
A RANDOMIZED TIME-WORK OPTIMAL PARALLEL
ALGORITHM FOR FINDING A MINIMUM SPANNING FOREST∗

SETH PETTIE† AND VIJAYA RAMACHANDRAN†

SIAM J. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 31, No. 6, pp. 1879–1895

Abstract. We present a randomized algorithm to find a minimum spanning forest (MSF) in an
undirected graph. With high probability, the algorithm runs in logarithmic time and linear work on
an exclusive read exclusive write (EREW) PRAM. This result is optimal w.r.t. both work and parallel
time, and is the first provably optimal parallel algorithm for this problem under both measures. We
also give a simple, general processor allocation scheme for tree-like computations.

Key words. parallel algorithm, minimum spanning tree, optimal algorithm, EREW PRAM

AMS subject classifications. 05C85, 68R10, 68Q85

PII. S0097539700371065

1. Introduction. We present a randomized parallel algorithm to find a mini-
mum spanning forest (MSF) in an edge-weighted, undirected graph. On an exclusive
read exclusive write (EREW) PRAM [KR90] our algorithm runs in expected logarith-
mic time and linear work in the size of the input; these bounds also hold with high
probability in the size of the input. This result is optimal w.r.t. both work and parallel
time and is the first provably optimal parallel algorithm for this problem under both
measures.

Here is a brief summary of related results. Following the linear-time sequential
MSF algorithm of Karger, Klein, and Tarjan [KKT95] (and building on it) came
linear-work parallel MSF algorithms for the concurrent read concurrent write (CRCW)
PRAM [CKT94, CKT96] and the EREW PRAM [PR97]. The best CRCW PRAM
algorithm known to date [CKT96] runs in logarithmic time and linear work, but
the time bound is not known to be optimal. The best EREW PRAM algorithm
known prior to our work is the result of Poon and Ramachandran which runs in
O(log n log log n2log∗ n) time and linear work. All of these algorithms are randomized.
Recently Chong, Han, and Lam [CHL01] presented a deterministic EREW PRAM
algorithm for MSF, which runs in logarithmic time with a linear number of processors,
and hence with work O((m+n) log n), where n and m are the number of vertices and
edges in the input graph. It was observed by Poon and Ramachandran [PR98] that the
algorithm in [PR97] could be sped up to run in O(log n · 2log∗ n) time and linear work
by using the algorithm in [CHL01] as a subroutine (and by modifying the “contract”
subroutine in [PR97]).

In this paper we improve on the running time of the algorithm in [PR97, PR98]
to O(log n), which is the best possible, and we improve on the algorithm in [CKT96]
by achieving the logarithmic time bound on the less powerful EREW PRAM.

∗Received by the editors April 19, 2000; accepted for publication (in revised form) March 20, 2002;
published electronically October 18, 2002. This work was supported by Texas Advanced Research
Program grant 003658-0029-1999. A preliminary version of this paper appeared in Randomization,
Approximation, and Combinatorial Optimization (Berkeley, CA, 1999), Lecture Notes in Comput.
Sci. 1671, Springer-Verlag, Berlin, 1999, pp. 233–244.

http://www.siam.org/journals/sicomp/31-6/37106.html
†Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712 (seth@

cs.utexas.edu, vlr@cs.utexas.edu). The research of the first author was supported by an MCD grad-
uate fellowship. The research of the second author was supported by NSF grant CCR-9988160.

1879

1880 SETH PETTIE AND VIJAYA RAMACHANDRAN

Our algorithm has a simple 2-phase structure. It makes subroutine calls to the
Chong–Han–Lam (CHL) algorithm [CHL01], which is fairly complex. But outside of
these subroutine calls (which are made to the simplest version of the algorithm in
[CHL01]), the steps in our algorithm are quite straightforward.

In addition to being the first time-work optimal parallel algorithm for MSF, our
algorithm can be used as a simpler alternative to several other parallel algorithms:

1. For the CRCW PRAM we can replace the calls to the CHL algorithm by the
(work inefficient) scheme used in [CKT96]. The resulting algorithm runs in
logarithmic time and linear work but is considerably simpler than the MSF
algorithm in [CKT96] and also is about twice as fast.

2. As modified for the CRCW PRAM, our algorithm is simpler than the linear-
work logarithmic-time CRCW algorithm for connected components given in
[Gaz91].

3. Our algorithm improves on the EREW connectivity and spanning tree algo-
rithms in [HZ96, HZ01] since we compute a minimum spanning tree within
the same time and work bounds. Our algorithm also is simpler than the
algorithms in [HZ96, HZ01].

In the following we use the notation S + T to denote the union of sets S and T ,
and we use S + e to denote the set formed by adding the element e to the set S. We
say that a result holds with high probability (or w.h.p.) in n if the probability that it
fails to hold is less than 1/nc for any constant c > 0.

The rest of this paper is organized as follows. In section 2 we give a high-level
description of our algorithm, which works in two phases. In section 3 we provide the
details of phase 1, whose main purpose is to reduce the number of vertices in the
graph by at least a (log logn)2 factor. Phase 2, given in section 4, finds the MSF
of the reduced-vertex graph using a recursion-free version of the [PR97] algorithm.
In sections 5 and 6 we prove the algorithm runs in logarithmic time and linear work
with high probability. Section 7 gives a simple processor allocation scheme for “tree-
structured” computations (a class containing our MSF algorithm) which is space-
optimal. In section 8 we discuss the adaptability of our algorithm to realistic parallel
models like the bulk-synchronous parallel (BSP) [Val90] and queuing shared memory
models (QSM) [GMR99]. Our conclusions are given in section 9.

2. The high-level algorithm. Our algorithm is divided into two phases along
the lines of the CRCW PRAM algorithm of [CKT96]. In phase 1, the algorithm
reduces the number of vertices in the graph from n to n/k0 vertices, where n is the

number of vertices in the input graph, and1 k0 = (log(2) n)2. To perform this reduction
the algorithm uses the familiar recursion tree of depth log∗ n [CKT94, CKT96, PR97],
which gives rise to O(2log∗ n) recursive calls; however, the time needed per invocation
in our algorithm is well below O(log n/2log∗ n). Thus the total time for phase 1 is
O(log n). We accomplish this by requiring phase 1 to find only a subset of the MSF.
By contracting this subset of the MSF we obtain a graph with O(n/k0) vertices. Phase
2 then uses an algorithm similar to the one in [PR97], but needs no recursion due to
the reduced number of vertices in the graph. Thus phase 2 is able to find the MSF of
the contracted graph in O(log n) time and linear work.

We assume that edge weights are distinct. As always, distinctness can be forced
by ordering the vertices, then ordering identically weighted edges by their end points.

1We use log(r) n to denote the log function iterated r times and log∗ n to denote the minimum
r s.t. log(r) n ≤ 1.

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1881

The high-level algorithm is given in Figure 2.1.

High-Level(G)
(Phase 1) Gt := For all v ∈ G, retain the lightest k0 edges in edge-list(v)

M := Find-k-Min(Gt, log
∗ n)

G′:= Contract all edges in G appearing in M

(Phase 2) Gs:= Sample edges of G′ with prob. 1/
√
k0 = 1/ log(2) n

Fs := Find-MSF(Gs)
Gf := Filter(G′, Fs)
F := Find-MSF(Gf)
Return(M + F)

Fig. 2.1. The high-level algorithm.

