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Abstract

In a seminal paper [27] for any n-vertex undirected
graph G = (V,E) and a parameter k = 1, 2, . . .,
Thorup and Zwick constructed a distance oracle of
size O(kn1+1/k) which upon a query (u, v) constructs
a path Π between u and v of length δ(u, v) such that
dG(u, v) ≤ δ(u, v) ≤ (2k−1)dG(u, v). The query time of
the oracle from [27] is O(k) (in addition to the length of
the returned path), and it was subsequently improved
to O(1) [29, 11]. A major drawback of the oracle of
[27] is that its space is Ω(n · log n). Mendel and Naor
[18] devised an oracle with space O(n1+1/k) and stretch
O(k), but their oracle can only report distance estimates
and not actual paths. In this paper we devise a path-
reporting distance oracle with size O(n1+1/k), stretch
O(k) and query time O(nε), for an arbitrarily small
ε > 0. In particular, for k = log n our oracle provides
logarithmic stretch using linear size. Another variant of
our oracle has linear size, polylogarithmic stretch, and
query time O(log log n).

For unweighted graphs we devise a distance ora-
cle with multiplicative stretch O(1), additive stretch
O(β(k)), for a function β(), space O(n1+1/k · β), and
query time O(nε), for an arbitrarily small constant
ε > 0. The tradeoff between multiplicative stretch and
size in these oracles is far below Erdős’s girth conjecture
threshold (which is stretch 2k − 1 and size O(n1+1/k)).
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Breaking the girth conjecture tradeoff is achieved by
exhibiting a tradeoff of different nature between addi-
tive stretch β(k) and size O(n1+1/k). A similar type of
tradeoff was exhibited by a construction of (1 + ε, β)-
spanners due to Elkin and Peleg [16]. However, so far
(1 + ε, β)-spanners had no counterpart in the distance
oracles’ world.

An important novel tool that we develop on the way
to these results is a distance-preserving path-reporting
oracle. We believe that this oracle is of independent
interest.

1 Introduction

1.1 Distance Oracles for General Graphs In
the distance oracle problem we wish to preprocess a
weighted undirected n-vertex graph G = (V,E). As a
result of this preprocessing we construct a compact data
structure (which is called distance oracle) D(G), which
given a query pair (u, v) of vertices will efficiently return
a distance estimate δ(u, v) of the distance dG(u, v)
between u and v in G. Moreover, the distance oracle
should also compute an actual path Π(u, v) of length
δ(u, v) between these vertices in G. We say that a
distance oracle is path-reporting if it does produce the
paths Π(u, v) as above; otherwise we say that it is not
path-reporting.

The most important parameters of a distance oracle
are its stretch, its size, and its worst-case query time.1

The stretch α of a distance oracle D(G) is the smallest
(in fact, infimum) value such that for every u, v ∈ V ,
dG(u, v) ≤ δ(u, v) ≤ α · dG(u, v).

The term distance oracle was coined by Thorup and
Zwick [27]. See their paper also for a very persuasive
motivation of this natural notion. In their seminal
paper Thorup and Zwick [27] devised a path-reporting
distance oracle (henceforth, TZ oracle). The TZ oracle

1The query time of all path-reporting distance oracles that we

will discuss is of the form O(q+ |Π|), where Π is the path returned

by the query algorithm. To simplify the notation we will often

omit the additive term of O(|Π|).
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with a parameter k = 1, 2, . . . has size O(k · n1+1/k),
stretch 2k − 1 and query time O(k). As argued in
[27], this tradeoff between size and stretch is essentially
optimal for k ≤ logn

log logn , as Erdos’ girth conjecture

implies that Ω(n1+1/k) space is required for any k. Note,
however, that k · n1+1/k = Ω(n · log n), and Thorup
and Zwick [27] left it open if one can obtain meaningful
distance oracles of linear size (or, more generally, size
o(n log n)).

A partial answer to this question was provided
by Mendel and Naor [18], who devised a distance
oracle with size O(n1+1/k), stretch O(k) and query
time O(1). Alas, their distance oracle is inherently not
path-reporting. Specifically, the oracle of [18] stores a
collection of O(k · n1/k) hierarchically-separated trees
(henceforth, HSTs; see [7] for its definition), whose sizes
sum up to O(n1+1/k). The query algorithm for this
oracle can return paths from these HSTs, i.e., paths
which at best can belong to the metric closure of the
original graph. These paths will typically not belong to
the graph itself.

One can try to convert this collection into a collec-
tion of low-stretch spanning trees of the input graph G
using star-decomposition or petal-decomposition tech-
niques (see [14, 2]). However, each of this spanning trees
is doomed to have n−1 edges, making the size of the en-
tire structure as large as Ω(k·n1+1/k). (In addition, with
the current state-of-the-art techniques with low-stretch
spanning trees one can only achieve bounds which are
somewhat worse than the optimal ones achievable with
HSTs. Hence the approach that we have just outlined
will probably produce an oracle with stretch ω(k), while
using space O(k · n1+1/k).)

Another result in this direction was recently ob-
tained by Elkin, Neiman and Wulff-Nilsen [15]. For a
parameter t ≥ 1 their oracle uses space O(n · t) and

provides stretch O(
√
t ·n2/

√
t) for weighted graphs. The

query time of their oracle is O(log t · logn wmax), where
wmax is the aspect ratio of the graph, i.e., the ratio
between the heaviest and the lightest edge. For un-
weighted graphs their oracle exhibits roughly the same
behavior. For a parameter ε > 0 it uses space O(n · t/ε)
and provides stretch O(t · n1/t(t+ nε/t)).

The distance oracles of [15] are the first path-
reporting oracles that use o(n log n) space and provide
non-trivial stretch. However, their stretch is by far
larger than that of the oracles of [27, 18]. Therefore the
tantalizing problem of whether one can have a linear-size
path-reporting distance oracle with logarithmic stretch
remained wide open. In the current paper we answer
this question in the affirmative. For any k, logn

log logn ≤
k ≤ log n, and any arbitrarily small constant ε > 0,
our path-reporting distance oracle has stretch O(k),

size O(n1+1/k) and query time O(nε). (When ε > 0
is subconstant the stretch becomes O(k) · (1/ε)O(1).)
Hence our oracle achieves an optimal up to constant
factors tradeoff between size and stretch in the range

logn
log logn ≤ k ≤ log n, i.e., in the range ”missing” in
the Thorup-Zwick’s result. Though our query time
is nε for an arbitrarily small constant ε > 0 is much
larger than Thorup-Zwick’s query time, we stress that
all existing path-reporting distance oracles either use
space Ω(n · log n) [27, 29, 11] or have stretch nΩ(1)

[15]. (The query time of the TZ oracle was recently
improved to O(1) in [29, 11].) The only previously
existing path-reporting distance oracle that achieves
the optimal tradeoff in this range of parameters can
be obtained by constructing a (2k − 1)-spanner2 with
O(n1+1/k) edges and answering queries by conducting
Dijkstra explorations in the spanner. However, with
this approach the query time is O(n1+1/k). Our result
is a drastic improvement of this trivial bound from
O(n1+1/k) to O(nε), for an arbitrarily small constant
ε > 0.

We also can trade between the stretch and the
query time. Specifically, a variant of our oracle
uses O(n log log n) space, has stretch O(loglog4/3 7 n) ≈
O(log6.76 n) and query time O(log log n). For a com-
parison, the path-reporting distance oracle of [15] with
this stretch uses space Ω(n · logn

log logn ) and has query time

O(log log n · logn wmax).
We also remark that using a super-constant (but

not trivial) query time is a common place by now in the
distance oracles literature. In particular, this is the case
in the oracles of Porat and Roditty [23], Agarwal and
Godfrey [4] and of Agarwal et al. [5].

1.2 Distance Oracles with Stretch (α, β) for
Unweighted Graphs We say that a distance oracle
D(G) provides stretch (α, β) for a pair of parameters
α ≥ 1, β ≥ 0 if for any query (u, v) it constructs a
path Π(u, v) of length δ(u, v) which satisfies dG(u, v) ≤
δ(u, v) ≤ α ·dG(u, v)+β. The notion of (α, β)-stretch is
originated from the closely related area of spanners. A
subgraph G′ = (V,H) is said to be an (α, β)-spanner of
a graph G = (V,E) , H ⊆ E, if for every pair u, v ∈ V ,
it holds that dH(u, v) ≤ α · dG(u, v) + β.

This notion was introduced in [16], where it was
shown that for any ε > 0 and k = 1, 2, . . ., for any
n-vertex unweighted graph G = (V,E) there exists
a (1 + ε, β)-spanner with O(β · n1+1/k) edges, where
β = β(ε, k) is independent of n. Later a number
of additional constructions of (1 + ε, β)-spanners with

2For a parameter t ≥ 1, G′ = (V,H) is a t-spanner of a graph

G = (V,E), H ⊆ E, if dH(u, v) ≤ t · dG(u, v).
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similar properties were devised in [13, 28, 22].
It is natural to attempt converting these construc-

tions of spanners into distance oracles with a similar
tradeoff between stretch and size. However, generally
so far such attempts were not successful. See, e.g., the
discussion titled ”Additive Guarantees in Distance Or-
acles” in the introduction of [19]. Pǎtraşcu and Roditty
[19] devised a distance oracle with stretch (2, 1) and size
O(n5/3), and query time O(1). Abraham and Gavoille
[1] generalized the result of [19] to devise a distance or-
acle with stretch (2k−2, 1) and space Õ(n1+(2/(2k−1))).
(The query time in [1] is unspecified.)

Note, however, that neither of these previous results
achieves multiplicative stretch o(k) with size O(n1+1/k),
at the expense of an additive stretch. (This is the
case with the result of [16] in the context of spanners,
where the multiplicative stretch becomes as small as
1 + ε, for an arbitrarily small ε > 0.) In this paper we
devise the first distance oracles that do achieve such a
tradeoff. Specifically, our path-reporting distance oracle
has stretch (O(1), β(k)), space O(β(k) ·n1+1/k), β(k) =
kO(log log k), and query time O(nε), for an arbitrarily
small ε > 0. The multiplicative stretch O(1) here is
a polynomial function of 1/ε, but it can be made much
smaller than k. (Think, e.g., of ε > 0 being a constant
and k being a slowly growing function of n.) We can
also have stretch (o(k), β(k)), space O(β(k)·n1+1/k) and

query time nO(k−γ), where γ > 0 is a universal constant.
(Specifically, the theorem holds, e.g., for γ = 1/7.)

