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Abstract We present efficient algorithms for computing
very sparse low distortion spanners in distributed networks
and prove some non-trivial lower bounds on the tradeoff
between time, sparseness, and distortion. All of our algo-
rithms assume a synchronized distributed network, where
relatively short messages may be communicated in each time
step. Our first result is a fast distributed algorithm for finding
an O(2log∗ n log n)-spanner with size O(n). Besides being
nearly optimal in time and distortion, this algorithm appears
to be the first that constructs an O(n)-size skeleton with-
out requiring unbounded length messages or time propor-
tional to the diameter of the network. Our second result is a
new class of efficiently constructible (α, β)-spanners called
Fibonacci spanners whose distortion improves with the dis-
tance being approximated. At their sparsest Fibonacci span-
ners can have nearly linear size, namely O(n(log log n)φ),
where φ = (1 +

√
5)/2 is the golden ratio. As the distance

increases the multiplicative distortion of a Fibonacci spanner
passes through four discrete stages, moving from logarithmic
to log-logarithmic, then into a period where it is constant,
tending to 3, followed by another period tending to 1. On
the lower bound side we prove that many recent sequential
spanner constructions have no efficient counterparts in dis-
tributed networks, even if the desired distortion only needs
to be achieved on the average or for a tiny fraction of the ver-
tices. In particular, any distance preservers, purely additive
spanners, or spanners with sublinear additive distortion must
either be very dense, slow to construct, or have very weak
guarantees on distortion.
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1 Introduction

Many applications in distributed computation use, explicitly
or otherwise, a sparse substitute for the underlying commu-
nications network that retains the character of the original
network. At the very least the substitute should preserve con-
nectivity [18]. In many situations one needs the substitute
to preserve the distance metric of the network up to some
tolerable distortion. This type of requirement arises in the
construction of “synchronizers” [30], compact routing tables
with small stretch [1,2,37], distance labeling schemes [38],
and communication-efficient approximate shortest path algo-
rithms [19,24]. Following [23] we define an (α, β)-spanner
of an undirected, unweighted graph G = (V, E) to be a
subgraph S ⊆ E such that

δS(u, v) ≤ α · δ(u, v) + β

for any u, v ∈ V , where δS is the distance within S. An
(α, 0)-spanner is also called an α-spanner and a (1, β)-
spanner an additive β-spanner. There is clearly a tradeoff
between the sparseness of S and the distortion and, one
would presume, a tradeoff between distortion and the com-
putational resources required to construct the spanner. At
present we have only a crude understanding of the possible
sparseness-distortion tradeoffs and the resources required to
find good spanners. Assuming Erdős’s girth conjecture is
true (see [25,38,40]) it is known that any (α, β)-spanner
with α + β ≤ 2k has size %(n1+1/k). Moreover, Wood-
ruff [41] showed that, independent of the girth conjecture,
any additive (2k − 2)-spanner has size %(k−1n1+1/k). On
the upper bound side, there are several sequential algo-
rithms [4,10,35,36,38] for constructing (2k − 1)-spanners
with size O(n1+1/k), for any fixed k ≥ 2, but only two
known constructions of additive O(1)-spanners. Aingworth
et al. [3] (see also [7,17,22,33,35,39]) constructed additive
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2-spanners with size O(n3/2) and Baswana et al. [7] con-
structed additive 6-spanners with size O(n4/3). All known
sparser additive spanners [7,33] have additive distortion
polynomial in n.

Besides the purely additive and purely multiplicative
extremes, (α, β)-spanners come in two varieties. In one
class, [7,19,23] α and β are parameters of the construction
and essentially fixed. In contrast, some recent constructions
[33,39] give spanners that are (α, β)-spanners for a whole
suite of α, β pairs, so one must optimize one’s choice of α

and β as a function of the distance being approximated. For
example, the spanners in [33] have size slightly less than
O(kn1+(3/4)k+3

) and guarantee that if δ(u, v) = d > kk

then in the spanner S, δS(u, v) = d + O(kd1−1/k). We call
spanners of this type [33,39] sublinear additive spanners.

1.1 Distributed constructions

At present the state-of-the-art in distributed spanners lags
behind the best sequential constructions. There are, for
example, no fast distributed algorithms for finding purely
additive or sublinear additive spanners and the best distrib-
uted algorithms for finding purely multiplicative spanners
[7,10,13,14,18] fall short of their sequential counterparts.
Although there are distributed algorithms for (1 + ε, β)-
spanners [19,24], a close inspection of their parameters
shows they are much weaker than their sequential coun-
terparts [23,33,39]. Before discussing existing results and
our contributions, we review the features of the compu-
tational model assumed in most prior work on spanners.
See Peleg [30] for a more leisurely discussion of modeling
considerations.

The graph for which we want a sparse spanner is identical
to the underlying communications network, where each ver-
tex holds a processor with a unique and arbitrary O(log n)-
bit identifier. The computation proceeds in synchronized time
steps in which each processor can communicate one message
to each neighbor in the graph. Any local computation per-
formed is free. One measure of the feasibility of an algorithm
is the number of time steps required to compute a spanner. We
also separate algorithms by their maximum message length,1

measured in units of O(log n) bits, and distinguish between
randomized and deterministic algorithms.

1.2 Prior work and our contributions

All the results discussed below are summarized in Fig. 1.
Although the focus of this paper is unweighted graphs, we

1 In Peleg’s terminology [30] the LOCAL and CONGEST models
allow, respectively, unbounded length messages and unit length mes-
sages. However, we find it more revealing to pin down the precise mes-
sage length.

point out that Baswana and Sen’s [10] randomized algo-
rithm for constructing (2k− 1)-spanners in weighted graphs
is optimal in all respects (assuming the girth conjecture),
save for a factor of k in the spanner size. Without the aid
of randomness, finding sparse spanners is a much more dif-
ficult problem. Derbel, Gavoille, Peleg, and Viennot, [15]
recently gave a deterministic algorithm that finds, in opti-
mal O(k) time, a (2k − 1)-spanner with size O(kn1+1/k).
As a special case this algorithm finds an O(log n)-span-
ner with size O(n log n). A previous deterministic algo-
rithm of Derbel and Gavoille [13] is worse than [15] in
most respects but it can return a sparse, O(n log log n)-
size spanner in O(no(1)) time with just polylog(n) dis-
tortion. A disadvantage of [13,15] and other determin-
istic algorithms is their use of unbounded length mes-
sages.

In relatively recent work Dubhashi et al. [18] presented
algorithms that compute a linear size O(log n)-spanner in
O(log3 n) time and a linear size subgraph (with no distor-
tion guarantee) in O(log n) time. Their O(log n)-spanner
algorithm is randomized, assumes unbounded length mes-
sages, and places a considerable burden on the resources2

of the processors. Our first result is a randomized algorithm
for finding linear size spanners that is considerably more
realistic than [18]. Using messages with length O(logε n),
our algorithm computes an O(ε−12log∗ n log n)-spanner with
size O(n) in O(ε−12log∗ n log n) time steps. (Fig. 1 sim-
plifies this expression by fixing ε = o(1) > 1/2log∗ n .)
The time and distortion of our algorithm are very close to
optimal. Moreover, this appears to be the first algorithm
[29] with these properties that computes any O(n)-size sub-
graph.

The landscape of (α, β)-spanners is more complex.
Baswana et al.’s [7] (k, k − 1)-spanners save about a factor
of 2 in the multiplicative stretch over [10] but the algorithm
requires %(

√
n)-length messages. The (1+ε, β)-spanners of

Elkin and Zhang [24] (see also [19]) can be constructed with
shorter messages but they can only get so sparse. At their
sparsest they become (1 + ε, β)-spanners with size O(βn),
where:

β = (ε−1t2 log n log log n)t log log n

and Õ(n1/t ) is the message length. Both of the above algo-
rithms are randomized. Derbel et al. [14–16] gave vari-
ous deterministic constructions of (1 + ε, c)-spanners (for
c ∈ {2, 4, 6}) with different tradeoffs. All of these construc-
tions use unbounded length messages; see Fig. 1 for details.
Very recently Derbel et al. [16] presented deterministic

2 We excluded these considerations from our model. Nonetheless, we
point out that the Dubhashi et al. [18] algorithm could end up commu-
nicating the topology of the whole graph to one vertex, which then runs
an Õ(n2) time sequential algorithm [4,36].
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Fig. 1 The state of the art in distributed spanner algorithms. The last four lines only illustrate the properties of our spanners at their sparsest level.
See Sect. 4 for the general tradeoff between sparseness and distortion

algorithms for finding sparse (1 + ε, β)-spanners. However,
their tradeoffs between sparseness, distortion, and construc-
tion time are significantly worse than the randomized algo-
rithms presented here and in [24].

Our second result is a new class of subgraphs called
Fibonacci spanners, so named due to the frequent occur-
rence of Fibonacci-like sequences in their analysis. They
provide a spectrum of sparseness-distortion tradeoffs that
are distinct improvements over previous distributed con-
structions [14–16,24] and are essentially the same as the
best sequential constructions [23,32]. However, for sim-
plicity we illustrate their properties only at their spars-
est level, with size O(n(

log log n
ε )φ), where φ = 1+

√
5

2 is
the golden ratio. For sufficiently distant vertices a Fibo-
nacci spanner degenerates into a (1 + ε, β)-spanner, where
β ≈ (ε−1 logφ log n)logφ log n . However, for pairs of ver-
tices that are closer than β (arguably the more impor-
tant case) Fibonacci spanners offer a multiplicative distor-
tion that improves with distance in four discrete stages.
For every pair of vertices it functions as an O(

log n
log log log n )-

spanner.3 For vertices at distance at least (log n)logφ 2, which
is roughly log1.44 n, it functions as an O(log log n)-span-
ner, and for vertices at distance (log n)k logφ 2 it functions
as a (3 + O(2−k))-spanner. For distances greater than β it
becomes a (1 + ε)-spanner. When t is taken into account
(recall that Õ(n1/t ) is the maximum message length) our β

is (ε−1(logφ log n+t))logφ log n+t , which compares favorably
with the β of Elkin and Zhang’s [24] sparsest spanner, namely
β = (ε−1t2 log n log log n)t log log n . In both algorithms the
running time is O(β) for their respective βs.

