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Abstract. An (α, β)-spanner of an unweighted graph G is a subgraph H that distorts distances in G
up to a multiplicative factor of α and an additive term β. It is well known that any graph contains a
(multiplicative) (2k −1, 0)-spanner of size O(n1+1/k) and an (additive) (1, 2)-spanner of size O(n3/2).
However no other additive spanners are known to exist.

In this article we develop a couple of new techniques for constructing (α, β)-spanners. Our first
result is an additive (1, 6)-spanner of size O(n4/3). The construction algorithm can be understood as
an economical agent that assigns costs and values to paths in the graph, purchasing affordable paths
and ignoring expensive ones, which are intuitively well approximated by paths already purchased.
We show that this path buying algorithm can be parameterized in different ways to yield other
sparseness-distortion tradeoffs. Our second result addresses the problem of which (α, β)-spanners
can be computed efficiently, ideally in linear time. We show that, for any k, a (k, k − 1)-spanner with
size O(kn1+1/k) can be found in linear time, and, further, that in a distributed network the algorithm
terminates in a constant number of rounds. Previous spanner constructions with similar performance
had roughly twice the multiplicative distortion.
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1. Introduction

An (α, β)-spanner of an undirected graph G is a subgraph H such that for all
vertices u, v:

δH (u, v) ≤ α · δG(u, v) + β,

where δG is the distance in graph G. In other words, an (α, β)-spanner guarantees
that for pairs of vertices far apart in G, their distance in the spanner is stretched by
roughly an α factor, which would ideally be close to 1. We call a (1, β)-spanner
an additive β-spanner. If β = 0, this definition reverts to the usual definition of a
multiplicative α-spanner [Peleg and Schaffer 1989; Althöfer et al. 1993].

Spanners (and related structures) are useful in many contexts. They are the basis
of space-efficient routing tables that guarantee nearly shortest routes [Abraham
et al. 2006b; Thorup and Zwick 2001; Roditty et al. 2002; Cowen 2001; Cowen
and Wagner 2004; Peleg and Upfal 1989], schemes for simulating synchronized
protocols in unsynchronized networks [Peleg and Ullman 1989], and parallel and
distributed algorithms for computing approximate shortest paths [Cohen 1998,
2000; Elkin 2005]. A recent application of spanners is the construction of labeling
schemes and distance oracles [Thorup and Zwick 2005; Baswana and Sen 2006;
Roditty et al. 2005; Baswana and Kavitha 2006; Baswana et al. 2008], which
are data structures that can report approximately accurate distances in constant
time. In all of these applications, the quality of the solution ultimately depends
on an efficient algorithm for computing a low-distortion sparse spanner. The main
open problem in this area is to understand the inherent tradeoffs between these
three measures of efficiency: distortion (α and β), sparseness, and construction
time. Even ignoring construction time, there are only a handful of cases where the
distortion-sparseness tradeoff is fully understood.

1.1. MULTIPLICATIVE SPANNERS. The early work on spanners established the
basic tradeoff between sparseness and multiplicative distortion. If the spanner size
is fixed at O(n1+1/k), the multiplicative distortion can be no better than �(k) [Peleg
and Schaffer 1989]. We let n and m be the number of vertices and edges in the
input graph. Althöfer et al. [1993] proposed a greedy algorithm for producing a
(2k − 1)-spanner whose size is at most m2k+1(n), where mg(n) is the maximum
number of edges in a graph with girth at least g.1 Moreover, they observed that
m2k+1(n) is precisely the best possible bound for a (2k −1)-spanner. If one removes

1 Girth is the length of the shortest cycle. Note that, since every graph has a bipartite subgraph with
at least half the edges, 1

2 m2k+1(n) ≤ m2k+2(n) ≤ m2k+1(n).
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any edge from a graph with girth 2k + 1, the distance between its endpoints jumps
from 1 to at least 2k. Thus, the only (2k − 1)-spanner of such a graph is the graph
itself. A trivial upper bound on m2k+1(n) and m2k+2(n) is O(n1+1/k). It has been
conjectured, by Erd´́os[1963] and others that this bound is asymptotically tight,
though the conjecture has only been proved for k = 1, 2, 3, and 5; weaker lower
bounds are known for all other k; see Wenger [1991] and Thorup and Zwick [2005].
In other words, finding the exact tradeoff between sparseness and multiplicative
distortion is at least as hard as proving or disproving the girth conjecture.

The best-known implementations of the Althöfer et al. algorithm run in time
O(min{kn2+1/k, mn1+1/k}) [Althöfer et al. 1993; Roditty and Zwick 2004], though
there are several more efficient (2k −1)-spanner constructions. Halperin and Zwick
[1996] (see Peleg [2000]) computed an O(n1+1/k)-size (2k − 1)-spanner in linear
time. However, unlike the algorithm of Althöfer et al. [1993], the Halperin-Zwick
algorithm only works on unweighted graphs. For weighted graphs Baswana and
Sen [2007] gave a randomized construction of such a spanner with size O(kn1+1/k).
The Baswana-Sen algorithm has since been derandomized by Roditty et al. [2005].

1.2. BEYOND PURELY MULTIPLICATIVE DISTORTION. The girth bound exactly
characterizes the optimal tradeoff between sparseness and multiplicative distor-
tion but arguments based on girth only apply to adjacent vertices. In unweighted
graphs, the girth argument could just as easily be interpreted as bounding the ad-
ditive distortion, or some combination of additive and multiplicative distortion. In
particular, if the girth conjecture is true, we can only say that an (α, β)-spanner
of size O(n1+1/k) has α + β ≥ 2k − 1. It is conceivable that there exist additive
(2k − 2)-spanners with size O(n1+1/k), for any k. Before our work, however, only
one such additive spanner was known. Aingworth et al. [1999] (with followup
work in Dor et al. [2000]; Elkin and Peleg [2004]; Thorup and Zwick [2006], and
Roditty et al. [2005]) showed that there exist O(n3/2)-size additive 2-spanners. On
the lower-bound side, Woodruff [2006] recently proved that any spanner with size
O(k−1n1+1/k) cannot do better than an additive distortion of 2k − 2, independent
of whether the girth conjecture is true or not.

The current research trend is to optimize distortion as a function of the dis-
tance being approximated, rather than fixate on adjacent vertices and the girth
conjecture. Elkin and Peleg [2001, 2004] were the first to take this approach in the
context of general graphs. They showed the existence of (k − 1, O(k))-spanners
with size O(kn1+1/k) and (1 + ε, βk,ε)-spanners with size O(βk,εn1+1/k), where
βk,ε is roughly (ε−1 log k)log k . Elkin and Peleg [2004] and Elkin [2005] gave algo-
rithms for constructing (1 + ε, βk,ε,t )-spanners in time, respectively, O(n2+1/t ) and
O(mn

1
2k + 1

t ), where βk,ε,t can be exponentially larger than βk,ε . Following Thorup
and Zwick [2006], Pettie [2007] gave (1 + ε, β)-spanners where ε is not a param-
eter of the construction but can be chosen as a function of the distance d being
approximated. In particular, for any o ≥ 0 there is a spanner with size O(n1+ (3/4)o

7−2(3/4)o )
such that vertices at distance d appear at distance d + O(d1−1/(o+2) + oo) in the
spanner. Pettie [2007] also showed that every graph has a (1 + ε, β)-spanner with
size O(n log log(ε−1 log log n)), where β = O(ε log log n)log log n . The construction
algorithms of Elkin and Peleg [2001, 2004], Elkin [2005], and Thorup and Zwick
[2006] are faster than that of Pettie [2007] though the resulting spanners have higher
distortion. See Figure 1 for a tabular summary of existing spanners constructions.
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FIG. 1. The state-of-the-art in (α, β)-spanners. The size bound of the spanners of Althöfer et al.
[1993] and Roditty and Zwick [2004] follow from results by Alon et al. [2002]. The (1 + ε, β)-
spanners vary widely in β’s dependence on ε and whether the distortion holds for a specific ε or all
ε simultaneously. The sparseness-distortion guarantees of Pettie [2007] dominate those of Elkin and
Peleg [2004], Elkin [2005], and Thorup and Zwick [2006], though the construction algorithms of Elkin
and Peleg [2004], Elkin [2005], and Thorup and Zwick [2006] are faster. In Pettie [2007] and Thorup
and Zwick [2006], ε can be chosen as a function of the distance d being approximated. If ε is chosen
optimally, the distance between two vertices in the spanner of Pettie [2007] is d + O(d1−1/(o+2) + oo),
where 0 ≤ o < log4/3 log n controls the size of the spanner. This is always better than the bound
of Thorup and Zwick [2006]: d + O(d1−1/(k−1) + 2k), where 2 ≤ k < log n. The β’s from Elkin
and Peleg [2004], Elkin [2005], and Pettie [2007] are, respectively, β ≈ max{ε−1 log k, t}log k , β ≈
(ε−1t2k log k)t log k , and β ≈ (ε−1 log log n)log log n .