In both these results the tradeoff between multi-
plicative stretch and size of the oracle is below Erdős’
girth conjecture barrier (which is stretch 2k − 1 and
space O(n1+1/k)). In fact, even if Erdős’ girth conjec-
ture is wrong, still it is known that (when the additive
stretch is 0) the tradeoff between multiplicative stretch
and size cannot be below the curve given by stretch k
and space O(n1+1/k). Our results, like the results of
[16] for spanners, break this barrier by introducing an
additive stretch β(k). To the best of our knowledge,
our distance oracles are the first distance oracles that
exhibit this behavior.

1.3 Distance Oracles for Sparse Graphs A cen-
tral ingredient in all our distance oracles is a new path-
reporting distance oracle for graphs with O(n) edges.
The most relevant result in this context is the paper by
Agarwal et al. [5]. In this paper the authors devised a
(not path-reporting)3 linear-size distance oracle which

3It was erroneously claimed in [5] that all their distance oracles

are path-reporting. While their distance oracles with stretch

smaller than 3 are path-reporting (albeit their space requirement

is superlinear), this is not the case for their oracles with stretch

4k − 1, k ≥ 1 [3].

given a parameter k = 1, 2, . . . provides distance esti-
mates with stretch 4k − 1, uses linear space and has
time O(n1/(k+1)). (Their result is, in fact, more general
than this. We provide this form of their result to fa-
cilitate the comparison.) In this paper we present the
first path-reporting linear-size distance oracle for this
range of parameters. Specifically, our linear-size oracle
(see Corollary 6.1) has stretch O(klog4/3 7) and query
time O(n1/k), for any constant parameter k of the form
k = (4/3)h, h = 1, 2, . . ..

1.4 Distance-Preserving Distance Oracle In [12]
the authors showed that for any n-vertex graph G =
(V,E) and a collection P of P pairs of vertices there
exists a subgraph G′ = (V,H) of size O(max{n +

√
n ·

P,
√
P · n}) so that for every (u, v) ∈ P, dH(u, v) =

dG(u, v). In this paper we devise the first distance-
oracle counterpart of this result. Specifically, our
distance oracle uses O(n+P 2) space, and for any query
(u, v) ∈ P it produces the exact shortest path Π between
u and v in O(|Π|) time, where |Π| is the number of edges
in Π.

We employ this distance oracle very heavily in all
our other constructions.

Remark: The construction time of our distance-
preserving oracle is O(n · P 2) + Õ(m ·min{n, P}). The
construction time of our path-reporting oracle for sparse
graphs is Õ(m ·n) = Õ(n2λ), where λ = m/n. The con-
struction time of our oracles with nearly-linear space for
general graphs is Õ(n2+1/k). Finally, the construction
time of our oracle for unweighted graphs with a hy-
brid multiplicative-additive stretch is Õ(β(k)n2+1/k) =
kO(log log k)Õ(n2+1/k). (In both cases k is the stretch
parameter of the respective oracle.)

1.5 Related Work There is a huge body of litera-
ture about distance oracles by now. In addition to what
we have already surveyed there are probe-complexity
lower bounds by Sommer et al. [26]. There is an impor-
tant line of work by Pǎtraşcu et al. [20, 19] on oracles
with rational stretch. Finally, Baswana and Sen [10],
Baswana and Kavitha [9] and Baswana et al. [8] im-
proved the preprocessing time of the TZ oracle.

1.6 Structure of the Paper We start with describ-
ing our distance preserving oracle (Section 3). We then
proceed with devising our basic path-reporting oracle
for sparse graphs (Section 4). This oracle can be viewed
as a composition of an oracle from Agarwal et al. [5] with
our distance-preserving oracle from Section 3. The ora-
cle is described for graphs with small arboricity. Its ex-
tension to general sparse graphs (based on a reduction
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from [5]) is described in Section 5. Then (in Section
6) we devise a much more elaborate multi-level path-
reporting oracle for sparse graphs. The oracle of [5]
and our basic oracle from Section 4 both use just one
set of sampled vertices. Our multi-level oracle uses a
carefully constructed hierarchy of sampled sets which
enables us to get the query time down from n1/2+ε to
nε. Next we proceed (Section 7) to using this multi-level
oracle for a number of applications. Specifically, we use
it to construct a linear-size logarithmic stretch path-
reporting oracle for general graphs with query time nε,
and oracles with hybrid multiplicative-additive stretch
for unweighted graphs.

2 Preliminaries

For a pair of integers a ≤ b, we denote [a, b] =
{a, a + 1, . . . , b}, and [b] = [1, b]. The arboricity of

a graph G is given by λ(G) = maxU⊆V,|U |≥2
|E(U)|
|U |−1 ,

where E(U) is the set of edges induced by the vertex
set U . We denote by degG(u) the degree of a ver-
tex u in G; we omit G from this notation whenever
G can be understood from the context. We use the no-
tation Õ(f(n)) = O(f(n)polylog(f(n))) and Ω̃(f(n) =
Ω(f(n)/polylog(f(n))).

3 A Distance-Preserving Path-Reporting
Oracle

Consider a directed weighted n-vertex graph G =
(V,E, ω). (The result given in this section applies to
both directed and undirected graphs. However, our
other distance oracles apply only to undirected graphs.)
Let Pairs ⊆

(
V
2

)
be a subset of ordered pairs of vertices.

We denote its cardinality by P = |Pairs|. In this
section we describe a distance oracle which given a pair
(u, v) ∈ Pairs returns a shortest path Πu,v from u to v
in G. The query time of the oracle is proportional to
the number of edges (hops) |Πu,v| in Πu,v. The oracle
uses O(n+ P 2) space.

The construction of the oracle starts with comput-
ing a set Paths = {Πu,v | (u, v) ∈ Pairs} of shortest
paths between pairs of vertices from Pairs. This collec-
tion of shortest paths is required to satisfy the property
that if two distinct paths Π,Π′ ∈ Paths traverse two
common vertices x and y in the same order (i.e., e.g.,
both traverse first x and then y), then they necessarily
share the entire subpath between x and y. It is argued
in [12] that this property can be easily achieved.

We will need the following definitions from [12].
For a path Π = (u0, u1, . . . , uh) and a vertex ui ∈

V (Π), the predecessor of ui in Π, denoted predΠ(ui),
is the vertex ui−1 (assuming that i ≥ 1; otherwise
it is defined as NULL), and the successor of ui in Π,

denoted succΠ(ui), is the vertex ui+1 (again, assuming
that i ≤ h− 1; otherwise it is NULL).

Definition [12]: A branching event (Π,Π′, x) is a
triple with Π,Π′ ∈ Paths being two distinct paths
and x ∈ V (Π) ∩ V (Π′) be a vertex that belongs
to both paths and such that {predΠ(x), succΠ(x)} 6=
{predΠ′(x), succΠ′(x)}. We will also say that the two
paths Π,Π′ branch at the vertex x.

Note that under this definition if Π traverses
edges (ui−1, ui), (ui, ui+1) and Π′ traverses edges
(ui+1, ui), (ui, ui−1) then (Π,Π′, ui) is not a branching
event.

It follows directly from the above property of the
collection Paths (see also [12], Lemma 7.5, for a more
elaborate discussion) that for every pair of distinct paths
Π,Π′ ∈ Paths, there are at most two branching events
that involve that pair of paths. Let B denote the set
of branching events. The overall number of branching
events for the set Paths is |B| ≤ |Paths|2 = P 2. Our
oracle will keep O(1) data for each vertex and O(1) data
for each branching event, i.e., O(n + |B| + P ) data in
total.

Specifically, in our oracle for every vertex v ∈ V we
keep an identity of some path Π ∈ Paths that contains
v as an internal point, and two edges of Π incident on
v. (If there is no path Π ∈ Paths that contains v as an
internal point, then our oracle stores nothing for v in
this data structure.) The path Π stored for v will be
referred to as the home path of v.

In addition, for every branching event (Π,Π′, v) we
keep the (at most four) edges of Π and Π′ incident
on v. Finally, for every pair (x, y) ∈ Pairs we also
store the first and the last edges of the path Πx,y.
Observe that the resulting space requirement is at most
O(n + |B| + P ) = O(n + P 2). We assume that the
branching events are stored in a hash table of linear
size, which allows membership queries in O(1) time per
query.

The query algorithm proceeds as follows. Given a
pair (x, y) ∈ Pairs, we find the first edge (x, x′) of the
path Πx,y, and ”move” to x′. Then we check if (x′, y) is
the last edge of Πx,y. If it is then we are done. Otherwise
let Π(x′) denote the home path of x′. (Observe that
since the vertex x′ is an internal vertex in Πx,y, it follows
that there exists a home path Π(x′) for x′.)

Next, we check if Π(x′) = Πx,y. (This check is
performed by comparing the identities of the two paths.)
If it is the case then we fetch the next edge (x′, x′′)
of Π(x′), and move to x′′. Otherwise (if Π(x′) 6=
Π(x, y)) then we check if the triple (Π(x′),Πx,y, x

′) is
a branching event. This check is performed by querying
the branching events’ hash table.
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If there is no branching event (Π(x′),Πx,y, x
′) then

we again fetch the next edge (x′, x′′) of Π(x′), and move
to x′′. (In fact, the algorithm does not need to separate
between this case and the case that Π(x′) = Πx,y. We
distinguished between these cases here for clarity of
presentation.)

Finally, if there is a branching event (Π(x′),Πx,y, x
′)

then we fetch from our data structure all the informa-
tion associated with this event. In particular, we fetch
the next edge (x′, x′′) of Πx,y, and move to x′′.

In all cases the procedure then recurses with x′′. It
is easy to verify that using appropriate hash tables all
queries can be implemented in O(1) time per vertex,
and in total O(|Πx,y|) time. We summarize this section
with the following theorem.