1.3 Lower bounds

Derbel et al. [14] posed the question of whether there are
efficient distributed algorithms for finding additive β-span-
ners. We prove a general lower bound that can be applied
to distributed algorithms for additive spanners, sublinear

3 At their sparsest the (1 + ε, β)-spanners of Elkin and Zhang [24]
function as O(log n)-spanners.
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additive spanners, and (1 + ε, β)-spanners. In particular,
if we fix the desired size of the spanner at n1+ρ , any
additive β-spanner requires %(

√
n1−ρ/β) time to compute,

any sublinear additive spanner with distortion of the form
d + O(d1−ε) requires %(nε(1−ρ)/(1+ε)) time to compute,
and any (1 + ε, β)-spanner either requires 2ε−1 time to com-
pute or has β = %(ε2n1−ρ). In independent work, Derbel
et al. [15] gave significantly weaker lower bounds on con-
structing additive spanners and incomparable lower bounds
on (1 + ε, β)-spanners. These lower bounds are discussed in
more detail in Sect. 3.

1.4 Related work

Several algorithms have appeared in recent years that main-
tain spanners in dynamic graphs. Elkin [21] and Baswana [5]
found algorithms for constructing sparse (2k − 1)-spanners
in an online streaming model, where edges arrive one at a
time and the algorithm can only keep Õ(n1+1/k) edges in
memory. Baswana and Sarkar [8] and Elkin [21] developed
fully dynamic algorithms for maintaining (2k − 1)-spanners
in the standard centralized model of computation and Elkin
[20] showed that his algorithm can be adapted to a distrib-
uted setting. The update times (worst case, expected, and
amortized) of the aforementioned algorithms often differ.

There is a large body of work on spanners for geomet-
ric graphs. Narasimhan and Smid’s text on the subject [28]
provides a nice survey of geometric spanners.

1.5 Organization

In Sect. 2, we present a distributed algorithm for comput-
ing linear size spanners and skeletons. In Sect. 3, we prove
a three-way tradeoff between the sparseness, distortion, and
construction time of any distributed spanner algorithm. In
Sect. 4, we present the Fibonacci spanner and in Sect. 5, we
conclude with some open problems.

2 Linear size spanners and skeletons

The standard method for obtaining a linear-size spanner or
skeleton is to construct a subgraph that has girth %(log n).
(Girth is the length of the shortest cycle.) This is the strat-
egy taken by the classical sequential algorithm of Althöfer
et al. [4] and the distributed algorithm of Dubhashi et al.
[18]. However, any algorithm taking this approach seems to
require that vertices survey their whole %(log n)-neighbor-
hood, which can require messages linear in the size of the
graph. On the other hand, the Baswana–Sen spanners [10]
guarantee sparseness without disallowing short cycles.

Our algorithm uses a distributed version of a clustering
technique due to Baswana and Sen [10] and in some ways

resembles Borůvka’s parallel minimum spanning tree algo-
rithm. It proceeds in a sequence of log∗ n phases, where the
goal of each phase is to reduce the number of vertices expo-
nentially. Each phase begins with a contracted version of the
original graph and finds a series of clusterings, each with
larger radius than the last. The final clusters are then con-
tracted to single vertices in preparation for the next phase.
Contraction is an important technique to reduce the spanner
size to linear but compounded contraction has a price in terms
of distortion. If G ′ is a contracted version of G then we can
talk sensibly about the radius of a cluster or vertex in G ′ w.r.t.
either G or G ′. Notice that if a cluster has G ′-radius r ′ and
each of its constituent vertices has G-radius r , the G-radius
of the whole cluster is r ′ · (2r + 1) + r , i.e., roughly r ′ times
the diameter of vertices in G ′. This doubling effect leads to
an additional 2log∗ n factor in our distortion.

2.1 Notation and terminology

All logarithms are base 2 unless indicated otherwise. The
original input graph is G = (V, E). For vertex sets V1 and
V2, let V1 × V2 = {(v1, v2) | v1 ∈ V1, v2 ∈ V2}; if V1 or V2
are vertices they are treated as singleton sets. If G ′ = (V ′, E ′)
is a graph and V ′′ ⊆ V ′, the graph G ′ ! V ′′ is derived by
contracting V ′′, i.e., replacing V ′′ by a new vertex v′′ that
is adjacent to all v for which V ′′ × v ∩ E ′ ,= ∅. The graph
G ! V ′′ is simple, meaning we discard any loops and redun-
dant edges. A clusteringC = {C j } j is a set of disjoint subsets
of vertices and it is complete if every vertex appears in some
cluster. The graph G ′ ! C is derived by contracting each
cluster in C . If v is a vertex or cluster in some contracted
version of G (the original graph), !−1(v) refers to the set
of vertices from G represented by v. Let C be a clustering
of a graph G ′ = (V ′, E ′) appearing at some stage in our
algorithm, where G ′ was derived from G by removing ver-
tices and contracting sets of vertices. It is always the case
that for each C ∈ C , !−1(C) is spanned by a tree of span-
ner edges centered at some vertex c ∈ !−1(C). This tree is
not necessarily a fragment of the shortest path tree from c.
When our algorithm is working with G ′ it may select an edge
(u, v) ∈ E ′ for inclusion in the spanner. Selecting (u, v) is
merely shorthand for selecting a single arbitrary edge (u′, v′)
among !−1(u)×!−1(v)∩E . When this point needs empha-
sizing we will use the notation !−1(S′), where S′ is a set
of edges in a contracted graph, to refer to the edges in the
original graph identified with S′.

Observation 1 Let C be a clustering of G, S be a set of
radius-r trees spanning clusters in C , C ′ be a clustering of
G ′ = G ! C , and S′ be a set of radius-r ′ trees (w.r.t. G ′)
spanning clusters in C ′. Then S ∪!−1(S′) consists of a set
of radius-(r ′(2r + 1) + r) trees w.r.t. G.
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Fig. 2 The Expand procedure
takes a complete clustering Cin
of Gin and grows the radii of a
select group of clusters from
Cin , yielding a new clustering
Cout

The procedure Expand (Fig. 2) takes a graph G in, a com-
plete clustering Cin of G in and a sampling probability p ∈
[0, 1). It selects each cluster in Cin for inclusion in a new
clustering Cout with probability p, then attempts to expand
the radius of each cluster in Cout. Suppose a vertex v is in
C0 ∈ Cin and adjacent to C1, . . . , Cq ∈ Cin. If one of these
clusters, say Ci , is sampled for inclusion in Cout, we add v to
the set Ci and include some edge from v to Ci in the spanner.
If, however, none of the adjacent clusters are sampled, we
include in the spanner exactly one edge from v to each of
C1, . . . , Cq then mark v dead, thereby removing it from fur-
ther consideration. Thus, if Gout is the graph induced by the
set of vertices not yet dead, Cout is a complete clustering of
Gout. Note that vertices join clusters in Cout simultaneously,
so if clusters in Cin have radius r with respect to G in, the
clusters in Cout will have radius r +1. Of course, G in is most
likely a contracted version of the original graph so the true
radius of these clusterings could be larger.

The growth of clusters and the sampling probabilities are
guided by the sequence (si )i≥0 defined below. The parame-
ter D ≥ 4 controls the density of the spanner. Specifically,
the expected size of the spanner will be shown to be roughly
Dn/e.

s0 = s1 = D and si = (si−1)
si−1 for i ≥ 2

We assume for the moment, and with little loss in general-
ity, that the number of vertices n = s2

1 s2
2 · · · s2

L−1sL . Before
moving on we note some facts about the (si )i sequence.

Lemma 1 The sequence (si )i has the following properties,
for D ≥ 4.

1. For n = s2
1 . . . s2

L−1sL , L ≤ log∗ n − log∗ D + 1
2. For i ≥ 1, logb si = s1 · · · si−1 logb D
3. For i ≥ 1, si ≥ 2i+1s1 · · · si−1

Proof Let 2 ↑ (i, x) be an exponential stack of i 2s with an
x on top, i.e., 2 ↑ (0, x) = x and 2 ↑ (i + 1, x) = 22↑(i,x).
One can easily prove by induction that for i ≥ 1, si ≥ 2 ↑
(i−1, D). Thus, log∗ n ≥ log∗ SL ≥ log∗(2 ↑ (L−1, D)) =
L − 1 + log∗ D. This proves part 1. For part 2, logb s1 =
logb D and for i ≥ 2 and assuming the claim holds for i − 1,

logb si = si−1 logb si−1 = si−1si−2 · · · s1 logb D. For part 3,
the claim holds for s1 = D ≥ 21+1. For i ≥ 2, si−1 ≥ 2i >

i + 1, so si = ssi−1
i−1 ≥ si+1

i−1 > si−1si−2 · · · s12i+1. 01

Our algorithm computes a series of graph-cluster pairs of
the form (Gi, j ,Ci, j ), where Ci, j is a complete clustering of
Gi, j . Here Gi, j represents a contracted version of the original
graph after i full rounds and j iterations of the (i+1)th round.
The goal of the (i + 1)th round is to reduce the number of
vertices by a factor at least si si+1, for i ≥ 1, and at least
s1 = D, for i = 0. Beginning with Gi,0 and a trivial cluster-
ing Ci,0 = {{v} | v ∈ V (Gi,0)} of Gi,0, our algorithm calls
Expand logsi

(si si+1) = si + 1 times (or one time if i = 0),
each with sampling probability s−1

i . For i ≥ 1, the effect of
these calls is to grow a complete clustering Ci,si +1 of Gi,si +1

that has an expected |V (Gi,0)|/ssi +1
i = |V (Gi,0)|/(si si+1)

clusters. At the end of the (i + 1)th round we contract all
clusters in Ci,si +1 in preparation for the (i + 2)th round. The
spanner consists of all edges selected in lines 4 and 7 in the
calls to Expand. We use S to denote the set of spanner edges
selected up to some moment in time. A key invariant main-
tained by this algorithm is that if C is a cluster in any Ci, j ,
then S contains a spanning tree of !−1(C). The maximum
radius of this tree (as a function of i and j) will be investigated
shortly.

