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1 Introduction

Nearly all known shortest path algorithms can be neatly separated into two
groups: those which assume real-weighted graphs, where reals are manipu-
lated only by comparison and addition operations, and those which assume
integer-weighted graphs and a suite of RAM-type operations to act on the
edge weights. The standard textbook algorithms, established early on by Di-
jkstra [1], Bellman-Ford, Floyd-Warshall and others (see [2]), all work in the
comparison-addition model with real edge-weights. Since then most progress
on shortest paths problems has come by assuming integral edge-weights. Tech-
niques based on scaling [3{5], integer matrix multiplication [6{10], and fast
integer sorting (see [11{15] for recent results) only work with integer edge-
weights, and until recently it appeared as though the component hierarchy
approach used in [16] and [17] also required integers. We refer the reader to a
recent survey paper [18] for more background and references.

The state of the art in all-pairs shortest paths (APSP) for real-weighted,
sparse, directed graphs is | quite surprisingly | a combination of two stan-
dard textbook algorithms. For the case of non-negatively weighted graphs, Di-
jkstra's algorithm [1] computes single-source shortest paths (SSSP) in O(m+
n logn) time, and, by repeated application, APSP in O(mn + n2 logn) time.
These time bounds assume that a Fibonacci heap [19] is used. Johnson [20]
gave anO(mn)-time shortest path-preserving reduction from arbitrarily weighted
to non-negatively weighted graphs (assuming no negative weight cycles). Com-
bined with Dijkstra's algorithm this implies an O(mn+n2 logn) time general
APSP algorithm. This is the fastest algorithm to date for directed graphs; there
is a faster algorithm [21] for undirected graphs running in O(mn log�(m;n))
time. 2

For the case of dense graphs, Fredman [23] gave an APSP algorithm that per-
forms O(n2:5) comparisons and additions; however, he did not provide even
a polynomial-time implementation of this algorithm. The fastest APSP algo-
rithms for dense graphs [23,24] use Fredman's approach on very small prob-
lems. They are faster than the O(n3) algorithms of Floyd and Dijkstra by only
sub-logarithmic factors.

Our algorithm �ts into the hierarchy framework for computing shortest paths
[16,17,21,25]. The impetus behind this approach is a stubborn fact: Dijkstra's
SSSP algorithm [1] is inherently as hard as sorting, making its O(m+n logn)-
time implementation with Fibonacci heaps [19] optimal in the comparison-
addition model. Thorup [16], who invented the hierarchy-based approach,

2 [21] claims APSP is solved on a pointer machine [22] in O(mn�(m;n)) time. We
note here that if constant-time array lookups are allowed, [21] can be implemented
in O(mn log�(m;n)) time. Here � is the inverse-Ackermann function.
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showed that undirected SSSP on non-negative integer-weighted graphs can be
solved in O(m) time, assuming edge-weights are subject to typical RAM oper-
ations. Thorup's algorithm is like Dijkstra's in that it �xes the distance to each
vertex, one vertex at a time; however, he circumvents the sorting-bottleneck
inherent in Dijkstra's algorithm by not insisting that vertices be visited in
order of increasing distance. Hagerup [17] generalized Thorup's approach to
directed graphs, though he remained in the same non-negative integer/RAM
model. He gave an O(m log logC + n log logn) time SSSP algorithm and an
O(mn + n2 log logn) APSP algorithm, which is the fastest APSP algorithm
to date for sparse graphs in the integer/RAM model. Here C represents the
largest integer edge weight.

The requirement that edge-lengths be integers seemed, at �rst, to be essential
to the algorithms of Thorup and Hagerup [16,17]. Recently, Pettie and Ra-
machandran [21] adapted Thorup's algorithm to real-weighted graphs and the
comparison-addition model, yielding an undirected APSP algorithm running
in O(mn log�) time, where � = �(m;n) is the mind-bogglingly slow-growing
inverse of Ackermann's function. Pettie [25] has shown, also with a hierarchy-
based algorithm, that the comparison-addition complexity of directed APSP
is O(mn log�); however, this algorithm has a large (though polynomial) over-
head for deciding which comparisons and additions to make. The hierarchy-
based approach also turns out to be practical in certain situations. An ex-
perimental study by Pettie et al. [26] of a simpli�ed version of the algorithm
in [21] shows it to be decisively faster than Dijkstra's algorithm, if the one-
time cost of constructing a hierarchy is o�set by a suÆcient number of SSSP
computations.

In this paper we generalize the hierarchy-based approach to real-weighted di-
rected graphs and explore its complexity in the comparison-addition model.
Our primary result is a new APSP algorithm that runs in O(mn+n2 log logn)
time. A second contribution of this paper is a new way to view the common-
alities between all hierarchy-type algorithms. We give, in particular, a simple,
one-line characterization of all hierarchy-type algorithms which allows us to
prove lower bounds on their complexity in the comparison-addition model.
The upshot is that for directed and undirected graphs alike, no hierarchy-
type SSSP algorithm can break the 
(m + n logn) barrier. A subtler conse-
quence of our lower bound is that no directed APSP algorithm can break the

(mn+n2 logn) barrier if it follows the traditional hierarchy-based approach
[16,17,21], which is to �rst compute some kind of hierarchy, then to solve n
SSSP problems with n independent processes. In other words, if we choose
to stay in the hierarchy framework, at some point in the algorithm we must
exploit the dependencies that exist between di�erent SSSP computations. Our
APSP algorithm introduces a novel method for identifying and representing
these dependencies.
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1.1 Organization

In Section 2 we de�ne the problems and the comparison-addition model. In
Sections 2.2 and 2.3 we outline Dijkstra's classical algorithm and give an
informal introduction to the hierarchy approach to shortest paths. In Section
3 we give a lower bound on any hierarchy-based algorithm computing SSSP
in the comparison-addition model. In Section 4 we adapt the hierarchy-based
approach to real-weighted directed graphs. We present ourO(mn+n2 log logn)
time APSP algorithm in Section 5.

2 Preliminaries

The input is a weighted, directed graph G = (V;E; `) where jV j = n; jEj = m,
and ` : E ! R assigns a real length to every edge. It was mentioned in the
introduction that the shortest path problem is reducible in O(mn) time to one
of the same size but having only non-negative edge lengths, assuming that no
negative length cycles exist. We will assume, henceforth, that ` : E ! R

+

assigns only non-negative lengths.

The length of a path is de�ned to be the sum of its constituent edge lengths.
The distance from vertex u to vertex v, denoted d(u; v), is de�ned as the length
of the minimum-length path from u to v. The APSP problem is to compute
the d(�; �) function, and the SSSP problem is to compute the d(s; �) function
for a �xed source s. We generalize the d notation to include subgraphs. De�ne
d(H1; H2), where Hi can be a vertex or subgraph, to be the minimum distance
from any vertex inH1 to any vertex inH2. Hi may also be an object associated
with a subgraph, not necessarily the subgraph itself.

2.1 The Comparison-Addition Model

In the comparison-addition model, real numbers are only subject to compar-
isons and additions. Comparisons determine the larger of two given reals, and
addition of existing reals is the only means for generating new reals. An al-
gorithm in this model chooses the next operation based on the outcome of
previous comparisons.

The comparison-addition model �ts naturally with the assumption of real
numbers; however, it does not depend on this assumption. The model could
just as easily be cast in programming terminology. We would assume an ar-
bitrary numerical data type called R, representing some subset of the reals
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closed under addition. The actual instantiation of R is not our concern so long
as it supports two operations, + : R�R ! R, and < : R�R ! ftrue, falseg
representing addition and comparison of numbers of type R. The data type R
could represent reals, integers, rationals, or something else. 3

In the description of our algorithm we frequently make use of subtraction,
multiplication by an integer, division and the 
oor operation. These opera-
tions are, of course, unavailable in the comparison-addition model; however
they can frequently be simulated cheaply and sometimes without asymptotic
penalty. It is shown in [21], for instance, that simulating subtraction incurs
at most a constant factor overhead. The idea is to represent each virtual real
number x as the di�erence between two actual reals a and b so that x = a� b.
A comparison between the virtual reals x1 = a1 � b1 and x2 = a2 � b2 then
reduces to a comparison between the actual reals (a1+ b2) and (a2+ b1). Mul-
tiplication by an integer is also simple. Suppose x is a real and N an integer.
We can calculate Nx in O(logN) time as follows. Produce the set of reals
B = fx; 2x; 4x; 8x; : : : ; 2blogNcxg, using logN additions, then produce Nx by
summing up the appropriate subset of B. Division by an integer is accom-
plished in a similar fashion. Suppose we set y = x=N . If we want to compare
y with another number, say z, we can substitute the equivalent comparison
between x and Nz.