Theorem 3.1. Given a directed weighted graph G =
(V,E, ω) and a collection Pairs ⊆

(
V
2

)
of pairs of

vertices, our distance-preserving path-reporting oracle
(shortly, DPPRO) reports shortest paths Πx,y for query
pairs (x, y) ∈ Pairs in O(|Πx,y|) time. The oracle
employs O(n+|B|+P ) = O(n+P 2) space, where B is the
set of branching events for a fixed set of shortest paths
between pairs of vertices from Pairs, and P = |Pairs|.

One can construct the shortest paths in Õ(m ·
min{P, n}) time. Then for each vertex v one keeps
the list of paths that traverse v. For every such path
one keeps the two edges of this path which are incident
on v. In overall O(n · P 2) additional time one can use
these lists to create the list of branching events. A hash
table with them can be constructed in additional O(P 2)
time. Hence the overall construction time of this oracle
is Õ(m ·min{P, n}) +O(n · P 2).

4 A Basic Distance Oracle for Graphs with
Bounded Arboricity

In this section we describe a basic variant of our
path-reporting distance oracle for weighted undirected
graphs G = (V,E, ω) of arboricity λ(G) ≤ λ, for
some parameter λ. (We will mostly use this oracle for
constant or small values of λ. On the other hand, the
result is meaningful for higher values of λ as well.) Our
oracle reports paths of stretch O(k), for some positive
integer parameter k. Unlike the partial oracle from
Section 3, the oracle in this section is a full one, i.e.,
it reports paths for all possible queries (u, v) ∈

(
V
2

)
.

This is the case also for all our other oracles, which
will be described in consequent sections. The expected

query time of our oracle is O(n1/2+ 1
2k+2 · λ). (Whp4,

4Here and thereafter we use the shortcut ”whp” for ”with

high probability”. The meaning is that the probability is at least

1− n−c, for some constant c ≥ 2.

the query time is O(n1/2+ 1
2k+2 · log n · λ).) The oracle

requires O(n) space, in addition to the space required
to store the graph G itself. Observe that for λ = O(1)
the query time is O(n1/2+ε), for an arbitrarily small
constant ε > 0, while the stretch is O( 1

ε ) = O(1). In
Section 5 we extend this oracle to general m-edge n-
vertex graphs with λ = m

n .
Our basic oracle employs just one level of sampled

vertices, which we (following the terminology of [5]) call
landmarks. Each v ∈ V is sampled independently at
random with probability ρ

n , where ρ is a parameter
which will be determined in the sequel. Denote by
L the set of sampled vertices (landmarks). Note that
IE(|L|) = ρ.

For every vertex v ∈ V we keep the path Π(v) to
its closest landmark vertex `(v), breaking ties arbitrar-
ily. Denote by D(v) the length w(Π(v)) of this path.
This is a collection of vertex-disjoint shortest paths trees
(shortly, SPTs) {T (u) | u ∈ L}, where each T (u) is
an SPT rooted at u for the subset {v | dG(u, v) ≤
dG(u′, v),∀u′ 6= u, u, u′ ∈ L}. (Ties are broken arbitrar-
ily.) This collection is a forest, and storing it requires
O(n) space.

The oracle also stores the original graph G. For
the set of landmarks we compute the complete graph
L = (L,

(
L
2

)
, dG|L). Here dG|L stands for the metric

of G restricted to the point set L. (In other words,
in the landmarks graph L, for every pair u, u′ ∈
L of distinct landmarks the weight ωL(u, u′) of the
edge (u, u′) connecting them is defined by ωL(u, u′) =
dG(u, u′).)

Next we invoke Thorup-Zwick’s distance oracle [27]
with a parameter k. (Henceforth we will call it the TZ
oracle.) One can also use here Mendel-Naor’s oracle
[18], but the resulting tradeoff will be somewhat inferior
to the one that is obtained via the TZ oracle. Denote
by H the TZ distance oracle for the landmarks graph
L. The oracle requires O(k · |L|1+1/k) space, and it
provides (2k−1)-approximate paths Πu,u′ in L for pairs
of landmarks u, u′ ∈ L. The query time is O(k) (plus
O(|Πu,u′ |)). Observe that some edges of Πu,u′ may not
belong to the original graph G. We note also that by
using more recent oracles [11, 29] one can have here
query time O(1), but this improvement is immaterial
for our purposes.

The TZ oracle H has a useful property that the
union H =

⋃
{Πu,u′ | (u, u′) ∈

(
L
2

)
} of all paths

that the oracle returns forms a sparse (2k− 1)-spanner.
Specifically, IE(|H|) = O(k · |L|1+1/k). (This property
holds for Mendel-Naor’s oracle as well, but there the
stretch of the spanner is O(k), where the constant
hidden by the O-notation is greater than 2. On the
other hand, their space requirement is O(|L|1+1/k),
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rather than O(k·|L|1+1/k).) Fix an oracleH as above for
|H| = O(k · |L|1+1/k). Whp such an H will be computed
by running the procedure that computes the TZ oracle
for O(log n) times. We will view the spanner H as a
collection of pairs of vertices of our original graph G.

Finally, we invoke our distance preserving oracle
(shortly, DPPRO) from Section 3 on the graph G and
set Pairs = H. We will refer to this oracle as D(G,H).
Its size is, with high probability, O(n + |H|2) = O(n +
k2 · |L|2+2/k). Upon a query (y, y′) ∈ H, this oracle
returns a shortest path Πy,y′ between y and y′ in G in
time O(|Πy,y′ |).

Observe that |L| is the sum of identical independent
indicator random variables |L| =

∑
v∈V Iv, where Iv is

the indicator random variable of the event {v ∈ L}.
Hence, by Chernoff’s inequality, for any constant ε > 0,

IP(|L| > (1 + ε)IE(|L|)) = IP(|L| > (1 + ε) · ρ)

< exp(−Ω(ρ)) .

We will set the parameter ρ to be at least c log n, for
a sufficiently large constant c. This will ensure that
whp |L| = O(ρ), and so |L|2+2/k = O(ρ2+2/k). Set ρ

so that k2 · ρ2+2/k = Θ(n), i.e., ρ = n
k

2k+2 · 1
k . This

guarantees that aside from the storage needed for the
original graph, the total space used by our oracle is
O(n).

This completes the construction algorithm of our
oracle. Next we describe its query algorithm. We
need the following definition. For a vertex v ∈ V , let
Ball(v) = {x | dG(v, x) < dG(v, `(v))} denote the set
of all vertices x which are closer to v than the closest
landmark vertex `(v) to v.

Given a pair u, v of vertices of G, our oracle starts
with testing if u ∈ Ball(v) and if v ∈ Ball(u). To test
if u ∈ Ball(v) we just conduct a Dijkstra exploration
rooted at v in the graph G, until we discover either u
or `(v). (Recall that G is stored in our oracle.) If u is
discovered before `(v) we conclude that u ∈ Ball(v),
and return the (exact) shortest path between them.
Otherwise we conclude that u 6∈ Ball(v). Analogously,
the algorithm tests if v ∈ Ball(u).

Henceforth we assume that u 6∈ Ball(v) and v 6∈
Ball(u), and therefore the two searches returned u′ =
`(u), v′ = `(v), and the shortest paths Π(u) and Π(v)
between u and u′ and between v and v′, respectively.
(In fact, using the forest of SPTs rooted at landmarks
that our oracle stores, the query algorithm can compute
shortest paths between u and u′ and between v and v′

in time proportional to the lengths of these paths.) Ob-
serve that dG(u′, v′) ≤ dG(u′, u) + dG(u, v) + dG(v, v′),
and dG(u′, u), dG(v, v′) ≤ dG(u, v). Hence dG(u′, v′) ≤
3 · dG(u, v).

Then the query algorithm invokes the query al-
gorithm of the oracle H for the landmarks graph L.
The latter algorithm returns a path Π′ = (u′ =
z0, z1, . . . , zh = v′) in L between u′ and v′. The length
ωL(Π′) of this path is at most (2k − 1) · dG(u′, v′) ≤
(6k − 3) · dG(u, v). The time required for this com-
putation is O(k + h), where |Π′| = h. For each edge
(zi, zi+1) ∈ Π′, i ∈ [0, h − 1], we invoke the query al-
gorithm of the DPPRO D(G,H). (The edges (zi, zi+1)
of the path Π′ are typically not edges of the original
graph. H is a (2k − 1)-spanner of L produced by the
oracle H. Observe that Π′ ⊆ H, and so (zi, zi+1) ∈ H,
for every index i ∈ [0, h − 1].) The oracle D(G,H) re-
turns a path Π̃i between zi and zi+1 in G of length
ωL(zi, zi+1) = dG(zi, zi+1). Let Π̃ = Π̃0 · Π̃1 · . . . · Π̃h−1

be the concatenation of these paths. Observe that Π̃ is
a path in G between z0 = u′ and zh = v′, and

ω(Π̃) =

h−1∑
i=0

ω(Π̃i) =
h−1∑
i=0

dG(zi, zi+1)

=

h−1∑
i=0

ωL(zi, zi+1) = ωL(Π′)

≤ (6k − 3) · dG(u, v) .

Finally, the query algorithm returns the concatenated
path Π̂ = Π(u) ·Π̃ ·Π(v) as the approximate path for the
pair u, v. This completes the description of the query
algorithm of our basic oracle. Observe that

ω(Π̂) = ω(Π(u)) + ω(Π̃) + ω(Π(v))

≤ dG(u, v) + (6k − 3) · dG(u, v) + dG(u, v)

= (6k − 1) · dG(u, v) .