The rules for generating graphs and clusters are summa-
rized below. Note that Expand is a randomized procedure so
the graphs and clusters are all random variables.

– The initial graph-clustering pair:

(G0,0,C0,0) = (G, {{v} | v ∈ V (G)})

– The i th round begins by contracting the last clustering of
the previous round, where k = 1 if i = 1 and k = si−1+1
otherwise:

(Gi,0,Ci,0) = (Gi−1,k ! Ci−1,k, {{v} | v ∈ V (Gi,0))

– The j th iteration samples and expands clusters from the
( j−1)th iteration, for j ∈ [1, si +1], if i > 1, and j = 1
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otherwise:

(Gi, j ,Ci, j ) = Expand(Gi, j−1,Ci, j−1, s−1
i )

– The sampling probability is forced to be zero in the final
round and iteration:

(GL−1,sL−1+1,CL−1,sL−1+1)

= Expand(GL−1,sL−1 ,CL−1,sL−1 , 0)

Consider an arbitrary cluster C ∈ Ci, j . With respect to
Gi, j , C is spanned in S by a radius- j tree. However, with
respect to the original graph the tree spanning !−1(C) may
have a significantly wider radius. Lemma 2 follows from
Observation 1 and properties of the Expand procedure.

Lemma 2 Let ri, j be the maximum radius of the tree span-
ning !−1(C), where C ∈ Ci, j , and let di, j be the expected
nominal “density” E[n/|Ci, j |]. If j is omitted it is assumed
to be zero. Then {ri, j }i, j and {di, j }i, j obey the following
equalities:

1. r0 = 0.
2. ri, j = j (2ri + 1) + ri < ( j + 1

2 )(2ri + 1).

3. For j ∈ {0, 1}, d0, j = s j
0 = D j . For j ∈ [0, s1 + 1],

d1, j = s j+1
1 .

4. For i > 1, j ∈ [0, si + 1], di, j = s2
1 s2

2 · · · s2
i−1 · (si )

j+1.

Proof A call to Expand(Gi, j ,Ci, j , s−1
i ) returns a graph

Gi, j+1 that is not larger than Gi, j (some dead vertices
may be removed) and a set of clusters Ci, j+1 whose radii,
w.r.t. Gi, j , are at most one more than those in Ci, j . Further-
more, the expected size of Ci, j+1 is |Ci, j |/si . It follows that,
for any i ≥ 1, after a series of j ≤ logsi

(si si+1) calls to
Expand, starting with (Gi,0,Ci,0), we will have obtained
a clustering with |V (Gi,0)|/s j

i clusters in expectation, each
of radius j w.r.t. Gi,0. A simple proof by induction shows
that the expected nominal density di, j = E[n/|Ci, j |] is
s2

1 · · · s2
i−1(si )

j+1. (The algorithm does not use the actual
density n/|Ci, j |, only its expectation di, j , which can be com-
puted locally.) We now turn to bounding the cluster radius.
Let (v0, . . . , v j ) be a path in Gi,0 from the center of a clus-
ter C ∈ Ci, j to the most distant vertex in the cluster. Let
v′0, . . . , v

′
j be the centers of !−1(v0), . . . ,!−1(v j ) in the

original graph and let v′′j be the farthest vertex from v′j
in !−1(v j ). It follows that δS(v

′
k, v

′
k+1) ≤ 2ri + 1, for

k ∈ [0, j), and that δS(v′j , v
′′
j ) ≤ ri ; hence, the radius of

!−1(C) is never more than j (2ri + 1) + ri . 01

Lemma 3 For i ∈ [1, L − 1] and j ∈ [0, si + 1]:

1. ri ≤ 3 · 2i−1s1 · · · si−1 − 2

2. ri, j < ( j + 1/2)3 · 2i s1 · · · si−1
3. ri, j < 3 · 2i logD di, j

Proof The proof of part 1 is by induction. For i = 1 the i th
round consists of 1 call to Expand, which creates a radius-1
clustering; 1 ≤ 3 ·20−2. Assuming the bound holds for ri−1
we have, by Lemma 2(2):

ri = (si−1 + 1)(2ri−1 + 1) + ri−1 {Lemma 2(2)}
< (si−1 + 3

2 )(2(3 · 2i−2s1 · · · si−2 − 2) + 1) {Ind.}
< 3 · 2i−1s1 · · · si−1 − 3si−1 + 9 · 2i−2s1 . . . si−2
< 3 · 2i−1s1 · · · si−1 − 2

The last inequality follows from Lemma 1(3), which states
that 3si−1 ≥ 3·2i s1 . . . si−2. Part 2 follows directly from part
1 and Lemma 2(2). For part 3, one may verify that it holds
for i ∈ {0, 1}. For i > 1:

3 · 2i logD di, j

= 3 · 2i logD(s2
1 · · · s2

i−1s j+1
i ) {Lemma 2(4)}

≥ 3 · 2i ( j + 1)s1 · · · si−1 {Lemma 1(2)}
> ri, j {Part 2}

This concludes the proof. 01

Lemma 4 Let (u′, v′) be an edge from the original graph
removed from consideration in one of the following ways:

1. A vertex u in Gi, j was marked dead in the call
Expand(Gi, j ,Ci, j , s−1

i ) and u′ ∈ !−1(u).

2. Both u′ and v′ lie in !−1(C) for some cluster C ∈
Ci−1,si−1+1 contracted in the formation of Ci,0.

In the first case, δS(u′, v′) ≤ (2 j +2)(2ri +1)−1 and in the
second δS(u′, v′) ≤ 2ri , where S is the set of spanner edges.

Proof Figure 3 depicts the situation of part 1. Here u is
marked dead, v,w lie in an unsampled cluster C ∈ Ci, j ,
u′, u′′ ∈ !−1(u), v′ ∈ !−1(v), w′ ∈ !−1(w) and, in line
7 of Expand, the edge (u′′, w′) was included in favor of
(u′, v′).

Then δS(u′, v′) ≤ δS(u′, w′) + δS(w′, v′) ≤ (2ri + 1) +
2ri, j , which is exactly (2 j + 2)(2ri + 1) − 1 since ri, j =
j (2ri + 1) + ri . Turning to part 2, the cluster C containing
u′ and v′ has radius ri ; thus δS(u′, v′) ≤ 2ri . 01

Lemma 5 The edges identified in lines 4 and 7 in all calls
to Expand form an O(2log∗ n−log∗ D logD n)-spanner.

Proof Recall that in the last call to Expand, namely
Expand(GL−1,sL−1 ,CL−1,sL−1 , 0), we impose a sampling
probability of zero, which has the effect of killing every
remaining vertex in the graph. Thus, the maximum radius
of any cluster is rL−1,sL−1 and, by Lemma 4, the maximum
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Fig. 3 The hollow circles represent vertices in Gi, j , or, equivalently,
sets of vertices in G spanned by trees with radius ri . The vertex
c ∈ V (Gi, j ) is the center of a cluster in Ci, j (with its boundary indi-
cated by an arc) and u ∈ V (Gi, j ) is a vertex that died in the call to
Expand(Gi, j , Ci, j , s−1

i ). The edge (u′′, w′) was included in the span-
ner (in line 7 of Expand) and (u′, v′) was not. There is a path from u′

to v′ in the spanner with length at most (2 j + 2)(2ri + 1)− 1

distortion is:

(2sL−1 + 2)(2rL−1 + 1)− 1
< (2sL−1 + 2)(3 · 2L−1s1 · · · sL−2 − 3) {Lemma 3(1)}
= 3 · 2Ls1 · · · sL−1 + 3 · 2Ls1 · · · sL−2
−6sL−1 − 6

< 3 · 2Ls1 · · · sL−1 {Lemma 1(3)}
= 3 · 2L logD sL {Lemma 1(2)}
≤ 3 · 2log∗ n−log∗ D+1 logD n {Lemma 1(1)}

01

In the proof of Lemma 6, we analyze the expected number
of edges contributed by successive calls to the Expand pro-
cedure. Our analysis corrects an error made by Baswana and
Sen [10, p. 547], that given an unweighted graph, their algo-
rithm computes a (2k−1)-spanner with size O(kn+n1+1/k).
This claim may in fact be true, but the argument made in [10,
Lemma 4.1] only shows that it is O(kn + log kn1+1/k).

Lemma 6 Let D ≥ 4. The expected size of the spanner
(i.e., the expected number of edges selected in lines 4 and 7
of Expand) is Dn

e + O(n log D).

