minimum cost
edge incident on z in terms of current cost, which corresponds to its final cost since C is internal. When the
subgraphs X;,1,..., X} were contracted to form 2 all external corrupted edges incident on these subgraphs
were marked bad, hence their final cost is no less than their current cost. Therefore, C' is contractible w.r.t.
final costs. O

Lemma 4.3 Let G} B be the graph under final costs, where B is the set of bad edges. Let © be some node
in T and C, be the corresponding subgraph. Then MST(G) C U, MST(C, — B) U B.

Proof: The edges not appearing in this expression are the non-bad edges of some C, which are not in
MST(C, — B). All such edges are the most expensive in some cycle in C, — B and by the contractibility of
C, w.r.t. final costs, are also the most expensive in some corresponding cycle in G 1} B. Since the costs of
other edges in the cycle can only drop when going from G {} B to G, all edges not in MST(C, — B) are also
not in G.
O

We use Ackermann’s function to regulate the construction of 7. Although this is a well known function,
several variants of it have been used in the analysis of algorithms. The variant we use is given below.

A(l,§) =2 (G>1)
A(i,1) = A — 1,2) (i > 1)
A(Z’]) ZA(i_laA(iaj_l)) (ZaJ > 1)

Let a(m,n) be the minimum ¢ such that A(s, [7*]) > logn.

Let d = [(%)%] and t be minimal s.t. A(t,d) > n. It will be shown later that ¢ is no more than
a(m,n) + 2. The necessity of defining ¢ and d in this way will soon become evident.

Let |V (X;)| denote the number of vertices in X;. Recall that each retraction into X; adds one vertex
to it, but a fusion does not affect the number of vertices. If X; has height h; in T then it has reached its

critical size (and should be retracted) when |V (X;)| > A(t, h;). If h; = 0 then the critical size is 1, hence
X; would be retracted the moment it comes into existence. Assuming retractions are made on schedule, it
follows that the height of T" is bounded by d.

Assume there is a fictitious vertex vy with an infinite-cost edge connecting every vertex to vg. This vertex
provides a nice starting place for the following procedure and forces the graph to be connected.

Build-T
Let X1 = {’Uo} and X = {Xl}
While there are still external edges:
Perform an extension.
Repeat as many times as necessary:
Let X} be the last subgraph in X
If X, has reached its critical size
Perform a retraction (this decrements k).

Lemma 4.4 Call a subgraph trivial if it has only one vertex. The number of vertices in non-trivial subgraphs
of G; contracted while building T is no more than 2n/A(t,1).

Proof: We claim that each vertex in a non-trivial subgraph C of G; represents at least A(t,¢) vertices in
G, except perhaps the last, which did not achieve its intended size. Each vertex v in C' was born out of a
retraction, so let us examine the two types of retractions. If v was the result of a scheduled retraction (one
issued by the Build-T routine), then it must be the result of contracting A(t,:) vertices from G;_1. On the
other hand, if v was the result of a premature retraction (as part of a complex extension), then it will either
be fused with an existing vertex in C, which satisfies the claim, or C itself will be retracted. If the latter is
the case, no new vertices may be added to C, also confirming the the claim.

In the worst case, each subgraph of G; contracted has two vertices, one that reached its mature size and
another of trivial size. This gives the desired bound. O

5 The Algorithm

Once we know how to build 7', describing the high-level algorithm is quite simple. We use the term density to
refer to the the edge-to-vertex ratio . We assume that G has density > ca(m,n) for some suitable constant
¢. The algorithm is such that all graphs in recursive calls have density at least that of G, so increasing the
density once (before the algorithm begins), is sufficient. There are any number of ways to do this within
O(ma(m,n)) time (see Lemma 5.1 for one).

MST(G)

(1) Compute d and ¢. If t = 1, return MST of G.

(2) Build-T', let B be the set of bad edges.

3) For all z € T let C, be corresponding subgraph, sans bad edges.

Improve density of Cy, yielding C’; put contracted edges in F,

(4) Let G' = U, (MST(C;) U F;) U B.

5 mprove density o , yieldin ; put contracted edges in F".
I d f G' lding G"' d edg F'

(6) Return MST(G") U F’

The recursion bottoms out when ¢ = 1 meaning the density is at least logn. Using the Dijkstra-Jarnik-
Prim algorithm®, the MST of G can be found using O(m + nlogn) = O(m) comparisons.