An operation that comes in very handy is division by a real, followed by
the 
oor operation, i.e. computing the integer bx

y
c. This operation is di�erent

from the ones discussed above because the result is an integer rather than a
real number. We will discuss this di�erence below. We can compute bx

y
c in

O(1 + log x
y
) time using a method similar to our simulation of multiplication.

We produce the set B = fy; 2y; 4y; 8y; : : : ; 2blog
x
y
cyg then use the elements of

B to implement a binary search to �nd the integer bx
y
c.

We have already de�ned the limits of the data type real. In what ways does
the data type integer di�er? Like reals, integers are subject to comparisons
and additions. We assume integers can take on values between 0 and O(n2)
(this is essentially a minimal assumption since the size of the output is n2 in
the APSP problem) and that they can be used to index an array. That is, if
i is an integer and A is an array, then A[i] can be looked up in unit time. We
assume no primitive operations that convert reals to integers or vice versa.

There are several lower bounds on various shortest path problems in the

3 At this point one might be tempted to assume a more abstract algebraic structure,
such as an ordered semigroup (S;�;�). Our algorithm can very likely be adapted
to this model, but at the cost of simplicity. For instance, every inference normally
made by common sense, such as x � y =) (x�z) � (y�z), would require explicit
justi�cation.

5



comparison-addition model. However, they are all very weak. Spira and Pan
[27] showed that regardless of additions, 
(n2) comparisons are necessary to
solve SSSP on the complete graph. Karger et al. [28] proved that all-pairs
shortest paths requires 
(mn) comparisons if all summations correspond to
paths in the graph. Kerr [29] showed that any oblivious APSP algorithm
performs 
(n3) operations, and Kolliopoulos and Stein [30] proved that any
�xed sequence of edge relaxations solving SSSP must have length 
(mn).
By \�xed sequence" they mean one which depends on m and n but not the
graph topology. Graham et al. [31] did not give a lower bound but showed
that the standard information-theoretic argument cannot yield a non-trivial
(!(n2)) lower bound in the APSP problem. Similarly, no information-theoretic
argument can provide an interesting lower bound on SSSP.

2.2 Dijkstra's Algorithm

Dijkstra's SSSP algorithm visits vertices in order of increasing distance from
the source s. It maintains a set S of visited vertices, initially empty, and a
tentative distance D(v) for all v 2 V satisfying the following invariant.

Invariant 0 For v 2 S, D(v) = d(s; v) and for v 62 S, D(v) is the distance
from s to v using only intermediate vertices from S.

Dijkstra's method for growing the set S while maintaining Invariant 0 is to
visit vertices in ascending order of their distance from the source. In each step,
Dijkstra's algorithm identi�es the vertex v 62 S with minimum tentative dis-
tance, sets S := S [ fvg, and updates tentative distances. This involves relax-
ing each outgoing edge (v; w) by setting D(w) := minfD(w); D(v)+ `(v; w)g.
The algorithm halts when S = V , implying that the tentative distances equal
the actual distances.

It is important to notice that Dijkstra's algorithm represents only one method
for maintaining Invariant 0 and that, in principle, there are many \Dijkstra-
like" algorithms that grow the set S while preserving Invariant 0. When such
an algorithm adds a vertex to S, say u, it must have a certi�cate that D(u) =
d(s; u), in particular that for all v 62 S, D(v) + d(v; u) � D(u). Dijkstra's
certi�cate is simply that D(v) � D(u) by choice of u, and that d(v; u) � 0 by
the assumption that edge-lengths are non-negative. To depart from Dijkstra's
algorithm one must be able to �nd a better lower bound on d(v; u) than the
trivial d(v; u) � 0.
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2.3 An Outline of the Hierarchy Approach

The hierarchy-based approach can be traced back to a simple observation of
Dinic [32]: if t > 0 is the minimum edge length in the graph, then d(v; u) � t
for v 6= u. Therefore, one can maintain Invariant 0 by visiting any vertex
u 62 S minimizing bD(u)=tc. Thorup's insight [16] was that this idea could be
generalized to arbitrary and even multiple values for t. We will give a precise
description of the approach in Section 4. For now, consider an illustrative
example.

Suppose that the vertex set V can be partitioned into V1 and V2 such that all
edges crossing the cut (V1; V2) have length at least t. We imagine a shortest
path algorithm for this graph as composed of three interacting processes: p1; p2;
and ph, where p1 and p2 govern V1 and V2, respectively, and ph is a high-
level process governing the other two. The process ph operates by passing
real intervals to p1 and p2. If [a; b) is passed to p1 this means that p1 should
�nd and visit all v 2 V1 such that d(s; v) 2 [a; b). The ph process might
compute SSSP with the following simple algorithm: pass to both p1 and p2
the interval [0; t), followed by the intervals [t; 2t); [2t; 3t); : : : ; [it; (i+ 1)t); : : :
until all vertices are visited. The crucial observation here is that p1 and p2
always operate on independent subproblems. Speci�cally, when [a; a + t) is
passed to p1 it can determine those v 2 V1 such that d(s; v) 2 [a; a+ t) based
solely on the subgraph induced by V1 and the tentative distances (D-values)
to vertices in V1. The reason is simple: if v 2 V1 is such that d(s; v) 2 [a; a+ t),
the shortest s{to{v path cannot pass through any vertex w 2 V2 such that
d(s; w) � a. If w were on the shortest s{to{v path then we would have d(s; v) =
d(s; w)+d(w; v) � a+ t, a contradiction. The lower bound d(w; v) � t follows
since any w{to{v path crosses the cut (V1; V2), and therefore must include an
edge of length at least t.

The example given above is a bit simpler than the situation encountered in our
algorithm. Generally speaking, we partition the vertex set into more than two
subsets, and we can only make an asymmetric guarantee on the edges crossing
the partition, i.e. for V1 and V2 in the partition, we can only lower bound the
length of edges going from V1 to V2, not the other way. These generalizations
do not present much of a problem; the tricky part is implementing this ap-
proach eÆciently. Although the hierarchy approach does not involve visiting
the vertices in increasing distance from the source, we will see in Section 3
that there is a certain inherent sorting bottleneck in the approach.
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3 Lower Bounds for SSSP

In this section we give lower bounds on the complexity of any hierarchy-
based algorithm in a comparison-based model. The notion of lower bounding
an algorithm, rather than the complexity of a problem, should make one a
little uncomfortable. This is because there is no agreed upon standard for
deciding when two programs are really implementations of the same algorithm.
Our approach is to succinctly characterize the extra information obtained by
running some algorithm, then to lower bound the complexity of computing
that extra information from scratch (so we are, in e�ect, lower bounding a
problem.) The robustness of this approach depends on how central the extra
information is to the algorithm in question.

Let us illustrate the method on Dijkstra's single-source shortest path algorithm
[1]. One way to characterize Dijkstra's algorithm, without specifying how it
works, is to say that it �nds a permutation �s : V ! V such that

8u; v 2 V : �s(u) < �s(v) ) d(s; u) � d(s; v)

where d(�; �) is the distance function and s is the source. It is not diÆcult
to show that any algorithm computing such a permutation (and hence any
implementation of Dijkstra's algorithm) must make 
(n logn) comparisons
[33].

We give a similar characterization of the hierarchy-based shortest path al-
gorithms. Suppose for this discussion that the graph is strongly connected.
Let cycles(u; v) be the set of all cycles containing vertices u and v and let
sep(u; v) be de�ned as

sep(u; v) = min
C 2 cycles(u;v)

max
e 2 C

`(e)

where `(e) is the length of edge e. Notice that if the graph is undirected,
sep(u; v) is the length of the longest edge in the minimum spanning tree path
connecting u and v. Regardless of whether the graph is undirected or directed,
all hierarchy-based algorithms generate a permutation �s satisfying Property
1.

Property 1 Let s be the source. For any pair of vertices u; v, �s satis�es
d(s; v) � d(s; u) + sep(u; v) ) �s(u) < �s(v)

Is there a sorting bottleneck inherent in Property 1? The answer is that it de-
pends. Note that d(s; v) and d(s; u) depend on the source s, whereas sep(u; v)
does not. From the perspective of a multi-source shortest path algorithm, es-
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timating sep(u; v) is a one-time cost, whereas computing �s, given the sep
function, can be thought of as the marginal cost of computing SSSP. We are
interested in lower bounding the cost of SSSP both when the sep function
is known and unknown. Our results are tabulated in Figure 1. When sep

is unknown, we have 
(m + n logn) lower bounds for computing SSSP on
both directed and undirected graphs. However, the undirected bounds be-
come qualitatively weaker if we introduce a new parameter. Let r denote
the ratio of the maximum-to-minimum edge length. The directed and undi-
rected bounds become, respectively, 
(m + minfn log r; n logng) and 
(m +
minfn log log r; n logng). In other words, to induce an 
(m + n logn) lower
bound, r need only be polynomial for directed graphs, but exponential for
undirected ones. When the sep function is known, no non-trivial lower bounds
are known for undirected graphs, whereas the same lower bound holds for di-
rected graphs. In light of the results from [21,19], the bounds on directed
graphs are tight, and the bounds on undirected graphs are tight to within
a log�(m;n) factor when sep is known, and an �(m;n) factor when sep is
unknown.

sep known sep unknown

Directed SSSP 
( m + min f n log r; n logn g )

Undirected SSSP 
( m ) 
( m + min f n log log r; n logn g )

Fig. 1. Lower bounds on SSSP algorithms satisfying Property 1 in the compari-
son-addition model. The parameter r bounds the ratio of the maximum-to-minimum
edge length.