Next, we analyze the running time of the query algo-
rithm. First, consider the step that tests if v ∈ Ball(u)
and if u ∈ Ball(v). Denote by X the random variable
that counts the number of vertices discovered by some
fixed Dijkstra exploration originated at u before the
landmark `(u) is discovered. We order all graph vertices
by their distance from u in a non-decreasing order, i.e.,
u = u0, u1, . . . , un−1, such that dG(u, ui) ≤ dG(u, uj)
for i ≤ j. (This is the order in which the aforementioned
Dijkstra exploration originated at u discovers them.)
For an integer value 1 ≤ t ≤ n − 1, the probability
that X = t is equal to the probability that the vertices
u0, u1, . . . , ut−1 are all not sampled and the vertex ut is
sampled. Hence X is distributed geometrically with the
parameter p = ρ/n. Hence

IE(X) =
n−1∑
t=1

(1− p)t · p · t ≤ 1

p
=

n

ρ
.(4.1)
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Also, obviously for any positive constant c, IP(X >
n
ρ c lnn) ≤ (1 − ρ/n)(n/ρ)c lnn ≤ n−c, i.e., whp X =

O(nρ log n).
Recall that the graph G has arboricity at most λ,

and thus any set of n′ ≤ n vertices induces O(n′ · λ)
edges. Hence Dijkstra algorithm traverses expected
O(nρλ) edges, and whp O(nρλ log n) edges. In an
unweighted graph such exploration requires time linear
in the number of edges, and in weighted5 graphs the
required time is O(nρ (λ + log n)) in expectation, and

O(nρλ · log n) whp. (Recall that Dijkstra algorithm

that scans a subgraph (V ′, E′) requires time O(|E′| +
|V ′| log |V ′|).)

The second step of our query algorithm queries the
distance oracle H for the landmarks graph L. (The
query is (u′, v′), u′ = `(u), v′ = `(v).) This query
returns a path Π′ between u′ and v′ in L in time O(|Π′|+
k). Finally, for each of the h = |Π′| edges (zi, zi+1),
i = 0, 1, . . . , h − 1 of the path Π′, the query algorithm
invokes our DPPRO D(G,H) with the query (zi, zi+1).
This oracle returns the shortest path Π̃i between zi and
zi+1 in G within time O(|Π̃i|). Finally, the algorithm
returns the concatenated path Π̂ = Π(u) · Π̃0 · Π̃1 · . . . ·
Π̃h−1 · Π(v). The running time required for producing

the path Π̃0 · . . . · Π̃h−1 is O(
∑h−1
i=0 |Π̃i|) = O(|Π̂|),

and |Π′| ≤ |Π̂|. Hence the overall expected running
time of the algorithm is O(nρ · λ + |Π̂|) for unweighted

graphs, and is O(nρ · (λ + log n) + |Π̂|) for weighted.

(Observe that the additive term of O(k) is dominated
by O(nρ · λ). Specifically, we will be using ρ ≤ n/ log n,

and k ≤ O(log n).) For the high-probability bounds one
needs to multiply the first term of the running time by
an additional O(log n) factor in both the unweighted
and the weighted cases.

Now we substitute ρ = 1
k · n

k
2k+2 . The resulting

expected query time becomes O(k ·n
1
2 + 1

2k+2 ·λ)+O(|Π̂|).
We summarize the properties of our basic oracle in the
following theorem.

Theorem 4.1. For an undirected n-vertex graph G of
arboricity λ and a positive integer parameter k =
1, 2, . . ., there exists a path-reporting distance oracle
of size (whp) O(n) (in addition to the size required
to store the input graph G) that returns (6k − 1)-
approximate shortest paths Π̂. The expected query

5One subtlety: we have to avoid scanning too many edges with

just one endpoint in Ball(u). We store the edges incident to each

vertex x in increasing order of their weights, and relax them in

that order when x is scanned. As soon as an edge (x, y) is relaxed

such that the tentative distance to y is greater than dG(u, `(u))

we can dispense with relaxing the remaining edges. Alternatively,

a modification of the sampling rule which we describe in Section

5 also resolves this issue.

time is O(n
1
2 + 1

2k+2 · k · λ) in unweighted graphs and

O(n
1
2 + 1

2k+2 ·k · (λ+log n)) in weighted ones. (The same
bounds on the query time apply whp if one multiplies
them by O(log n). In addition, in all cases the query
time contains the additive term O(|Π̂|).)

In particular, Theorem 4.1 implies that for any
constant ε > 0 one can have a path-reporting oracle
with query time O(n1/2+ελ), which provides O(1)-
approximate shortest paths for weighted undirected
graphs. Observe also that for k = 1 we obtain a
5-approximate path-reporting oracle with query time
Õ(n3/4λ). We remark that to get the latter oracle one
does not need to use the TZ oracle for the landmarks
graph L. Rather one can build a DPPRO H for all
pairs of landmarks. (In this case ρ = n1/4, |L| = O(ρ),
|Pairs| = |

(
L
2

)
| = O(ρ2) = O(

√
n), and so the size of the

oracle H is O(|Pairs|2 + n) = O(n).)
One can build the forest of SPTs rooted at the

landmarks in Õ(m) time. In additional O(m · ρ) =

O(k ·m · n1/2− 1
2k+2 ) time one can construct the metric

closure of L, i.e., the graph L. This graph has n′ = ρ
vertices and m′ ≤ ρ2 edges. In O(km′ · n′1/k) =

O(kρ2+1/k) = Õ(k · n
2k+1
2k+2 ) time one can construct the

TZ oracle for it. To construct the DPPRO with P =
O(k · ρ1+1/k) = O(k · n1/2) pairs one needs O(n · P 2) +

Õ(k ·m · n1/2− 1
2k+2 ) = O(k2 · n2) + Õ(k ·m · n1/2− 1

2k+2 )
time. Hence the overall construction time of this oracle
is O(k2 · n2) + Õ(k ·m · n1/2− 1

2k+2 ).
In Section 5 we show (see Corollary 5.1) that

Theorem 4.1 extends to general graphs with m = λ · n
edges.

5 An Extension to General Graphs

In this section we argue that Theorem 4.1 can be
extended to general n-vertex graphs G = (V,E, ω) with
m = λn edges. In its current form the theorem only
applies to graphs of arboricity at most λ. While this
is sufficient for our main application, i.e., for Theorem
7.1, our another application (Theorem 7.2) requires a
more general result. We remark that our extension
is based on the reduction of Agarwal et al. [5] of the
distance oracle problem in general graphs to the same
problem in bounded-degree graphs. Our reduction is
somewhat more general than the one from [5], as it also
applies to path-reporting distance oracles. We provide
our extension for the sake of completeness.

Given an m-edge n-vertex graph G with λ =

m/n, we split each vertex ui into d(u) = ddeg(u)
λ e

copies u(1), u(2), . . . , u(d(u)). Each copy is now selected
independently at random with probability ρ/n, for a
parameter ρ determined in the same way as in Section
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4. The original vertex u is selected to the landmarks’
set if and only if at least one of its copies (which will
also be called virtual nodes) is selected. Observe that
the rule that we have described is equivalent to selecting

u with probability d(u) · ρn = ddeg(u)
λ e · ρn .

The expected number of selected virtual nodes is∑
v∈V

d(v) · ρ
n

=
ρ

n
·
∑
v∈V
ddeg(u)

λ
e

≤ ρ

n

∑
v∈V

(
deg(v)

λ
+ 1)

= ρ+
ρ

λn

∑
v∈V

deg(v) = 3ρ .

The number |L| of landmarks is at most the number
of selected virtual nodes, and so IE(|L|) ≤ 3ρ. By
Chernoff’s bound, the number of selected virtual nodes
is whp O(ρ), and so, whp, |L|2+2/k = O(ρ2+2/k) as well.
Hence the size of our oracle remains O(n).

The rest of the construction algorithm for our
distance oracle is identical to that of Section 4. (The
only change is the distribution of selecting landmarks.)
The query algorithm is identical to the query algorithm
from Section 4. In particular, note that the virtual
nodes have no effect on the computation, i.e., the
returned paths contain only original vertices.

Next we argue that the expected query time of the
modified oracle is still at most O(nρ · λ) in unweighted

graphs, and O(nρ · λ log n) in weighted ones. (As usual,
we omit the additive term of the number of edges of the
returned path.) Specifically, we argue that the tests if
v ∈ Ball(u) and if u ∈ Ball(v) can be carried out within
the above expected time.

Let u = u0, u1, . . . , un−1 be all graph vertices
ordered by a Dijkstra exploration originated from
u, and replace each vertex ui by its d(ui) copies

u
(1)
i , . . . , u

(d(ui))
i . The copies appear in an arbitrary or-

der. Since each virtual node has probability ρ
n to be

selected independently of other vertices, it follows by a
previous argument that the number N of virtual nodes
that the algorithm encounters before seeing a selected
virtual node is O(nρ ). (The algorithm actually explores
only original vertices. For the sake of this argument we
imagine that when the algorithm reaches a vertex y it
reaches its first copy y(1). Right after that it reaches
the next copy y(2), etc., and then reaches y(d(y)). After
”reaching” all these copies the algorithm continues to
the next original vertex.)

Denote the original vertices explored by the algo-
rithm u1, u2, . . . , ui−1, ui, and let uhi be a selected copy
of ui. (We assume that all copies of uj , for j < i, are

not selected, and all copies uh
′

i , h′ < h, are also not

selected.) It follows that N =
∑i−1
j=1 d(uj) + h. Hence

IE(

i−1∑
j=1

d(uj)) ≤ IE(N) = O

(
n

ρ

)
.

Hence

IE(
i−1∑
j=1

ddeg(uj)

λ
e = O

(
n

ρ

)
as well. Thus

IE(
i−1∑
j=1

deg(uj)) = O

(
λn

ρ

)
= O

(
m

ρ

)
.

Observe that the number of edges explored by the
algorithm before reaching ui is at most

∑i−1
j=1 deg(uj).

(The only edges incident on ui explored by the algo-
rithm are edges (uj , ui), for j < i. These edges are
accounted for in the above sum of degrees.) Hence the
expected number of edges explored by the algorithm is
O(mρ ). Hence its expected running time is O(mρ ) (re-

spectively, O(mρ · log n)) in unweighted (resp., weighted)
graphs. The bounds that hold with high probability are
higher by a factor of O(log n).

Corollary 5.1. Up to constant factors, the result of
Theorem 4.1 holds for general undirected unweighted
m-edge n-vertex graphs with m = λn. For undi-
rected weighted graphs the expected query time becomes

O(n1/2+ 1
2k+2 · k · λ · log n) = O(n1/2+ 1

2k+2 · k · mn · log n),
and the same bound applies whp if one multiplies it by
another log n factor.

Since IE(|L|) = O(ρ), the construction time of the oracle
is, up to constant factors, the same as in Section 4.