Proof Consider a single vertexv ∈ V (G ′) in a series of t calls
to Expand, each with sampling probability p and suppose
the first call is Expand(G ′,C ′, p). The expected number of
edges contributed by v in the first call depends on the number
of clusters in C ′ incident to v and whether v is still alive, i.e.,
in a cluster in C ′. Suppose that v is in C0 ∈ C ′ and adjacent
to C1, . . . , Cq ∈ C ′. If C0 is sampled then v contributes zero
edges and remains alive; if any of C1, . . . , Cq are sampled v

contributes 1 edge (in Line 4) and remains alive; otherwise
v contributes q edges (in line 7) and dies. It is important to
note that the expected contribution of v in this call to Expand

depends solely on q and p and not on the graph topology, the
radii of clusters in C ′ or any other factors.

Let Yp(q1, . . . , qt ) be the number of edges contributed by
a specific live vertex v, where, if v is live at the i th call to
Expand, it is incident to qi live clusters. (In other words, we
imagine that an adversary arranges for v to be adjacent to
qi clusters in the i th call to Expand in order to elicit worst
case behavior. There need not be any graph for which the
sequence q1, . . . , qt is especially likely.) Thus:

E[Yp(q1, . . . , qt )] = (1− (1− p)q1+1)E[Yp(q2, . . . , qt )]
+q1(1− p)q1+1 + (1− p)(1− (1− p)q1) (1)

i.e., v lives with probability 1−(1− p)q1+1, if not all clusters
are unsampled, and contributes Yp(q2, . . . , qt ) thereafter; if
all clusters are unsampled v contributes q1 edges; if C0 is
unsampled but one of C1, . . . , Cq1 is sampled then v contrib-
utes 1 edge. We let Xt

p be the expected worst case scenario:

Xt
p = max

q1,...,qt
E[Yp(q1, . . . , qt )]

i.e., Xt
p is the maximum expected number of edges contrib-

uted by a vertex if an adversary were to select q1, . . . , qt .
Note that Xt

p is not a random variable. Clearly X0
p = 0. For

t ≥ 1, Xt
p is, by the observations above, precisely:

Xt
p = max

q≥0

{
(1− (1− p)q+1)Xt−1

p + q(1− p)q+1

+(1− p)(1− (1− p)q)
}

{From (1)}

= max
q≥0

{
Xt−1

p + (1− p)

+(q − 1− Xt−1
p )(1− p)q+1

}
(2)

Let us consider the base case, when t = 1 and X1
p = (1 −

p) + (q − 1)(1− p)q+1. This quantity is maximized at q =
−1/ ln(1− p)+1 (take the derivative), which is barely more
than p−1 + 1, say p−1 + 1 + ε. Thus, we can bound X1

p as:

X1
p = (1− p) + (p−1 + ε)(1− p)1/p+2+ε

< (1− p) + e−1(p−1 + ε)(1− p)2+ε

The previous inequality holds since 1+x < ex for all x ,= 0.
The following inequality holds,4 since (p−1 + ε)(1− p)ε <

p−1 for any p and ε > 0.

< (1− p) + e−1 p−1(1− p)2

= (1− p) + (ep)−1(1− 2p + p2)

< (1− 2/e) + (ep)−1 (3)

We will now prove by induction that:

Xt
p ≤ p−1(ln(t + 1)− γ ) + t (4)

4 Let f (x) = (C + x)(1−1/C)x . (Here C, x play the roles of p−1, ε.)
Clearly f (0) = C . The first derivative f ′(x) = (1− 1/C)x (1 + (C +
x) ln(1− 1/C)) < (1− 1/C)x (1− (C + x)/C) is strictly less than 0
for x > 0, implying that f (x) < C for x > 0.
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where γ = ln 2 − 1/e ≥ 0.325. Equation (4) clearly holds
for the base case t = 1. Substituting the inductive hypothesis
for t − 1 into (2) we have:

Xt
p ≤ max

q≥0

{
p−1(ln t − γ ) + t − 1 + (1− p)

+(q − p−1(ln t − γ )− t)(1− p)q+1
}

(5)

In general, the function (q − x)(1 − p)q+y is maximized
at q = −1/ ln(1 − p) + x > p−1 + x , for any x, y, and
p ,= 0. In this case x = p−1(ln t − γ ) + t and y = 1, that
is, q = t + p−1(ln t − γ + 1) + ε for some small ε > 0.

(5) ≤ p−1(ln t − γ ) + t

+(p−1 + ε)(1− p)p−1(ln t−γ+1)+t+1+ε

< p−1(ln t − γ ) + t

+(p−1 + ε)(1− p)t+1+εe−(ln t−γ+1)

< p−1(ln t − γ + e−(ln t−γ+1)) + t

The previous two lines follow from the fact that 1 + x < ex ,
for x ,= 0, and (p−1 + ε)(1 − p)ε < p−1, for ε > 0. See
footnote 4.

= p−1(ln t − γ + 2
e1+1/e t−1) + t {γ = ln 2− 1/e}

< p−1(ln t − γ + 0.51/t) + t {2/e1+1/e < 0.51}
< p−1(ln(t + 1)− γ ) + t {ln t + 0.51

t < ln(t + 1)}
This completes the inductive proof of (4). Note that our upper
bound on Xt

p depends on p and t but is explicitly independent
of the size of the graph. Thus, the expected number of edges
contributed in the i th round is at most E[|V (Gi−1,0)|] · Xt

p =
nXt

p
di−1

, where p and t are the sampling probability and number
of iterations in the i th round. It follows that the expected num-
ber of spanner edges contributed in the 1st and 2nd rounds
are:

nX1
1/s0

≤ n(D/e + 1− 2/e) {From (3)}

n
s1

Xs1+1
1/s1

≤ n
D (D + 1)(ln(D + 2)− γ + 1) {From (4)}

We bound the number of spanner edges contributed by all
subsequent rounds as follows. From (4) and the definition of
di−1 we have:
∑

i≥3

n
di−1

Xsi +1
1/si−1

≤ n ·
∑

i≥3

(si−1+1)[ln(si−1+2)−γ+1]
s2
1 s2

2 ···s2
i−2si−1

Since ln(x + 2) < ln x + 3/x for all x ≥ 1 we can bound
this expression as:

< n ·
∑

i≥3

(1 + 1/si−1)[ln si−1 + 3/si−1 − γ + 1]
s2

1 s2
2 · · · s2

i−2

< n ·
∑

i≥3

ln si−1 +
[
(5 + ln si−1 − γ )/si−1 − γ + 1

]

s2
1 s2

2 · · · s2
i−2

The bracketed expression is maximized at i = 3 (so si−1 ≥
s2 ≥ 44) and is always less than 0.75.

< n ·
∑

i≥3

ln si−1 + 0.75

s2
1 s2

2 · · · s2
i−2

From Lemma 1(2) we have ln si−1 = s1 · · · si−2 ln D, imply-
ing:

< n ·
∑

i≥3

ln D + 0.75/D
s1s2 · · · si−2

Since s1 = D ≥ 4 and s j ≥ (DD) j−1, for j ≥ 2, the second
term in this sum dominates all subsequent terms:

< n · (1 + 2/DD)(ln D + 0.75/D)

D

<
n(ln(D) + 0.2)

D

Thus, the expected total size of the spanner is n(D/e + 1−
2/e + (1 + 1/D)(ln(D + 2)− γ + 1) + (ln D + 0.2)/D) =
Dn
e + O(n log D). 01

It is very simple to construct our spanner sequentially in
O(m log n/ log log n) time, where m is the number of edges
in the graph. Each graph contraction or call to Expand takes
linear time and there are logsL−1

sL + 1 + logsL−2
sL−1 + 1 +

· · · = L + sL−1 + sL−2 +· · · such calls. The sL−1 term dom-
inates the sum and, since ssL−1+1

L−1 < n it follows that sL−1 <

2 log n/ log log n. Recall that we assumed n = s2
1 · · · s2

L−1sL .
There are several obstacles to implementing this algorithm

in a distributed network, the most difficult of which is mini-
mizing the maximum message length. Theorem 2 shows how
the algorithm can be implemented efficiently in a distributed
network for any n.

Theorem 2 Consider a synchronized distributed network
on n-nodes in which the maximum message length is
O(logε n), for some fixed ε. Let D < logε n and t =
ε−12log∗ n−log∗ D logD n. Then in time O(t + log n) an O(t)-
spanner can be computed that, with high probability spanner
has size Dn

e +O(n log D). This distortion is within a constant
factor of optimal for any fixed i and D ≥ log(i) n.

Proof Before the first round of communication every vertex
performs the sampling steps (line 1) in all calls to Expand.
The behavior of a vertex u in a contracted graph is controlled
by the center c of !−1(u), i.e., at the beginning of the algo-
rithm c selects the round and iteration when its cluster is
first left unsampled. Furthermore, every vertex in !−1(u)

is aware of c’s sampling decisions and will propagate this
information to vertices that join clusters centered at c. Con-
sider the contracted graph and clustering (Gi, j ,Ci, j ). Let
u ∈ C ∈ Ci, j and let c ∈ !−1(u) and c′ ∈ !−1(C) be the
centers of their respective sets. For every vertex w ∈ !−1(u),
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w maintains two spanner edges (w, p1(w)) and (w, p2(w))

that lead to the centers c and c′. In other words, it is possible
for any node w to send a message to c (the center of the node
representing w in Gi, j ) by following p1 pointers; similarly,
following p2 pointers leads to the center c′ of the Ci, j cluster
representing w.

We first show that with O(logε n)-length messages, each
call to Expand(Gi, j ,Ci, j , s−1

i ) can, with high probability,
be executed in time O(ri, j + si log1−ε n). Let u ∈ V (Gi, j )

be a vertex in C0 ∈ Ci, j and adjacent to C1, . . . , Cq ∈ Ci, j .
If one of C0, . . . , Cq is sampled for inclusion in Ci, j+1 then
u will remain alive; otherwise it and, effectively, all vertices
in !−1(u) will die. We consider these two cases below.