In Section 3.1 we prove the lower bound for directed graphs. The lower bound
for undirected graphs appears in [21].

3.1 Limits on Hierarchy-Type Algorithms

In this section we consider a model that is more powerful than the comparison-
addition model. The model allows the use of any function mapping vectors of
reals to vectors of reals, as well as comparison between reals.

We will show that any directed SSSP algorithm satisfying Property 1 must
make 
(n logn) comparisons, and hence take 
(m+ n logn) time. This lower
bound extends to randomized algorithms and holds even under the assumption
that sep(u; v) is a constant for u 6= v.

We consider a graph with �xed structure and a set of possible edge-length
functions. A permutation of the vertices is said to be compatible with a certain
edge-length function if it satis�es Property 1.
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Edge lengths are of the form  j * UNIT,  −1 < j < k.
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Fig. 2. The \broom" graph.

Our �xed graph, depicted in Figure 2, is organized a little like a broom. It has a
\broom stick" of k vertices, whose head is the source s and whose tail connects
to the remaining n� k vertices (the \bush"), each of which is connected back
to s by an edge (s appears twice to simplify the �gure). All these edges have
equal length UNIT, which is an arbitrary positive real. Additionally, there
are n � k edges directed from s to each of the vertices in the bush, having
lengths of the form j �UNIT, where j is a non-negative integer. One may easily
con�rm that sep(u; v) = UNIT for all distinct u; v. Assuming without loss of
generality that k divides n, we de�ne L to be the set of length functions that
assign the edge length j � UNIT to exactly (n � k)=k = n=k � 1 edges from
s to the \bush", for 0 � j < k. We have that jLj = (n � k)!=(n

k
� 1)!k. One

can also see that for any two length functions `1; `2 2 L, there is always a pair
of vertices u; v in the broom's bush such that d(s; u) < d(s; v) with respect
to `1, but d(s; v) < d(s; u) with respect to `2. Since d(s; u) < d(s; v) implies
d(s; u) � d(s; v)+ sep(u; v), no permutation of the vertices can be compatible
with both `1 and `2. Therefore at least log jLj comparisons must be made
to choose a compatible permutation. For k � n=2, log jLj = 
(n log k). One
can repeat this lower bound argument for any source in the broom's bush.
Theorem 1 follows.

Theorem 1 Suppose sep(u; v) is already known, for all vertices u; v. Any di-
rected SSSP algorithm obeying Property 1 must take time 
(m+minfn log r; n logng),
where the source can be any of n� o(n) vertices and r bounds the ratio of any
two edge-lengths.

4 Fundamentals of the Hierarchy Approach

The central idea in hierarchy-type algorithms is that of dividing the SSSP
problem into a series of independent subproblems. In this section we de�ne
precisely this notion of independence, and show how independent subproblems
can be produced and manipulated.
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Recall that s denotes the source of the SSSP problem. Let X � V denote
a set of vertices. We de�ne dX(s; v) to be the distance from s to v in the
subgraph induced by X. If I is a real interval, we de�ne XI to be the set
fv 2 X : d(s; v) 2 Ig, that is, those vertices in X whose distances from the
source lie in I.

De�nition 2 Let X and S be sets of vertices and I be a real interval. We
will call X (S; I)-independent if for all v 2 XI, d(s; v) = dS[XI (s; v)

To paraphrase De�nition 2, if X is (S; I)-independent then one can determine
the set XI by examining only the subgraph induced by S [ XI . Suppose
that we discover that X is (S; I)-independent in the context of a Dijkstra-like
algorithm, i.e. one satisfying Invariant 0. Now we can say something stronger:
because the D-values for vertices in XI�S encode all the relevant information
about the subgraph induced on S, one can determine XI by examining only
the subgraph induced by XI � S and the D-values of those vertices.

A t-partition, de�ned below, is a particularly useful tool for transforming one
independent subproblem into several smaller ones.

De�nition 3 Let X be a set of vertices. The sequence (X1; X2; : : : ; Xk) is a
t-partition of X if fXigi is a partition of X and for every edge (u; v) where
u 2 Xi; v 2 Xj, and j < i, we have `(u; v) � t.

Note the asymmetry in De�nition 3. In a t-partition only \backward" edges
crossing the partition have length at least t; \forward" edges can be any length.
Lemma 4 shows the relationship between t-partitions and independent sub-
problems.

Lemma 4 Suppose that X is (S; [a; b))-independent. Let (X1; : : : ; Xk) be a
t-partition of X, let I be the interval [a;minfa + t; bg), and let
Si = S [XI

1 [XI
2 [ � � � [XI

i . Then

(1) Xi+1 is (Si; I)-independent

(2) X is (Sk; [a+ t; b))-independent

PROOF. First consider Part (2). The assumption is that X is (S; [a; b))-
independent, meaning that for v 2 X [a;b), dS[X[a;b)(s; v) = d(s; v). Since Sk =
S[XI , we have S[X [a;b) = Sk[X

[a+t;b), which implies thatX is (Sk; [a+t; b))-
independent as well. Note that the interval [a+ t; b) may be empty if b � a+ t.

Now consider Part (1). The set Xi+1 is (Si; I) independent if for any v 2
XI

i+1, d(s; v) = dSi[XI
i+1
(s; v). Suppose that this is not the case, that is, every

shortest s{to{v path is not contained in Si [ XI
i+1 = Si+1. Let w be the

last vertex on such a shortest path that is not in Si+1. By the independence
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of X w.r.t. (S; [a; b)) we know that w 2 X. Furthermore, since d(s; w) �
d(s; v) < minfa + t; bg we know w 2 Sk. Therefore, w 2 (Sk � Si+1) and,
by the de�nition of a t-partition we have that d(w; v) � t. Together with
the inequality d(s; v) = d(s; w) + d(w; v) < minfa + t; bg we also have that
d(s; w) < a. We now have enough to obtain a contradiction. For any shortest
s{to{v path we showed how to choose a w on this path that is neither in S
nor in X [a;b), implying that d(s; v) < dS[X[a;b)(s; v). This directly contradicts
our initial assumption that X is (S; [a; b))-independent. 2

Lemma 4 is essentially describing a divide and conquer scheme for SSSP. One
�nds an independent subproblem on the vertex set X, divides it into a series
of smaller independent subproblems (using some t-partition) then solves the
smaller problems recursively. The basis case, when X is a single vertex, is
easy to handle. The problem of �nding the �rst independent subproblem is
also easy: V (all the vertices) is trivially (;; [0;1))-independent. The diÆculty
lies in implementing this scheme eÆciently. In Section 4.1 we de�ne a strati�ed
hierarchy, which is a structure for representing all the t-partitions encountered
in our algorithm. In Section 4.2 we give a recursive procedure for computing
SSSP and discuss some of the details of its implementation. Using o�-the-
shelf data structures and no fancy techniques our algorithm solves APSP in
O(mn+n2 logn) time, the same bound as Dijkstra's algorithm. In Section 5 we
introduce the techniques required to implement our algorithm more eÆciently.

4.1 A Strati�ed Hierarchy

A hierarchy is a rooted tree where there is a one-to-one correspondence be-
tween its leaves and the graph's vertices. We will think of leaves in a hierarchy
as being identical to the vertices they represent. An internal node x corre-
sponds to the induced subgraph Cx on the descendant leaves of x. We will
assign to each internal node x a value norm(x) such that if x1; : : : ; x� are
the children of x in left-to-right order, (V (Cx1); : : : ; V (Cx�)) is a norm(x)-
partition of V (Cx).

Thorup [16] and Hagerup [17] always choose their norm-values from the set
f2igi�0. Their hierarchies can be adapted in a straightforward manner to real-
weighted graphs by selecting norm-values from the set f`1 � 2

igi�0, where
`1 is the minimum edge length in the graph. However, there is a potential
problem with this scheme. Generating the value `1 � 2

i requires �(i) time in
the comparison-addition model, which is unbounded as a function of m and
n. We do not want to place an a priori limit on the ratio of any two edge
lengths. Our solution, as in [21], is to build a strati�ed hierarchy where each
stratum corresponds to a di�erent normalizing edge length, rather than using
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`1 as the only normalizing edge length. We ensure that the ratio of two norm-
values within a stratum is bounded as a function of n, and that the strata are
well-separated in a certain sense.