Theorem 2.1. With high probability, High-Level(G) returns the MSF of G in
O(log n) time using (m+ n)/ log n processors.

In the following sections we describe and analyze the algorithms for phase 1 and
phase 2 and then present the proof of the main theorem for the expected running
time. We then obtain a high probability bound for the running time and work. When
analyzing the performance of the algorithms in phase 1 and phase 2, we use a time-
work framework, assuming perfect processor allocation. This can be achieved with
high probability (to within a constant factor), using the load balancing scheme in
[HZ96], which requires superlinear space. A linear-space load balancing scheme is
claimed in [HZ01], though it is difficult to extricate the load balancing computation
from the connectivity computation from [HZ01]. In section 7 we give a simple load
balancing scheme based on [HZ96], which uses linear space. Its description is abstract
and fully self-contained.

3. Phase 1. In phase 1, our goal is to contract the input graph G into a graph
with O(n/k0) vertices. We do this by identifying certain edges in the MSF of G and
contracting the connected components formed by these edges. The challenge here is
to identify these edges in logarithmic time and linear work.

Phase 1 achieves the desired reduction in the number of vertices by constructing a
k-Min forest (for k = k0), defined below. This is similar to the algorithm in [CKT96].
However, our algorithm is considerably simpler. We show that a k-Min forest satisfies
certain properties, and we exploit these properties to design a procedure Bor̊uvka-A,
which keeps the sizes of the trees contracted in the various stages of phase 1 very small
so that the total time needed for contracting and processing edges in these trees is
o(log n/2log∗ n). Phase 1 also needs a Filter subroutine, which removes “k-Min heavy”
edges. For this, we show that we can use an MSF verification algorithm on the small
trees we construct to perform this step. The overall algorithm for phase 1, called
Find-k-Min, uses these two subroutines to achieve the stated reduction in the number
of vertices within the desired time and work bounds.

3.1. The k-Min forest. Phase 1 uses the familiar “sample, contract, and
discard edges” framework of earlier randomized algorithms for the MSF problem
[KKT95, CKT94, CKT96, PR97]. However, instead of computing an MSF, we will

construct the k0-Min tree [CKT96] of each vertex (recall that k0 = (log(2) n)2). Con-
tracting the edges in these k0-Min trees will produce a graph with O(n/k0) vertices.

To understand what a k-Min tree is, consider the Dijkstra–Jarnik–Prim minimum
spanning tree algorithm, given in Figure 3.1. This simple algorithm was discovered

1882 SETH PETTIE AND VIJAYA RAMACHANDRAN

independently by Dijkstra [Dij59], Jarnik [Jar30], and Prim [Prim57], though it is
commonly known as Prim’s algorithm. The edge set k-Min(v) consists of the first k
edges chosen by this algorithm, when started at vertex v. A forest F is a k-Min forest
of G if F ⊆ MSF(G) and for all v ∈ G, k-Min(v) ⊆ F .

Dijkstra–Jarnik–Prim(G)
S := {v} (choose an arbitrary starting vertex v)
T := ∅
Repeat until T contains the MSF of G

Choose minimum weight edge (a, b) s.t. a ∈ S, b �∈ S
T := T + (a, b)
S := S + b

Fig. 3.1. The Dijkstra–Jarnik–Prim algorithm.

We define PT (x, y) to be the set of edges on the path from x to y in tree T , and
maxweight{A} be the maximum weight in a set of edges A.

For any forest F in G, define an edge (a, b) in G to be F -heavy if weight(a, b) >
maxweight{PF (a, b)}, and to be F -light otherwise. If a and b are not in the same
tree in F , then (a, b) is F-light.

This notion of being F -heavy or F -light can be generalized as follows. Suppose
F is a k-Min forest for some graph. We will say an edge (a, b) (not necessarily in the
graph) is k-Min-light if F is not a k-Min forest for the graph F+(a, b), and k-Min-heavy
otherwise. An equivalent definition for k-Min-lightness and heaviness (which is more
suited to proofs) is this: Let M be the k-Min tree of v. We define weightkv(w) to be
maxweight{PM (v, w)} if w appears in M , otherwise weightkv(w) = maxweight{M}.
An edge (a, b) is then k-Min-light iff weight(a, b) ≤ max{weightka(b), weightkb (a)}.
Notice that weightkv(w) implicitly depends on the underlying graph, which if not
clear from the context will be stated explicitly.

Fact 3.1. The two definitions given for “k-Min-light” (and “k-Min-heavy”) are
equivalent.

We claimed earlier that k-Min-lightness is a generalization of F -lightness. To see
this, set k = n− 1 and observe that an edge is k-Min-light iff it is F -light.

Claim 3.1. If an edge (u, v) is k1-Min-heavy w.r.t. G1, it also is k2-Min-heavy
w.r.t. G2, where k2 ≤ k1, V (G1) = V (G2), and E(G1) ⊆ E(G2).

Proof. This follows from two observations: weightkv(w) is nondecreasing in k, and
weightkv(w) is nonincreasing as new edges are added to the underlyinggraph.

In other words, whenever an edge is found to be k-Min-heavy for k ≥ k0 and w.r.t.
some subset of the original graph, this is a certificate that the edge is k0-Min-heavy
in the original graph.

Claim 3.2. For any k, weightkv(w) ≤ maxweight{PMSF (v, w)}.
Proof. There are two cases: when w falls inside the k-Min tree of v and when

it falls outside. If w lies inside k-Min(v), then weightkv(w) must be the same as
maxweight{PMSF (v, w)} since k-Min(v) ⊆ MSF . Now suppose that w falls outside
k-Min(v) and weightkv(w) > maxweight{PMSF (v, w)}. There must be a path from
v to w in the MSF consisting of edges lighter than maxweight{k-Min(v)}. However,
at each step in the Dijkstra–Jarnik–Prim algorithm, at least one edge in PMSF (v, w)
is eligible to be chosen in that step. Since w �∈ k-Min(v), the edge with weight
maxweight{k-Min(v)} is never chosen, a contradiction.

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1883

Lemma 3.1. Let H be a graph formed by sampling each edge in graph G with
probability p. The expected number of edges in G that are k-Min-light w.r.t. H for
any k is less than n/p.

Proof. We show that any edge that is k-Min-light in G also is F -light where F is
the MSF of H. The lemma then follows from the sampling lemma of [KKT95] which
states that the expected number of F -light edges in G is less than n/p. Let us look at
any k-Min-light edge (v, w). By Claim 3.2, weightkv(w) ≤ maxweight{PMSF (v, w)},
the measure used to determine F -lightness. Thus the criterion for k-Min-lightness,
max{weightkv(w), weightkw(v)}, must also be no more than maxweight{PMSF (v, w)}.
Restating this, if (v, w) is k-Min-light, it must be F -light as well.

We will use the above property of a k-Min forest to develop a procedure Find-k-
Min(G, l). It takes as input the graph G and a suitable positive integer l, and returns
a k0-Min forest of G. For l = log∗ n, it runs in logarithmic time and linear work. In
the next few sections we describe some basic steps and procedures used in Find-k-Min,
and then present and analyze this main procedure of phase 1.