1.3. OUR RESULTS. Our first result is that every graph contains an additive 6-
spanner with size O(n4/3) and that such a spanner can be computed efficiently. This
result is a far cry from a full spectrum of tradeoffs between sparseness and additive
distortion. However, our approach is completely new and is generic enough to be
applied in other ways. We view a spanner construction as an economic agent that
assigns a cost and value to paths in the graph. Affordable paths are purchased
(included in the spanner) and expensive ones ignored. Different cost and value
combinations lead to spanners with different properties. Besides constructing a
6-spanner, our path buying algorithm can be parameterized to find an additive
2-spanner of size O(n3/2), matching Aingworth et al. [1999], Dor et al. [2000],
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Elkin and Peleg [2004], Thorup and Zwick [2006], and Roditty et al. [2005], and
an additive (n1−3δ)-spanner with size O(n1+δ), for any constant δ ∈ (0, 1/3). The
latter result improves on the additive Õ(n9/16−7δ/8)-spanners of Pettie [2007] for
some δ. Pettie [2007], following the initial publication of our work [Baswana et al.
2005], used a hierarchical version of the path buying algorithm to construct sparser
(1 + ε, β)-spanners.

Our second result addresses those sparseness-distortion tradeoffs that can be
computed by an efficient algorithm. We show that a (k, k − 1)-spanner of size
O(kn1+1/k) can be constructed in O(km) time. Since the decisions made by the
algorithm are very local, it can easily be implemented in modern models of com-
putation. For instance, in the cache-oblivious model [Frigo et al. 1999], the PRAM
model [Karp and Ramachandran 1990], or in a synchronized distributed network
[Peleg 2000], our algorithm is close to optimal under the relevant measures. Pre-
vious spanners with equal or better distortion [Elkin and Peleg 2004; Elkin 2005;
Thorup and Zwick 2006] have construction times of the form O(mn�(1)) and the
result that is most comparable to ours, the (k −1, O(k))-spanner of Elkin and Peleg
[2001], requires time O(mn1−1/k) to compute. If we restrict our attention to near-
linear time constructions, all the existing spanners with size O(kn1+1/k) [Halperin
and Zwick 1996; Baswana and Sen 2007; Roditty et al. 2005] had multiplicative
distortion 2k −1. Whereas our (k, k −1)-spanners can be computed in O(k) rounds
in a distributed network, all previous constructions with equal or better distortion
required �(n�(1)) rounds [Elkin and Zhang 2006].

1.4. RELATED WORK. Spanners are part of a large body of work on metric
embeddings, where one wants a mapping φ : S → T from a given (finite) source
metric2 (S, δS) to a target metric (T, δT ) that does not distort interpoint distances by
too much. (Distortion here is usually defined as purely multiplicative distortion.)
In our case (S, δS) is some unweighted graph metric and φ is the identity function;
the problem is to find a metric (T, δT ) corresponding to a sparse subgraph. We only
review metric embedding results where the target metric is some kind of graph. See
Indyk [2001] and Indyk and Matoursek [2004] for surveys of metric embedding
theory.

Roditty et al. [2002] constructed multiplicative spanners for directed graphs un-
der the roundtrip metric, where the distance between two vertices is the length of the
shortest cycle (not necessarily simple) that contains both. The sparseness-distortion
tradeoffs in Roditty et al. [2002] are slightly worse than those obtained for undi-
rected graphs. Bollobás et al. [2003] and Coppersmith and Elkin [2005] studied
spanners that preserve, without distortion, the distance between some pairs of ver-
tices. Bollobás et al. [2003] showed that there exist O(n1+δ)-size spanners that pre-
serve distances greater than n1−δ, and that this tradeoff is optimal. Coppersmith and
Elkin [2005] showed that for any set P of pairs of vertices, there is a distance pre-
server for P with size O(n +|P| √n) edges, and that this bound is optimal in some
circumstances. In particular, if |P| = ω(

√
n) then a size of O(n) cannot be guaran-

teed. Dor et al. [2000] considered emulators, which may contain both graph edges
and additional weighted edges, and observed that there are additive 4-emulators

2 Recall that (S, δS) is a metric if for u, v, w ∈ S, δS(u, u) = 0, δS(u, v) = δ(v, u) ≥ 0, and
δS(u, v) ≤ δS(u, w) + δS(w, v).
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with O(n4/3) edges. Thorup and Zwick [2006] generalized this construction to
emulators with O(kn1+ 1

2k −1 ) edges and additive distortion O(d1− 1
k−1 + kk), where

d is the distance being approximated. One well-known application of (multiplica-
tive) spanners is in the construction of approximate distance oracles; see Thorup
and Zwick [2005], Baswana and Sen [2006], Roditty et al. [2005], Baswana and
Kavitha [2006], Mendel and Naor [2007], and Baswana et al. [2008].

The sparsest spanner is a tree, but it is impossible to guarantee that a tree spanner
has any nontrivial worst-case distortion.3 A number of weaker notions of distortion
have been defined to deal with tree spanners. A probabilistic embedding with distor-
tion t is a distribution over tree metrics such that ET [δT (φ(u), φ(v))/δS(u, v)]} ≤ t ,
where it is assumed that δT (φ(u), φ(v)) ≥ δS(u, v). Elkin et al. [2005] showed that
for any graph there is a probabilistic embedding into its spanning trees with distor-
tion O(log2 n log log n). Fakcharoenphol et al. [2004] proved that any metric can
be probabilistically embedded in a tree metric (not necessarily a spanning tree)
with distortion O(log n). These probabilistic embeddings have surprisingly diverse
applications; see Alon et al. [1995], Bartal [1996], Fakcharoenphol et al. [2004],
Spielman and Teng [2004], and Xiao et al. [2007], and the references therein. The
distinction between embedding into a spanning subtree versus any tree metric was
explored by Bǎdoiu et al. [2007], who showed that the distortion of the best span-
ning subtree is between �(log n/ log log n) and O(log n) times the distortion of the
best tree metric. They also give an algorithm to approximate the best embedding
from a given metric into a tree metric.4

A number of recent articles have looked at spanners with ε-slack, meaning the
stated distortion (a function of ε) may fail to hold for an ε fraction of the vertex
pairs. Such a spanner is gracefully degrading if it has ε-slack for all ε. Chan
et al. [2006] gave a linear-size, gracefully degrading spanner with multiplicative
distortion O(log ε−1). See Abraham et al. [2005, 2006a, 2007] for standard and
probabilistic embeddings into tree metrics with ε-slack.

For geometric graphs, where the vertices are points in R
d , it is known that, for

any constants d, ε, there are efficiently constructible linear size (1 + ε)-spanners
[Gudmundsson et al. 2002; Narasimhan and Smid 2007]. Geometric graphs fall into
a larger class of metrics with constant doubling dimension.5 It was recently shown
that even these metrics have (1 + ε)-spanners with size O(n), for constant ε and
dimension d [Chan et al. 2005; Chan and Gupta 2006; Har-Peled and Mendel 2006].

1.5. ORGANIZATION. In Section 2 we introduce the path-buying technique and
an algorithm for finding additive 6-spanners. In Section 2.1 we show how the
path-buying algorithm can be parameterized to compute other additive spanners.
Section 3 contains our linear time algorithm for constructing (k, k − 1)-spanners
and in Section 3.1 we show how it can easily be adapted to other models of
computation. In Section 4 we conclude the article with some open problems.

3 For example, consider a cycle of n vertices.
4 Notice the difference between absolute versus relative distortion. Most results give an absolute
guarantee on the distortion (perhaps in expectation) whereas Bǎdoiu et al. [2007] compared the
distortion of their embedding against the optimal one. See Emek and Peleg [2004] and Elkin and
Peleg [2005] for other (in)approximability results for different spanner problems.
5A metric has doubling dimension d if the ball of radius 2r centered at any point can be covered by
2d balls of radius r .
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2. Additive Spanners

Our construction of additive 6-spanners works in two phases, the first of which
involves standard clustering techniques. For the sake of completeness we will
describe a simple randomized clustering algorithm developed by Baswana and Sen
[2007]. A more general version of this algorithm appears in Section 3, as well as a
deterministic alternative.