If u survives this call to Expand then all vertices in!−1(u)

will be able to complete their tasks in exactly 2ri + 1 time
steps using unit length messages. In the first step, each ver-
tex u′ ∈ !−1(u) selects an arbitrary edge connecting it to a
sampled cluster, i.e., some edge (u′, v′) where v′ ∈ !−1(Ck)

for a sampled Ck ∈ Ci, j . Each vertex in !−1(u) might have
selected such an edge. It is up to the center c of !−1(u) to
decide which edge to include in the spanner (and therefore
which sampled cluster u is to join). In the next ri time steps
each vertex u′ ∈ !−1(u) transmits to p1(u′) at most one can-
didate edge connecting u to a sampled cluster. Suppose, after
ri steps the center c ∈ !−1(u) selects the edge (u′, v′) for
inclusion in the spanner. In the next ri steps c sends a mes-
sage to u′ notifying it of this fact. For each vertex w on the
path from c to u′ inclusive, we set p2(w) to be the neighbor
on the path from w to v′. Every other vertex x ∈ !−1(u) sets
p2(x) equal to its p1(x), i.e., also pointing in the direction
of v′. This restores the invariant that p1 and p2 point in the
direction of the vertex and cluster centers in the now-current
contracted graph Gi, j+1. See Fig. 4. After a round is com-
pleted, when all clusters are contracted, each vertex w will
simply set p1(w) equal to p2(w).

When u dies the implementation of Expand can be
more time consuming. On the other hand, when u dies
the vertices in !−1(u) do not participate further in the
construction of the spanner, so future calls to Expand
may safely proceed on schedule. When u dies the cen-
ter c ∈ !−1(u) must choose exactly one edge from
u to each of C1, . . . , Cq in order to execute line 7 of
Expand. This is also easy to accomplish in 2ri + 1 time
steps if the maximum message length is q but q could,
in principle, be very large. (Rather than have each ver-
tex send at most one candidate edge to its parent it
would send up to q candidates that connect to some sub-
set of C1, . . . , Cq .) Note that the probability that u dies
given that q ≥ 4si . ln n is less than (1 − s−1

i )4si ln n <

n−4. Thus, if any vertex in !−1(u) detects that q >

4si ln n it can abort the normal execution of line 7 of
Expand and tell every vertex in !−1(u) to include all
adjacent edges in the spanner. This modification to the

Fig. 4 In this example u ∈ V (Gi, j ) is incident to multiple sampled
clusters. The center c of !−1(u) chooses to join the sampled cluster Ck
and selects the edge (u′, v′) for inclusion in the spanner. All vertices
in !−1(u) now update their p2 pointers to point in the direction of the
center of !−1(Ck). If w lies on the path from c to u′ then it sets p2(w)
to point in the direction of v′. For any x not on the path from c to u′ we
set p2(x) equal to p1(x), i.e., the centers of !−1(u) and !−1(Ck) are
in the same direction, starting at x

algorithm increases the expected size of the spanner only
negligibly.5 Given that q = O(si log n), line 7 of Expand can
be implemented in O(ri, j +si log1−ε n) time with O(logε n)-
length messages. Each vertex u′ ∈ !−1(u) sends to p1(u′)
the set of candidate edges received from descendants in
O(si log1−ε n) consecutive steps. This process can be pipe-
lined (a vertex can start sending candidates the moment after
it receives one) so the total number of steps needed to kill u
is O(ri + si log1−ε n).

Our spanner algorithm begins by executing successive
rounds using the implementation of Expand described
above. When the expected nominal density exceeds logε n log
(logε n) we prematurely end the current round and complete
the spanner construction in two more rounds, the first of
which amplifies the nominal density to at least log n. Let
i∗, j∗ be the first round and iteration for which di∗, j∗ >

logε n · log(logε n), i.e., di∗, j∗−1 = s2
1 · · · s2

i∗−1s j∗
i∗ ≤ logε n ·

log(logε n). It follows that si∗ ≤ logε n and that di∗, j∗ ≤
log2ε n log(logε n); see footnote.6 Thus, the execution time
up to round i∗, iteration j∗ is O(ri∗, j∗ + si∗ log1−ε n) =
O(log n). We complete the construction of the spanner with

5 The probability that this event ever happens is certainly at most 2n ·
n−4, and, if it happens, at most

(n
2

)
edges may be included in the spanner,

i.e., the expected increase in the size of the spanner is less than 1/n.
6 Due to the upper bound D ≤ logε n placed on D, i∗ and j∗

are at least 1. If i∗ = 1 then si∗ = D ≤ logε n by assump-
tion. If i∗ ≥ 2 and si∗ were greater than logε n then di∗, j∗−1 =
s2

1 . . . s2
i∗−1s j∗

i∗ > s j∗
i∗ (log si∗/ log log si∗ )

2 > logε n log(logε n), con-
tradicting our choice of i∗, j∗. The first inequality follows from the fact
that si∗−1 > log si∗/ log log si∗ , the second from our assumption that
si∗ ≥ logε n.
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two more rounds. The sampling probability in both rounds
in held at (log n)−ε .

– The (i∗ + 2)th round begins with a nominal density
di∗, j∗ . Specifically the pair (Gi∗+1,0,Ci∗+1,0) is equal
to:

(Gi∗, j∗ ! Ci∗, j∗ , {{v} | v ∈ V (Gi∗+1,0)})

– The (i∗ + 2)th round continues until the nominal den-
sity is at least log n. For j ∈ [1, j∗∗] where j∗∗ =
loglogε n

log n
di∗, j∗

, the pair (Gi∗+1, j ,Ci∗+1, j ) is:

Expand(Gi∗+1, j−1,Ci∗+1, j−1, (log n)−ε)

– The first pair in round i∗ +3, (Gi∗+2,0,Ci∗+2,0), is equal
to:

(Gi∗+1, j∗∗ ! Ci∗+1, j∗∗ , {{v} | v ∈ V (Gi∗+2,0))

– In the final round, for j ∈ [1, j∗∗∗), where j∗∗∗ =
loglogε n

n
log n , the pair (Gi∗+2, j ,Ci∗+2, j ) is equal to:

Expand(Gi∗+2, j−1,Ci∗+2, j−1, (log n)−ε)

– In the last iteration and round the sampling probabil-
ity is forced to be zero, i.e., (Gi∗+2, j∗∗∗,Ci∗+2, j∗∗∗)

is:

Expand(Gi∗+2, j∗∗∗−1,Ci∗+2, j∗∗∗−1, 0)

Let r, r ′, and r ′′ be the cluster radii after rounds i∗+1, i∗+
2, and i∗+3, respectively. It follows from Lemma 3 that r =
ri∗, j∗ < 3 ·2i∗ logD di∗, j∗ . Since di∗, j∗ ≤ log2ε n log(logε n)

we have:

r = < 3 · 2i∗ logD di∗, j∗

≤ ε2i∗+3 logD log n {di∗, j∗ ≤ log2ε n log(logε n)}
From Lemma 2(2) and the bound on r , we can obtain bounds
on r ′ and r ′′:

r ′ ≤ (ε−1 − 1)(2r + 1) + r

< (ε−1 − 1
2
)(2 · ε2i∗+3 logD log n)

< 2i∗+4 logD log n

r ′′ ≤ (loglogε n
n

log n )(2r ′ + 1) + r ′

< (
log n

ε log log n − ε−1 + 1/2)2i∗+5 logD log n

< ε−12i∗+5 logD n

Since all vertices have died by the end of the (i∗ + 3)th
round it follows from Lemma 4 that the distortion of the span-
ner is at most 2r ′′ < ε−12i∗+6 logD n < ε−12log∗ n−log∗ D+7

logD n. The smallest sampling probability passed to Expand
is p = log−ε n. Thus, the last two rounds of the spanner con-
struction take time

O(r ′′ + p−1 log1−ε n)

= O(ε−12log∗ n−log∗ D logD n + log n).

The analysis of Lemma 6 shows that the expected number
of spanner edges contributed by a single vertex in t calls to
Expand with sampling probability p is p−1(ln(t +1)−γ )+
t .

Thus, when p = log−ε n and t ≤ ε−1 − 1, the number
of spanner edges contributed in the second to last round is at
most:

n
di∗, j∗

· [logε n(ln ε−1 − γ ) + ε−1 − 1]

= (1 + o(1)) n(ln ε−1−γ )
log(logε n)

= o(n) {di∗, j∗ ≥ logε n log(logε n)}
and when p = log−ε n and t = log1/p n/ log n, the number
of edges contributed in the last round is:

n
log n

[
logε n(ln(loglogε n

n
log n + 1)− γ ) + loglogε n

n
log n

]

< n
log n

[
logε n ln(

log n
ε log log n ) + log n

ε log log n

]

= (1 + o(1))n/(ε log log n) = o(n)

Thus, by Lemma 6, the expected size of the spanner is still
dominated by the edges contributed in the first two rounds:
Dn
e + O(n log D).

01

3 Lower bounds

We provide lower bounds on distributed algorithms for
constructing additive, sublinear additive, and (1 + ε, β)-
spanners. Our conclusion is that all additive and sublinear
additive spanners require a polynomial number of rounds
of communication (which depends on the exact distortion
and spanner size) and all (1+ε, β)-spanners require %(ε−1)

rounds unless β is quite large. All of our time/distortion lower
bounds are robust inasmuch as they hold in expectation and
on the average.7

Theorem 3 Consider a randomized distributed algorithm
that, given a graph with n vertices, after τ rounds of com-
munication, returns a spanner H such that |H | ≤ n1+ρ in
expectation, where τ 2 = o(n1−ρ). Then there exists a graph
with diameter greater than n1−ρ/(c(τ + 6)) such that for all
vertices u, v: E[δH (u, v)] ≥ δ(u, v) + 2(1−1/c)

τ+2 (δ(u, v) −
(3τ + 11))− 1.