Since phase 1 is concerned only with the k0-Min tree of each vertex, it suffices
to retain only the lightest k0 edges incident on each vertex. Hence, as stated in
the first step of phase 1 in algorithm High-Level from section 2, we will discard all
but the lightest k0 edges incident on each vertex since we will not need them until
phase 2. This step can be performed in logarithmic time and linear work by a simple
randomized algorithm that selects a sample of size

√|L| from each adjacency list L,
sorts this sample, and then uses this sorted list to narrow the search for the k0th
smallest element to a list of size O(|L|3/4).

3.2. Bor̊uvka-A steps. In a basic Bor̊uvka step [Bor26], each vertex chooses
its minimum weight incident edge, inducing a number of disjoint trees. All such trees
are then contracted into single vertices, and the useless edges are discarded. We will
call edges connecting two vertices in the same tree internal and all others external.
All internal edges are useless, and if multiple external edges join the same two trees,
all but the lightest are useless.

Our algorithm for phase 1 uses a modified Bor̊uvka step in order to reduce the
time bound to o(log n) per step. All vertices are classified as being either live or dead;
only live vertices participate in modified Bor̊uvka steps. After such a step, vertex
v’s parent pointer is p(v) = w, where (v, w) is the edge of minimum weight incident
on v. In addition, each vertex has a threshold which keeps the weight of the lightest
discarded edge adjacent to v. The algorithm discards edges known not to be in the k0-
Min tree of any vertex. The threshold variable guards against vertices choosing edges
which may not be in the MSF. A dead vertex v has the useful property (shown below)
that for any edge e in k0-Min(v), weight(e) ≤ weight(v, p(v)), thus dead vertices need
not participate in any more Bor̊uvka steps.

It is well known that a Bor̊uvka step generates a forest of pseudo-trees, where
each pseudo-tree is a tree together with one extra edge that forms a cycle of length 2.
In our algorithm we will assume that a Bor̊uvka step also removes one of the edges in
the cycle so that it generates a collection of rooted trees.

The following three claims refer to any tree resulting from a (modified) Bor̊uvka
step. Their proofs are straightforward and are omitted.

Claim 3.3. The sequence of edge weights encountered on a path from v to root(v)
is monotonically decreasing.

Claim 3.4. If depth(v) = d, then d-Min(v) consists of the edges in the path from
v to root(v). Furthermore, the weight of (v, p(v)) is greater than any other edge in

1884 SETH PETTIE AND VIJAYA RAMACHANDRAN

d-Min(v).

Claim 3.5. If the minimum-weight incident edge of u is (u, v), k-Min(u) ⊆
(k-Min(v) + (u, v)).

Claim 3.6 may not be as obvious. A similar claim was proved in [CHL01].

Claim 3.6. Let T be a tree induced by a Bor̊uvka step, and let T ′ be a subtree of
T . If e is the minimum weight incident edge on T , then the minimum weight incident
edge on T ′ is either e or an edge of T .

Proof. Suppose, on the contrary, that the minimum weight incident edge on T ′ is
e′ �∈ T , and let v and v′ be the end points of e and e′, which are inside T . Consider the
paths P (P ′) from v (v′) to the root of T . By Claim 3.3, the edge weights encountered
on P and P ′ are monotonically decreasing. There are two cases. If T ′ contains some,
but not all of P ′, then e′ must lie along P ′, a contradiction. If T ′ contains all of P ′, but
only some of P , then some edge e′′ ∈ P is adjacent to T ′. Then w(e′) < w(e′′) < w(e),
also a contradiction.

The procedure Bor̊uvka-A(H, l, F), given in Figure 3.2, returns a contracted ver-
sion of H with the number of live vertices reduced by a factor of l. Edges designated
as parent pointers, which are guaranteed to be in the MSF of H, are returned in F .
Initially F = ∅.

Bor̊uvka-A(H, l, F)
Repeat log l times: (log l modified Bor̊uvka steps)

F ′ := ∅
For each live vertex v

Choose min. weight edge (v, w)
(1) If weight(v, w) > threshold(v), v becomes dead, stop else

p(v) := w
F ′ := F ′ + (v,p(v))

Each tree T induced by edges of F ′ is one of two types:
If root of T is dead, then

(2) Every vertex in T becomes dead (Claim 3.5)
If T contains only live vertices,

(3) If depth(v) ≥ k0, v becomes dead (Claim 3.4)
Contract the subtree of T made up of live vertices.
The resulting vertex is live, has no parent pointer, and
keeps the smallest threshold of its constituent vertices.

F := F + F ′

Fig. 3.2. The Bor̊uvka-A procedure.

Lemma 3.2. If Bor̊uvka-A designates a vertex as dead, its k0-Min tree has already
been found.

Proof. Vertices make the transition from live to dead only at the lines indicated
by a number. By our assumption that we discard only edges that cannot be in the k0-
Min tree of any vertex, if the lightest edge adjacent to any vertex has been discarded,
we know its k0-Min tree has already been found. This covers line (1). The correctness
of line (2) follows from Claim 3.5. Since (v, p(v)) is the lightest incident edge on v,
k0-Min(v) ⊆ k0-Min(p(v)) + (v, p(v)). If p(v) is dead, then v can also be called dead.
Since the root of a tree is dead, vertices at depth one are dead, implying vertices at
depth two are dead, and so on. The validity of line (3) follows directly from Claim

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1885

3.4. If a vertex finds itself at depth ≥ k0, its k0-Min tree lies along the path from the
vertex to its root.

Lemma 3.3. After a call to Bor̊uvka-A(H, k0 + 1, F), the k0-Min tree of each
vertex is a subset of F .

Proof. By Lemma 3.2, dead vertices already satisfy the lemma. After a single
modified Bor̊uvka step, the set of parent pointers associated with live vertices induce
a number of trees. Let T (v) be the tree containing v. We assume inductively that
after log i� modified Bor̊uvka steps, the (i−1)-Min tree of each vertex in the original
graph has been found (this is clearly true for i = 1). For any live vertex v let (x, y) be
the minimum weight edge s.t. x ∈ T (v), y �∈ T (v). By the inductive hypothesis, the
(i− 1)-Min trees of v and y are subsets of T (v) and T (y), respectively. By Claim 3.6,
(x, y) is the first external edge of T (v) chosen by the Dijkstra–Jarnik–Prim algorithm,
starting at v. As every edge in (i−1)-Min(y) is lighter than (x, y), (2(i−1)+1)-Min(v)
is a subset of T (v) ∪ {(x, y)} ∪ T (y). Since edge (x, y) is chosen in the (log i�+ 1)st
modified Bor̊uvka step, (2i− 1)-Min(v) is a subset of T (v) after log i�+ 1 = log 2i�
modified Bor̊uvka steps. Thus after log(k0 + 1) steps, the k0-Min tree of each vertex
has been found.

Lemma 3.4. After b modified Bor̊uvka steps, the length of any edge list is bounded

by k0
k0

b

.

Proof. This is true for b = 0. Assuming the lemma holds for b − 1 modified

Bor̊uvka steps, the length of any edge list after that many steps is ≤ k0
k0

b−1

. Since
we contract only trees of height < k0, the length of any edge list after b steps is

< (k0
k0

b−1

)k0 = k0
k0

b

.

It is shown in the next section that our algorithm deals only with graphs that are
the result of O(log k0) modified Bor̊uvka steps. Hence the maximum length edge list

is k0
k0

O(log k0)

.