This result provides a path-reporting analogue of
the result of Agarwal et al. [5], which provides stretch
O(k) and query time (nλ)O(1/k). Their oracle is not
path-reporting. Our oracle is path-reporting, but its
query time is significantly higher. Specifically, it is
n1/2+O(1/k) · k · λ.

6 Oracles with Smaller Query Time

In this section we devise two path-reporting oracles with
improved query time. The first oracle has size O(m+n)
(it stores the original graph), and query time λ · nε, for
an arbitrarily small ε > 0. The stretch parameter of
this oracle grows polynomially with ε−1. For the time
being we will focus on graphs of arboricity at most λ.
The argument extends to general graphs withm = λn in
the same way as was described in Section 5. Our second
oracle has size O(n log log n) (independent of the size of
the original graph) and reports stretch-O(loglog4/3 7 n)
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paths in O(log log n) time. Both draw on techniques
used in sublinear additive spanner constructions of [22].
We will later (Section 7) build upon these oracles to
construct oracles for dense graphs as well. These later
oracles will not have to store the input graph.

6.1 Construction of an Oracle with time O(λ·nε)
In this section we describe the construction algorithm
of our oracle. It will use a hierarchy of landmarks’ sets
L1, L2, . . . , Lh, for a positive integer parameter h that
will be determined later. For each index i ∈ [h], every
vertex v is selected into Li independently at random
with probability pi = ρi

n , ρ1 > ρ2 > . . . > ρh. The
sequence ρ1, ρ2, . . . , ρh will be determined in the sequel.
The vertices of Li will be called the i-level landmarks,
or shortly, the i-landmarks. For convenience of notation
we also denote L0 = V .

For each vertex v ∈ V and index i ∈ [h], let
`i(v) denote the closest i-landmark to v, where ties
are broken in an arbitrary consistent way. Denote

ri(v) = dG(v, `i(v)). Following [22], let B1/3
i (v) = {u |

dG(v, u) < 1
3ri(v)} denote the ith one-third-ball of v,

and Ball i(v) = {u | dG(v, u) < ri(v)} denote the ith
ball of v.

For each vertex v ∈ V we keep a path between v and
`1(v). (This is a forest of vertex-disjoint SPTs rooted at
1-landmarks. For each 1-landmark u′, its SPT spans all
vertices v ∈ V which are closer to u′ than to any other
1-landmark.) Similarly, for each i ∈ [h − 1] and every
i-landmark u(i) we keep a shortest path between u(i)

and its closest (i + 1)st landmark `i+1(u(i)) = u(i+1).
Again, this entails storing a forest of vertex-disjoint
SPTs rooted at (i + 1)-landmarks, for each each index
i ∈ [h − 1]. Overall this part of the oracle requires
O(n · h) space.

For the hth-level landmarks’ set Lh we build a
DPPRO Lh described in Section 3. Given a pair
u(h), v(h) of h-landmarks this oracle returns a shortest
path Π(u(h), v(h)) between them in time proportional to
the number of edges in this path, i.e., O(|Π(u(h), v(h))|).
The space requirement of the oracle Lh is O(n+ |Lh|4),
and thus we will select ρh to ensure that |Lh|4 = O(n),
i.e., ρh will be roughly n1/4. Denote also Ph =

(
Lh
2

)
be

the set of all pairs of h-landmarks.
For each index i ∈ [h− 1], we also build a DPPRO

Di for the following set Pi of pairs of i-landmarks. Each

pair of i-landmarks u, v such that either v ∈ B1/3
i+1(u) or

u ∈ B1/3
i+1(v) is inserted into Pi.

Similarly to the DPPRO Lh, given a pair (u, v) ∈ Pi
for some i ∈ [h − 1], the oracle Di returns a shortest
path Π(u, v) between u and v in time O(|Π(u, v)|). Our
oracle also stores the graph G itself. We will later show
a variant of this oracle that does not store G (Theorem

6.2). The size of the oracle is O(n + |Branchi|), where
Branchi is the set of branching events for the set Pi.
Since we aim at a linear size bound, we will ensure that
|Branchi| = O(n), for every i ∈ [h − 1]. We will also
construct a hash table Hi for Pi of size O(|Pi|) that
supports membership queries to Pi in O(1) time per
query. The resulting h-level oracle will be denoted Λh.

6.2 The Query Algorithm Next, we describe the
query algorithm of our oracle Λh. The query algorithm
is given a pair u = u(0), v = v(0) of vertices. The
algorithm starts with testing if u ∈ Ball1(v) and if
v ∈ Ball1(u). For this test the algorithm just conducts
a Dijkstra search from v until it discovers either v(1) or
u (and, symmetrically, also conducts a search from u).

Observe that by Equation (4.1), the expected size
of Ball1(v) and of Ball1(u) is O( nρ1 ), and whp both

these sets have size O( nρ1 · log n). Hence the running

time of this step is, whp, Õ( nρ1 · λ). (Specifically, it is

O( nρ1 · λ · log n) in unweighted graphs, and O( nρ1 · log n ·
(λ + log n)) in weighted ones. The expected running
time of this step is smaller by a factor of logn than the
above bound.)

If the algorithm discovers that v ∈ Ball1(u) or
that u ∈ Ball1(v) then it has found the shortest path
between u and v. In this case the algorithm returns
this path. Otherwise it has found u(1) = `1(u(0)) and
v(1) = `1(v(0)).

In general consider a situation when for some
index j, 1 ≤ j ≤ h, the algorithm has al-
ready computed u(j) and v(j). In this case, in-
ductively, the algorithm has already computed short-
est paths Π(u(0), u(1)),Π(u(1), u(2)), . . . ,Π(u(j−1), u(j))
and Π(v(0), v(1)),Π(v(1), v(2)), . . . ,Π(v(j−1), v(j)) be-
tween u(0) and u(1), u(1) and u(2), . . ., u(j−1) and u(j),
v(0) and v(1), v(1) and v(2), . . ., v(j−1) and v(j), respec-
tively. (Note that the base case j = 1 has been just
argued.)

For j < h, the query algorithm of our oracle
Λh then queries the hash table Hj whether the pair
(u(j), v(j)) ∈ Pj . If it is the case then the algorithm
queries the oracle Dj , which, in turn, returns the
shortest path Π(u(j), v(j)) between u(j) and v(j) in
time O(|Π(u(j), v(j))|). The algorithm then reports the
concatenated path

Π(u, v) = Π(u(0), u(1)) ·Π(u(1), u(2)) ·
. . . Π(u(j−1), u(j)) ·Π(u(j), v(j)) ·Π(v(j), v(j−1)) ·
. . . ·Π(v(2), v(1)) ·Π(v(1), v(0)) .

Computing this concatenation requires O(j) ≤
O(|Π(u, v)|) time.

In the complementary case when (u(j), v(j)) 6∈
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Pj , the algorithm fetches the prerecorded paths
Π(u(j), u(j+1)) and Π(v(j), v(j+1)), and invokes itself re-
cursively on the pair (u(j+1), v(j+1)). (Recall that for
each index j, 1 ≤ j ≤ h− 1, the algorithm stores a for-
est of vertex-disjoint SPTs rooted at (j + 1)-landmarks
Lj+1. These SPTs enable us to compute the paths
Π(u(j), u(j+1)), Π(v(j), v(j+1)) for all j ∈ [h−1], in time
proportional to the number of edges in these paths.)

Finally, if j = h then we query the DPPRO
Lh of the graph Lh with the query (u(h), v(h)). The
query returns the shortest path between them in time
O(|Π(u(h), v(h))|). It follows that the overall run-
ning time of the query algorithm is dominated by the
time required to compute Π(u(0), u(1)) and Π(v(0), v(1)).
Specifically, it is

Õ(
n

ρ1
· λ) +O(|Π(u(0), u(1))|+ |Π(v(0), v(1))|+

+

j−1∑
i=1

(|Π(u(i), u(i+1))|+ |Π(v(i), v(i+1))|)

+|Π(u(j), v(j))|),

where 1 ≤ j ≤ h is the smallest index such that
(u(j), v(j)) ∈ Pj . (Recall that for j = h, Ph =

(
Lh
2

)
,

i.e., all pairs of h-landmarks belong to Ph.) Hence
the overall query time is Õ( nρ1 · λ) + O(|Π(u, v)| + h),

where Π(u, v) is the path that the algorithm ultimately
returns.

Remark: If for each index 0 ≤ j ≤ h − 1 at least
one of the subpaths Π(u(j), u(j+1)),Π(v(j), v(j+1)) is not
empty then h ≤ |Π(u, v)|, and the resulting query time
is Õ( nρ1λ) +O(|Π(u, v)|). One can artificially guarantee
that all these subpaths will not be empty, i.e., that
u(j) 6= u(j+1) and v(j) 6= v(j+1), for every j. To
do this one just defines u(j+1) = `(u(j)) to be the
closest (j + 1)-level landmark to u(j), which is different
from u(j). Under this modification of the algorithm
the query time is Õ( nρ1 · λ) + O(|Π(u, v)|), while the

stretch guarantee of the oracle (which will be analyzed
in Section 6.3) stays the same. This modification can
make oracle’s performance only worse than it is without
this modification, but the bounds on the query time of
the modified oracle in terms of the number of edges
in the returned path become somewhat nicer. (See
Theorem 6.2.)

6.3 The Stretch Analysis Recall that in the case
that v ∈ Ball1(u) or u ∈ Ball1(v) our algorithm returns
the exact shortest path between u = u(0) and v = v(0).
Hence we next consider the situation when v 6∈ Ball1(u)
and u 6∈ Ball1(v). For brevity let d = d(0) = dG(u, v).
At this point the algorithm also has already computed

u(1) and v(1), along with the shortest paths Π(u(0), u(1))
and Π(v(0), v(1)) between u(0) and u(1) and between v(0)

and v(1), respectively. Observe that in this scenario we
have dG(u(0), u(1)), dG(v(0), v(1)) ≤ d, and so

dG(u(1), v(1)) ≤ dG(u(1), u(0)) + dG(u(0), v(0))

+dG(v(0), v(1)) ≤ 3 · d.