7 For example, one could define an average-additive β-spanner to be
one whose average (over all pairs of vertices) additive distortion is β.
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Fig. 5 One section of our input graph

The proof of Theorem 3 and its corollaries in Theorems 4,
5, and 6 refer to the graph G(τ, λ, ω), which we now describe.
The graph consists of a series of ω complete λ × λ bipar-
tite subgraphs (henceforth subgraphs), where vertices on the
right side of one subgraph are connected by chains with
length τ + 5 to corresponding vertices on the left side of
the next subgraph, with the exception of one chain, which is
shorter. See Fig. 5.

Specifically, let vL ,i, j (and vR,i, j ) be the j th vertex on the
left side (right side) of the i th subgraph. For i ∈ [1, ω − 1]
we connect vR,i,1 to vL ,i+1,1 by a path with length τ + 1;
this path contains τ new vertices. For j ∈ [2, λ], we connect
vR,i, j to vL ,i+1, j by a path with length τ +5 containing τ +4
new vertices. In order to make the τ -neighborhood of each
vertex in each subgraph look the same (viewing vertices as
unlabeled) we attach chains containing τ + 1 new vertices to
{vL ,1, j } j∈[1,λ]∪{vR,ω, j } j∈[1,λ]. The total numbers of vertices
and edges in G(τ, λ, ω) are

n′ = ω(λ(τ + 6)− 4) + λ(τ + 1)− 3(λ− 1) + 1

< (ω + 1)λ(τ + 6)

m′ = ωλ2 + (ω + 1)(λ(τ + 5)− 4)− 6(λ− 1) + 2

> ωλ2

For parameters n > 1, ρ ∈ (0, 1), and c ≥ 2, our input to the
spanner algorithm is G(τ, λ, ω), where λ = c(τ + 6)nρ and
ω = n1−ρc−1(τ +6)−2−1. (We assume that nρ is an integer.
This simplification will clearly have no effect on our argu-
ment.) If the algorithm assumes that the vertices have unique
labels we assign them a random permutation of {1, . . . , n′}.
The density of G(τ, λ, ω) is m′/n′ > ω

ω+1λ/(τ + 6), which
is ω

ω+1 cnρ . In other words, our spanner algorithm must dis-
card at least a p = 1 − 1

c − 1
cω fraction of the edges. We

can make two claims about which edges get discarded and
with what probability: (1) only edges in subgraphs may be
discarded, and (2) every edge in every subgraph is discarded
with exactly the same probability, where the probability is
over the random permutation of vertex labels and the ran-
dom choices made by the algorithm. The first claim follows
from the fact that in any correct spanner algorithm, an edge
(u, v) can only be discarded if either u or v has detected
that (u, v) lies on a cycle. (If the algorithm is prepared to
discard (u, v) then it is prepared to disconnect the graph.)
In our input graph most chain edges do lie on cycles; how-
ever, no algorithm running in τ time steps can detect this

and, if the algorithm is correct, it must include all of them
in the spanner. The second claim follows from the fact that,
if we restrict our attention to vertices in subgraphs, all τ -
neighborhoods are topologically identical; furthermore, the
distributions over labeled τ -neighborhoods are identical.8

Proof (Theorem 3) A critical edge is one of the form
(vL ,i,1, vR,i,1). As observed above, the probability that any
edge in such a subgraph is discarded is at least p = 1− 1

c− 1
cω .

In particular, the expected number of critical edges discarded
is greater than ω(1 − 1

c ) − 1. We generously assume that
these are the only edges discarded. Before considering arbi-
trary vertices u, v consider the special case of u = vL ,i1,1
and v = vL ,i2,1, for i1 < i2. Thus, there is a unique shortest
path with length δ(u, v) = (i2 − i1)(τ + 2) containing the
critical edges (vL ,k,1, vR,k,1) for k ∈ [i1, i2). We claim that
after discarding any subset of the critical edges, a shortest
path (perhaps not the shortest path) from u to v in H still
passes through the vertices:

vL ,i1,1, vR,i1,1, . . . , vL ,i2−1,1, vR,i2−1,1, vL ,i2,1.

If a shortest path contained the length τ +5 chain from vR,i, j
to vL ,i+1, j , for j > 1, it could be replaced by the equally
short path:

(vR,i, j , vL ,i, j , vR,i,1, . . . , vL ,i+1,1, vR,i+1, j , vL ,i+1, j ).

Thus, a shortest path from u to v in H looks just like
the shortest path in G, where each missing critical edge is
replaced by a length 3 path. Thus, E[δH (u, v)] ≥ δ(u, v) +
2pδ(u, v)/(τ + 2). For two arbitrary vertices u and v, the
minimum number of critical edges on a path with length
δ(u, v) is 2(δ(u, v)− 3τ − 11)/(τ + 2)3; see footnote.9 It

8 To be more specific, suppose (u, v) is an edge in some subgraph and
, is the union of the τ -neighborhoods of u and v. Given the vertex label-
ing for , and the random bits used by , vertices in the execution of the
algorithm, we can determine with certainty whether (u, v) is included
in the spanner or not. Thus, we can calculate the precise probability
with which (u, v) is included in the spanner. This calculation depends
only on the topology of ,, which is the same for all subgraph edges.
9 Suppose that u lies on a chain between subgraphs i1 − 1
and i1 and v lies on a chain between subgraphs i2 and i2 +
1, where i1 ≤ i2 and let u′ = vR,i1,1, v

′ = vL ,i2,1. Then
δ(u, u′), δ(v, v′) ≤ τ + 5. This is achieved when u, v are the
second vertices on their respective chains. (See the below figure)

If i2 ≤ i1 + 1 then δ(u, v) ≤ 3τ + 11 and the claim is vacuously true.
Otherwise the unique shortest path from u to v passes through u′, v′,
and every critical edge in subgraphs i1 + 1, . . . , i2 − 1. There are pre-
cisely (δ(u′, v′) − (τ + 1))/(τ + 2) ≤ (δ(u, v) − 3τ − 11)/(τ + 2)
such critical edges.
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follows from the analysis above that for any u, v:

E[δH (u, v)] ≥ δ(u, v) + 2p(δ(u,v)−3τ−11)
τ+2

= δ(u, v) + 2
(
1− 1

c − 1
cω

) (
δ(u,v)−3τ−11

τ+2

)

> δ(u, v) + 2
(
1− 1

c

) (
δ(u,v)−3τ−11

τ+2

)
− 1

The last inequality follows from the inequalities c ≥ 2 and
δ(u,v)−3τ−11

τ+2 < ω. 01

Theorem 4 shows that any algorithm constructing a (1 +
ε, β)-spanner with size n1+ρ either needs to take %(ε−1)

time or have β = %(ε2n1−ρ), even if the distortion guaran-
tees only need to hold in an average or expected sense.

Theorem 4 Consider a randomized distributed algorithm
that after τ rounds of communication, returns a spanner
H with expected size n1+ρ such that δH (u, v) ≤ (1 +
2(1−γ )

τ+2 )δ(u, v)+β for any vertices u, v. Then E[β] > γ 2n1−ρ

4(τ+6)2

- O(1). Furthermore:

Eu,v[δH (u, v)−
(

1 + 2(1−γ )
τ+2

)
δ(u, v)] = %(γ 2τ−2n1−ρ).

Proof The input graph is as in Theorem 3, where c = 2/γ .
Thus, the number of bipartite subgraphs is ω = n1−ρ

c(τ+6)2 =
n1−ργ

2(τ+6)2 . The expected number of critical edges removed
is (1 − 1/c − 1/(cω))ω ≥ (1 − γ /2)ω − 1. Let u and
v be vertices at distance ω(τ + 2) whose unique shortest
path contains all critical edges. Then E[β] ≥ E[δH (u, v) −
(1 + 2(1−γ )

τ+2 )δ(u, v)] ≥ 2(1 − γ /2)ω − 1 − 2(1 − γ )ω ≥
γω/2− 1 = n1−ργ 2

4(τ+6)2 − 2. This large β is not an anomaly but
holds for the vast majority of vertex pairs. For vertices u, v

selected at random, the shortest u to v path will be expected
to contain E[(δ(u, v) − O(τ ))/(τ + 2)] = %(ω) critical
edges. The argument above then shows that E[δH (u, v) −
(1 + 2(1−γ )

τ+2 )δ(u, v)] = %(γω) = %(γ 2τ−2n1−ρ). 01

Theorem 5 shows that there are no efficient algorithms
for constructing additive β spanners unless the spanner size
and/or β are unreasonably large. In particular, any distrib-
uted versions of the existing additive 2- and 6-spanners
[3,7,17,23,39] would require %(n1/4) and %(n1/3) time,
respectively.

Theorem 5 Any distributed algorithm computing an addi-
tive β-spanner with size n1+ρ (in expectation) requires
%(

√
n1−ρ/β) rounds of communication.

Proof The input graph is G(τ, λ, ω). Given parameters β ≥
2, ρ > 0, and n sufficiently large, we choose τ, λ, and ω

as follows: τ =
√

n1−ρ/(4β) − 6, λ = 2(τ + 6)nρ, and
ω = n1−ρ

2(τ+6)2 . Note that ω = 2β. As argued in the proof
of Theorem 3, if the spanner algorithm took τ time steps
it would discard each critical edge with probability at least

p = 1
2 − 1

2ω . The additive distortion between a vertex in
the first subgraph and one in the last is twice the number of
discarded critical edges. Thus the expected additive distor-
tion is at least 2pω = ω − 1 > β, a contradiction. Hence,
any algorithm that produces a spanner with expected additive
distortion β takes more than τ = %(

√
n1−ρ/β) time. 01

Theorem 6 shows that the existing sublinear additive
spanners [33,39] have no corresponding efficient distrib-
uted implementation. For example, the spanners from [33]
have size o(n1+(3/4)k+3

), with the property that for any two
vertices at distance d, their distance in the spanner is at
most d + O(d1−1/k). Theorem 6 implies that any distrib-
uted algorithm for computing such a spanner would require
%(n(1−(3/4)k+3)/(k+1)) time.