The costliest step in Bor̊uvka-A is calculating the depth of each vertex. After the
minimum weight edge selection process, the root of each induced tree will broadcast
its depth to all depth 1 vertices, which in turn broadcast to depth 2 vertices, etc.
Once a vertex knows it is at depth k0 − 1, it may stop, letting all its descendents
infer that they are at depth ≥ k0. Interleaved with each round of broadcasting is a
processor allocation step. We account for this cost separately in section 7.

Lemma 3.5. Let G1 have m1 edges. Then a call to Bor̊uvka-A(G1, l, F) can be

executed in time O(k0
O(log k0) + log l · log n · (m1/m)) with (m+n)/ log n processors.

Proof. Let G1 be the result of b modified Bor̊uvka steps. By Lemma 3.4, the
maximum degree of any vertex after the ith modified Bor̊uvka step in the current call

to Bor̊uvka-A is k0
k0

b+i

. Let us now look at the required time of the ith modified

Bor̊uvka step. Selecting the minimum cost incident edge takes time O(log k0
k0

b+i

),

while the time to determine the depth of each vertex is O(k0 · log k0
k0

b+i

). Summing

over the log l modified Bor̊uvka steps, the total time is bounded by
∑log l

i k0
O(b+i) =

k0
O(b+log l). As noted above, the algorithm performs O(log k0) modified Bor̊uvka steps

on any graph, hence the time is k0
O(log k0).

The work performed in each modified Bor̊uvka step is linear in the number of
edges. Summing over log l such steps and dividing by the number of processors, we
arrive at the second term in the stated running time.

3.3. Filtering edges via the Filter forest. We will maintain, concurrent
with the operation of Bor̊uvka-A, a structure called the Filter forest. This collec-

1886 SETH PETTIE AND VIJAYA RAMACHANDRAN

tion of rooted trees records which vertices merged together and the edge weights
involved. (This structure appeared first in [K97].) If v is a vertex of the original
graph or a new vertex resulting from contracting a set of edges, there is a corre-
sponding vertex φ(v) in the Filter forest. During a Bor̊uvka step, if a vertex v
becomes dead, a new vertex x is added to the Filter forest, as well as a directed
edge (φ(v), x) having the same weight as (v, p(v)). If live vertices v1, v2, . . . , vj are
contracted into a live vertex v, a vertex φ(v) is added to the Filter forest in addi-
tion to edges (φ(v1), φ(v)), (φ(v2), φ(v)), . . . , (φ(vj), φ(v)), having the weights of edges
(v1,p(v1)), (v2,p(v2)), . . . , (vj ,p(vj)), respectively. We make the simple observation
that the edge weights on the path from φ(u) to root(φ(u)) are exactly the edge weights
of the edges chosen by u (or its representative) in previous Bor̊uvka steps.

It is shown in [K97] that the heaviest weight in the path from u to v in the MSF
is the same as the heaviest weight in the path from φ(u) to φ(v) in the Filter forest
(if there is such a path). We extend this scheme to handle k-Min-lightness.

Let Pf (y, z) be the path from y to z in the Filter forest. If φ(u) and φ(v) are in
the same Filter tree, then let

wu(v) = wv(u) = maxweight{Pf (φ(u), φ(v))}.
If φ(u) and φ(v) are not in the same Filter tree, then let

wu(v) = maxweight{Pf (φ(u), root(φ(u)))},
wv(u) = maxweight{Pf (φ(v), root(φ(v)))}.

In a call to Filter(H,F) (from the procedure Find-k-Min, section 3.4), we ex-
amine each edge e = (u, v) in H − F and remove or filter e from H if weight(e) >

max{wu(v), wv(u)}. Notice that if wu(v) = weight
k0
u (v) for all v, then we will filter

out edges precisely when they are k0-Min-heavy. We show below that using wu(v)

in lieu of weight
k0
u (v) causes no problems: we retain all k0-Min-light edges without

retaining too many edges in total.
To implement the Filter procedure we use a slight modification to the O(log n)-

time, O(m)-work MSF verification algorithm of [KPRS97]. If e = (u, v) is the
edge being tested and φ(u), φ(v) are not in the same Filter tree, we test the pairs
(φ(u), root(φ(u)) and (φ(v), root(φ(v)) instead and delete e if both of these pairs are
identified to be deleted. This computation actually takes time O(log r) where r is the
size of the largest tree formed.

Lemmas 3.6 and 3.7, proved below, establish the correctness of the filtering pro-
cedure.

Lemma 3.6. Suppose b modified Bor̊uvka steps were applied to a graph; then for
any vertex u and some k ≥ min{k0, 2

b − 1},
maxweight{Pf (φ(u), root(φ(u)))} = maxweight{k-Min(v)}.

Before proving this we first prove a necessary technical lemma.
Lemma 3.7. Let T be a tree of MSF edges after an arbitrary number of Bor̊uvka

steps and let T ′ = T ∪ {(v, w)}, where (v, w), v ∈ T , w �∈ T is the edge chosen by T
in the next Bor̊uvka step. For any u ∈ T , the maximum weight edge in PT ′(u,w) was
chosen by the tree containing u in some Bor̊uvka step.

Proof. Let T be formed after b Bor̊uvka steps. Suppose, without loss of generality,
that the lemma is falsified for the first time after the bth Bor̊uvka step. That is, the

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1887

heaviest edge in PT ′(u,w), say f , was chosen in the bth step. Let g �= f be the edge
chosen by u or u’s representative tree in this step. If f lies between g and the root of
T , then by Claim 3.3 it is lighter than g, and similarly, if it lies between vertex v and
the root of T , then it is lighter than (v, w). Both cases are contradictions.

We are now ready to prove Lemma 3.6.
Proof. Let e(u, b) be the maximum weight edge chosen by u’s tree in the first b

Bor̊uvka steps. Assume inductively that weight(e(u, b − 1)) = maxweight{k(u, b −
1)-Min(u)}, where k(u, b − 1) ≥ 2b−1 − 1 if u is live, k(u, ·) ≥ k0 if u is dead,
and k(u, b − 1)-Min(u) is contained in a tree of MSF edges after b − 1 Bor̊uvka
steps. If u is dead, it already satisfies the inductive claim for b Bor̊uvka steps,
so assume u is alive. Let (z1, z2) be the edge chosen by the tree containing u in
the bth Bor̊uvka step and let P be the MSF path connecting k(u, b − 1)-Min(u)
to z1—see Figure 3.3 for a schematic diagram. We have that weight(z1, z2) >
weight(e(z2, b − 1)), because (z1, z2) was not already chosen by z2 in the first b − 1
steps, and maxweight{e(u, b − 1) + P + (z1, z2)} = weight(e(u, b)). This is true be-
cause weight(e(u, b)) = maxweight{e(u, b−1), (z1, z2)} > maxweight{P}, where the
equality is by definition and the inequality is by Lemma 3.7. Let D be the subgraph

D = k(u, b− 1)-Min(u) + P + (z1, z2) + k(z2, b− 1)-Min(z2)

and k(u, b) be the smallest number such that k(u, b)-Min(u) ⊇ D. It follows that
e(u, b) is the heaviest edge in k(u, b)-Min(u) because when the Dijkstra–Jarnik–Prim
algorithm is started from u, until all edges from D are chosen, there is some eligible
edge from D weighing no more than the edge e(u, b).