We now de�ne the structure of our strati�ed hierarchy SH. First, let `1; : : : ; `m
be the edge lengths of the graph in sorted order. We choose, as our set of
normalizing lengths, f`1g [ f`j : `j > 2n � `j�1g [ f1g. That is, every
normalizing length is much larger than any shorter edge lengths. Let `rk be
the kth smallest normalizing length. The nodes of SH are indexed by their
stratum and level within the stratum. For stratum k the levels run from 0 to
the maximum i such that `rk � 2

i < `rk+1
. If x is a stratum k, level i node then

we de�ne norm(x) as:

norm(x)
def
= `rk � 2

i�1; where x is at stratum k, level i (1)

Each SH-node x corresponds to a strongly connected component 4 (SCC) in
the graph restricted to edges with length less than 2 � norm(x). We denote
by Cx the SCC associated with x. A node x is an ancestor of y if x has
larger stratum/level and V (Cy) � V (Cx). We will call x irrelevant if V (Cy) =
V (Cx) for some descendant y 6= x. The parent of a node is its nearest relevant
ancestor. Similarly, the children of x are those nodes identifying x as their
parent. It is only necessary that we represent the relevant nodes; henceforth,
\x 2 SH" means x is a relevant node in SH. Figure 3 gives an example input
graph and its associated SH.

Suppose x1; : : : x� are the children of x. We de�ne Cc
x as the graph derived

from Cx by contracting the SCCs Cx1; : : : ; Cx� and retaining only those edges
with length less than norm(x). There is a natural correspondence between
the children of x and the vertices of Cc

x. The notation y 2 V (Cc
x) means that

y is a child of x.

Claim 5 Cc
x is acyclic.

PROOF. Let x be at stratum k, level i, and identify the vertices of Cc
x

with (possibly irrelevant) SH-nodes at stratum k level i � 1 (or if i = 0, the
maximum level in the previous stratum). Stratum k, level i�1 nodes represent
the maximal strongly connected subgraphs on the graph restricted to edges
with length less than `rk � 2

i�1 = norm(x). Since all edges in Cc
x have length

less than norm(x), no cycle can exist in Cc
x. If there were a cycle then at least

two stratum k, level i � 1 nodes could be merged to form a strictly larger
SCC. 2

4 A strongly connected component is a maximal subgraph such that any vertex in
the subgraph is reachable from any other.
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stratum 1, level 0,  NORM = .75

graph vertices

stratum 2, level 2,  NORM = 200

stratum 2, level 1,  NORM = 100

stratum 1, level 2,  NORM = 3

stratum 1, level 1,  NORM = 1.5

1.5 100
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1.9
1.7
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250

2

2.5

2

1.7 3.1

3.2

3.5

Fig. 3. Above: the input graph. Circled edge lengths represent \normalizing" lengths.
Below: the associated SH. It has two strata, based on the normalizing lengths
`r1 = 1:5 and `r2 = 100. A stratum k, level i node x has norm(x) = `rk � 2i�1, and
represents a strongly connected component of the graph, when restricted to edges
with length less than 2 �norm(x). Irrelevant SH-nodes (those having one child) are
not shown in the �gure.

We assume that the children of x (corresponding to the vertices of Cc
x) appear

in some left-to-right order consistent with a topological sorting of the vertices
in Cc

x.

Claim 6 Suppose y; z are children of x, where y is to the left of z. If (u; v) is
an edge such that u 2 V (Cz), v 2 V (Cy), then `(u; v) � norm(x).

PROOF. If `(u; v) < norm(x) then their exists a corresponding edge (z; y) 2
E(Cc

x) with equal length. But (z; y) 2 E(Cc
x) means that in any topological

sort of V (Cc
x), z preceeds y, a contradiction. 2

We use the notation diam(Cx) to denote an upper bound on the diameter of
Cx, that is, the length of the longest shortest path between any two vertices
in Cx. We calculate diam(Cx) as follows.

diam(Cx) = 2norm(x) � (jV (Cc
x)j � 1) +

X
y2V (Cc

x)

diam(Cy) (2)

Lemma 7, given below, summarizes all the relevant properties of SH used in
our algorithm's analysis and proof of correctness.
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Lemma 7 (1) SH has a single root, denoted root(SH).

(2) Let x 2 SH and x1; x2; : : : ; x� be x's children in left-to-
right order. Then (V (Cx1); : : : ; V (Cx�)) is a norm(x)-
partition of V (Cx).

(3) If x is the parent of y, then either norm(x) is a multiple
of norm(y), or diam(Cy) < norm(x).

(4)
X

x2SH

jV (Cc
x)j < 2n� 1

(5) For any x 2 SH,
diam(Cx)

norm(x)
< 2n

(6)
X

x2SH

diam(Cx)

norm(x)
< 4n

(7)

�����
(
x 2 SH :

diam(Cx)

norm(x)
� k

)����� < 4n

k

(8) SH is constructible in O(m logn) time.

PROOF. (1) The input graph may or may not be strongly connected. How-
ever, we will interpret the graph as being complete: any edges not appear-
ing in the input implicitly have length 1. Since we included 1 as one of
the normalizing lengths, there is some (possibly irrelevant) node x such that
norm(x) = 1 and Cx = G. (2) Follows from Claim 6. (3) If x and y
are in the same stratum, then clearly norm(x) is a multiple of norm(y).
If norm(x) = `rk � 2

i, where i � �1, and y is not in stratum k, then
diam(y) < (jV (Cy)j � 1) � 2norm(y) < n � `rk=2n � norm(x). (4) Every
relevant SH-node has at least two children. The sum counts every relevant
SH-node (except the root) exactly once. (5) Cx is strongly connected and
contains only edges with length less than 2norm(x). Therefore, diam(Cx) <
jV (Cx) � 1j � 2norm(x) < 2n � norm(x). (6) Let zj denote the jth ancestor
of z 2 SH. Since the norm-value of a node is no more than half that of
its parent (see Equation 1), we have norm(z)=norm(zj) � 2�j. We write z
desc. x to mean z is a (not necessarily proper) descendant of x in SH. Using
the de�nition of diam from Equation 2 we can bound the sum as follows.

X
x2SH

diam(Cx)

norm(x)
=

X
x2SH

2norm(x) � (jV (Cc
x)j � 1) +

P
y2V (Cc

x)
diam(Cy)

norm(x)

=
X
x2SH

X
z desc. x

2norm(z) � (jV (Cc
z)j � 1)

norm(x)

=
X
z2SH

X
j�0

2norm(z) � (jV (Cc
z)j � 1)

norm(zj)
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<
X
z2SH

1X
j=0

(jV (Cc
z)j � 1)

2j�1

=
X
z2SH

4 � (jV (Cc
z)j � 1) < 4n

(7) Follows from Part 6. (8) We construct SH using essentially the same
algorithm found in [17]. The idea is to determine those nodes in the \middle"
level of SH, then �nd those nodes above the middle and below the middle
recursively. As in [17] we use Tarjan's linear-time algorithm for �nding SCCs.
We �rst sort the edge-lengths and determine the O(m logn) possible norm-
values in O(m logn) time. Let norm1 < norm2 < � � � < normk be the
possible norm-values and G0 be the input graph G restricted to edges with
length less than 2normbk=2c. We �nd the SCCs ofG0 inO(m+n) time; let fCigi
be the set of SCCs and Gc be derived from G by contracting the fCigi into
single vertices. The fCigi correspond to SH-nodes with norm-values equal to
normk=2. We proceed recursively on the fCigi (�nding SH-nodes with norm-
values in the range norm1::normbk=2c�1) and on the graph Gc (for norm-
values in the range normbk=2c+1::normk). There are log(m logn) = O(logn)
levels of recursion and for each level the number of edges and vertices for
subgraphs at that level is no more than m and 2n, respectively. Therefore, the
total time required is O(m logn). The procedure described above may �nd up
to O(n logn) SH-nodes, many of them irrelevant. We perform a �nal pass over
SH tree, splicing out all irrelevant (one-child) nodes. This takes an additional
O(n logn) time. 2

4.2 Computing SSSP

Recall from Section 2.2 that the D-value of a vertex is its tentative distance
from the source s. We assign tentative distances to SH-nodes as well as ver-
tices. If x 2 SH we set D(x) to be:

D(x)
def
= min

v2Cx

fD(v)g

That is, theD-value of leaf node is the same as theD-value of its corresponding
vertex.