In phase one, we choose a set of n2/3 vertices at random to become cluster
centers.6 Every vertex will join the cluster of an arbitrary adjacent center and,
if there are no adjacent centers, the vertex will be left unclustered. Let C =
{C1, C2, . . . , Cn2/3} be the set of clusters; that is, Ci consists of the i th center and
all adjacent vertices that joined it. The edge set H0 (which is a subset of our spanner)
consists of a radius-1 spanning tree of each cluster and all edges that are incident to
at least one unclustered vertex. Consider the number of edges contributed to H0 by
some vertex v with degree deg(v). If v is clustered, but not a center, it contributes
one edge to the spanning tree of its cluster. This happens with probability at
least 1 − (1 − n−1/3)deg(v)+1. With probability at most (1 − n−1/3)deg(v)+1, v is left
unclustered and contributes deg(v) edges. Thus the expected contribution from v
is at most 1 + (deg(v) − 1)(1 − n−1/3)deg(v)+1, which is always less than n1/3. By
linearity of expectation, E[|H0|] < n4/3. See Section 3 for a more detailed analysis.

Since H0 contains all edges incident to unclustered vertices, we can focus our
attention on shortest paths whose endpoints are both clustered. The objective of
phase two is to show that on any shortest path P = 〈u, . . . , u′〉, where both u and
u′ are clustered, there exists a short path Q in the spanner from u to u′ that passes
through some C∗ ∈ C(P). Here C(X ) represents the set of clusters intersecting X or
the unique cluster containing X if X is a single vertex. We guarantee, in particular,
that the portions of Q from C(u) � C∗ and C∗ � C(u′) are no longer than their
counterparts in P . Property 2.1 formalizes this idea, and Lemma 2.2 states that any
subgraph with this property is an additive 6-spanner.

PROPERTY 2.1. A subgraph H ⊇ H0 is happy if for any two clustered vertices
u, u′, there exists a shortest path P = 〈u . . . , u′〉 in G and a C∗ ∈ C(P) such that

δH (C(v), C∗) ≤ δP (C(v), C∗) for both v ∈ {u, u′}.
LEMMA 2.2. Any happy subgraph of G is also an additive 6-spanner of G.

PROOF. Let H be the happy subgraph, and u, u′, P, and C∗ ∈ C(P) be as in
the statement of Property 2.1; see Figure 2. We can bound the distance from u to
u′ in H as

δH (u, u′) ≤ diamH (C(u)) + δH (C(u), C∗) + diamH (C∗)
+ δH (C∗, C(u′)) + diamH (C(u′))

≤ δP (C(u), C∗) + δP (C∗, C(u′)) + 6
≤ δG(u, u′) + 6,

where diamH (Z ) represents the maximum distance between vertices in Z in the
subgraph H . The second inequality follows directly from Property 2.1.

6 Sampling each vertex independently with probability n−1/3 achieves the same goal.
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5:8 S. BASWANA ET AL.

FIG. 2. The clusters C(u), C∗, and C(u′) indicated by ovals. The shortest intercluster paths in H are
indicated by dashed curves.

In phase two, we find a subgraph H0 ∪ P1 ∪ P2 ∪ · · · ∪ Pp where P1, . . . , Pp
are paths purchased by the path buying algorithm in Figure 3. The algorithm is
parameterized by cost and value functions. It evaluates some shortest path between
each pair of vertices and purchases the path if twice its value exceeds its cost. If
the path is bought, this will influence the cost and value of other paths.

The following cost and value functions give rise to an additive 6-spanner. In
Section 2.1, we show that different costs and values lead to other sparseness-
distortion tradeoffs, including a new additive 2-spanner of size O(n3/2) that is quite
different from previous constructions [Aingworth et al. 1999; Dor et al. 2000; Elkin
and Peleg 2004; Thorup and Zwick 2006].

value(P) = |{{C, C ′} ⊆ C(P) : δP (C, C ′) < δH (C, C ′)}|,
cost(P) = |P\H |.

Note that the cost and value of a path is with respect to a subgraph H , which is
our spanner under construction. The cost of a path is the number of its edges not
already included in the spanner. The value function represents, roughly, how much
the intercluster distances would be improved if P were included in the spanner.

Our path buying algorithm (Phase 2) is given in Figure 3. It refers to a set
P of shortest paths between all pairs of vertices with the following restrictions.
If P ∈ P then all subpaths of P are also in P . Furthermore, for every three
consecutive vertices 〈u1, u2, u3〉 in a path P ∈ P , if C(u1) = C(u3), then u2 is the
center of C(u1). This helps to reduce the cost of paths since 〈u1, u2, u3〉 ⊆ H0.

The remainder of the proof is structured as follows. In Lemma 2.3 we argue
that, in the sum of values of paths purchased, the number of times any cluster
pair is counted is bounded by a constant. This implies that the sum of values is
O(n4/3), since |C| = n2/3, and by our criterion for purchasing paths, that the sum
of costs is also O(n4/3). In Lemma 2.4 we relate the cost of a path to the number
of clusters intersecting it. Finally, and most importantly, Lemma 2.5 shows that if
any shortest path is too expensive to be purchased then the existing spanner edges
already guarantee a path with additive distortion at most 6.

In the following lemmas, value(P) and cost(P) represent the value and cost of
P at the time it was considered by the path buying algorithm in Figure 3.

LEMMA 2.3. Let H = H0 ∪ P1 ∪ P2 ∪· · ·∪ Pp, where Pi is the i th path bought
in the path buying phase. Then

∑p
i=1 value(Pi ) ≤ 5

(|C|
2

)
< 5

2 n4/3.

PROOF. Let Hi = H0 ∪ P1 ∪ · · · ∪ Pi . For any two clusters C, C ′ ∈ C, let
P(C, C ′) = {Pj(1), Pj(2), . . . , Pj(r )} be those purchased paths such that

δPj(k) (C, C ′) < δHj(k)−1 (C, C ′) for k ∈ [1, r ].
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FIG. 3. The path buying algorithm. P is a set of
(n

2

)
shortest paths between all pairs of vertices.

By the definition of the value function,
∑p

i=1 value(Pi ) = ∑
{C,C ′}⊆C |P(C, C ′)|.

Since Pj(1) is a shortest path in G, we have that δPj(1) (C, C ′) ≤ diamG(C) +
δG(C, C ′) + diamG(C ′) ≤ δG(C, C ′) + 4. This implies that |P(C, C ′)| ≤ 5 since
δG(C, C ′) ≤ δPj(r ) (C, C ′) < δPj(r−1) (C, C ′) < · · · < δPj(1) (C, C ′) ≤ δG(C, C ′) + 4.
That is, after Pj(1) is purchased the distance from C to C ′ can only be improved
four more times.

LEMMA 2.4. If P ∈ P then either |C(P)| = 1 or there exists a subpath
P ′ ⊆ P such that C(P ′) = C(P) and cost(P ′) ≤ 2|C(P ′)| − 3.

PROOF. Let P = 〈u, . . . , u′〉 and P ′ ⊆ P be minimal such that C(P) = C(P ′);
see Figure 4. (This means that if the first or last cluster of P has two or three
vertices in common with P then only the innermost one appears in P ′.) The only
edges in P ′ that might not be in H ⊇ H0 are those between clustered vertices.
Furthermore, if three consecutive vertices u1, u2, u3 belong to the same cluster
then u2 is the center of cluster and 〈u1, u2, u3〉 ⊆ H0; see Figure 4. Thus the total
number of intercluster edges and intracluster edges that are not in H are bounded
by |C(P ′)| − 1 and |C(P ′)| − 2.

LEMMA 2.5. The subgraph H returned by the path buying algorithm is happy.

PROOF. Let P = 〈u, . . . , u′ ∈ P〉 be the shortest path from u to u′ in G. By the
statement of Property 2.1, we can dispense with several trivial cases and assume
that P was not purchased in phase two, that both u and u′ are clustered, and that
C(u) �= C(u′). Let P ′ ⊆ P be the subpath guaranteed by Lemma 2.4. The case
when P ′ is included in H is also trivial. Thus we have the following inequalities:

2 · value(P ′) < cost(P ′) ≤ 2 · |C(P ′)| − 3, (1)

where the first inequality follows from the fact that P ′ was not included in H and
the second from Lemma 2.4. Define A as the set of cluster pairs:

A =
{
{C0, C1} :

C0 ∈ {C(u), C(u′)}, C1 ∈ C(P ′)\{C0}
and δP ′(C0, C1) < δH (C0, C1)

}
.

The cluster pairs counted in A are also counted in value(P ′) so |A| ≤ value(P ′). By
the inequalities of Equation (1), value(P ′) ≤ |C(P ′)|−2. Notice that the maximum
number of cluster pairs that could be counted by A is 2|C(P ′)| − 3.7 This means
that, for at least |C(P ′)|−1 of these cluster pairs, their distance in the spanner is no
worse than their distance in P ′. By the pigeonhole principle, there must be some

7 There is the pair {C(u), C(u′)} and the 2(|C(P ′)| − 2) pairs {C0, C1}, where C0 ∈ {C(u), C(u′)} and
C1 ∈ C(P ′)\{C(u), C(u′)}.
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FIG. 4. If the first (and last) cluster intersects P at more than one vertex, all but the innermost one
can be left out of P ′.

cluster C∗ ∈ C(P ′) = C(P) satisfying both

δH (C(u), C∗) ≤ δP ′(C(u′), C∗)

and

δH (C∗, C(u′)) ≤ δP ′(C∗, C(u′)).