By Lemma 4.3, G' contains the MST of GG, and we will show that the contracted graph G" has only
a fraction of the edges in G. The edge contraction performed in steps (3) and (5) insures that the d and
t parameters behave correctly when they are recalculated in recursive calls. Specifically, we show that for
all recursive calls made in step (4) the ¢ parameter is decremented, and that it does not increase for the
recursive call in step (6). The following Lemma will help bound the time to do steps (3) and (5).

5This simple algorithm was discovered independently by Dijkstra [Dij59], Jarnik [Jar30], and Prim [Prim57]. The stated
running time assumes Fibonacci heaps are used [FT87].

Lemma 5.1 Let G have m edges and n vertices. The density of G can be increased to D (by contracting
MST edges), in O(m + nlog D) time.

Proof Sketch: Performing one pass of the Fredman-Tarjan [FT87] algorithm suffices to prove the lemma.
O

In step (3), if z is a node introduced by a fusion, then the corresponding subgraph just has two vertices
and its MST is simply the fusion edge. Otherwise, let x have height A, > 1, and let d, and ¢, be the d and ¢
parameters as calculated in the recursive call MST(C,). We will increase the density of C, to > A(t, hy —1)*,
hence d, will be recalculated as > A(¢,h, — 1) and ¢, will be minimal s.t. A(t;,d;) > |V(C;)|. By the
definition of Ackermann’s function (and the fact that A(:,-) is increasing in both arguments), A(¢;,d;) >
A(ty, A(t, hy — 1)) = A(t, hy) > |V(Cy)| for t, =t — 1. For h, = 1 we just increase the density to that of G,
which will also have the effect of decrementing the ¢ parameter.

For the final recursive call we increase the density of G’ to D? where D = is the density of G. Clearly
the ¢ parameter does not increase as G has fewer vertices and higher density than G.

The time spent improving density is linear in the size of G, which can be seen from Lemmas 4.4 and 5.1.
Let m; and n; be the number of edges and vertices in G;. By Lemma 4.4, n; < 2n/A(t,1), and by Lemma

5.1, the time to improve the density for all G; is Zle O(m; + %)

= O(m). Similarly, the time
spent improving the density of Gy and G’ is also linear in m.

This algorithm differs from the one presented in [Chaz97, Chaz98b] in its recursive structure and in
how edges, specifically the bad edges, move between recursive calls. If an edge is passed to a recursive call
with a smaller { parameter, we say that edge is propagated downward. If the recursive call has the same
t parameter then that edge is propagated laterally. If the edge is next examined in a recursive call with a
greater t parameter it is propagated upward. In our algorithm only MST edges are propagated upward and
all bad edges are propagated laterally. This is in contrast to [Chaz97, Chaz98b] in which bad edges at each
level of recursion are grouped together and passed to the same recursive call. To counter the effect of bad
edges propagating upward, one must ensure that the number of bad edges is much smaller. Chazelle sets €
to be roughly 1/, giving the log o term in the O(maloga) running time.

6 Running Time
For the sake of simplicity we will postpone proving the following Lemma until Section 7.
Lemma 6.1 Build-T runs in time O(mlog(t) + d®n) and generates O(em + d®n) bad edges, for any e < .

The ¢ mentioned above is the same one used by the soft heap. We will set it to some small constant s.t.
the number of bad edges is < m/2 (since we set d = (%)%, the d®n term contributes very little).

The running time of the algorithm is given by the following recurrence. Let cam be the time spent
building 7" and improving the density of various subgraphs. Let m, be the number of edges in subgraph C,
where z € T, and mp be the number of bad edges. We have that) m, + mp < m and mp < m/2. The
number of edges passed to the final recursive call is bounded by mp(1 + %), where D is the density of G.
This follows from the fact that G’ has < mp + n edges and the density of G” is at least a factor of D larger
than G'. This was described in the previous section.

T(m,1)

IN

ZT(mm,t - 1)+ T(mp(l+ 5),t) + cam

Z ci(t —)my + citmp(l + 5) + com (Assume inductively)
z

alt—1)2 +catZ(l+ 5)+cam

atm(l+ 55 — 37 +)

citm (for D > 2t,¢; > 4co, this completes the induction)

IN

10

Theorem 6.1 The minimum spanning forest of a graph with m edges and n vertices can be computed
deterministically in O(m a(m,n)) time.

To prove Theorem 6.1 we need only show that ¢t = O(a(m,n)). By definition a(m,n) = min{j :
A(4,[51) > logn}. We defined ¢ to be minimal s.t. A(t, [(%)%]) > n. where we maintain 7 to be at least
some constant. It is straightforward to prove that

Vi, j A, j) > 2 (1)
and A(i,7) <logA(i +1,7) (2)
Let @ = a(m,n) and D = ™" be the density.
A(a+2,Di) = A(a+1,A(a+2,Di —1))
A(a+1,D) (from 1,2)
24(@D) (from 2)

2187 — p (definition of a(m,n))

(AVARAVARLV]

Hence t does not exceed a + 2, which proves Theorem 6.1.