We compute SSSP with a recursive algorithm called Visit, given in Figure 4.
Visit takes two arguments: an SH-node x and an interval I with the guarantee
that V (Cx) is (S; I)-independent, where S is the current set of visited vertices.
Visit's only task is to visit the vertices in V (Cx)

I and update the tentative
distances, restoring Invariant 0. Using the Visit procedure, we can compute
SSSP from source s as follows. Set S := ;, D(s) := 0, D(v) :=1 for all v 6= s,
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and callVisit(root; [0;1)), where root = root(SH). Invariant 0 is clearly
satis�ed w.r.t. S = ;, and V (Croot) is clearly (;; [0;1))-independent, so
the input guarantees for the initial call to Visit are met. After the call to
Visit(root; [0;1)), Invariant 0 will hold w.r.t. S � V (Croot)

[0;1) = V ,
implying D(v) = d(s; v) for all v 2 S = V .

Visit(x; [a; b))

1. If x is a leaf and D(x) 2 [a; b), then set S := S [ fxg and relax all
of x's outgoing edges.

2. If Visit(x; �) is being called for the �rst time, assign intervals to x's
buckets. Bucket i is labeled

[tx + i � norm(x); tx + (i+ 1)norm(x))

where tx is set to

tx =

8><
>:
D(x) if D(x) + diam(Cx) < b

b� norm(x)d b�D(x)
norm(x)

e otherwise

3. Set ax =

8><
>:
tx if this is the �rst call to Visit(x; �)

a otherwise

While ax < b and V (Cx) 6� S
While bucket [ax; ax + norm(x)) is not empty

Let y be the leftmost child of x in bucket [ax; ax + norm(x))
Visit(y; [ax; ax + norm(x)))
Remove y from its bucket
If V (Cy) 6� S, put y in bucket [ax + norm(x); ax + 2norm(x))

ax := ax + norm(x)

Fig. 4. Visit Procedure

In each call toVisit there are two cases, depending on whether x is a leaf node
or an internal node of SH. Suppose x is a leaf and V (Cx) = fvg. Because we
maintain Invariant 0, deciding whether v 2 V (Cx)

I is equivalent to deciding if
D(v) 2 I, which is simple to do. In the general case x is an internal node. We
determine V (Cx)

I by making a series of recursive calls to children of x, using
subintervals of I of width norm(x). The crucial property of SH that we use is
that the children of x, in left-to-right order, represent a norm(x)-partition of
V (Cx) | see Lemma 7(2). Together with Lemma 4 we are able to guarantee
that each recursive call represents an independent subproblem.

To bound the number of recursive calls, it is important not to make too many
trivial ones, that is, calls which cause no vertex to be visited. To that end
we associate with x an array of buckets that will contain the children of x.
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The buckets represent consecutive real intervals of width norm(x) and the
bucket array represents an interval spanning [d(s; x); d(s; x)+diam(Cx)] where
d(s; x) = d(s; V (Cx)) is the distance to Cx. When Visit(x; �) is called for the
�rst time we choose a suitable starting point tx and label each bucket with its
associated interval: the ith bucket is assigned the interval [tx+ inorm(x); tx+
(i + 1)norm(x)). We frequently refer to buckets by their associated interval.
We will choose tx such that tx � d(s; x) < tx + norm(x). Therefore, at most

ddiam(Cx)
norm(x)

e + 1 buckets are required.

We will say x is inactive until Visit(x; �) is called, and active afterward. We
will assume, for the time being, that Invariant 1 is maintained.

Invariant 1 Let x be an active SH-node. A child y of x appears in one of
x's buckets, unless D(y) = 1 or V (Cy) � S, in which case y appears in
no bucket. Every node y appearing in bucket [a; a + norm(x)) is either an
inactive child such that D(y) 2 [a; a+ norm(x)), or an active child such that
V (Cy)

[0;a) � S, but V (Cy)
[a;a+norm(x)) 6� S.

4.3 Correctness of Visit

In this section we prove that Visit works correctly. Speci�cally, we show that
Visit(x; I) visits (adds to the set S) all vertices in V (Cx)

I . We assume that
Invariants 0 and 1 are magically updated behind the scenes. That is, adding a
vertex to S causes the D-values of all vertices and SH-nodes to be updated,
restoring Invariant 0, and some number of SH-nodes to be moved to di�erent
buckets, restoring Invariant 1.

The following lemmas look at Visit from the perspective of some SH-node
x. They assume implicitly that at the call Visit(x; [a; b)), V (Cx) is (S; I)-
independent and V (Cx)

[0;a) � S. They also assume that the initial call was
Visit(root; [0;1)).

Lemma 8 In any two callsVisit(y; I1) andVisit(y; I2), jI1j = jI2j = norm(x),
where x is the parent of y in SH.

PROOF. The node x only makes recursive calls on its children and all re-
cursive calls from x are given an interval of width norm(x). 2

Lemma 9 If Visit(x; I) is the �rst call to an SH-node x, then we have
D(x) = d(s; x) 2 I.

PROOF. The lemma clearly holds for the initial call Visit(root; [0;1)).
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For the general case, let z be the parent of x. Before the recursive callVisit(x; I),
where I = [a; b), x must have been in z's bucket spanning the interval I. Since
x was inactive, by Invariant 1 D(x) 2 I. The equality D(x) = d(s; x) follows
from the (S; I)-independence of V (Cx) and the inclusion V (Cx)

[0;a) � S. 2

Lemma 10 Consider the variables ax and b in any call to Visit(x; [a; b)).
Either norm(x) divides b� ax or V (Cx)

[0;b) = V (Cx).

PROOF. In the �rst call to Visit(x; [a; b)), ax is set to tx. Suppose that
tx = D(x), because D(x) + diam(x) < b. By Lemma 9, D(x) = d(s; x),
implying that V (Cx)

[0;b) = V (Cx). If, on the other hand, tx is set to b �

norm(x)d b�D(x)
norm(x)

e, then norm(x) divides b� tx and, at least initially, b� ax
as well. Since ax is only incremented in units of norm(x), b � ax remains
divisible by norm(x). We have proved the lemma for the �rst recursive call
on x.

Now suppose that Visit(x; [a; b)) is not the �rst recursive call on x, and there-
fore we set ax := a initially. Let z be the parent of x. According to Lemma 7(3)
either norm(x) divides norm(z) or diam(x) < norm(z). Suppose norm(x)
divides norm(z). By Lemma 8, norm(z) = b � a and therefore norm(x)
divides b � ax initially, and, with the observation that ax is incremented in
units of norm(x), ever after. Now suppose diam(x) < norm(z). Since this is
not the �rst recursive call on x, we know, by Lemma 9, that d(s; x) < a and
therefore that d(s; x) + diam(Cx) < b, meaning V (Cx)

[0;b) = V (Cx). 2

Lemma 11 After the call to Visit(x; [a; b)), V (Cx)
[a;b) � S.

PROOF. We assume inductively that V (Cx) is (S; [a; b))-independent when
Visit(x; [a; b)) is called. This clearly holds for the �rst recursive call, when
x = root, [a; b) = [0;1), and S = ;.

Consider the case when x is a leaf in SH, that is, a vertex. Visit includes x
in S precisely when D(x) 2 [a; b). According to the de�nition of independence
D(x) 2 [a; b) implies D(x) = d(s; x), so in this case the lemma is satis�ed.

Suppose, now that x is an internal node in SH. We will prove that each time
through the outer while loop in Step 3 of Visit, V (Cx)

[0;ax) � S and V (Cx) is
(S; [ax; b))-independent w.r.t. the current values for ax and S. Consider the �rst
time through the outer while loop in the call toVisit(x; [a; b)). If ax is initially
set to a then V (Cx) is (S; [ax; b))-independent and V (Cx)

[0;a) � S by our
inductive assumptions. If ax is initially set to tx then ax = tx � D(x). Lemma
9 states that D(x) = d(s; x), implying that V (Cx) is (S; [ax; b))-independent
since V (Cx)

[a;ax) = ;.
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After each iteration through the outer while loop we increment ax by norm(x).
Therefore, the e�ect of each iteration must be to visit all vertices in V (Cx)

I ,
where I = [ax; ax + norm(x)). This is exactly what the recursive calls in the
inner while loop accomplish. Imagine that we consider all the children of x,
fxjgj, one at a time in left-to-right order. We will show two things: �rst, that
when xj is considered V (Cxj) is (S; I)-independent for the current value of S.
Therefore, if the recursive callVisit(xj; I) is made, we can assume inductively
that it visits all vertices in V (Cxj )

I. Second, if no recursive call is made on xj
(meaning xj does not appear in the bucket labeled I) then V (Cxj)

I � S = ;.
This will establish the correctness of the inner while loop.