Since C(P) = C(P ′), it also follows that P has this property.

LEMMA 2.6. If H is the subgraph purchased by the path buying algorithm
then |H | < 6 · n4/3.

PROOF. One can easily see that |H | = |H0|+
∑

i cost(Pi ). By construction we
have |H0| ≤ n4/3. It follows from Lemma 2.3 that

∑
i cost(Pi ) ≤ 2·∑i value(Pi ) <

5 · n4/3.

THEOREM 2.7. There exists an additive 6-spanner of any graph with size
O(n4/3).

PROOF. Follows from Lemmas 2.2, 2.5, and 2.6.

2.1. PARAMETERIZING THE PATH BUYING ALGORITHM. Our 6-spanner con-
struction can be generalized to larger additive distortion. However, we can only
guarantee that a β-spanner (β > 6) has o(n4/3) edges if the graph satisfies addi-
tional requirements. Let 
k(G) be the number of edges in G that lie on some cycle
with length at most 2k. (Notice that, when k = 1, 
1(G) = 0 since all graphs
have girth at least 3.) Theorem 2.8 says that when the graph is not too far from
having girth greater than 2k there exist a number of additive spanners with different
size-distortion tradeoffs, the sparsest of which has size �(n1+1/(2k+1)). Figure 5 lists
some of the corollaries of Theorem 2.8.

THEOREM 2.8. For any graph G and integer parameters k ≥ 1 and � ∈
[0, k], there exists an additive (2k + 4�)-spanner with size O(
k(G) + n1+ 1

k+�+1 ).
Furthermore, the spanner can be constructed in time O(mn1− �

k+�+1 ).

For k > 1 Theorem 2.8 is quite weak since there is no reason to believe that

k(G) is small. We expressed the size bound in Theorem 2.8 in terms of 
k(G)
not because high-girth graphs are particularly interesting but because they serve
to highlight the difficulties in generalizing our approach. The most natural way to
extend the path-buying algorithm of Section 2 is to partition the graph into radius-2
clusters and define some kind of value function that takes the distances between
these clusters into account. This approach works out very well if either (1) every
vertex in the graph lies in some cluster or (2) the graph has girth greater than 4. It
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FIG. 5. Additive spanners derived from Theorem 2.8. See Wenger [1991] for constructions of graphs
with girth > 4 and > 6, and Thorup and Zwick [2005] for references to other constructions of high-
girth graphs. See Aingworth et al. [1999], Dor et al. [2000], Elkin and Peleg [2004], and Thorup and
Zwick [2006] for other constructions of additive 2-spanners.

is not possible to guarantee (1) without creating too many clusters and assuming
(2) is unrealistic. Thus, dealing with 3- and 4-cycles is, strangely, the obstacle to
generalizing the path-buying algorithm.

The spanners provided by Theorem 2.8 are constructed with a path buying
algorithm very similar to the one in the Section 2. In our additive 6-spanner
construction we guaranteed that if a shortest path P from u to u′ is not purchased
then there is a path in the spanner between C(u) and C(u′) via a special cluster
C∗. The additive error of 6 reflects the cost of traversing three radius-1 clusters.
The parameterized path-buying algorithm in this section makes the same type of
guarantee, except that C∗ will have radius k and C(u) and C(u′) will have radius �,
where 0 ≤ � ≤ k. Roughly speaking, the parameterized value function will count
pairs of clusters with radii � and k.

Before running the path buying algorithm, we compute an appropriate clustering
and an initial set of edges Hk,�, which plays the same role as H0 in our 6-spanner.
This clustering procedure that produces Hk,� is very similar to the randomized
clustering procedure presented later in Section 3, though the analysis of these two
schemes is sufficiently different to justify two expositions. We begin by selecting
vertex sets V� and Vk where V� is a random sample of V of size n1−�ε and Vk is
a random sample of V� of size n1−kε , where ε will be chosen later. We find two
clusterings C�, Ck , where, for i ∈ {�, k}, Ci consists of a set of disjoint subsets of V .
Each C ∈ Ci is centered at some vertex in Vi and a vertex v is contained in some
C ∈ Ci if and only if δ(v, Vi ) ≤ i ; in particular, the distance from v to the center of
its cluster is at most i . Hk,� consists of a radius-i spanning tree of each C ∈ Ci and
i ∈ {k, �}, as well as every edge incident to a vertex that does not appear in both
clusterings C� and Ck . The number of edges contributed by the spanning trees is only
2n, so we are mainly concerned with the expected number of the remaining edges.

LEMMA 2.9. Given a graph G with m edges, the subgraph Hk,� can be con-
structed in O(m) time and E[|Hk,�|] = O(
k(G) + n1+ε).
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PROOF. To simplify the analysis, we imagine constructing Hk,� by selecting
vertex sets V = V0 ⊇ V1 ⊇ · · · ⊇ Vk , where Vi is a random sample of Vi−1 of size
n1−iε . We construct the clusterings C0, . . . , Ck iteratively. Let v be a vertex incident
to clusters C1, C2, . . . , Cs ∈ Ci . If any of the centers of C1, . . . , Cs is sampled for
inclusion in Vi+1, v will join one adjacent sampled cluster that will be included
in Ci+1. When none of the clusters C1, . . . , Cs are sampled, we include all of v’s
incident edges in Hk,�. We now consider the expected number of edges contributed
by v . The probability that v is included in Ci+1 is at least8 1− (1−n−ε)s . The effect
of v not appearing in Ci+1 is to include in Hk,� all edges incident to v , which could be
significantly larger than both s and nε . Let C1, . . . , Cs ′ be those clusters connected
to v by at most one edge. Every edge (v, w) connecting v to a cluster C appearing in
Cs ′+1, . . . , Cs lies on a cycle of length at most 2i ≤ 2k: the one consisting of (v, w),
a path from w to w ′ ∈ C passing through the center of C , and the edge (w ′, v). Such
a w ′ �= w exists because v is connected to C by at least two edges. If v is unclustered
in Ci+1 then the contribution of the edges from v to Cs ′+1, . . . , Cs is counted in the

k(G) term. Excluding these edges, the expected number of edges contributed by
v is at most (s ′ − 1) · Pr[v does not appear in Ci+1] ≤ (s ′ − 1)(1 − n−ε)s < nε .9

Before proving Theorem 2.8, we establish a number of small lemmas that closely
parallel Lemmas 2.2, 2.3, 2.4, 2.5, and 2.6. Due to the complications of having
clusters with different radii, we need to use a new value function, a new definition
of happiness, and a slightly different version of the path buying algorithm.

Whereas the previous definition of happiness and the previous value function
considered pairs of radius-1 clusters, the new definitions will consider pairs of the
form (v, C), where v ∈ V� is the center of a radius-� cluster and C ∈ Ck is a
radius-k cluster.

PROPERTY 2.10. A subgraph H of G that contains Hk,� is happy if, for any
u, u′ ∈ V�, there is a shortest path P (with respect to G) from u to u′ and a cluster
C∗ ∈ Ck(P) such that, δH (u, C∗) ≤ δP (u, C∗) and δH (u′, C∗) ≤ δP (u′, C∗).

As in Lemma 2.2, Lemma 2.11 reduces the problem to finding a happy subgraph.

LEMMA 2.11. Any happy subgraph of G is an additive (2k + 4�)-spanner of
G.

PROOF. Consider a shortest path between any two vertices v, v ′ that are clus-
tered in both C� and Ck and let u and u′ be the centers of the C� clusters containing
v and v ′, respectively. See Figure 6. Let P be the shortest path between u and u′.
By the happiness of H , there exists a cluster C∗ ∈ Ck(P) such that

δH (u, u′) ≤ δH (u, C∗) + diam(C∗) + δH (C∗, u′) ≤ δ(u, u′) + 2k.

8 This would be the exact probability if Vi+1 were selected from Vi by sampling each element with
probability n−ε . Selecting Vi+1 as a random subset of Vi with size n1−(i+1)ε only improves v’s chance
of being clustered in Ci+1.
9 For the last inequality, observe that s ′(1 − 1/x)s′ ≤ x(s ′/x)e−s′/x ≤ x , for any positive x .
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FIG. 6. The clusters C�(u), C�(u′), and C∗ ∈ Ck , are indicated by ovals. Dashed curves represent
paths in the spanner H . The shortest paths in G connecting v to v ′ and u to u′ are indicated.