P

u z z1 2

k(u,b−1)−Min(u) k(z , b−1)−Min(z)22

Fig. 3.3. The larger ovals represent the trees of MSF edges after b−1 Bor̊uvka steps containing
u and z2, respectively. The smaller ovals are the k(u, b−1)-Min(u) tree and the k(z2, b−1)-Min(z2)
tree.

If u and z2 remain live, then k(u, b) ≥ 2 · (2b−1 − 1) + 1 ≥ 2b − 1. On the other
hand, if u becomes dead after the bth Bor̊uvka step, then (z1, z2) is the heaviest edge
at the end of a chain C of length at least k0 and k(u, b) ≥ 2b−1 − 1 + |C| ≥ k0. In
either case our inductive claim is proved for b Bor̊uvka steps.

Lemma 3.8. Suppose the Filter procedure is called only on graphs after performing
at least log(k0 + 1) Bor̊uvka steps. Then no k0-Min-light edges are filtered, and all
unfiltered edges are k-Min-light for some k ≥ k0.

Proof. Consider an edge (u, v) examined by the Filter procedure. Note that if
φ(u) is in the same Filter tree as φ(v), by King’s observation [K97], wu(v) = wv(u) =
maxweight{PMSF (u, v)}. If weight(u, v) is greater than wu(v), then by Claim 3.1
(u, v) is k0-Min-heavy and may be safely filtered. On the other hand, if weight(u, v)

1888 SETH PETTIE AND VIJAYA RAMACHANDRAN

is less than wu(v), then (u, v) is k-Min-light for k = n. We therefore focus on the case
when φ(u) and φ(v) are in different Filter trees.

By Lemma 3.6, for some k1, k2 we have that wu(v) = maxweight{k1-Min(u)} and
wv(u) = maxweight{k2-Min(v)}. Since maxweight{k-Min(u)} is a nondecreasing
function of k, if (u, v) is not filtered out, then by Claim 3.1 it must be k3-Min-light
where k3 = max{k1, k2}. On the other hand, if (u, v) is filtered out, then it must be
k4-Min-heavy where k4 = min{k1, k2}. Because the Filter procedure is applied only
after performing at least log(k0 + 1) Bor̊uvka steps, by Lemma 3.6 k3, k4 ≥ k0.

Remark. Filter is responsible for updating the threshold variables—see section 3.2.
When an edge (u, v) is discarded, threshold(u) is updated to reflect the weight of the
lightest discarded edge incident to u; threshold(v) is updated similarly.

3.4. Finding a k-Min forest. We are now ready to present the main procedure
of phase 1, Find-k-Min, which is given in Figure 3.4. (Recall that the initial call,
given in section 2, is Find-k-Min(Gt, log

∗ n), where Gt is the graph obtained from G
by removing all but the k0 lightest edges on each adjacency list.)

Find-k-Min(H, i)

Hc := Bor̊uvka-A(H, (log(i−1) n)4, F)
if i = 3, return(F)

Hs := sample edges of Hc with prob. 1/(log(i−1) n)2

Fs := Find-k-Min(Hs, i− 1)
Hf := Filter(Hc, Fs)
F ′ := Find-k-Min(Hf , i− 1)
Return(F + F ′)

Fig. 3.4. The Find-k-Min procedure.

H is a graph with some vertices possibly marked as dead; i is a parameter that
indicates the level of recursion (which determines the number of Bor̊uvka steps to be
performed and the sampling probability). Lemmas 3.9 and 3.10 establish the correct-
ness of this procedure. The performance of Find-k-Min is analyzed in section 3.5.

Lemma 3.9. Let H ′ be a graph formed by sampling each edge in H with probability
p, and let F be a k0-Min forest of H ′ (derived by at least log(k0 + 1) Bor̊uvka steps).
The call to Filter(H,F) returns a graph containing a k0-Min forest of H, whose
expected number of edges is no more than n/p.

Proof. By Claim 3.1, any edge in the k0-Min forest of H is k0-Min-light w.r.t.
H ′. By Lemma 3.8, no edges k0-Min-light w.r.t. H ′ are filtered; this establishes the
first part of the lemma. By the second part of Lemma 3.8, all edges not filtered are
k-Min-light w.r.t. H ′ for some k. According to Lemma 3.1, the number of edges in
H that are k-Min-light w.r.t. H ′ for any k is no more than n/p. This establishes the
rest of the lemma.

Lemma 3.10. The call Find-k-Min(Gt, log
∗ n) returns a set of edges that includes

the k0-Min tree of each vertex in Gt.

Proof. The proof is by induction on i. For i = 3 (the base case) Find-k-Min(H, 3)
returns F , which by Lemma 3.3 contains the k0-Min tree of each vertex. Now assume
inductively that Find-k-Min(H, i − 1) returns the k0-Min tree of H. Consider the
call Find-k-Min(H, i). By the induction assumption the call to Find-k-Min(Hs, i− 1)
returns the k0-Min tree of each vertex in Hs. By Lemma 3.9, the call to Filter(Hc, Fs)
returns in Hf a set of edges that contains the k0-Min trees of all vertices in Hc.

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1889

Finally, by the inductive assumption, the set of edges returned by the call to Find-
k-Min(Hf , i − 1) contains the k0-Min trees of all vertices in Hf . Since F ′ contains
the (log(i−1) n)-Min tree of each vertex in H, and Find-k-Min(H, i) returns F + F ′,
it returns the edges in the k0-Min tree of each vertex in H.

3.5. Performance of find-k-Min. In this section we bound the time and work
required by the Find-k-Min procedure.

Claim 3.7. The following invariants are maintained at each call to Find-k-Min.
The number of live vertices in H ≤ n/(log(i) n)4, and the expected number of edges

in H ≤ m/(log(i) n)2, where m and n are the number of edges and vertices in the
original graph.

Proof. These hold for the initial call, when i = log∗ n. By Lemma 3.3, the
contracted graph Hc has ≤ n/(log(i−1) n)4 live vertices. Since Hs is derived by sam-

pling edges with probability 1/(log(i−1) n)2, the expected number of edges in Hs is

≤ m/(log(i−1) n)2, maintaining the invariants for the first recursive call.

By Lemma 3.1, the expected number of edges in Hf ≤ n(log(i−1) n)2

(log(i−1) n)4
= n

(log(i−1) n)2
.

Since Hf has the same number of vertices as Hc, both invariants are maintained for
the second recursive call.

Lemma 3.11. Find-k-Min(Gt, log
∗ n) runs in expected O(log n) time and O(m)

work.

Proof. Since recursive calls to Find-k-Min proceed in a sequential fashion, the
total running time is the sum of the local computation performed in each invocation.
Aside from randomly sampling the graph, the local computation consists of calls to
Filter and Bor̊uvka-A.

In a given invocation of Find-k-Min, the number of Bor̊uvka steps performed on
graph H is the sum of all Bor̊uvka steps performed in all ancestral invocations of

Find-k-Min, i.e.,
∑log∗ n

i=3 O(log(i) n), which is O(log(3) n). From our bound on the
maximum length of edge lists (Lemma 3.4), we can infer that the size of any tree

in the Filter forest is k0
k0

O(log(3) n)

, thus the time needed for each modified Bor̊uvka

step and each Filter step is k0
O(log(3) n). Summing over all such steps, the total time

required is o(log n).