Consider the claim that when xj is considered V (Cxj ) is (S; I)-independent.
Let S 0 be the set S just before this iteration of the outer while loop, and assume
inductively that when xj is considered S = S 0 [ V (Cx1)

I [ � � � [ V (Cxj�1
)I .

Lemma 7(2) states that (V (Cxi))i is a norm(x)-partition of V (Cx). Together
with the assumption that V (Cx) is (S

0; [ax; b))-independent and Lemma 4(1),
we have that V (Cxj) is (S; [ax;minfax+norm(x); bg))-independent. However,
we need to show that it is (S; I)-independent, since it is the interval I =
[ax; ax + norm(x)) that would be passed to the recursive call. By Lemma 10,
either norm(x) divides b�ax or V (Cx)

[0;b) = V (Cx). If norm(x) divides b�ax
then I = [ax;minfax + norm(x); bg) since we only entered the outer while
loop if ax < b, implying ax � b�norm(x). On the other hand, if V (Cx)

[0;b) =
V (Cx), then V (Cxj) being (S; [ax;minfax+norm(x); bg))-independent implies

that it is (S; I)-independent as well, since V (Cx)
[b;ax+norm(x)) = ;. To complete

the induction we must show that after xj is considered, S = S 0 [ V (Cx1)
I [

� � �[V (Cxj )
I. If we perform the recursive callVisit(xj; I) then we can assume

inductively that vertices in V (Cxj)
I are visited. Therefore, we must only prove

that if no such recursive call is made, then V (Cxj)
I � S = ;. We perform

recursive calls on all children that end up in bucket I. By Invariant 1, if xj is
not in bucket I when it is considered, then D(xj) � ax+norm(x) or V (Cxj ) �
S. By the (S; I)-independence of V (Cxj), D(xj) � ax + norm(x) implies
V (Cxj)

I = ;. The other case, V (Cxj ) � S, clearly implies V (Cxj)
I � S = ;.

This completes the induction for the inner and outer while loops.

The outer while loop in Step 3 terminates either because ax � b or V (Cx) � S,
both of which imply V (Cx)

[0;b) � S. Therefore, after the call toVisit(x; [a; b)),
all vertices in V (Cx)

[a;b) are visited. This establishes the lemma. 2

The proof of Lemma 11 is rather intricate because there are four distinct induc-
tions, with four base cases. We assume inductively that V (Cx) is (S; [a; b))-
independent | this is an induction over time, for which the initial call to
Visit(root; [0;1)) is the base case. We assume that recursive calls made in
Step 3 visit the right vertices | this is an induction over problem size, where
the leaves of SH form the base cases. Finally, there is a double induction over
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the two while loops in Step 3.

4.4 Implementation of Visit

In this section we address the details of an implementation of the Visit rou-
tine. The main diÆculties are devising data structures to maintain (or simu-
late) Invariants 0 and 1. Ignoring data structural issues for the moment, we
can show that the other costs of computing SSSP with Visit are linear in n.

Lemma 12 For each SSSP computation, the total number of recursive calls
to Visit is less than 5n.

PROOF. By Lemma 9, if Visit(x; I) is the �rst recursive call on x, then
D(x) = d(s; x) 2 I. Together with Invariant 1 and Lemma 8, this implies that

each node x 2 SH is passed to at most d diam(Cx)
norm(p(x))

e + 1 recursive calls, where

p(x) is the parent of x in SH. The total number of recursive calls is then

X
x

&
diam(Cx)

norm(p(x))

'
+ 1 � jSHj+

X
x

&
diam(Cx)

2norm(x)

'
(3)

< jSHj+ n� 1 + 1
2
�
X
x

diam(Cx)

norm(x)
(4)

< 5n (5)

Line 3 follows from the inequality norm(p(x)) � 2norm(x). Line 4 fol-

lows since ddiam(Cx)
norm(x)

e is only strictly greater than diam(Cx)
norm(x)

if x is an internal

node of SH, of which there are no more than n � 1. (If x were a leaf, then
diam(Cx) = 0.) Line 5 follows from the bounds jSHj < 2n and, by Lemma

7(6),
P

x
diam(Cx)
norm(x)

< 4n. 2

Lemma 13 The total time required to �nd ftxgx2SH is O(n).

PROOF. In Step 2 of Visit, tx is set to D(x) if D(x) + diam(Cx) < b and

b � norm(x)d b�D(x)
norm(x)

e otherwise. Checking whether D(x) + diam(Cx) < b

takes O(1) time, and computing b� norm(x)d b�D(x)
norm(x)

e takes O( b�D(x)
norm(x)

) time:

one simply counts back from b in units of norm(x) in order to �nd minfj :
b� j �norm(x) � D(x)g. Given that b�D(x) � diam(Cx), the total time to

�nd all ftxgx2SH is
P

xO(
diam(Cx)
norm(x)

), which is O(n) by Lemma 7(6). 2
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We support an implementation of Visit with two abstract data structures,
denoted D and B. D updates the D-values (tentative distances) of SH-nodes
as dictated by Invariant 0, and B maintains the bucket arrays of active SH-
nodes in accordance with Invariant 1. Although it is typical to assume that
data structures do not talk to each other, it is conceptually simpler here to
think of D and B making queries to each other. We describe their interactions
below, then bound their complexity.

When an edge (u; v) is relaxed in Step 1 of Visit, we tell D to set D(v) :=
minfD(v); D(u) + `(u; v)g. If this decreases D(v) then it may decrease the
D-values of many ancestors of v in SH as well. Let y be the unique ancestor
of v which is an inactive child of an active node. If D(y) is also decreased then
to restore Invariant 1 y may have to be moved to a di�erent bucket. If this is
the case then D noti�es B that D(y) has changed. D also accepts queries to
D-values. In particular, when an SH-node x becomes active B �les each child
y of x in its bucket array based on the value of D(y). The bucketing structure
B must also ful�ll the needs of Visit. Speci�cally, in a call to Visit(x; �),
Visit repeatedly requests the leftmost child of x in the current bucket labeled
[ax; ax+norm(x)), and possibly moves that node to the next bucket, labeled
[ax + norm(x); ax + 2norm(x)). Lemmas 14 and 15 bound the complexities
of D and B, respectively.

Lemma 14 D can be implemented to run in O(m log�(m;n)) time.

See [21] for a proof of Lemma 14. It is a slight improvement over a bound
of O(m�(m;n)) proved by Gabow [3]. Since managing D-values is not the
bottleneck in our algorithm, we can a�ord to implementD inO(m+n log logn)
time using a simpli�ed version of the structure from [3].

Lemma 15 (see [21,17]) Suppose B is assigned to maintain the bucket arrays
of nodes in X � SH. Then B can be implemented in time

O

 
m + n log logn +

X
x2X

jV (Cc
x)j � log

diam(Cx)
norm(x)

!

PROOF. (Sketch) Consider a single SH-node x 2 X and an arbitrary child
y of x. We insert y into x's bucketing structure upon the activation of x, and
perform some number of decrease-key operations on y as D(y) is decreased.
Using the lazy bucketing data structure from [21], each insert takes time log-

arithmic in the number of buckets, which is diam(Cx)
norm(x)

, and each decrease-key

takes constant time (all times amortized). These costs correspond to the �rst
and third terms in the claimed running time. The second term re
ects the cost
of extracting nodes from the current bucket in left-to-right order | see Step
3 of Visit. As in [17], we use a van Emde Boas heap [34] for this task; the
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cost per child of x is O(log log jV (Cc
x)j), which is O(n log logn) overall. 2

The third term in the bound of Lemma 15 re
ects a de�nite limitation of
the hierarchy approach. Each child y of x can, in principle, appear in any
of x's diam(Cx)=norm(x) buckets (and Theorem 1 shows that where y is
bucketed is essentially independent of where other children of x are buck-
eted.) Therefore, to visit x's children in the proper order requires us to extract
jV (Cc

x)j � log(diam(Cx)=norm(x)) bits of information, which requires at least
that many comparisons. In the case when X consists of all SH-nodes it is not
diÆcult to make the bound of Lemma 15 as bad as 
(m+ n logn). However,
Lemma 15 is still useful. In Section 5 we will apply it to the set of all low-
diameter SH-nodes. For the case when X consists of all x 2 SH such that
diam(Cx)
norm(x)

< (logn)O(1), the bound from Lemma 15 becomes O(m+ n log logn).
This allows us the freedom to focus only on large-diameter SH-nodes.

In Section 5 we give a scheme to reduce the bucketing costs of B to only
O(m+n log logn) per SSSP computation, provided that we amortize the costs
over n such computations.