Using this bound on the distance from u to u′ in H , we can bound δH (v, v ′) as

δH (v, v ′) ≤ δH (v, u) + δH (v ′, u′) + δH (u, u′)
≤ 2� + δ(u, u′) + 2k
≤ δ(v, v ′) + 2k + 4�.

Let P be a set of shortest paths between all pairs of vertices. We only consider
shortest paths in P and insist that it satisfy two properties. First, any subpath of
a path in P is also in P . Second, if 〈u0, u1, . . . , u2k〉 ∈ P and Ck(u0) = Ck(u2k),
then uk is the center of Ck(u0) and 〈u0, . . . , u2k〉 is contained in the spanning tree
of Ck(u0) included in Hk,�. Let P(u, u′) ∈ P be the shortest path between u and u′.

We use the same cost function as before: cost(P) = |P\H |, where H now
represents the spanner under construction. However, the value function is only
defined on paths connecting vertices in V�. Letting P = P(u, u′), where u, u′ ∈ V�,
we define value(P) as

value(P) = |{(w, C) : w ∈ {u, u′}, C ∈ Ck(P), and δP (w, C) < δH (w, C)}|.
The path buying algorithm below has a few differences from the 6-spanner

algorithm. We only consider shortest paths between vertices in V� and the criterion
for purchasing a path P is slightly stronger: 2k · value(P) (rather than 2 · value(P))
must be at least cost(P).

LEMMA 2.12. For any k ≥ 1 and � ∈ [0, k], the size of the spanner returned
by the path buying algorithm is O(
k(G) + n1+1/(k+�+1)).

PROOF. Let P1, . . . , Pp be the paths purchased. It follows that the size of H is
exactly |Hk,�| plus∑

1≤i≤p

cost(Pi ) ≤ 2k
∑

1≤i≤p

value(Pi ) ≤ 2μk |V� × Ck | = 2μkn2−(k+�)ε,

where μ is the maximum number of times that any pair (v, C), where v ∈ V�, C ∈
Ck could be counted in

∑
i value(Pi ). One can see that μ = 2k + 1. When (v, C) is

first counted, say when Pi is purchased, we have δPi (v, C) ≤ δ(v, C) + diam(C) =
δ(v, C) + 2k. After Pi is purchased the distance between v and C in H can only
be improved 2k more times. Thus, the size of H is O(
k(G) + n1+ε + k2n2−(k+�)ε).
Setting nε = (k2n)1/(k+�+1), the total size is O(
k(G) + n1+1/(k+�+1)).
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FIG. 7. Constructing an additive (2k + 4�)-spanner.

It only remains to show that H is happy and, in particular, that if a path P =
P(u, u′) is not purchased then δH (u, u′) ≤ δ(u, u′) + 2k.

LEMMA 2.13. The spanner returned by the path buying algorithm is happy.

PROOF. We first bound cost(P) then show that, if P is not purchased, there must
be some C∗ ∈ Ck(P) satisfying Property 2.10. Consider any cluster C ∈ Ck(P)
and let z, z′ be the first and last vertices in P that belong to C . An edge is internal
to C if it lies on the subpath 〈z, . . . , z′〉. (Note that not all vertices between z and
z′ are necessarily in C .) It follows from our choice of shortest paths P that either
|〈z, . . . , z′〉| ≤ 2k−1 or 〈z, . . . , z′〉 ⊆ Hk,� ⊆ H . Thus, the total number of internal
edges in P\H is at most (2k − 1) |Ck(P)| and the number of remaining edges in
P\H is at most |Ck(P)| − 1. In total we have cost(P) ≤ 2k |Ck(P)| − 1. If we fail
to purchase P then 2k · value(P) ≤ cost(P) − 1 ≤ 2k |Ck(P)| − 2, implying that
value(P) ≤ |Ck(P)| − 1. Since there are 2 |Ck(P)| pairs of the form (w, C) where
w ∈ {u, u′} and C ∈ Ck(P), our bound on value(P) implies that, for at least one
C∗ ∈ Ck(P), δH (u, C∗) ≤ δP (u, C∗) and δH (u′, C∗) ≤ δP (u′, C∗).

It follows directly from Lemmas 2.11, 2.12, and 2.13 that the path buying
algorithm of Figure 7 returns an additive (2k + 4�)-spanner H with the claimed
size. However, any implementation of the Figure 7 algorithm, as it is stated, would
be prohibitively slow. The most difficult problem is updating path costs and values
after each shortest path is purchased. In the implementation described below, we
use a different pair of cost and value functions that are easier to evaluate and update.

Rather than maintain the actual distance between a v ∈ V� and C ∈ Ck , we keep
an upper bound δ̂H (v, C), which is the minimum distance between v and C in a
path already purchased. We ignore the cost function and consider the valid upper
bound cost(P) ≤ 2k |Ck(P)| − 1. (These changes have no effect on the correctness
of Lemmas 2.12 and 2.13.) At the beginning of the path buying phase we construct,
in O(m |C�|) time, a shortest-path tree originating at each vertex in V�. In such a
tree a relevant vertex is one in V� or one that has at least two V� vertices in different
subtrees, that is, a branching vertex in the subtree connecting V� nodes. For u ∈ V�,
let Ru be the set of relevant vertices in u’s shortest path tree. We consider, in
nondecreasing order by length, the shortest paths between pairs (u, u′) where
u ∈ V� and u′ ∈ Ru . For a path P = 〈u0, u1, . . . , uq〉, where u0 ∈ V�, let ν be
defined as

ν(u0, uq) = |{(u0, C) : C ∈ Ck(P) and δP (u0, C) < δ̂H (u0, C)}|.
We assume that after P is considered we have computed ν(u0, ui ) and
|Ck(〈u0, . . . , ui 〉)|, for all relevant vertices ui ∈ Ru0 . When we consider an ex-
tension of P , say P ′ = 〈u0, . . . , uq, . . . , uq+r 〉, where uq+r is the first relevant
vertex on the extension, we can easily update |Ck(P ′)| and ν(u0, uq+r ) in just
O(k + r ) time. If uq+r ∈ V� then we need to decide whether to purchase P ′. We
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check if ν(u0, uq+r ) + ν(uq+r , u0) ≥ |Ck(P ′)|, which serves the same purpose as
checking the inequality 2k · value(P ′) ≥ cost(P ′) in the algorithm in Figure 7.
If the inequality holds, we buy P ′ and update ν(u, u′) where u ∈ {u0, uq+r } and
u′ ∈ Ru . This amounts to checking, for each pair (u0, C) counted in ν(u0, uq+r )
and each path P ′′ = 〈u0, . . . , u′〉, whether δP ′(u0, C) ≤ δP ′′(u0, C). If so, the pair
(u0, C) should no longer be counted in ν(u0, u′), if it was counted there at all. The
total time for these updates is O(k · |C�|2 · |Ck |) = O(n3− 2�+k

k+�+1 ) and the total time
for performing breadth-first searches is O(m · |C�|) = O(mn1− �

k+�+1 ). We can safely
assume that m ≥ n1+ 1

k+�+1 ; if not we would simply return the original graph as a
trivial additive 0-spanner. For m above this threshold, the two time bounds are both
O(mn1− �

k+�+1 ). This concludes the proof of Theorem 2.8.

2.2. ADDITIVE SPANNERS WITH POLYNOMIAL DISTORTION. The first obstacle
to improving Theorem 2.8 is dealing with graphs with lots of 3- and 4-cycles. It
is strange that short cycles should impede the discovery of more additive spanners
since high-girth graphs are the most difficult instances when optimizing for mul-
tiplicative distortion. The recent lower bounds of Woodruff [2006] provide some
circumstantial evidence that short cycles really do complicate the problem. His
hard instances are actually composed entirely of complete bipartite graphs, where
each edge appears on a huge number of 4-cycles.

Theorem 2.8 generalizes the 6-spanner construction by considering clusterings
with wider radii. Another direction for generalization is to consider more hops
between clusters. Theorem 2.14 follows from a small adjustment to the 6-spanner
algorithm.

THEOREM 2.14. Every graph on n vertices contains an additive O(n1−3ε)-
spanner with size O(n1+ε), for any constant ε ∈ (0, 1

3 ).