Hence if (u(1), v(1)) ∈ P1 then the path Π(u(0), u(1)) ·
Π(u(1), v(1)) ·Π(v(1), v(0)) returned by the algorithm is a
5-approximate path between u and v. Indeed, its length
is at most

dG(u(0), u(1)) + dG(u(1), v(1)) + dG(v(1), v(0))

≤ d+ 3 · d+ d = 5 · d .

More generally, suppose the query algorithm reached
the j-level landmarks u(j), v(j), for some j, 1 ≤ j ≤ h−1,
and suppose that (u(j), v(j)) 6∈ Pj . This means that

v(j) 6∈ B1/3
j+1(u(j)) and u(j) 6∈ B1/3

j+1(v(j)). By definition
of the one-third-ball it follows that

dG(u(j), v(j)) ≥ 1

3
· dG(u(j), u(j+1)) =

1

3
· rj+1(u(j)) ,

and

dG(u(j), v(j)) ≥ 1

3
· dG(v(j), v(j+1)) =

1

3
· rj+1(v(j)) ,

where u(j+1) (respectively, v(j+1)) is the (j + 1)-
landmark closest to u(j) (resp., v(j)).

Hence

dG(u(j+1), v(j+1)) ≤ dG(u(j+1), u(j)) + dG(u(j), v(j))

+dG(v(j), v(j+1)) ≤ 7 · dG(u(j), v(j)) .

Denote by p, 1 ≤ p ≤ h, the index for which the
algorithm discovers that (u(p), v(p)) ∈ Pp. (Since
(u(h), v(h)) ∈ Ph for every pair (u(h), v(h)) of h-
landmarks, it follows that the index p is well-defined.)

We have seen that dG(u(1), v(1)) ≤ 3d, and for
every index j, 1 ≤ j ≤ p − 1, dG(u(j+1), v(j+1)) ≤ 7 ·
dG(u(j), v(j)). Hence for every j, 1 ≤ j ≤ p, it holds that
dG(u(j), v(j)) ≤ 3 · 7j−1 · d. Denote d(j) = 3 · 7j−1 · d, for
0 ≤ j ≤ p. Also, dG(u(0), u(1)), dG(v(0), v(1)) ≤ d = d(0),
and for every index j, 1 ≤ j ≤ p− 1,

dG(u(j), u(j+1)) ≤ 3 · dG(u(j), v(j)) ≤ 3 · d(j)

= 32 · 7j−1 · d .

Hence the length of the path

Π(u(0), u(1)) · . . . ·Π(u(p−1), u(p)) ·
Π(u(p), v(p)) ·Π(v(p), v(p−1)) · . . .Π(v(1), v(0))
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returned by the algorithm is at most

d(0) + 3 ·

p−1∑
j=1

d(j)

+ d(p) + 3 ·

p−1∑
j=1

d(j)

+ d(0) =

d ·

2 ·

1 + 3 ·

p−1∑
j=1

3 · 7j−1

+ 3 · 7p−1


= d · (6 · 7p−1 − 1) .

Since p ≤ h we conclude that the oracle has stretch at
most 6 · 7h−1 − 1.

6.4 The Size of the Oracle For each index i ∈
[h], our oracle stores a forest of (vertex-disjoint) SPTs
rooted at i-landmarks. Each of these forests requires
O(n) space, i.e., together these h forests require O(n ·h)
space.

We next set the values ρ1 > ρ2 > . . . > ρh so
that each of the auxiliary oracles D1,D2, . . . ,Dh−1,Lh
requires O(n) space. Each of the hash tables
H1,H2, . . . ,Hh associated with these oracles requires
less space than its respective oracle. Recall that the
parameter ρ1 also determines the query time. (It is
Õ( nρ1λ) +O(|Π|), where Π the path returned by the al-
gorithm. In the sequel we will often skip the additive
term of O(|Π|) when stating the query time.)

For each i ∈ [h] we write ρi = nαi , where αi =
1− (3/4)h−i+1. Observe that αh = 1/4, i.e., ρh = n1/4.

Hence IE(|Lh|) = ρh = n1/4, and by Chernoff’s
bound, whp, |Lh| = O(n1/4). (Recall that |Lh| is a
Binomial random variable.) Hence the DPPRO Lh for
Ph =

(
Lh
2

)
requires space O(|Lh|4 + n) = O(n), whp.

Next we analyze the space requirements of the
oracles D1,D2, . . . ,Dh−1. Fix an index i ∈ [h− 1], and
recall that the space requirement of the DPPRO Di is
O(n + |Branchi| + |Pi|), where Branchi is the set of
branching events for the set Pi of pairs of vertices. Next
we argue that (whp) |Branchi| = O(n). Recall that the
set Pi contains all pairs of i-landmarks (u(i), v(i)) such

that either v(i) ∈ B1/3
i+1(u(i)) or u(i) ∈ B1/3

i+1(v(i)).
The following two lemmas from [22] are the key to

the analysis of the oracle’s size. The first says that with
our definition of Pi+1 all branching events are confined
to (i+ 1)st level balls. The second bounds the expected
number of branching events in terms of the sampling
probabilities. For completeness, the proofs of these
lemmas are provided in Appendix A.

Lemma 6.1. Suppose that v ∈ B1/3
i+1(u). Then if (x, y) ∈

Pi+1 and there is a branching event between the pairs
(u, v) and (x, y) then necessarily x, y ∈ Ball i+1(u).

Lemma 6.2. Whp, |Branchi| = O
(

ρ4i
ρ3
i+1

· log3 n
)

, and

IE(|Branchi|) = O
(

ρ4i
ρ3
i+1

)
. Moreover, whp |Pi| =

O
(

ρ2i
ρi+1
· log n

)
, and IE(|Pi|) = O

(
ρ2i
ρi+1

)
.

Observe that with our choice of ρi (ρi = nαi , αi =
1− (3/4)h−i+1, for every i ∈ [h]), it holds for every i ∈
[h−1] that O

(
ρ4i
ρ3
i+1

log3 n
)

= O(n4αi−3αi+1) = O(n),

and O
(

ρ2i
ρi+1

)
= O(n2αi−αi+1) = O(n1− 1

2 ( 3
4 )h−i). Hence

by Lemma 6.2, for each i ∈ [h−1], the oracle Di requires
expected space O(n + |Branchi| + |Pi|) = O(n). Thus
the overall expected space required by our h-level oracle
oracle Λh (in addition to the space required to store the
original graph G) is O(n ·h). Recall that the query time

is Õ((n/ρ1)λ) = Õ(n(3/4)h · λ).
The reduction described in Section 5 enables us to

extend these results to general m-edge n-vertex graphs.
Specifically, the reduction reduces the distance oracle
problem on such graphs to the same problem on graphs
with bounded degree λ = m/n. Graphs with maximum
degree λ have arboricity at most λ, and thus the
reduction is applicable.

Theorem 6.1. For any parameter h = 1, 2, . . . and
any n-vertex undirected possibly weighted graph G with
arboricity λ, the path-reporting distance oracle Λh uses
expected space O(n ·h), in addition to the space required
to store G. Its stretch is (6 · 7h−1 − 1), and its query

time is (whp) Õ(n(3/4)hλ). The same result applies for
any m-edge n-vertex graph with λ = m/n.

Specifically, in unweighted graphs with arboricity λ

the query time is O((n/ρ1) · λ · log n) = O(n(3/4)h · λ ·
log n), while in weighted graphs it is O(n(3/4)h · (λ +
log n) log n). In unweighted m-edge n-vertex graphs the

query time is O(n(3/4)h · mn · log n), while in m-edge n-

vertex graphs it is O(n(3/4)h · mn · log2 n).
By introducing a parameter t = (4/3)h we get

query time Õ(n1/tλ), space O(n · log t), and stretch
O(tlog4/3 7) ≈ O(t6.76).

Corollary 6.1. For any constant t of the form t =
(4/3)h (for a positive integer h) and an n-vertex graph G
with arboricity λ, our path-reporting distance oracle Λh
uses expected space O(n) (in addition to the space needed
to store G). It provides stretch O(tlog4/3 7), and its
query time is (whp) Õ(n1/tλ). (For a non-constant t the
space requirement becomes O(n · log t).) The same result
applies for any m-edge n-vertex graph with λ = m/n.

Yet better bounds can be obtained if one is in-
terested in small expected query time. The expected
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query time is dominated by the time required to test
if v ∈ Ball1(u) and if u ∈ Ball1(v). For unweighted

graphs these tests require O( nρ1λ) = O(n(3/4)hλ) ex-
pected time.

Corollary 6.2. For any t of the form t = (4/3)h,
for a positive integer h, and an n-vertex m-edge graph
G, our path-reporting oracle Λh uses expected O(n · h)
space in addition to the space required to store G. It
provides stretch O(tlog4/3 7), and its expected query time
is O(n1/t · (m/n) + log t) for unweighted graphs. In
the case of weighted graphs the expected query time is
O(n1/t(m/n) · log n).

Consider now the oracle Λh for a superconstant
number of levels h = log4/3(log n + 1). Then ρ1 =
(2n)α1 = n. In other words, all vertices V of G are
now defined as the first level landmarks (1-landmarks),
i.e., L1 = V . (For levels i = 2, 3, . . . , h, landmarks
Li are still selected at random from V with probability
ρi/n < 1, independently. For level 1 this probability
is 1.) Recall that our oracle starts with testing if
v ∈ Ball1(u) and if u ∈ Ball1(v). Now both these
balls are empty sets, because all vertices belong to L1.
Thus with this setting of parameters the oracle Λh
no longer needs to conduct this time-consuming test.
Rather it proceeds directly to querying the oracle D1.
Remarkably, this variant of our oracle does not require
storing the graph G. (Recall that the graph was only
used by the query algorithm for testing if v ∈ Ball1(u)
and if u ∈ Ball1(v).) The query time of the new
oracle is now dominated by the h queries to the oracles
D1,D2, . . . ,Dh−1,Lh, i.e., O(h) = O(log log n). Recall
that, by the remark at the end of Section 6.2, one can
always make our oracle to return paths with at least h
edges, and thus the O(h) = O(log log n) additive term
in the query time can be swallowed by O(|Π|), where Π
is the path that our oracle returns.

Denote by Λ̃ the oracle which was just described.
The stretch of Λ̃ is (by Theorem 6.1) 6 · 7h−1 − 1 =
O(loglog4/3 7 n).