The work required by the Filter procedure and each Bor̊uvka step is linear in the
number of edges. By Claim 3.7, the expected number of edges in an invocation at
level i is O(m/(log(i) n)2). Since there are O(log(i) n) Bor̊uvka steps performed in this

invocation, the work required is O(m/ log(i) n). There are 2log∗ n−i invocations with

depth parameter i; therefore the total work is given by
∑log∗ n

i=3 2log∗ n−iO(m/ log(i) n),
which is O(m).

4. Phase 2. Recall the phase 2 portion of our overall algorithm High-Level:

(the number of vertices in Gs is ≤ n/k0)

Gs := Sample edges of G′ with prob. 1/
√
k0 = 1/ log(2) n

Fs := Find-MSF(Gs)
Gf := Filter(G′, Fs)
F := Find-MSF(Gf)

The procedure Filter(G,F) [KPRS97] returns the F -light edges of G. The pro-

cedure Find-MSF(G1), described below, finds the MSF of G1 in O(m1

m log n log(2) n)
time, where m1 is the number of edges in G1.

1890 SETH PETTIE AND VIJAYA RAMACHANDRAN

The graphs Gs and Gf each have expected m/
√
k0 = m/ log(2) n edges since

Gs is derived by sampling each edge with probability 1/
√
k0, and, by the sampling

lemma of [KKT95], the expected number of edges in Gf is (m/k0)/(1/
√
k0) = m/

√
k0.

Because we call Find-MSF on graphs having expected size O(m/ log(2) n), each call
takes O(log n) time.

4.1. The Find-MSF procedure. The procedure Find-MSF(H), given in Fig-
ure 4.1, is similar to previous randomized parallel algorithms except it uses no recur-
sion. Instead, a separate BaseCase algorithm is used in place of recursive calls. We
also use slightly different Bor̊uvka steps in order to reduce the work. These modifica-
tions are inspired by [PR97] and [PR98].

As its BaseCase, we use the simplest version of the algorithm of Chong, Han,
and Lam [CHL01], which takes time O(log n) using (m + n) log n processors. By
guaranteeing that it is called only on graphs of expected size O(m/ log2 n), the running
time remains O(log n) with (m+n)/ log n processors. An adaptation of our algorithm
to the CRCW PRAM leads to one roughly twice as fast as [CKT96]. Because of a
more efficient phase 1 we can afford to make only four BaseCase calls in phase 2,
rather than eight calls as in [CKT96].

Find-MSF(H)
Hc := Bor̊uvka-B(H, log4 n, F)
Hs := Sample edges of Hc with prob. p = 1/ log2 n
Fs := BaseCase(Hs)
Hf := Filter(Hc, Fs)
F ′ := BaseCase(Hf)
Return(F + F ′)

Fig. 4.1. The Find-MSF procedure.

After the call to Bor̊uvka-B, the graph Hc has < m/ log4 n vertices. Since Hs is
derived by sampling the edges ofHc with probability 1/ log2 n, the expected number of
edges to the first BaseCase call is O(m/ log2 n). By the sampling lemma of [KKT95],
the expected number of edges to the second BaseCase call is < (m/ log4 n)/(1/ log2 n),
thus the total time spent in these subcalls is O(log n). Assuming the size of H

conforms to its expectation of O(m/ log(2) n), the calls to Filter and Bor̊uvka-B also
take O(log n) time, as described below.

The Bor̊uvka-B(H, l, F) procedure, shown in Figure 4.2, returns a contracted ver-
sion of H with O(m/l) vertices. It uses a simple growth control schedule, designating
vertices as inactive if their degree exceeds l. We can determine if a vertex is inactive
by performing list ranking on its edge list for log l time steps. If the computation has
not stopped after this much time, then its edge list has length > l.

The last step takes O(log n) time; all other steps take O(log l) time, as they deal
with edge lists of length O(l). Consequently, the total running time is O(log n +
log2 l). For each iteration of the main loop, the work is linear in the number of edges.

Assuming the graph conforms to its expected size of O(m/ log(2) n), the total work is
linear. The edge-plugging technique as well as the idea of a growth control schedule
were introduced by Johnson and Metaxas [JM92].

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1891

Bor̊uvka-B(G, l, F)
Repeat log l times

For each vertex, let it be inactive if its edge list
has more than l edges, and active otherwise.
For each active vertex v

choose min. weight incident edge e
F := F + e

Using the edge-plugging technique, build a
single edge list for each induced tree (O(1) time)

Contract all trees of inactive vertices

Fig. 4.2. The Bor̊uvka-B procedure.

5. Proof of Theorem 2.1. The set of edges M returned by Find-k-Min is a
subset of the MSF of G. By contracting the edges of M to produce G′, the MSF of G
is given by the edges of M together with the MSF of G′. The call to Filter produces
graph Gf by removing from G′ edges known not to be in the MSF. Thus the MSF of
Gf is the same as the MSF of G′. Assuming the correctness of Find-MSF, the set of
edges F constitutes the MSF of Gf , and thus M + F is the MSF of G.

Earlier we have shown that each step of High-Level requires O(log n) time and
work linear in the number of edges. In the next two sections we show that w.h.p, the
number of edges encountered in all graphs during the algorithm is linear in the size
of the original graph.

6. High probability bounds. Consider a single invocation of Find-k-Min(H, i),
where H has m′ edges and n′ vertices. We want to place likely bounds on the number
of edges in each recursive call to Find-k-Min, in terms of m′ and i.

For the first recursive call, the edges of H are sampled independently with proba-
bility 1/(log(i−1) n)2. Call the sampled graph H1. By applying a Chernoff bound
[AS00], the probability that the size of H1 is less than twice its expectation is

1− exp(−Ω(m′/(log(i−1) n)2)).

Before analyzing the second recursive call, we recall the sampling lemma of
[KKT95] which states that the number of F -light edges is dominated by the negative
binomial distribution with parameters n′ and p, where p is the sampling probability,
and F is the MSF of H1. As we saw in the proof of Lemma 3.1, every k-Min-light edge
must also be F -light. Using this observation, we will analyze the size of the second
recursive call in terms of F -light edges and conclude that any bounds we attain apply
equally to k-Min-light edges.

We now bound the likelihood that more than twice the expected number of edges
are F -light. This is the probability that in a sequence of more than 2n′/p flips of a
coin, with probability p of heads, the coin comes up heads less than n′ times (since
each edge selected by a coin toss of heads goes into the MSF of the sampled graph).
By applying a Chernoff bound, this is exp(−Ω(n′)). In this particular instance of

Find-k-Min, n′ ≤ m/(log(i−1) n)4 and p = 1/(log(i−1) n)2, so the probability that

fewer than 2m/(log(i−1) n)2 edges are F -light is 1− exp(−Ω(m/(log(i−1) n)4)).

Given a single invocation of Find-k-Min(H, i), we can bound the probability that

H has more than 2log∗ n−im/(log(i) n)2 edges by exp(−Ω(m/(log(i) n)4)). This follows
from applying the argument used above to each invocation of Find-k-Min from the
initial call to the current call at depth log∗ n − i. Summing over all recursive calls

1892 SETH PETTIE AND VIJAYA RAMACHANDRAN

to Find-k-Min, the total number of edges (and thus the total work) is bounded by
∑log∗ n

i=3 22 log∗ n−2im/(log(i) n)2 = O(m) with probability 1−exp(−Ω(m/(log(3) n)4)).