5 A Faster APSP Algorithm

In this section we present an implementation of the Visit algorithm from
Section 4 that computes APSP in O(mn + n2 log logn) time. The algorithm
is structured around two observations. The �rst is that Visit can be speeded
up if it is supplied with some useful hints, speci�cally, some discrete (i.e.
integral) approximations to certain real quantities related to shortest paths.
The second observation is that these discrete approximations are relatively
cheap to compute | provided they are computed in bulk.

Before delving into the details of the algorithm, let us �rst make explicit some
notational conventions. Throughout the section x and y are SH-nodes, with
y the child of x. Graph vertices are represented by u or v, and d(u; x) =
d(u; V (Cx)) represents the minimum distance from u to any vertex in Cx. (So
if u 2 V (Cx) then d(u; x) = 0.) A hat over a symbol, such as �̂, indicates that
it is an integer-valued approximation to its unhatted, real-valued twin, in this
case �. See Section 2.1 for the distinction between real and integer variables.

23



5.1 Relative Distances and Their Approximations

Recall that the vertices of V (Cc
x) represent the children of x in SH. De�ne

�x : V (G)� V (Cc
x)! R as

�x(u; y)
def
= d(u; y)� d(u; x)

Since Cy � Cx, it follows that �x(�; �) is always non-negative. Our algorithm
does not deal with �x directly but rather a discrete approximation to it. We
de�ne �̂x as:

�̂x(u; y)
def
=

$
�x(u; y)

�x

%
or

&
�x(u; y)

�x

'
where �x

def
= norm(x)

2

It is crucial that �̂x be represented as an integer, not as a real. Lemma 16 and
17 capture the salient features of the �̂ function: that it is relatively cheap to
compute, and that despite its approximate nature, it is useful for computing
exact shortest paths.

Lemma 16 The �̂x function can be computed for every SH node x for which
diam(Cx)
norm(x)

� logn, in O(mn) time total.

Lemma 17 If �̂x is known for all x 2 SH for which diam(Cx)
norm(x)

� logn, then

SSSP can be computed in O(m+ n log logn) time.

Together with Lemma 7(8), stating that SH can be constructed in O(m logn)
time, Lemmas 16 and 17 directly imply our main theorem.

Theorem 18 The all-pairs shortest path problem on real-weighted directed
graphs can be solved in O(mn + n2 log logn) time, where the only operations
allowed on reals are comparisons and additions.

We prove Lemma 17 in Section 5.2. Lemma 16 is addressed in Section 5.3.

5.2 The Algorithm

We show how to implement the bucketing structure B used inVisit, assuming
that �̂x is already computed for all x 2 SH for which diam(Cx)=norm(x) �
logn. The remainder of this section will constitute a proof of Lemma 17. As
it was observed in Section 4.4, managing the bucket arrays for all SH-nodes
x with diam(x) � logn �norm(x) requires O(m+n log logn) time by Lemma
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15. Therefore, we concentrate on an arbitrary SH-node x for the case when
�̂x is known.

Recall from Section 4.3 that we assumed Invariant 1 was maintained at all
times. Consider the following weakened form of Invariant 1:

Invariant 2 Suppose that y is a child of an active SH-node x. Then y is
either bucketed in accordance with Invariant 1, or it is known that D(y) will
decrease in the future, in which case y appears in no bucket.

As a matter of correctness Invariant 2 is just as good as Invariant 1. By Lemma
9, Visit only extracts a node y from a bucket array if its D-value is �nalized,
that is, if D(y) = d(s; y). The only question is whether it is possible to tell
if a node's D-value will decrease in the future. This is where the �̂ function
comes into play.

Suppose that we are attempting to bucket an inactive node y by its D-value,
either because its parent, x, just became active, or because we just relaxed
an edge (u; v), where v 2 V (Cy). We know d(s; x) lies in the interval of x's
�rst bucket, that is, tx � d(s; x) < tx + norm(x). According to Invariant 1, y
belongs in bucket number

$
D(y)� tx
norm(x)

%
=

$
D(y)� d(s; x)

norm(x)

%
or

$
D(y)� d(s; x)

norm(x)

%
+ 1

Therefore, if D(y) does not decrease in the future, then D(y) = d(s; y) and
�x(s; y) = D(y) � d(s; x). This implies that y must be bucketed in either

bucket number b �x(s;y)
norm(x)

c or the following bucket. On the other hand, if D(y)
decreases in the future, we have, according to Invariant 2, the freedom not to
bucket y at all.

The situation is made only slightly more complicated by the fact that we are
not dealing with �x but a discrete approximation to it. Recall that �̂x(s; y)

is an integer and j�x � �̂x(s; y) � �x(s; y)j < �x = norm(x)
2

. Using the same
argument as above, it follows that if D(y) = d(s; y), that is, D(y) will not
decrease in the future, then y belongs in some bucket numbered in the interval

"$
�x � �̂x(s; y)� �x

norm(x)

%
;

$
�x � �̂x(s; y) + �x + norm(x)

norm(x)

%#

=

"$
(�̂x(s; y)� 1)

2

%
;

$
(�̂x(s; y) + 3)

2

%#

Thus, the number of eligible buckets is at most three. Since �̂x(s; y) is rep-
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resented as an integer, we can identify the three eligible buckets in constant
time, and, by checking D(y) against the buckets' labels, we can determine
which, if any, should contain y.

In order to implement Visit we require not only that nodes be bucketed
properly, but that they be extracted in the correct left-to-right order. Following
Hagerup [17], we prioritize nodes in the same bucket using a van Emde Boas
queue [34]. The overhead for using this structure is O(n log logn) per SSSP
computation. By Lemmas 12, 13, and 14, the other costs of implementing
Visit are O(m log�(m;n)) = O(m+n log logn) per SSSP computation. This
concludes the proof of Lemma 17.

5.3 The Computation of �̂

We show in this section that for any SH node x, all �̂x(�; �)-values can be

computed in O(m logn + mjV (Cc
x)j + ndiam(Cx)

norm(x)
) time. It turns out that this

cost is a�ordable if the m logn term is not signi�cantly larger than the others.
It is for this reason that Lemma 16 only considers SH nodes x such that
diam(Cx)=norm(x) � logn.

Consider the two edge-labeling functions Æx : E ! R and Æ̂x : E ! N , given
below.

Æx(u; v)
def
= `(u; v) + d(v; x)� d(u; x)

Æ̂x(u; v)
def
=

$
Æx(u; v)

�0x

%
or 1 if Æx(u; v) > diam(Cx)

where �0x
def
=

�x
n

=
norm(x)

2n

We let GÆ = (V (G); E(G); Æ) denote the graph G under a new length function
Æ, and let dÆ be the distance function for GÆ. We show that �x(u; y) is equal

to dÆx(u; y) and that dÆ̂x provides a suÆciently good approximation to �x to
satisfy the constraints put on �̂x. Our method for computing �̂x is given in
Figure 5. We spend the remainder of this section analyzing its complexity and
proving its correctness.

The following Lemma establishes the properties of �x; Æx; and Æ̂x used in the
analysis of Compute-�̂x.
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Compute-�̂x:

(1) Generate the graph GÆ̂x

(2) For all u 2 V (G) and y 2 V (Cc
x); compute dÆ̂x(u; y)

(3) Set �̂x(u; y) :=

2
666
dÆ̂x(u; y)

n

3
777

Fig. 5. A three-step method for computing �̂x.

Lemma 19 Suppose x 2 SH, y 2 V (Cc
x) and u 2 V . Then

(1) �x(u; y) = dÆx(u; y)

(2) dÆx(u; y) � diam(Cx)

(3) dÆx(u; y) � �0x � d
Æ̂x(u; y) 2 [0; �x)

(4) dÆ̂x(u; y) < 2ndiam(Cx)
norm(x)

PROOF. (1) Denote by hu1; u2; : : : ; uji a path from u1 to uj. Then

dÆx(u; y) = min
j;hu=u1;:::;uj2Cyi

8<
:
j�1X
i=1

Æx(ui; ui+1)

9=
; (6)

= min
j;hu=u1;:::;uj2Cyi

n
`(hu1; : : : ; uji) + d(uj; x)� d(u1; x)

o
(7)

= d(u; y)� d(u; x) = �x(u; y) (8)

Line 6 is simply the de�nition of dÆx. Line 7 is derived by cancelling terms
in the telescoping sum. Note that d(uj; x) = 0 since uj 2 Cy � Cx, and that
d(u1; x) = d(u; x). Line 8 then follows from the de�nition of d and �x.

(2) From part (1) we have dÆx(u; y) = �x(u; y) = d(u; y)�d(u; x). The inequal-
ity d(u; y)� d(u; x) � diam(Cx) follows trivially from the fact that Cy � Cx.