Theorem 6 Suppose a distributed algorithm computes a
spanner H with expected size n1+γ such that for any u, v

with δ(u, v) = d we have δH (u, v) = d + O(d1−ε). Then

this algorithm requires %(n
ε(1−γ )

1+ε ) rounds of communication
to construct H.

Proof To be specific, suppose that the algorithm guarantees
that for d = δ(u, v), δH (u, v) ≤ d + cd1−ε . The input graph
is G(τ, λ, ω) where:

τ + 6 = 1
c nε(1−γ )/(1+ε)

λ = 4(τ + 6)nγ = 4
c n(ε+γ )/(1+ε)

ω = n1−γ

4(τ+6)2 = c2

4 n(1−γ )(1−ε)/(1+ε).

The algorithm discards at least 3ω/4 − 1 critical edges in
expectation. Thus, for vertices u, v at distance d = ω(τ +2)

whose shortest path contains all critical edges, the expected
additive distortion is E[δH (u, v)− δ(u, v)] ≥ 2(3ω/4− 1).
On the other hand the guaranteed additive distortion of H
is cd1−ε < c[(τ + 6)ω]1−ε < c[ c

4 n(1−γ )/(1+ε)]1−ε < ω.
Thus, any spanner algorithm producing an n1+ρ-size span-
ner with distortion d + cd1−ε must take time exceeding τ =
%(nε(1−γ )/(1+ε)). 01

Derbel et al. [15] give lower bounds on distributed span-
ner algorithms by constructing graphs that look very similar
to G(τ, λ, ω). Rather than complete λ×λ bipartite subgraphs
they substitute a maximum size (bipartite) graph with girth
2k, where k is a parameter of the construction. Using an argu-
ment similar to ours they show that any algorithm for con-
structing an O(n1+ρ+O(ρ2))-size spanner in time τ = nO(ρ2)

has multiplicative stretch 1 + O(1/(τρ)). (All the constants
are given explicitly in the statement of their lower bound.)
While their lower bound on multiplicative distortion is better
than that of Theorem 3 (1+O(1/τρ)vs. 1+O(1/τ)) the addi-
tive distortion depends on the diameter of the graph, which
is significantly smaller in [15]. For time τ = nO(ρ2) their
lower bound on additive distortion is also nO(ρ2), which is

123



Distributed algorithms for ultrasparse spanners and linear size skeletons

significantly smaller than the τ−2n1−ρ = n1−ρ−O(ρ2) lower
bound from Theorem 4.

4 Fibonacci spanners

At a very high level the structure and analysis of Fibonacci
spanners is similar to Pettie’s modular spanners [33] and Tho-
rup and Zwick’s emulators [39]. However, their analysis is
much more nuanced. Although Fibonacci spanners are not of
the sublinear additive variety they actually have much better
distortion for polylogarithmic distances than the sublinear
additive spanners [33,39] and existing (1 + ε, β)-spanners
[19,23,24].

4.1 The setup

The algorithm begins by generating vertex sets V = V0 ⊇
V1 ⊇ · · · ⊇ Vo ⊇ Vo+1 = ∅, where Vi is sampled from
Vi−1 with probability qi/qi−1. Thus, Pr[v ∈ Vi ] = qi and
E[|Vi |] = qi n. We think of V0 and Vo+1 being sampled with
probabilities 1 and 1/n, respectively. The parameter o, lying
in [1, logφ log n], is the order of the spanner, which governs

the sparseness-distortion tradeoff. Here φ = 1+
√

5
2 . Let pi (u)

be the vertex nearest to u in Vi . For the sake of specificity, if
there are multiple such vertices let pi (u) be the one whose
unique identifier is minimum. The size and distortion of our
spanner is a function of o, the sampling probabilities, and an
integer λ. If we desire a (1 + ε, β)-spanner λ must be on the
order of o/ε, which makes β = O(o/ε)o.

After choosing o and λ we define the set Bi+1,λ(v), for
any v ∈ V , as:

Bi+1,λ(v) =
{

u ∈ Vi

∣∣∣∣
δ(v, u) ≤ λi

and δ(v, u) < δ(v, Vi+1)

}

That is, Bi+1,λ(v) is the set of Vi -nodes lying in the ball of
radius min{δ(v, Vi+1) − 1, λi } around v; see Fig. 6. Notice
that since Vo+1 = ∅, δ(v, Vo+1) = ∞ and Bo+1,λ(v) con-
sists of all Vo nodes at distance at most λo. Let P(v, u) be a
shortest path from v to u. We can express the spanner S very
succinctly as the set S0 ∪ S1 ∪ · · · ∪ So, defined as:

S0 =
⋃

v∈V
u∈B1,λ(v)

P(v, u)

Si =
⋃

v∈Vi−1
u∈Bi+1,λ(v)

P(v, u) ∪
⋃

v∈V :
δ(v,pi (v))≤λi−1

P(v, pi (v))

That is, for i > 0, we connect every v ∈ Vi−1 to every
u ∈ Bi+1,λ(v) and every v ∈ V to every u ∈ B1,λ(v). Fur-
thermore, we connect each v ∈ V to its “parent” pi (v) ∈ Vi
if δ(v, pi (v)) ≤ λi−1.

Fig. 6 The large light gray vertex (v) is in Vi−1, medium gray ver-
tices are in Vi , and dark gray vertices in Vi+1. In the spanner S, v is
connected by a shortest path to all Vi vertices at distance at most λi and
closer than pi+1(v)

4.2 Roadmap

Our analysis proceeds as follows. In Lemma 7, we bound the
expected size of the spanner as a function of the sampling
probabilities. In Lemma 8, we select the optimal probabilities
by solving some Fibonacci-like recurrences. In Lemma 9, we
show how the distortion of the spanner can be related to two
recursively defined functions. In Lemma 10, we find closed
form upper bounds on these functions. Theorem 7 and Cor-
ollary 1 state the size-distortion tradeoffs of Fibonacci span-
ners. In Sect. 4.4, we explain how Fibonacci spanners can be
constructed distributively using a maximum message length
of Õ(n1/t ) and analyze how t (negatively) influences the dis-
tortion of the spanner. Theorem 8 and Corollary 2 summa-
rize the construction time, size, and distortion of Fibonacci
spanners.

Lemma 7 (Expected size) E[|S|] ≤ on + nq−1
1 +∑

0≤i<o nqi qi+1q−1
i+2λ

i+1.

Proof We claim the edges in
⋃

i
⋃

v∈V P(v, pi (v)) form o
forests with less than on edges. Recall that pi (v) ∈ Vi has the
minimum unique identifier among nodes at distance δ(v, Vi )

from v. Thus, for any u ∈ P(v, pi (v)), pi (u) = pi (v),
implying that

⋃
v∈V P(v, pi (v)) is a forest of |Vi | trees. We

focus on the other edges contributed by S0, . . . , So. Fix an i .
Consider enumerating the vertices in order of distance from a
fixed vertex v ∈ V ; let them be v1, v2, . . . , vn−1. Assuming
that δ(v, v j ) ≤ λi the path P(v, v j ) could only appear in Si
if v ∈ Vi−1, v j ∈ Vi and no vertex in v, v1, . . . , v j appears
in Vi+1. The expected number of edges contributed to Si
on behalf of v is, by the linearity of expectation, less than∑n−1

j=1 λi qi−1qi (1 − qi+1)
j+1 < λi qi−1qi q−1

i+1. The same

argument shows that E[|S0|] ≤ nq−1
1 . 01

Recall that the Fibonacci numbers are defined inductively
as: F0 = 0, F1 = 1, and for k > 1, Fk = Fk−1 + Fk−2. It

123



S. Pettie

is well known that Fk = 1√
5
(φk − (1− φ)k) for all k, where

φ = 1+
√

5
2 . The only other property of Fibonacci numbers

that we use is that φ · Fk + 1 > Fk+1.

Lemma 8 (Sampling probabilities) For any 1 ≤ o ≤⌈
logφ log n

⌉
and λ > 1 the sampling probabilities q1, . . . , qo

can be chosen such that E[|S|] ≤ on + O(n
1+ 1

Fo+3−1 λφ).