The probability that phase 2 uses O(m) work is 1−exp(−Ω(m/ log2 n)). We omit
the analysis as it is similar to the analysis for phase 1.

The probability that our bounds on the time and total work performed by the
algorithm fail to hold is exponentially small in the input size. However, this assumes
perfect processor allocation. In the next section we show that the probability that
work fails to be distributed evenly among the processors is less than 1/mω(1). Thus
the overall probability of failure is very small, and the algorithm runs in logarithmic
time and linear work w.h.p.

7. Processor allocation. As stated in section 2, the processor allocation needed
for our algorithm can be performed by a fairly simple scheme given in [HZ96] that takes
logarithmic time and linear work overall but uses superlinear space. An algorithm
claimed in [HZ01] uses linear space; however, it is not given a clear description in
[HZ01] and, more seriously, it makes heavy use of a nontrivial linked-list based sorting
algorithm of Goodrich and Kosaraju [GK96]. In this section we give a self-contained
description of a processor allocation scheme for “tree structured” computations which
does not use any sorting subroutine.

Let M be a set of m processes which perform some computation. So long as the
computation is tree structured, in the sense given below, its exact nature is unimpor-
tant. At any point in the computation there is a set D ⊆ M of dead processes and
a stack S = (S0, S1, . . . , Sd), where S0 = M and Sj+1 ⊆ Sj . In the ith round of
computation, the stack is potentially changed and some set Ri ⊆ M of the processes
compute for ti time steps. Round i follows these steps:

1. Either (a) S is unchanged, Ri := Sd −D, or
(b) S := (S0, . . . , Sd, Sd+1), Sd+1 ⊆ Sd, Ri := Sd+1 −D, or
(c) S := (S0, . . . , Sd−1), Ri := Sd−1 −D.

2. The Ri do something for ti ≥ 1 steps.
3. D := D + {some subset of Ri}.
This is a rather technical characterization of a class of algorithms. Informally,

any recursive algorithm fits into this scheme if the active processes in one recursive
call are a subset of the active processes from its parent call.

Let p ≤ m be the number of EREW processors available. Ideally, we would like
to simulate round i in O(Ri/p�) time (i.e., with zero overhead). Like [HZ96] our
overhead is nonconstant but usually negligible.

Theorem 7.1. For some tree computation, let r be the total number of rounds,
T =

∑
i ti be the total time for all rounds, W =

∑
i ti · |Ri| be the total work for all

rounds, dmax be the maximum depth of the stack, and q = Ω(log(mr)) be a parameter.
Then with probability 1−e−Ω(q) the computation of m processes can be simulated with
p EREW processors in O(T + W/p + r log q + log p) time. The space required is
O(m + p · dmax). It is assumed there is some (easily computable) bound ri such that
ri ≥ |Ri| and ri = O(|Ri|).

In our MSF algorithm the number of rounds r = O(2log∗ nk0 log k0) = O(log3 log n),
the time T = O(log n), work W = O(m), and dmax = O(log3 log n). Plugging
these values into Theorem 7.1, our MSF algorithm can be simulated in O(m/p +
log n + log q log3 log n) time with probability at least 1 − e−Ω(q), using space O(m +
p log3 log n). Since p < m/ log n, the space is linear in m. We could set q =

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1893

Θ(log(mr)) = Θ(logn) and achieve a polynomially small error probability or set

q as high as 2logn/ log3 logn for a much smaller error probability. Also, the “dead pro-
cesses” correspond to those edges known to be k0-Min-heavy (in phase 1) or not in
the MSF at all (in phase 2).

As in [HZ96] we organize the processes into blocks of size b = qm/p (q processors
per block) as follows. We imagine placing the processes deterministically into an
m/b × b array, then performing a random rotation on each column. The processes
that end up in the same row are in the same block. Computing this initial allocation
is easily done in O(m/p + log p) time. Since processors from different blocks do not
communicate we will isolate our discussion to a single arbitrary block. Let B denote
the set of processes in this block; initially |B| = b.

We maintain the invariant that the block is represented as a linked list L =
Ld, Ld−1, . . . , L0, where Ld = Sd − D, and, in general, Lj = Sj − Sj+1 − D. That
is, L = B − D: no dead processes appear in this list, and Lj lists those processes
that do not appear higher up in the stack. We also maintain that for all j, Lj has
been fairly allocated. What this means is that the 1th processor (0 ≤ 1 < q) assigned

to this block “owns” a sublist L�,j of Lj extending from element 1 |Lj |
q � to element

(1+ 1) |Lj |
q � − 1 (if they exist). We assume processor 1 has a pointer to L�,j . (These

pointers contribute the pdmax term to the space in Theorem 7.1. The other space
requirements are linear in m.)

Suppose in round i, step 1 is of type (a)—the stack is not altered. Then Ri∩L =
Ld and we already have a fair allocation of Ld. Provided |Ld| is about the same in
this block as in any other, step 2 can be simulated optimally in O(ti · |Ld|/q�) time.
This will be discussed later. To restore our invariants after step 3 we simply need to
splice out newly dead processes from Ld and compute a fair allocation for the new
list. Let Ld and L′

d be the list before and after step 3. Processor 1 will find all L′
w,d

which lie in L�,d, sending a pointer of L′
w,d to processor w. For this task processor

1 must know |L′
d| and the number of elements from L′

d which lie before L�,d, both
of which can be computed in O(|Ld|/q + log q) time with a prefix-sums computation.
Finally we compute L′

d by splicing out all dead elements, also in O(|Ld|/q + log q)
time.2 The other two cases for step 1, (b) and (c), involve either splitting Ld into
two lists or combining Ld and Ld−1 into one list, followed by a step to compute a fair
allocation for the new list(s). We omit a discussion of these two cases; the techniques
used are the same as in step 3.

In implementing step 2 we use the assumption that there is a known upper bound
ri ≥ |Ri| on the number of processes taking part in the ith round. (In our MSF
algorithm, for instance, this upper bound would hold w.h.p.) We argue that with a
certain probability (that depends on q) for every round i, every processor is given
no more than (1 + ε)(1 + ri/p) active processes. Each of the ti time steps in step
2 is then easily simulated in (1 + ε)(1 + ri/p) time. Consider the m/b × b array
used in the initial allocation, and an arbitrary block and round. Let Xk be 1 if the
process initially placed in the kth column is active in the round, and 0 otherwise.
Because the rotations on different columns were independent, so too are the Xk’s.
Let X =

∑q
k=1 Xk be the number of active processes appearing in the block; clearly

E(X) = |Ri|b/m ≤ rib/m. Since each processor can be thought to have a “dummy”
process associated with it which is active in every round, assume, without loss of
generality, that E(X) ≥ q. Noting that X is the sum of independent Bernoulli trials,

2The prefix-sums and splicing can, of course, be performed in one pass.