7 Heap Management and the Bad Edges

The need for a good heap management scheme is best exemplified by illustrating the defects in a naive
scheme. Suppose that we maintained k& heaps, one associated with each X;. All external edges incident
on X; would be kept in the corresponding heap, and the effect of retracting X; would be to mark bad all
corrupted edges in X;’s heap, then meld it with X;_;’s heap. Extensions would be handled in the obvious
manner: edges that made the transition from external to internal would be deleted from their respective
heaps, and new external edges would be inserted into the proper heap. This scheme is correct, but in the
worst case nearly all edges can become bad. The problem is that as soon as bad edges are deleted from a soft
heap, it is free (according to its specification) to corrupt an equal number of new edges. Thus whenever some
X; is retracted, the number of edges marked bad can be up to eI where I is the total number of insertions
made to X;’s heap or any heaps melded into it.

The solution is to divide the heaps into two types; one type will contain no bad edges but will suffer
many deletes, the other may contain bad edges but the number of deletes will be bounded. Consider an edge
(u,v) where u € X;. This edge will be kept in either the heap H (i) or some H; (i) for j < i. We now describe
the qualifications for membership in these heaps and how they behave during extensions and retractions.

H;(3): If (u,v) is kept in this heap then v is also incident to X; but
to no other Xy, for j < £ < i. If 7 = 0 this implies that v is
incident to no X, for £ < 3.

H(i): Edge (u,v) will be kept here only if v is incident to some edge
kept in H;(¢) for some j. No bad edges will be kept in this
heap nor will it ever meld with another.

After an extension, all newly internal edges will be deleted from their respective heaps, and newly external
edges will be inserted into some heap. If an edge is incident on X; and qualifies for heap H (i) then that is
where it should be inserted. Otherwise, it should be inserted into the only eligible H;(¢).

After the retraction of X}, the heaps H (k) and all H;(k) (for j < k) must be dealt with. First, mark all
corrupted edges in these heaps bad. Destroy the heaps Hy_1(k) and H(k), discarding all bad edges (this
is tantamount to increasing their costs to c0). Group the remaining (uncorrupted) edges according to their
endpoint outside X. For each group, reinsert the cheapest edge into another heap (described next) and
discard the rest of the edges, all of which are not in the MST of G and need not be reprocessed.

Consider an edge which was the cheapest in its group. If it, or any edge in its group was kept in Hy,_;(k),
then it is eligible to be reinserted into H(k — 1) and should go there. The remaining edges kept in H (k)
should be reinserted into the only H;(k) for which they are eligible. Finally, we meld H;(k) into H;(k — 1)

11

for all j. This scheme is essentially performing bulk decrease key operations on the items held in H (k) and
Hj,_1(k). Recall that the soft heap has no decrease key operation of its own.

Lemma 7.1 The number of insertions to all the heaps is O(m).

Proof: The number of first-time insertions is clearly m. We perform reinsertions only after grouping edges
with a common endpoint and discarding all but the cheapest. Thus if the group size is greater than 1 we
can charge the cost of reinsertion to one of the discarded edges. If the group is a singleton, notice that all
edges coming from H (k) are reinserted into some H;(k). These edges were kept in H (k) precisely because
they shared an endpoint with some edge in H;(k), so the next time these edges are up for reinsertion, they
will be in a group of at least 2. Since singleton edges from some H (k) are never reinserted into H(k — 1),
we can ignore all reinsertions into the H(-) heaps and be off by no more than a factor of 2. O

Lemma 7.2 Define the multiplicity of a heap to be the mazimum number of edges with the same endpoint
outside X. Then the multiplicity of H;(i) is bounded by d.

Proof: We will actually show that the multiplicity of H;(¢) is bounded by h;, the height of X; in T', which
is of course < d. This is certainly true when X; has height 1 since all first-time insertions which would
increase the multiplicity to 2 are instead directed towards H(i). If X; has height greater than 1 then its
growth comes only from reinsertions and melds performed just after a retraction.