(3) Let e be an arbitrary edge. By de�nition of Æx and Æ̂x, we have that either
Æx(e) > diam(Cx) (i.e., Æ̂x(e) =1) or �0x � Æ̂x(e) � Æx(e) < �0x � (Æ̂x(e) + 1). Let
Puy be the shortest path from u to y in GÆx, and denote by jPuyj the number
of its edges. According to part (2), dÆx(u; y) � diam(Cx), implying that for
e 2 Puy, Æ̂x(e) 6=1, and

�0x � d
Æ̂x(u; y) � dÆx(u; y) < �0x �

�
dÆ̂x(u; y) + jPuyj

�
< �0x � d

Æ̂x(u; y) + �x

The last inequality follows from the bound jPuyj < n and the de�nition of
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�x = n � �0x. This proves part (3).

(4) From parts (2) and (3) we have

dÆ̂x(u; y) �
dÆx(u; y)

�0x
�

diam(Cx)

�0x
�

2n � diam(Cx)

norm(x)

which proves part (4). 2

Lemma 20 bounds the time to compute the Æ̂x function in Step 1.

Lemma 20 GÆ̂x is computable in O(m logn) time.

PROOF. Let (u; v) be an arbitrary edge. Recall that Æ̂x(u; v) is either 1 or

b `(u;v)+d(v;x)�d(u;x)
�0x

c. The original length function ` is, of course, already known.
We compute the other terms in the numerator with one Dijkstra computation.
LetG1 be derived fromG by reversing the direction of all edges and contracting
Cx into a vertex called x. Computing SSSP from the source x in G1 produces
the d(�; x) distances. This takes O(m + n logn) time with Fibonacci heaps.
However, we can a�ord to spend O(m logn) time using a simpler binary heap.

If Æ̂x(u; v) 6=1, which can be checked in constant time, then from the de�ni-

tion of �0x =
norm(x)

2n
,

Æ̂x(u; v) = maxfj : 2n � d(u; x) + j � norm(x) � 2n � (`(u; v) + d(v; x))g

The terms 2n � d(u; x) and 2n � (`(u; v) + d(v; x)) are easily computable in

O(logn) time | see Section 2.1. We compute Æ̂x(u; v) in O(log diam(Cx)
�0x

) =

O(logn) time by �rst generating the values

n
norm(x); 2norm(x); 4norm(x); : : : ; 2

l
log

diam(Cx)

�0x

m
norm(x)

o

using simple doubling, then using these values to perform a binary search
to �nd the maximal j satisfying the inequality above. This binary search is
performed once for each edge, taking O(m logn) time in total. 2

In Step 2 we compute certain shortest path distances in the graph GÆ̂x, using
a variation on Dial's implementation of Dijkstra's algorithm. We are free to
use Dial's algorithm here because GÆ̂x is an integer weighted graph, whose
shortest paths have bounded length.
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Lemma 21 Step 2 requires O(m � jV (Cc
x)j+ n � diam(Cx)

norm(x)
) time.

PROOF. Let y 2 V (Cc
x) be a child of x and let N denote an upper bound

on dÆ̂x(u; y). Let G1 be the graph derived from GÆ̂x by reversing the direction

of all edges in G. Clearly dÆ̂x(u; y) is equal to the distance from Cy to u in G1.

Therefore, we can perform Step 2 of Compute-�̂x by computing SSSP in G1

from the source Cy (viewed as a single vertex), for each y 2 V (Cc
x). To save

time we solve each of these jV (Cc
x)j SSSP problems simultaneously, using Dial's

implementation of Dijkstra's algorithm. The priority queue is implemented as
a bucket array of length N . If the pair hy; ui appears in bucket b this indicates
that in the SSSP computation with source y, the tentative distance to u is b.
Since Æ̂x is an integer-valued function, edge relaxations take constant time. The
overall running time is then O(#(edge relaxations) + #(buckets scanned)) =

O(m�jV (Cc
x)j + N) = O

�
m � jV (Cc

x)j + n � diam(Cx)
norm(x)

�
. The bound on N follows

from Lemma 19(4). 2

Lemmas 20 and 21 prove that Steps 1 and 2 take O(m logn + m jV (Cc
x)j +

n diam(Cx)
norm(x)

) time. Step 3 just involves dividing dÆ̂x(u; y) by n and rounding up.
We did not assume a general integer division operation. However, Step 3 can
easily be incorporated into Step 2 by keeping track of the number d b

n
e where

b is the current bucket number. In Lemma 22 we prove the correctness of
Compute-�̂x.

Lemma 22 Step 3 sets �̂x correctly, i.e.

�̂x(u; y) is an integer and
����x � �̂x(u; y) � �x(u; y)

��� < �x

PROOF. It is clear from Step 3 that �̂x(u; y) is assigned an integer value. We

turn to the second requirement, that
����x � �̂x(u; y) � �x(u; y)

��� < �x. Notice

that �0x
�x
= 1

n
. From the de�nition of the ceiling function we have:

�0x � d
Æ̂x(u; y) � �x �

2
666
dÆ̂x(u; y)

n

3
777 < �0x � d

Æ̂x(u; y) + �x (9)

From Lemma 19 parts (1) and (3) we have that:

�0x � d
Æ̂x(u; y) � �x(u; y) = dÆx(u; y) < �0x � d

Æ̂x(u; y) + �x (10)

29



Notice that in lines 9 and 10 the upper and lower bounds are identical, and
that they are separated from each other by �x. Therefore,�������x �

2
666
dÆ̂x(u; y)

n

3
777 � �x(u; y)

������ =
����x � �̂x(u; y) � �x(u; y)

��� < �x

which proves the lemma. 2

Now that the correctness of this scheme is established, we are ready to prove
the overall time bound of Lemma 16.

PROOF (Lemma 16). Let T (m;n; k) be the time to compute �̂x for all

SH nodes x for which diam(Cx)
norm(x)

� k. From Lemmas 20 and 21 can bound T as
follows.

T (m;n; k) =
X

x :
diam(Cx)
norm(x)

�k

O(m logn+mjV (Cc
x)j+ ndiam(Cx)

norm(x)
)

= O(4mn log n
k

+ 2mn + 4n2) fLemma 7(4), (6) & (7)g

= O(mnd
logn

k
e)

hence T (m;n; logn) = O(mn) 2

6 Discussion

For simplicity, the hierarchy-type shortest path algorithms [16,17,35,25] are
usually described as solving either SSSP or APSP. These two extremes, how-
ever, obscure the nature of these algorithms. If we think of them as solv-
ing the s-sources shortest paths problem, they all have running times of the
form T (s;m; n) = s � M + R, where R is a one-time cost and M is the
marginal cost of one SSSP computation. For our algorithm R = O(mn) and
M = O(m + n log logn). Figure 6 compares the hierarchy-based algorithms
from the perspective of their M and R complexities.

We believe that it is possible to reduce the marginal costM in both our algo-
rithm and Hagerup's [17], though it will be more diÆcult in our case because
the log logn bottleneck appears in two places in the algorithm. Reducing the
complexity of M to O(m) in our algorithm and [21,25] seems tantamount to
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Paper Notes M R

Thorup [16]
integer lengths,
undirected graphs

O(m) O(m)

Hagerup [17] integer lengths O(m+ n log logn) O
�
min

8<
:
m log logC;

m log n

9=
;
�

PR [35]
real lengths,
undirected graphs

O(m log�(m;n)) O
�
MST +min

8<
:
n log log r;

n logn

9=
;
�

Pettie [25]

real lengths,
comp-add compl.
(non-uniform)

O(m log�(m;n)) O(mn)

This paper real lengths O(m+ n log logn) O(mn)

Fig. 6. C is the largest integer edge length, r is the ratio of the max-
imum-to-minimum edge length, � is the inverse-Ackermann function, and
MST = MST (m;n) is the decision-tree complexity of the minimum spanning tree
problem [36] (known to be between 
(m) and O(m�) [37]). The bound on R for
Hagerup's algorithm is slightly stronger than given in [17], as is the bound onM for
[35]. The bounds onM and R for Pettie [25] count only comparisons and additions;
[25] does not currently admit a fast implementation.

�nding a linear-time split-�ndmin algorithm [3,21]. 5 The author has spec-
ulated recently [38] that �(m log�(m;n)) may be the actual complexity of
split-�ndmin.

Although reducing M in previous algorithms is certainly a worthy goal, we
think it would be more challenging and interesting to work in other directions.
For instance, is there a feasible relaxation of Property 1 that does not have an
inherent sorting bottleneck? Can the hierarchy-based approach yield O(n2 +
o(mn))-time APSP algorithms? Finally, in our algorithm, can M be main-
tained while reducingR to something more reasonable, say, O(m�polylog(n))?
Answering these questions will probably require an insight into the shortest
path problem, not just an interesting new data structure.
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5 Thorup & Hagerup [16,17] get around this issue by implementing split-�ndmin
with RAM-based integer sorting.
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