Theorem 6.2. The oracle Λ̃ is a path-reporting oracle
with expected space O(n log log n), where n is the number
of vertices of its input undirected possibly weighted graph
G. Its stretch is O(loglog4/3 7 n) and its query time
is O(log log n). (It can be made O(1), but the paths
returned by the oracle will then contain Ω(log log n)
edges.)

Note that by Markov’s inequality, Theorem 6.2
implies that one can produce a path-reporting ora-
cle with space O(n log log n), query time O(log log n)
and polylogarithmic stretch by just repeating the above

oracle-constructing algorithm for O(log n) times. Whp,
in one of the executions the oracle’s space will be
O(n log log n). Similarly, by the same Markov’s argu-
ment, Corollary 6.1 implies that whp one can have the
space of the oracle Λh bounded by O(n) (in addition to
the space required to store the input graph).

Next we analyze the construction time of our oracle.
The h forests rooted at landmarks can be constructed
in Õ(m · h) time. We also spend Õ(m · n) = Õ(n2λ)
time to compute all-pairs-shortest-paths (henceforth,
APSP). Then for each ball Bi+1(u), u ∈ Li, we store
all i-landmarks that belong to it. They can be fetched
from the APSP structure in O(1) time per i-landmark.
The expected size of this data structure is O(|Pi|) =

O(
ρ2i
ρi+1
· log2 n) = O(n). Then we produce all possible

quadruples u, v, x, y with v, x, y ∈ Ball i+1(u) ∩ Li, u ∈
Li. By the proof of Lemma 6.2, there are expected

O(
ρ4i
ρ3
i+1

) = O(n) such quadruples. For each of these

quadruples we check if the involved shortest paths
intersect, and compute the corresponding branching
events. Since the length of each such path is whp
O( n

ρi+1
· log n), it follows that the entire computation

can be carried out in Õ( n2

ρi+1
) expected time. Recall that

ρi+1 = Ω̃(n1/4), and thus this running time is Õ(n7/4).
In O(n · P 2) = Õ(n2) additional time we construct the
DPPRO Lh for the set of all pairs of h-landmarks. The
total expected construction time is therefore dominated
by the APSP computation, i.e., it is Õ(m · n).

7 Spanner-Based Oracles

While the query time of our oracle Λ̃ is essentially op-
timal (except maybe for an additive log log n term),
its space requirement O(n log log n) is slightly subopti-
mal, and also its stretch requirement is O(loglog4/3 7 n),
instead of the desired O(log n). Next we argue that
one can get an optimal space O(n) and optimal stretch
O(log n), at the expense of increasing the query time to
O(nε), for an arbitrarily small constant ε > 0.

Given an n-vertex weighted graph G = (V,E, ω)
we start with constructing an O(log n)-spanner G′ =
(V,H, ω) of G with O(n) edges. (See [6]; a faster
algorithm was given in [24]. For unweighted graphs
a linear-time construction can be found in [21], and
a linear-time construction with optimal stretch-space
tradeoff can be found in [17].) Then we build the oracle
Λh for the spanner G′. The space required by the oracle
is (by Corollary 6.1)O(n) (whp), plus the space required
to store the spanner G′, i.e., also O(n). Hence the total
space required for this spanner-based oracle is O(n). Its
stretch is the product of the stretch of the oracle, i.e.,
O(tlog4/3 7), with t = (4/3)h for an integer h, and the
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stretch of the spanner, i.e., O(log n). Hence the oracle’s
stretch is O(tlog4/3 7 · log n). The oracle reports paths
in G′ = (V,H), but since H ⊆ E, these paths belong
to G as well. Observe also that the query time of the
spanner-based oracle is Õ(n1/t · m

′

n ), where m′ = |H| is
the number of edges in the spanner. Since m′ = O(n), it
follows that the query time is, whp, Õ(n1/t). We remark
also that the spanner has constant arboricity, and thus
one does not really need the reduction described in
Section 5 for this result.

Theorem 7.1. For any constant ε > 0, the oracle
obtained by invoking the oracle Λh with h = dlog4/3 ε

−1e
from Corollary 6.1 on a linear-size O(log n)-spanner is
a path-reporting oracle with space O(n) (whp), stretch
O(log n), and query time O(nε).

Generally, we can use an O(k)-spanner, logn
log logn ≤

k ≤ log n with O(n1+1/k) edges. As a result we obtain
a path-reporting distance oracle with space O(n1+1/k)
(whp; in fact, the space is slightly better than that, i.e.,
O(n1+1/k) +S, where S = O(n) whp), stretch O(k) and
query time O(nε+1/k) = O(nε+o(1)).

Observe that Theorem 7.1 exhibits an optimal (up
to constant factors) tradeoff between the stretch and
the oracle size in the range logn

log logn ≤ k ≤ log n. The
only known oracle that exhibits this tradeoff is due to
Mandel and Naor [18]. However, the oracle of [18] is not
path-reporting, while our oracle is.

The construction time of this oracle consists of the
time required to build the O(log n)-spanner (which is
Õ(n2) [25]) and the construction time of the oracle Λh
in G′ (which is also Õ(n2), because G′ has O(n) edges).
Hence its overall construction time is Õ(n2).

In the context of unweighted graphs the same idea
of invoking our oracle from Corollary 6.1 on a span-
ner can be used in conjunction with (1 + ε, β)-spanners.
Given an unweighted n-vertex graph G = (V,E), let
G′ = (V,H) be its (1 + δ, β)-spanner, β = β(δ, k) =(

log k
δ

)O(log k)

, with |H| = O(β ·n1+1/k) edges, for a pair

of parameters δ > 0, k = 1, 2, . . .. (Such a construction
was devised in [16].) For the sake of the following appli-
cation one can set δ = 1. Invoke the distance oracle from
Corollary 6.1 with a parameter t on top of this span-
ner. We obtain a path-reporting distance oracle with
space O(βn1+1/k) (whp). Its stretch is (O(tlog4/3 7), β =
β(t, k)), β(t, k) = O(tlog4/3 7 · β(1, k)) = tlog4/3 7 ·
kO(log log k), and its query time is Õ(n1/t+1/k), whp. As

long as t = o(k
1

log4/3 7 ), the multiplicative stretch is o(k),
the additive stretch is still β(k) = kO(log log k), while
the space is O(βn1+1/k). In particular, one can have

query time n
O

(
k
− 1

log4/3 7+η

)
, for an arbitrarily small

constant η > 0, stretch (o(k), kO(log log k)), and space
O(kO(log log k)n1+1/k).

Another variant of this construction has a higher
query time O(nε), for some arbitrarily small constant
ε > 0, but its multiplicative stretch is O(1). We just set
t to be a large fixed constant and consider k � tlog4/3 7.
Then the query time is O(nε) whp (ε = t−1), stretch is
(O(1), poly(1/ε) · kO(log log k)), and space O(β · n1+1/k),
whp.

Theorem 7.2. For any unweighted undirected n-vertex
graph G, any arbitrarily small constant ε > 0 and any
parameter k = 1, 2, . . ., our path-reporting distance ora-
cle has query time O(nε) (whp), stretch (O(1), β(k)))
and space O(β(k) · n1+1/k) (whp), where β(k) =
kO(log log k). Another variant of this oracle has query

time n
O

(
k
− 1

log4/3 7+η

)
whp, for an arbitrarily small

constant η > 0, stretch (o(k), kO(log log k)), and space
O(kO(log log k) · n1+1/k) whp.

To our knowledge these are the first distance oracles
whose tradeoff between multiplicative stretch and space
is better than the classical tradeoff, i.e., 2k − 1 versus
O(n1+1/k). Naturally, we pay by having an additive
stretch. By lower bounds from [27], an additive stretch
of Ω(k) is inevitable for such distance oracles.

One can also use a (5 + ε, kO(1))-spanner
with O(n1+1/k) edges from [22] instead of (1 +
ε, ( log k

ε )O(log k))-spanner with ( log k
ε )O(log k)n1+1/k edges

from [16] for our distance oracle. As a result the oracle’s
space bound decreases to O(n1+1/k), its additive stretch
becomes polynomial in k, but the multiplicative stretch
grows by a factor of 5 + ε. We remark that, in general,
any construction of (α, β)-spanners with size O(S · n)
can be plugged in our oracle. The resulting oracle will
have stretch (tlog4/3 7 ·α, tlog4/3 7 ·β), size O(Sn+n·log t),
and query time O(S · n1/t).

The construction time of this oracle is the time
needed to construct the (1 + ε, β)-spanner G′, plus the
construction of Λh on G′. The construction time of [16]
is O(n2+1/k). The construction time of the oracle Λh on
G′ is Õ(m′ ·n′), where m′ = O(β ·n1+1/k) is the number
of edges in G′, and n′ = n is the number of vertices in
G′. Hence the overall construction time in this case is
O(β(k) · n2+1/k) = kO(log log k)n2+1/k.
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Appendix

A Missing proofs

In this section we provide proofs of Lemmas 6.1 and 6.2.

Proof of Lemma 6.1: Suppose for contradiction that
there exists a pair (x, y) ∈ Pi+1 such that the pairs
(u, v), (x, y) participate in a branching event β, and such
that either x 6∈ Ball i+1(u) or y 6∈ Ball i+1(u). Then
β = (Π(u, v),Π(x, y), z), where Π(u, v) (respectively,
Π(x, y)) is a shortest path between u and v (respectively,
between x and y), and z is a node at which these two
paths branch. Since (x, y) ∈ Pi+1 it follows that either

y ∈ B1/3
i+1(x) or x ∈ B1/3

i+1(x). Without loss of generality

suppose that y ∈ B1/3
i+1(x).

The proof splits into two cases. In the first case
we assume that x 6∈ Ball i+1(u), and in the second we
assume that y 6∈ Ball i+1(u). (Note that roles of x
and y are not symmetric.) In both cases we reach a
contradiction.