PROOF. The algorithm is nearly identical to the 6-spanner construction. We
find a radius-1 clustering C containing n1−ε clusters, and let H0 contain all edges
incident to at least one unclustered vertex and a spanning tree of each cluster. We
run the path buying algorithm from Figure 3 using the same cost function but a
different value function:

value(P) = n−1+3ε · |{{C, C ′} ⊆ C(P) : δP (C, C ′) < δH (C, C ′)}|.
The rationale for this value function is simple. If there are n1−ε clusters and our
desired spanner size is O(n1+ε), each cluster pair can only afford to be charged
the cost of buying O(n−1+3ε) edges, that is, a small fraction of a single edge. Let
P be some shortest path and P ′ and P ′′ be the prefix and suffix of P containing
n1−3ε distinct clusters. If P is not purchased then, by the same reasoning used
before, there must be three not necessarily distinct clusters C ′, C∗, C ′′ where C ′ ∈
C(P ′), C ′′ ∈ C(P ′′), and C∗ ∈ C(P) such that δH (C ′, C∗) ≤ δP (C ′, C∗) and
δH (C ′′, C∗) ≤ δP (C ′′, C∗). That is, the subpath of P connecting C ′ to C ′′ is
approximated by H to within an additive distortion of 6. To get from the first vertex
of P to C ′ and from C ′′ to the last vertex of P , we use any standard multiplicative
O(ε−1)-spanner with size O(n1+ε). The total additive distortion is therefore 6 +
O(ε−1(cost(P ′) + cost(P ′′))) = O(n1−3ε). The size of H0 and the multiplicative
spanner is O(n1+ε) and the number of edges included by the path buying algorithm
is

∑
i cost(Pi ) ≤ 2

∑
i value(Pi ) = O(n−1+3ε · (|C|

2

)
) = O(n1+ε).
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Theorem 2.14 is not particularly impressive, but, again, it illustrates the flexi-
ble nature of the path buying approach. The previous best additive spanner with
size O(n1+ε) had distortion roughly O(n1−2ε) [Bollobás et al. 2003] and was sub-
stantially more complicated to construct. Pettie [2007] has recently shown that
every graph has an additive Õ(n

9
16 − 7ε

8 )-spanner with size O(n1+ε). Theorem 2.14
improves on this bound when ε > 7

34 .

3. A Simple (k, k − 1)-Spanner in Linear Time

In this section, we will first show how to construct a (2k − 1, 0)-spanner of size
O(kn1+1/k) in O(km) deterministic time. Then we will extend this method to
construct a (k, k − 1) spanner of size O(kn1+1/k) in O(km) deterministic time.

The input graph is G = (V, E). A cluster is simply a set of vertices and a
clustering is a set of disjoint clusters. A vertex is (un)clustered in a clustering C if it
appears (does not appear) in some cluster of C. In a clustering C, for any clustered
vertex u, denote by C(u) the cluster of C that contains u. For clusters C and C ′, let
E(C, C ′) = (C × C ′) ∩ E(G) be the set of edges between C and C ′. Let E(v, C)
be the set of edges between the vertex v and vertices in C . A vertex v is adjacent to
a cluster C if E(v, C) �= ∅. In a similar manner, two clusters C and C ′ are adjacent
to each other if E(C, C ′) �= ∅.

Our constructions in this section are based on a set of k + 1 clusterings,
C0, C1, . . . , Ck , where C0 = {{v} : v ∈ V (G)}, Ck = ∅, and |Ci | ≤ n1−i/k . Be-
low, we give two methods for constructing appropriate sequences of clusterings.
The edge set of our (2k − 1)-spanner S is defined by the following two rules.

—Rule R1. For each cluster C ∈ Ci , there exists a tree in S that spans C and has
radius10 at most i .

—Rule R2. For each vertex v that is unclustered in Ci and each cluster C ∈ Ci−1
adjacent to v , some edge from E(v, C) appears in S.

The construction of Theorem 3.1 is slightly weaker than that of Halperin and
Zwick [1996]; however it is the starting point for our (k, k − 1)-spanner.

THEOREM 3.1. A (2k − 1)-spanner of size O(kn1+1/k) can be constructed in
O(km) deterministic time.

PROOF. We first prove that Rules R1 and R2 give a (2k − 1)-spanner; we then
prove the size and time bounds. Let (u, v) be an arbitrary edge in the original
graph. If δS(u, v) ≤ (2k − 1)δG(u, v) then S is clearly a (2k − 1)-spanner. Let
� be minimum such that either u or v was unclustered in C� and without loss of
generality let the unclustered vertex be u. By Rule R2 there must be an edge in
S from u to C�−1(v); call this edge (u, w). By Rule R1 there must be a path in S
from w to v of length at most 2(� − 1), twice the radius of C�−1(v). Since � ≤ k, it
follows immediately that δS(u, v) ≤ 2k − 1.

Given the clustering Ci we show how to compute Ci+1 such that the number
of edges added to the spanner due to Rules R1 and R2 are at most n and n1+1/k ,

10 Recall that maximum distance between any two vertices in a subgraph is at most twice the radius
of that subgraph.
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FIG. 8. A randomized (2k − 1)-spanner construction.

respectively (This construction is a simplified version of one described by Elkin
[2004].) Initially Ci+1 = ∅. We define the priority of a cluster C ∈ Ci to be the
number of adjacent vertices that are unclustered with respect to Ci+1. We repeatedly
choose a cluster C ∈ Ci with maximum priority. If priority (C) ≥ n(i+1)/k , we add
a new cluster to Ci+1 consisting of C and all unclustered vertices adjacent to C . (If
C has radius i then the cluster added to Ci+1 clearly has radius i + 1.) It follows
that |Ci+1| ≤ n1−(i+1)/k and that the number of edges included in the spanner due
to Rule R2 is

∑
C∈Ci

priority(C), which is at most |Ci | (n(i+1)/k − 1) < n1+1/k . The
number of edges added due to Rule R1 is at most the number of clustered vertices
in Ci+1, that is, at most n. The clustering Ci+1 can easily be generated in linear time
using a priority queue consisting of n buckets.

The randomized construction of Baswana and Sen [2007] constructs the clus-
terings in an even simpler manner. Rather than carefully selecting clusters from Ci
for inclusion in Ci+1, they randomly sample all clusters from Ci with probability
n−1/k . The alternative (2k − 1)-spanner construction based on this method is given
in Figure 8. With this algorithm, the expected size of the spanner is O(kn1+1/k).

We next improve our (2k−1)-spanner construction to obtain a (k, k−1)-spanner.
All the edges that we put in the (2k −1)-spanner S are of the form E(v, C). Now let
us also add edges of the form E(C, C ′), which will consist of edges from clusters
of one clustering to clusters of another clustering.

—Rule R3. For each i with 0 ≤ i ≤ k − 1 and for each pair of adjacent clusters
C, C ′ with C ∈ Ci and C ′ ∈ Ck−1−i , some edge from E(C, C ′) appears in S.

—Rule R4. For each i ≥ �k/2� and each pair of adjacent clusters C, C ′ with C ∈ Ci
and C ′ ∈ Ci−1, some edge from E(C, C ′) appears in S.

The number of edges included due to Rule R3 is bounded by n1−i/kn1−(k−1−i)/k =
n1+1/k , for each i . Similarly, at most n1−i/kn1−(i−1)/k = n2−2i/k+1/k edges are
included due to R4, which is at most n1+1/k since i ≥ �k/2�. Our entire (k, k − 1)-
spanner construction is given in Figure 9. It consists of just those edges included
by Rules R1–R4.

Implementing Rules R3 and R4 takes linear time for any fixed i . Once it is proved
that Rules R1–R4 yield a (k, k − 1)-spanner, we can conclude with the following
theorem.

THEOREM 3.2. A (k, k − 1)-spanner of size O(kn1+1/k) can be computed in
O(km) deterministic time.

We now show that S is a (k, k − 1)-spanner. Let t = �k/2�. We need some more
definitions. Call a vertex i-(un)clustered if it appears (does not appear) in clustering
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FIG. 9. A simple linear time algorithm for constructing a (k, k − 1)-spanner.

Ci . The center of a cluster C ∈ Ci is a vertex c ∈ C such that the distance from c
to any other vertex in C is at most i , the radius of C . If v is i-clustered, let ci (v) be
the center of Ci (v). In analyzing the stretch of spanner S, we shall make extensive
use of the following notations.

fi (v) =
{

v if v is i-unclustered,

ci (v) if v is i-clustered;
ri (v) =

{
0 if v is i-unclustered,

i if v is i-clustered.

It is easy to observe that δS(v, fi (v)) ≤ ri (v).

σ ( j) =
{ ∑ j

i=0 2i : j ≥ 0,∑| j |−1
i=0 2i : j < 0.

It is easy to observe that the equalities σ (− j) = σ ( j − 1) and σ ( j) − 2 j =
σ ( j − 1) hold for all j .

We shall now state three simple Lemmas which follow from the rules R1–R4
used for constructing the spanner. Lemma 3.3 is based on R2 and is already proved
as part of Theorem 3.1.

LEMMA 3.3. If v is �-unclustered for � ≤ k −1, then for each edge (u, v) ∈ E,

δS( f�−1(u), f�(v)) ≤ 2� − 1 − r�−1(u).

The following Lemma uses the rule R3 in a crucial manner.

LEMMA 3.4. If v is �-clustered, then the following inequality holds for each
edge (u, v) ∈ E.