1894 SETH PETTIE AND VIJAYA RAMACHANDRAN

we can bound the probability that X deviates too far from its expectation using a
Chernoff bound [AS00]. For 0 < ε < 1, Pr[X > (1 + ε)E(X)] < e−Ω(ε2 E(X)), and for
constant ε, the probability that any block in any round gets more than 1 + ε times
its expectation is < mr

b e−Ω(q) = e−Ω(q) since q = Ω(log(mr)). The analysis of our
scheme is very similar to that of [HZ96] but considerably more efficient in terms of
time. In [HZ96] ε is increased in order to reduce the probability of failure. In our
scheme we would set ε to be a small constant and increase q (number of processors
per block) as necessary. It is crucial to keep ε small because in either scheme nearly
all processors spend an ε/(1 + ε) fraction of their time doing nothing! On the other
hand, the q parameter can usually be increased dramatically with negligible effects on
the overall running time. Hence our scheme achieves a low failure probability without
excessive processor idling.

We remark that the space claimed in Theorem 7.1 can be reduced to O(m) at the
expense of a slightly more complicated scheme. The idea is to compute fair allocations
only when necessary. Very frequently, a previously computed fair allocation is “fair
enough.” For instance, in step 1(b) Ld is split into two lists, L′

d and L′
d+1. If L′

d+1

contains most of the elements from Ld, we might as well use the fair allocation of Ld

instead of computing new ones for L′
d+1 and L′

d.

8. Adaptations to other practical parallel models. Our results imply good
MSF algorithms for the QSM [GMR99] and BSP [Val90] models, which are more
realistic models of parallel computation than the PRAM models. Theorem 8.1 given
below follows directly from results mapping EREWcomputations on to QSM given in
[GMR99]. Theorem 8.2 follows from the QSM to BSP emulation given in [GMR99]
in conjunction with the observation that the slowdown in that emulation due to
hashing does not occur for our algorithm since the assignment of vertices and edges
to processors made by our processor allocation scheme achieves the same effect.

Theorem 8.1. An MSF of an edge-weighted graph on n nodes and m edges can
be found in O(g log n) time and O(g(m + n)) work w.h.p. using O(m + n) space on
the QSM with a simple processor allocation scheme, where g is the gap parameter of
the QSM.

Theorem 8.2. An MSF of an edge-weighted graph on n nodes and m edges can
be found on the BSP in O((L+ g) log n) time w.h.p. using (m+ n)/ log n processors
and O(m+n) space with a simple processor allocation scheme, where g and L are the
gap and periodicity parameters of the BSP.

9. Conclusion. We have presented a randomized algorithm for MSF on the
EREW PRAM which is provably optimal both in time and work. Our algorithm
works within the stated bounds with high probability in the input size and has good
performance in other popular parallel models.

One drawback to our algorithm is that it uses a linear number of random bits. A
recent MSF algorithm [PR02a] for the EREW PRAM performs linear work but uses
only a polylogarithmic number of random bits; however, the time required is subopti-
mal (O(log2 n log∗ n)). Unlike the algorithm presented here, the [PR02a] algorithm is
not a parallelization of [KKT95] and does not use the sampling lemma from [KKT95].

An open question is how to obtain a deterministic time-work optimal MSF algo-
rithm. Pettie and Ramachandran [PR02b] have given a provably optimal sequential
MSF algorithm; however, its exact complexity (and therefore the complexity of MSF)
is still unknown. Parallelizing this optimal sequential algorithm seems very difficult.

OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1895

REFERENCES

[AS00] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., Wiley-Interscience, New
York, 2000.

[Bor26] O. Bor̊uvka, O jistém problému minimaálním, Moravské Pr̆́irodovĕdecké Spolec̆nosti,
3 (1926), pp. 37–58 (in Czech).

[CHL01] K. W. Chong, Y. Han, and T. W. Lam, Concurrent threads and optimal parallel
minimum spanning trees algorithm, J. ACM, 48 (2001), pp. 297–323.

[CKT94] R. Cole, P. N. Klein, and R. E. Tarjan, A linear-work parallel algorithm for finding
minimum spanning trees, in Proceedings of the 6th Annual Symposium on Parallel
Algorithms and Architectures (SPAA’94), Cape May, NJ, ACM, pp. 11–15.

[CKT96] R. Cole, P. N. Klein, and R. E. Tarjan, Finding minimum spanning trees in log-
arithmic time and linear work using random sampling, in Proceedings of the 8th
Annual Symposium on Parallel Algorithms and Architectures (SPAA’96), Padua,
Italy, ACM, pp. 243–250.

[Dij59] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1
(1959), pp. 269–271.

[Gaz91] H. Gazit, An optimal randomized parallel algorithm for finding connected components
in a graph, SIAM J. Comput., 20 (1991), pp. 1046–1067.

[GMR99] P. B. Gibbons, Y. Matias, and V. Ramachandran, Can a shared-memory model serve
as a bridging model for parallel computation?, Theory Comput. Syst., 32 (1999),
pp. 327–359.

[GK96] M. T. Goodrich and S. R. Kosaraju, Sorting on a parallel pointer machine with
applications to set expression evaluation, J. ACM, 43 (1996), pp. 331–361.

[HZ96] S. Halperin and U. Zwick, An optimal randomized logarithmic time connectivity al-
gorithm for the EREW PRAM, J. Comput. System Sci., 53 (1996), pp. 395–416.

[HZ01] S. Halperin and U. Zwick, Optimal randomized EREW PRAM algorithms for finding
spanning forests and for other basic graph connectivity problems, J. Algorithms, 39
(2001), pp. 1–46.

[Jar30] V. Jarńik, O jistém problému minimaálním, Moravské Pr̆́irodovĕdecké Spolec̆nosti, 6
(1930), pp. 57–63 (in Czech).

[JM97] D. B. Johnson and P. Metaxas, Connected components in O(log3/2 n) parallel time
for CREW PRAM, J. Comput. System Sci., 54 (1997), pp. 227–242.

[K97] V. King, A simpler minimum spanning tree verification algorithm, Algorithmica, 18
(1997), pp. 263–270.

[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan, A randomized linear-time algorithm
to find minimum spanning trees, J. ACM, 42 (1995), pp. 321–328.

[KPRS97] V. King, C. K. Poon, V. Ramachandran, and S. Sinha, An optimal EREW PRAM
algorithm for minimum spanning tree verification, Inform. Process. Lett., 62 (1997),
pp. 153–159.

[KR90] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines,
in Handbook of Theoretical Computer Science, Vol. A, Elsevier Science, Amsterdam,
The Netherlands, 1990, pp. 869–941.

[PR97] C. K. Poon and V. Ramachandran, A randomized linear work EREW PRAM algo-
rithm to find a minimum spanning forest, in Algorithms and Computation (Sin-
gapore, 1997), Lecture Notes in Comput. Sci. 1350, Springer-Verlag, Berlin, 1997,
pp. 212–222.

[PR98] C. K. Poon and V. Ramachandran, private communication, 1998.
[PR02a] S. Pettie and V. Ramachandran, Minimizing randomness in minimum spanning tree,

parallel connectivity, and set maxima algorithms, in Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadel-
phia, PA, 2002, pp. 713–722.

[PR02b] S. Pettie and V. Ramachandran, An optimal minimum spanning tree algorithm,
J. ACM, 49 (2002), pp. 16–34.

[Prim57] R. C. Prim, Shortest connection networks and some generalizations, Bell System Tech-
nical J., 36 (1957), pp. 1389–1401.

[Val90] L. G. Valiant, A bridging model for parallel computation, Comm. ACM, 33 (1990),
pp. 103–111.