We start with the case x 6∈ Ball i+1(u). Observe
that dG(x, z) ≤ dG(x, y) < 1

3 · ri+1(x) and dG(u, z) ≤
dG(u, v) < 1

3 · ri+1(u). Denote δ = dG(u, u(i+1)) =

ri+1(u), where u(i+1) = `i+1(u). Denote also δ′ =
dG(u, x). Observe that ri+1(x) ≤ dG(x, u(i+1)) ≤ δ+ δ′,
and also (since x 6∈ Ball i+1(u)) δ′ = dG(u, x) ≥ δ =
ri+1(u). Then

dG(u, z) + dG(z, x) <
1

3
· ri+1(u) +

1

3
· ri+1(x)

≤ δ

3
+

1

3
· (δ + δ′)

≤ δ′ = dG(u, x) .

Hence dG(u, z) + dG(z, x) < dG(u, x), contradicting the
triangle inequality.

We are now left with the case that x ∈ Ball i+1(u),
but y 6∈ Ball i+1(u). Then dG(y, z) ≤ dG(x, y) <
1
3 · ri+1(x). Also, dG(u, z) ≤ dG(u, v) < 1

3 · ri+1(u). In

addition, ri+1(x) ≤ dG(x, u(i+1)) ≤ dG(x, u)+ri+1(u) ≤
2δ. (Note that dG(x, u) ≤ δ = ri+1(u), because
x ∈ Ball i+1(u).) Hence

dG(u, z) + dG(z, y) <
1

3
· (ri+1(u) + ri+1(x))

≤ 1

3
· (δ + 2δ) = δ ≤ dG(u, y) .

(The last inequality is because, by an assumption, y 6∈
Ball i+1(u).) This is, however, again a contradiction to
the triangle inequality.

Proof of Lemma 6.2: Recall that (see [12], Lemma
7.5) each pair (u, v), (x, y) may produce at most two

branching events. Hence next we focus on providing
an upper bound on the number of intersecting pairs of
paths Π(u, v),Π(x, y) for (u, v), (x, y) ∈ Pi.

By the previous lemma, for a pair (u, v), (x, y) to
create a branching event there must be one of these four
vertices (without loss of generality we call it u) such that
the three other vertices belong to Ball i+1(u). Hence
the number of intersecting pairs as above is at most (a
constant factor multiplied by) the number of quadruples
(u, v, x, y) with v, x, y ∈ Ball i+1(u). For a fixed i-
landmark u, the number of vertices in its (i + 1)st ball

Ball i+1(u(i)) is, whp, O
(

n
ρi+1
· log n

)
. (This random

variable is distributed geometrically with the parameter
p = ρi+1

n .) Each of the vertices in Ball i+1(u) has
probability ρi

n to belong to Li, independently of other
vertices. Hence, by Chernoff’s bound, whp there are
ρi
n · O

(
n

ρi+1
· log n

)
= O

(
ρi
ρi+1
· log n

)
i-landmarks in

Ball i+1(u). (We select the constant c hidden by the

O-notation in O
(

n
ρi+1
· log n

)
to be sufficiently large.

Then the expectation is c · ρi
ρi+1
· log n ≥ c · log n. Hence

the Chernoff’s bound applies with high probability.)
Hence the number of triples v, x, y of i-landmarks

in Ball i+1(u) is, whp, O
(

ρ3i
ρ3
i+1

· log3 n
)

. The number of

i-landmarks u is, by the Chernoff’s bound, whp O(ρi).
Hence the number of quadruples as above is, whp, at
most

O(ρi) ·O
(

ρ3
i

ρ3
i+1

· log3 n

)
= O

(
ρ4
i

ρ3
i+1

· log3 n

)
.

Also, the number of pairs |Pi| is at most the number
of i-landmarks (whp, it is O(ρi)) multiplied by the
maximum number of i-landmarks in an (i + 1)-level

ball Ball i+1(u) (whp, it is O
(

ρi
ρi+1
· log n

)
), i.e., |Pi| =

O
(

ρ2i
ρi+1
· log n

)
.

Next we argue that the expected number of quadru-
ples (u, v, x, y) of i-landmarks such that v, x, y ∈
Ball i+1(u) is O

(
ρ4i
ρ3
i+1

)
and that IE(|Pi|) = O

(
ρ2i
ρi+1

)
.

For a fixed vertex u, write X(u) = I({u ∈ Li}) ·
Y (u), where Y (u) is the number of triples of distinct i-
landmarks different from u which belong to Ball i+1(u),
and I({u ∈ Li}) is the indicator random variable of the
event {u ∈ Li}. (Note that the ball is defined even if
u 6∈ Li.) Observe that the random variables I({u ∈ Li})
and Y (u) are independent, and thus

IE(X(u)) = IE(I({u ∈ Li}) ·IE(Y (u)) =
ρi
n
·IE(Y (u)) .

Let σ = (v1, v2, . . . , vn−1) be the sequence of vertices
ordered by the non-decreasing distance from u. (They
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appear in the order in which the Dijkstra algorithm
initiated at u discovers them.) For k = 3, 4, . . . , n − 1,
denote by Jk the random variable which is equal to 0 if
vk+1 is not the first vertex in σ which belongs to Li+1.
If vk+1 is the first vertex as above then Jk is equal to
the number of triples vj1 , vj2 , vj3 , 1 ≤ j1 < j2 < j3 ≤ k
such that vj1 , vj2 , vj3 ∈ Li. Also, for each quadruple
1 ≤ j1 < j2 < j3 < j4 ≤ n − 1 of indices, define
J(j1, j2, j3, j4) to be the indicator random variable of
the event that vj1 , vj2 , vj3 ∈ Li, vj4 ∈ Li+1, and for each
j, 1 ≤ j < j4, the vertex vj is not an (i+ 1)-landmark.
Observe that

IE(J(j1, j2, j3, j4)) =
(ρi
n

)3

·
(

1− ρi+1

n

)j4−1

· ρi+1

n
.

Also,

IE(Jk) =
∑

1≤j1<j2<j3≤k

IE(J(j1, j2, j3, k + 1))

=

(
k

3

)(ρi
n

)3

·
(

1− ρi+1

n

)k
· ρi+1

n
.

Note that Y (u) =
∑n−2
k=3 Jk, and so

IE(Y (u)) ≤
∞∑
k=3

(
k

3

)(ρi
n

)3

·
(

1− ρi+1

n

)k
· ρi+1

n
.

Denote A = 10 n
ρi+1

. For k ≤ A, we have (1 − ρi+1

n )k =

O(1), and so

A∑
k=3

(
k

3

)(ρi
n

)3

·
(

1− ρi+1

n

)k
· ρi+1

n

= O

(
ρ3
i · ρi+1

n4

) A∑
k=3

k3

= O

(
ρ3
i

ρ3
i+1

)
.

Also,

∞∑
k=A+1

(
k

3

)(ρi
n

)3

·
(

1− ρi+1

n

)k
· ρi+1

n

≤ O

(
ρ3
i · ρi+1

n4

)
·
∞∑

k=A+1

k3 ·
(

1− ρi+1

n

)k
.

The latter sum is at most∫ ∞
A

x3e−10x/Adx = (A/10)4

∫ ∞
10

y3e−ydy

= O(A4) = O

((
n

ρi+1

)4
)
.

Hence

∞∑
k=A+1

(
k

3

)(ρi
n

)3

·
(

1− ρi+1

n

)k
· ρi+1

n

= O

(
ρ3
i · ρi+1

n4

)
·O

((
n

ρi+1

)4
)

= O

(
ρ3
i

ρ3
i+1

)
,

and so IE(Y (u)) = O(
ρ3i
ρ3
i+1

). Hence IE(X(u)) = ρi
n ·

IE(Y (u)) = O(
ρ4i
ρ3
i+1

· 1
n ).

Finally, the overall expected number of quadru-
ples (u, v, x, y) of i-landmarks such that v, x, y ∈
Ball i+1(u) is, by linearity of expectation, at most∑
v∈V IE(X(u)) = O(

ρ4i
ρ3
i+1

).

A similar argument provides an upper bound of

O
(

ρ2i
ρi+1

)
on the expected number of pairs |Pi|. We

shortly sketch it below.
For a vertex u, let X ′(u) = I({u ∈ Li}) · Y ′(u),

where Y ′(u) is the number of i-landmarks which belong
to Ball i+1(u). Clearly, IE(I({u ∈ Li}) = ρi/n, and
the two random variables (I({u ∈ Li}) and Y ′(u)) are
independent. For every integer k ≥ 1, let J ′k be a
random variable which is equal to 0 if vk+1 is not the
first vertex in σ which belongs to Li+1. Otherwise it
is the number of i-landmarks among v1, v2, . . . , vk. For
integer j1, j2, 1 ≤ j1 < j2 ≤ n − 1, let J ′(j1, j2) be the
indicator random variable of the event that vj1 ∈ Li,
vj2 ∈ Li+1, and for every j < j2, it holds that vj 6∈ Li+1.
Then

IE(J ′(j1, j2)) =
ρi
n
·
(

1− ρi+1

n

)j2−1

· ρi+1

n
.

Hence

IE(J ′k) =
∑

1≤j1≤k

IE(J ′(j1, k+1)) =
ρi · ρi+1

n2
·k·
(

1− ρi+1

n

)k
,

and

IE(Y ′(u)) ≤
∞∑
k=1

IE(J ′k) =
ρi · ρi+1

n2
·
∞∑
k=1

k·
(

1− ρi+1

n

)k
.

Write A = 10 n
ρi+1

, and

∞∑
k=1

k
(

1− ρi+1

n

)k
=

A∑
k=1

k
(

1− ρi+1

n

)k
+
∑
k>A

k
(

1− ρi+1

n

)k
.

Each term of the first sum is O(1), and thus the first
sum is at most O(A2) = O(n2/ρ2

i+1). The second
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sum is at most the integral
∫∞
A
x(1 − (1/10A))xdx =

O(A2)
∫∞

1
y · e−ydy = O(A2) = O(n2/ρ2

i+1) as well.
Hence

IE(Y ′(u)) =
ρi · ρi+1

n2
·O
(
n2

ρ2
i+1

)
= O

(
ρi
ρi+1

)
.

Hence IE(X ′(u)) = O(ρ2
i /(ρi+1n)), and by lin-

earity of expectation we conclude that IE(|Pi|) ≤∑
u∈V IE(X ′(u)) = O(ρ2

i /ρi+1).
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