δS( fk−1−�(u), f�(v)) ≤ 2k − 2� − 1 + r�(v) − rk−1−�(u).

PROOF. If u is (k − 1 − �)-unclustered then it follows from rule R2 that there
is a path of length at most 2k − 2� − 3 in S between u and v . Since there is a
path of length ≤ r� from v to c�(v) in S, the inequality holds. The other case
is when u is (k − 1 − �)-clustered. By Rule R3, there is an edge in S between
Ck−1−�(u) and C�(v). This gives us a path of length k between ck−1−�(u) and
c�(v). Also note that r�(v) − rk−1−�(u) = −(k − 1 − 2�). Therefore, the inequality
δS( fk−1−�(u), f�(v)) ≤ 2k−2�−1+r�(v)−rk−1−�(u) holds in this case as well.

The following Lemma uses the rule R4 in a crucial manner.

LEMMA 3.5. For each edge (u, v) ∈ E and integer � ≥ � k
2�, the following

inequality holds.

δS( f�−1(u), f�(v)) ≤ 2� − 1 + r�(v) − r�−1(u).
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PROOF. Depending upon whether u and v appear in clusterings C�−1 and C�,
respectively, we have four cases: both are unclustered, both are clustered, u is
clustered but v is not, and vice versa. For the first case, that is, u ∈ C�−1 and
v ∈ C�, it follows from rule R4 that there is a spanner path between f�−1(u) and
f�(v) of length 2�. This fact combined with the observation that r�(v) = � and
r�−1(u) = �−1 imply the inequality. The proof of the remaining three cases follow
from Lemma 3.3 in a straight forward manner.

We are now ready to prove that S is indeed a (k, k − 1)-spanner. Our analysis
will be based on Lemmas 3.3, 3.4, and 3.5. We first analyze the case when k is an
odd positive integer.

Analysis of the stretch for odd value of k. For the case when k is odd, we
shall prove the following Theorem whose simple corollary would imply that S is
(k, k − 1)-spanner. Note that k = 2t + 1 since k is odd.

THEOREM 3.6. Let 〈u = v0, v1, . . . vq = v〉 be a path between any u, v ∈ V
in the given graph, and S be the spanner computed by our algorithm for an odd
integer k. Then for each 0 ≤ i ≤ q and integer � ∈ [0, 2t],

δS(v0, f�(vi )) ≤ ki + r�(vi ) + σ (t − �).

PROOF. We shall prove the statement of the theorem by induction on i ≥ 0.

Base Case. (i = 0). It is easy to observe that δS(v0, f�(v0)) ≤ r�(v0). Moreover,
σ () is always nonnegative, and hence the base case is true.
Induction step. Let us suppose that the statement is true for all integers up to i − 1.
We shall prove the validity of the statement for i .

—For � > t: Consider the path from v0 to f�(vi ) formed by concatenating the
two shortest paths: v0 � f�−1(vi−1) and f�−1(vi−1) � f�(vi ) in the spanner.
Using the induction hypothesis, it follows that the length of the shortest path
v0 � f�−1(vi−1) is k(i − 1) + r�−1(vi−1) + σ (t − � + 1). Moreover, it follows
from Lemma 3.5 that there is a path in the spanner from f�−1(vi−1) to f�(vi )
consisting of at most 2�− 1 + r�(vi ) − r�−1(vi−1) edges. Hence we can infer that

δS(v0, f�(vi )) ≤ k(i − 1) + r�(vi ) + 2� − 1 + σ (t − � + 1)
= ki + r�(vi ) + 2(� − t − 1) + σ (t − � + 1) {for k = 2t + 1}
= ki + r�(vi ) − 2(t − � + 1) + σ (t − � + 1)
= ki + r�(vi ) + σ (t − �).

—For � ≤ t: There are two cases here.
Case 1: vi is �-unclustered. In this case, consider the path formed by con-

catenating the shortest paths v0 � f�−1(vi−1) and f�−1(vi−1) � f�(vi ) in the
spanner. Using the induction hypothesis, it follows that the length of the path
v0 � f�−1(vi−1) is at most k(i −1)+ r�−1(vi−1)+σ (t − �+1). Moreover, since
vi is �-unclustered, it follows from Lemma 3.3 that the path f�−1(vi−1) � vi is
of length at most 2� − 1 − r�−1(vi−1). Hence, we can infer that

δS(v0, f�(vi )) ≤ k(i − 1) + r�(vi ) + 2� − 1 + σ (t − � + 1) {note r�(vi ) = 0}
= ki + r�(vi ) − 2(t − � + 1) + σ (t − � + 1) {for k = 2t + 1}
= ki + r�(vi ) + σ (t − �).
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Case 2: vi is �-clustered. In this case, Lemma 3.4 implies that there is a path
fk−1−�(vi−1) � f�(vi ) in the spanner with length at most 2k − 2�− 1 + r�(vi ) −
rk−1−�(vi−1). Moreover, using the induction hypothesis the shortest path from v0
to fk−1−�(vi−1) in the spanner is of length k(i−1)+rk−�−1(vi−1)+σ (t−k+�+1).
Hence we can infer that

δS(v0, f�(vi )) ≤ ki + r�(vi ) + k − 1 − 2� + σ (−(t − �)) {for k = 2t + 1}
= ki + r�(vi ) + 2(t − �) + σ (−(t − �))
= ki + r�(vi ) + 2(t − �) + σ (t − � − 1) {σ (− j) = σ ( j − 1)}
= ki + r�(vi ) + σ (t − �).

COROLLARY 3.7. The spanner computed by our algorithm is a (k, k − 1)-
spanner for any odd value of k.

PROOF. Let 〈u = v0, v1, . . . vq = v〉 be any path of length q between any two
vertices u, v ∈ V in the graph. If v is t-clustered then it follows from Theorem 3.6
that there is a path of length kq + t from u to ct (v). Together with the path from
ct (v) to v of length at most t , we have a path of length kq + 2t = kq + k − 1 from
u to v in S. If v is t-unclustered then ft (v) = v and rt (v) = 0, implying a path of
length kq from u to v . Hence the spanner S is indeed a (k, k − 1)-spanner for any
odd value of k.

Analysis of the stretch for even value of k. We shall now prove the following
theorem for the case when k is even. Note that k = 2t since k is even.

THEOREM 3.8. Let 〈u = v0, v1, . . . vq = v〉 be a path between any u, v ∈ V
in the given graph, and S be the spanner computed by our algorithm for an even
integer k. Then for each 0 ≤ i ≤ q and integer � ∈ [0, 2t − 1],

δS(v0, f�(vi )) ≤ ki + r�(vi ) + σ (t − �) + � − t − (i + t − �) mod 2.

PROOF. We shall prove the statement of theorem by induction on i ≥ 0.
Base Case. (i = 0). It is easy to observe that δS(v0, f�(v0)) ≤ r�(v0). Moreover,
σ ( j) − j − ( j mod 2) is always nonnegative, and hence the base case is true.
Induction step. Let us suppose that the statement is true for all integers up to i − 1.
We shall prove the validity of the statement for i .

—For � ≥ t: Consider the path from v0 to f�(vi ) formed by concatenating the
two shortest paths: v0 � f�−1(vi−1) and f�−1(vi−1) � f�(vi ) in the spanner.
It follows from the induction hypothesis that the shortest path from from v0 to
f�−1(vi−1) in the spanner is of length k(i − 1) + r�−1(vi−1) + σ (t − �+ 1) + �−
1 − t − (i + t − � − 2) mod 2. Moreover using Lemma 3.5, there is a path in the
spanner from f�−1(vi−1) to f�(vi ) of length at most 2�−1+r�(vi )−r�−1(vi −1).
Hence we can infer that

δS(v0, f�(vi )) ≤ k(i − 1) + r�(vi ) + σ (t − � + 1) + � − 1 − t
− (i + t − �) mod 2 + 2� − 1

≤ ki + r�(vi ) + σ (t − � + 1) − 2(t − � + 1) + �

− t − (i + t − �) mod 2
= ki + r�(vi ) + σ (t − �) + � − t − (i + t − �) mod 2.

—For � < t : There are two cases here.
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Case 1: vi is �-unclustered. In this case, consider the path formed by con-
catenating the shortest paths v0 � f�−1(vi−1) and f�−1(vi−1) � f�(vi ) in the
spanner. Using the induction hypothesis, it follows that there is a path in the
spanner from v0 to f�−1(vi−1) of length at most k(i − 1) + r�−1(vi−1) + σ (t −
� + 1) + � − 1 − t − (i + t − � − 2) mod 2. Moreover, since vi is �-unclustered,
it follows from Lemma 3.3 that the path f�−1(vi−1) � vi is of length at most
2� − 1 + r�(vi ) − r�−1(vi−1). Hence we can infer that

δS(v0, f�(vi )) ≤ k(i − 1) + r�(vi ) + σ (t − � + 1) + � − 1 − t + 2�

− 1 − (i + t − �) mod 2
≤ ki + r�(vi ) + σ (t − � + 1) − 2(t − � + 1) + � − t

− (i + t − �) mod 2
= ki + r�(vi ) + σ (t − �) + � − t − (i + t − �) mod 2.