Assume inductively that just before a retraction, H;(k — 1) and H;(k) have multiplicity < hj_; and
< hi, < hg—1 — 1 respectively. No two edges reinserted into H;(k) have the same endpoint (one would have
been discarded already), so the multiplicity of H;(k) is increased by no more than 1, bringing it to no more
than hg_;. The multiplicity of Meld(H;(k), H;(k — 1)) is just the larger of the multiplicities of H;(k) and
H;(k — 1), since the set of vertices adjacent to edges in H;(k) is disjoint from those adjacent to edges in
H;(k —1). Thus the multiplicity of H;(k — 1) post-retraction remains no more than hy_;.

In the case where hjy_; and hy differ by more than 1, the proof is simpler since H;(k — 1) and H;(k) are
not melded. O

We now restate and prove Lemma 6.1.
Build-T runs in time O(mlog(%) 4+ d®n) and generates O(em + d®n) bad edges, for any e < 3.

Proof: By Lemma 7.1 the time for all insertions is O(mlog(%)), which is clearly a bound on the time for
deletes and melds. For each extension we perform one findmin operation per heap and one comparison with
each min-link, hence the d?n term. Updating the min-links requires < m comparisons since each time two
potential min-links are compared, one is never eligible to be a min-link again. Since we are using the decision
tree model, the time spent deciding where to insert edges can be ignored.

Observe that all bad edges are discarded in one of two ways. They are either still in a heap at the time of
its destruction (just after a retraction), or they are deleted from a heap after an extension. The number of
bad edges discarded in the first way is no more than el where I is the total number of insertions. By Lemma
7.1 this is O(em). Consider all the edges deleted from heaps just after an extension. We can ignore those
deleted from some H (i) since all edges in such heaps are not bad (they become bad only upon retraction
of X;). The number of edges deleted from H;(3) is bounded by its multiplicity, which by Lemma 7.2 is no
more than d. Since there are < d? such heaps, the total number of bad edges is O(em + d®n). O

8 Conclusion

The complexity of the minimum spanning tree problem could conceivably be @(ma(m,n)), though this, as
would any super-linear bound, seems very unlikely. Indeed, there is still some slack in this algorithm that
could be exploited.

9 Acknowledgment

I would like to thank Vijaya Ramachandran for her comments.

12

References

Bor26] O. Boruvka . O jistém problému minimaélnim. Moravské P#irodovédecké Spoleénosti 3, (1926), pp. 37-58.
J
(In Czech).

[Chaz97] B. Chazelle. A Faster Deterministic Algorithm for Minimum Spanning Trees. In FOCS ’97, pp. 22-31,
1997.

[Chaz98a] B. Chazelle. Car-Pooling as a Data Structuring Device: The Soft Heap. In ESA ’98 (Venice), pp. 35-42,
Lecture Notes in Comp. Sci., 1461, Springer, Berlin, 1998.

[Chaz98b] B. Chazelle. A Deterministic Algorithm for Minimum Spanning Trees. Undated manuscript, received
February 1998.

[Chaz99] B. Chazelle. A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type Complexity. NECI Tech
Report 99-099 (2-062-0347-97005), July 1999.

[CT76] D. Cheriton, R. E. Tarjan. Finding minimum spanning trees. In SIAM J. Comput. 5 (1976), pp. 724-742.
[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer. Math., 1 (1959), pp. 269-271.

[FT87] M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms.
In J. ACM 34 (1987), pp. 596—615.

[FW90] M. Fredman, D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths.
In Proc. FOCS ’90, pp. 719-725, 1990.

[GGST86] H. N. Gabow, Z. Galil, T. Spencer, R. E. Tarjan. Efficient algorithms for finding minimum spanning trees
in undirected and directed graphs. In Combinatorica 6 (1986), pp. 109-122.

[GH85] R. L. Graham, P. Hell. On the history of the minimum spanning tree problem. Annals of the History of
Computing 7 (1985), pp. 43-57.

[Jar30] V. Jarnik. O jistém problému minimadlnim. Moravské Prirodovédecké Spoleénosti 6, 1930, pp. 57-63. (In
Czech).

[KKT95] D.R.Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum spanning
trees. Journal of the ACM, 42:321-328, 1995.

[Kr56] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. In Proc.
Amer. Math. Soc. 7 (1956), pp. 48-50.

[PR99] S. Pettie, V. Ramachandran. An Optimal Minimum Spanning Tree Algorithm. Tech. Report TR99-17, Univ.
of Texas at Austin, 1999.

[Prim57] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36:1389-
1401.

[Tar79] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. In JCSS, 18(2),
pp 110-127, 1979.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics,
1983.

[Yao75] A. Yao. An O(|E|loglog |V]) algorithm for finding minimum spanning trees. Information Processing Letters
4 (1975), pp. 21-23.

13