Case 2: vi is �-clustered. In this case, Lemma 3.4 implies that there is a path
fk−1−�(vi−1) � f�(vi ) in the spanner with length at most 2k − 2�− 1 + r�(vi ) −
rk−1−�(vi−1). Moreover, using the induction hypothesis the shortest path from
v0 to fk−1−�(vi−1) in the spanner is of length at most k(i − 1) + rk−1−�(vi−1) +
σ (t − k + � + 1) + k − � − 1 − t − (i + t + �) mod 2. Hence there is a path from
v0 to f�(vi ) in the spanner passing through fk−1−�(vi−1) with length

δS(v0, f�(vi )) ≤ k(i − 1) + r�(vi ) + σ (t − k + � + 1) + 3k − 3� − 2
− t − (i + t + �) mod 2

= ki + r�(vi ) + σ (−(t − � − 1)) + (4t − 4� − 2) + �

− t − (i + t − �) mod 2
= ki + r�(vi ) + σ (t − � − 2) + (4t − 4� − 2) + � − t

− (i + t − �) mod 2
= ki + r�(vi ) + σ (t − �) + � − t − (i + t − �) mod 2.

COROLLARY 3.9. The spanner computed by our algorithm is a (k, k − 1)-
spanner for any even value of k.

PROOF. Let 〈u = v0, v1, . . . , vq = v〉 be the shortest path between u and v in
the given graph. There are two cases :

—q is odd. Consider the shortest path from u = v0 to v in the spanner passing
through ft (v). Theorem 3.8 implies that there is a path in the spanner S from u
to ft (v) of length at most kq + rt (v) − 1. Thus there is a path in S from u to v
of length kq + 2rt (v) − 1. Since rt (v) ≤ t = k/2, therefore,

δS(u, v) ≤ kq + 2.k/2 − 1 = kq + k − 1.

—q is even. Consider the shortest path from u = v0 to v in the spanner passing
through ft−1(v). Theorem 3.8 implies that there is a path in the spanner S from
u to ft−1(v) of length at most kq + rt−1(v). Hence there is a path in S from u to
v passing through ft−1(v) with length kq + 2rt−1(v) = kq + k − 2. Thus

δS(u, v) ≤ kq + k − 2.

Hence the spanner is indeed a (k, k − 1)-spanner for even k too.
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Theorems 3.6 and 3.8 together imply that S is a (k, k−1)-spanner for any positive
integer k. Thus Theorem 3.2 is completely proved.

3.1. IMPLEMENTATION IN OTHER MODELS OF COMPUTATIONS. Our algorithm
(Figure 9) for (k, k − 1)-spanners can be adapted quite easily to other models of
computation. The complexity of each of these algorithms is close to optimal under
relevant measures.

—In the external memory model [Aggarwal and Vitter 1988] and the cache obliv-
ious model [Frigo et al. 1999], a (k, k − 1)-spanner of O(kn1+1/k) size can be
computed using the same number of I/O operations as that of sorting km items.
Sorting is one of the most primitive tasks in both models and optimal algorithms
are known.

—In the CRCW PRAM model [Karp and Ramachandran 1990], a (k, k−1)-spanner
of expected size O(kn1+1/k) can be computed in O(k log∗ n) time and O(km)
work. The algorithm employs primitive parallel subroutines like computing the
smallest element, semisorting, and multiset hashing.

—In the synchronous distributed model [Peleg 2000], a (k, k − 1)-spanner of
expected O(kn1+1/k) size can be computed in O(k) rounds with total message
volume O(k2m).

In order to convey to the reader the ease with which the algorithm is adapted in
these models, we provide below the execution of the (k, k−1)-spanner construction
in distributed environment. Adaptation of the algorithm in the external-memory
and CRCW PRAM environment as mentioned above is similar to the adaptation of
(2k − 1)-spanner algorithm of Baswana and Sen [2007] in these models.

3.2. DISTRIBUTED ALGORITHM FOR (k, k − 1)-SPANNER. Rules R3 and R4 of
our algorithm (Figure 9) can be executed in O(k) rounds of communication in a
distributed network, and, using the randomized algorithm from Figure 8, Rules
R1 and R2 can also be executed in O(k) rounds. The main result in this section
is Theorem 3.10. Before we prove it, let us elaborate a little on our model of
distributed computation. In a synchronized distributed network, the nodes of the
network solve a problem by exchanging messages in discrete rounds. In each round
one message may be sent across each link in each direction. We are interested in
three measures: the number of rounds, the maximum length of any message sent
(measured in units of O(log n) bits), and the total length of all messages sent.
Clearly any protocol requiring R rounds, maximum message length L , and total
volume V can be converted to one with parameters RL/U , U , and V , for any any
U ≥ 1. That is, Theorem 3.10 can be adapted to any synchronized network with a
fixed maximum message length.

THEOREM 3.10. In a synchronized distributed network G, a (k, k−1)-spanner
of G with expected size O(kn1+1/k) can be constructed in O(k) rounds of commu-
nication. The total message volume is O(k2m) and the maximum message length
is O(n1/2+1/2k).

PROOF. We compute the clusters C0, C1, . . . , Ck = ∅ using the randomized
algorithm from Figure 8. Each vertex is the center of its cluster in C0 = {{v} : v ∈
V (G)}. With probability n−1/k , each center in Ci declares itself to also be a center
in Ci+1. These random choices are made before the first round of communication.
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After Ci is computed, every vertex tells its neighbors whether it is clustered in Ci
and, if it is, the identity of its center in Ci and the highest j ≥ i for which that center
is also a center in C j . For each vertex w that has a neighbor v already clustered in
Ci+1, w declares (w, v) to be a spanner edge (Rule R1) and declares its center in
Ci+1 to be that of v . Every vertex w that did not become clustered in Ci+1 declares
one edge from E(w, C) to be in the spanner (Rule R2), for each C ∈ Ci adjacent to
w . Rules R1 and R2 require k − 1 rounds of communication, plus one more to let
clustered vertices in Ck−1 inform their neighbors of this fact. Each message sent so
far has unit length.

Once C0, . . . , Ck−1 are computed, we implement Rules R3 and R4. Consider
Rule R3, a fixed i ≥ 0, and a fixed cluster C ∈ C(k−1)/2−i .11 Rule R1 has created
a tree T of spanner edges rooted at the center of C . This tree is used to inform
the center of C of all incident clusters in C(k−1)/2+i , and for each such cluster,
one connecting edge. Once the center decides which edges to select for Rule R3
it broadcasts its choices back through T . The number of rounds for Rule R3 is
clearly O(k). The maximum necessary message length (for fixed i) is |C(k−1)/2+i |
since duplicate edges connecting the same clusters can be ignored. With high
probability |C(k−1)/2+i | = O(n1/2+1/2k−i/k). Summing over i ≥ 0, the maximum
message length is bounded by O(n1/2+1/2k). For even k, i is always at least 1/2,
so in this case the maximum message length is O(

√
n). The total message volume

for Rule R3 is O(k2m) since each edge can participate for k/2 values of i and for
each, contribute O(k) units of message volume. The implementation and analysis
of Rule R4 is very similar to R3.

4. Conclusion

The main existential question in the field of spanners is whether, for any given size
bound O(n1+ε), there exist additive β(ε)-spanners. In this article we introduced a
general construction technique that might help to resolve the question of additive
spanners for general graphs.

In Section 3 we addressed the problem of computationally efficient spanner
constructions and gave partial answers to two problems of practical significance:
what is the highest-quality spanner that can be constructed in linear time? and which
spanners can be constructed distributively in O(1) rounds? It seems implausible
that any additive or (1 + ε, β)-spanners admit such efficient constructions.

One promising direction for future research is to develop approximate distance
oracles for unweighted graphs whose distortion improves with distance. The
ultimate goal would be to have oracles with constant additive distortion, though
any improvement over the purely multiplicative distortion of Thorup and Zwick
[2005], Baswana and Sen [2003], Mendel and Naor [2007], Baswana and Kavitha
[2006], and Baswana et al. [2008] would be a start. For example, there is no known
(3 − ε, β)-distance oracle with size O(n3/2) whose query time is reasonably fast.

ACKNOWLEDGMENT. We would like to thank Uri Zwick, Mikkel Thorup, and
Michael Elkin for many helpful comments.

11 If k is odd then i is an integer. For even k, i is a half-integer.
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