Proof By Lemma 7 E[|S0|] = nq−1
1 . We will set q1 =

n−αλ−β , where α and β will be fixed later, and attempt
to ensure that E[|Si |] = n + E[|S0|] = n + n1+αλβ .
(The “n” term reflects the number of edges in the forest⋃

v∈V,δ(v,pi (v))≤λi−1 P(v, pi (v)).) By Lemma 7, E[|S1|] =
n + nq1q−1

2 λ = n + n1−αλ1−βq−1
2 , which implies q2 =

n−2αλ−2β+1. We write qi as n− fi αλ−gi β+hi . Thus, the
expected size of Si is:

E[|Si |] = n + nqi−1qi q
−1
i+1λ

i

= n + n1+α( fi+1− fi− fi−1)

·λβ(gi+1−gi−gi−1)−(hi+1−hi−hi−1−i)

If E[|Si |] is to equal n + n1+αλβ it follows that the three
sequences ( fi )i , (gi )i , and (hi )i obey the following Fibo-
nacci-like equalities:

f0 = 0, f1 = 1, fi = fi−1 + fi−2 + 1
g0 = 0, g1 = 1, gi = gi−1 + gi−2 + 1
h0 = 0, h1 = 0, hi = hi−1 + hi−2 + (i − 1)

One can easily prove by induction that fi = gi = Fi+2−1
and hi = Fi+3 − (i + 2). Since qo+1 = 1/n the expected
size of So, E[|So|], is:

≤ n + nqo−1qoq−1
o+1λ

o

= n + n2−α(Fo+1−1+Fo+2−1)

·λ−β(Fo+1−1+Fo+2−1)+(Fo+2−(o+1)+Fo+3−(o+2)+o)

= n + n2−α(Fo+3−2)λ−β(Fo+3−2)+Fo+4−(o+3)

At this point we let α = 1/(Fo+3 − 1) and β = φ = 1+
√

5
2 :

= n + n
2− Fo+3−2

Fo+3−1 λ−φFo+3+Fo+4+2φ−(o+3)

< n + n
1+ 1

Fo+3−1 {φFo+3 + 1 > Fo+4}
Since S0, . . . , So all have roughly the same expected size,

E[|S|] ≤ (o + 1)(n + n
1+ 1

Fo+3−1 )λφ . We can reduce this

to on + n
1+ 1

Fo+3−1 λφ by substituting λ′ = 2λ for λ in all
the sampling probabilities. This causes the expected sizes of
S0, S1, . . . to decrease geometrically. 01

We will see later that for S to behave like a (1+ε)-spanner
for sufficiently distant vertices we must have λ > o/ε. Thus,
S is sparsest when o = logφ log n and λ = O(o/ε). Since
Fo+3 ≥ 1√

5
φlogφ log n+3−1 > log n the expected spanner size

is E[|S|] = O(λφn1+1/(Fo+3−1)) is O(n(ε−1 log log n)φ).

4.3 Analysis of the distortion

Like those of [33,39], the analysis of Fibonacci spanners
is conceptually very simple but requires attention to many
subtle details. Suppose we wanted to find a (1 + ε)-approx-
imately shortest path from x to a relatively distant vertex x ′.
So long as edges in P(x, x ′) are in the spanner we can just
walk directly towards x ′. However, at some point we need
to depart from P(x, x ′), potentially taking us in the opposite
direction of x ′. Since we’re only aiming for a (1+ε)-approx-
imation, taking a step backwards is no tragedy if this allows
us to take %(1/ε) steps toward x ′. If this is impossible it turns
out we may need to take another 1/ε steps backward, which,
again, is no problem if we can then take %(1/ε2) steps in
the right direction. Roughly speaking, every time we take
some steps backward we move to a vertex at a higher level.
One could imagine that vertices in Vi−1 are hilltops from
which one can “see” all hilltops Vi within distance (ideally)
λi . Thus, the advantage of moving backward from a hilltop
in Vi−1 to a hilltop in Vi is the ability to potentially see a dis-
tant hilltop much closer to x ′. So long as the backward steps
are dominated by the forward steps by an %(1/ε) factor the
overall distortion will be tolerable.

The intuition sketched above presents a bottom up view
of the analysis, which is exactly the opposite of our top down
inductive analysis. We suppose that x and x ′ are at distance
-i for some integer -. Our “algorithm” for walking from x
to x ′ in the spanner is to first divide up the actual shortest path
into what we call (i − 1)- and (i − 2)-segments with lengths
of -i−1 and -i−2, respectively. Starting from x we call the
walking algorithm recursively on each successive (i−2)-seg-
ment; at the same time we walk from x ′ towards x , calling the
walking algorithm recursively on each (i−1)-segment. Each
recursive call has two potential outcomes: it either success-
fully finds a path from the beginning of an (i−1)-segment to
the end with length at most Ci−1

- or it finds a path to a hilltop
in Vi at distance at most Ii−1

- . Depending on the outcome,
we call the (i − 1)-segment either complete or incomplete.
If the two walks starting at x and x ′ ever meet (i.e., neither
encounters an incomplete segment) we can then declare the
path from x to x ′ complete. If this happy scenario does not
materialize, we will have found a path from x to a hilltop
p ∈ Vi−1 and from x ′ to a hilltop p′ ∈ Vi . If p can “see”
p′ then we have found a path from x to x ′ and can declare it
complete. If p cannot see p′ this implies the existence of a
fairly short path from x to a hilltop in Vi+1. In this way we
can bound the value Ci

- (the maximum length of a complete
path from x to x ′) in terms of Ci−1

- , Ci−2
- , Ii−1

- , and Ii−2
- . Sim-

ilarly, we can bound Ii
- (the distance from x to a hilltop in

Vi+1) inductively. Thus, the analysis amounts to construct-
ing a set of recursive definitions for Ci

- and Ii
- (Lemma 9),

solving them (Lemma 10), then drawing conclusions about
the overall distortion of the spanner (Theorem 7).
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Fig. 7 Our attempt to find a
path from x to x ′. The subpath
from x to y consists of complete
(i − 2)-segments and the path
from x ′ to y′ of complete
(i − 1)-segments. There are
paths from y and y′ to,
respectively, nodes py ∈ Vi−1
and py′ ∈ Vi . Depending on the
distance from py to
p̂y = pi+1(py), py′ may or may
not lie in Bi+1,λ(py)

Before setting up recursive definitions of Ci
- and Ii

- we
need to precisely define some of their properties. Let Si =⋃i

j=0 S j be the first (i + 1) levels of the spanner S.

Definition 1 (Complete/Incomplete Segments) The sets {Ii
-}

and {Ci
-}, where 1 ≤ - ≤ λ and i ≥ 0, are valid with respect

to a spanner S if, for any i-segment (x0, . . . , x1, . . . , x2, . . . ,

x-), divided into (i−1)-segments {(x j , . . . , x j+1)}, for 0 ≤
j < -, at least one of the following two hold:

1. (The segment is complete) δSi (x0, x-) ≤ Ci
-

2. (The segment is incomplete) For some 0 ≤ k < - the
last k (i − 1)-segments from (x-, . . . , x-−1) through
(x-−k+1, . . . , x-−k) are complete and:

(a) δ(x-−k, Vi ) ≤ Ii−1
-

(b) δ(x0, Vi+1) ≤ Ii
- − k-i−1

Figure 8 depicts the situation described in Definition 1(2).
Lemma 9 defines a set of valid values for Ci

- and Ii
-.

Lemma 9 (Recursive Expression of Ci
- and Ii

-) The sets
{Ci

-}-,i and {Ii
-}-,i are valid according to Definition 1,

defined as follows. For i ∈ {0, 1} let I0
- = 1, I1

- = - +
1, C0

- = 1, and C1
- = - + 2. For i ≥ 2:

Ii
- = 2Ii−2

- + Ii−1
- + -i + (-− 1)-i−2

Ci
- = max

{
- · Ci−1

-

(-− 1) · Ci−1
- + 2(Ii−2

- + Ii−1
- ) + -i−1

Proof Given a shortest path from x to x ′ with length -i ,
where - <λ , we can divide it into - (i − 1)-segments
or -2 (i − 2)-segments, each of which is either com-
plete or incomplete according to Definition 1. Notice that
although the graph is undirected, the definition of an incom-
plete path depends on the orientation of the path. Let (x =
x0, . . . , x1), (x1, . . . , x2), . . . , (x-−1, x- = x ′) be the (i −
1)-segments and, within the j th (i−1)-segment, let (x j−1 =
x j−1,0, . . . , x j−1,1), (x j−1,1, . . . , x j−1,2), . . . , (x j−1,-−1,

. . . , x j−1,- = x j ) be the (i − 2)-segments. We begin our

Fig. 8 A depiction of the guarantees of an incomplete i-segment
(x0, . . . , x-). Here (x-−k , . . . , x-−k−1) is the first incomplete (i −1)-
segment starting from x-

attempt to find a complete path from x to x ′ by identifying
the last point z = x j,k′ such that all (i − 2)-segments from x
to z are complete, i.e., the distance between their endpoints
in Si−2 is at most Ci−2

- . In a similar fashion, we identify the
first point y′ = x-−k such that the k (i − 1)-segments from
x ′ to y′ are all complete. Let y = x-−k−1. We divide the rest
of the proof into three cases depending on the location of
z = x j,k′ relative to y and y′: either (1) j ≥ -−k (z is equal
to or after y′), (2) j < -− k − 1 or j = -− k − 1, k′ = 0
(z is equal to or before y) or (3) j = -− k − 1 and k′ > 0
(z is between y′ and y, as depicted in Fig. 7). We first deal
with cases (1–3), assuming i ≥ 2, then treat the base cases
when i ∈ {0, 1}.

Case 1. In the first case, the whole path is covered by
k complete (i − 1)-segments and -(- − k) complete
(i − 2)-segments. In the worst case k = - and we have:

δSi−1(x, x ′) ≤ -Ci−1
- (6)

Case 2. Let pz = pi−1(z), py′ = pi (y′), and p̂z =
pi+1(pz). Whether the i-segment from x to x ′ is successful
hinges on whether py′ ∈ Bi+1,λ(pz). If so we obtain the
following bound on δSi (x, x ′) and we declare the path from
x to x ′ complete.
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δSi (x, x ′) ≤ δSi−2(x, x j,k′) + δSi−1(x j,k′ , pz) + δSi (pz, py′)

+δSi (py′, y′) + δSi−1(y′, x ′)

≤ ( j- + k′)Ci−2
- + Ii−2

- + (Ii−2
- + Ii−1

- )

+(-− k − j)-i−1 − k′-i−2) + Ii−1
- + kCi−1

-

The expression above is maximized at k′ = 0, and the one
below at k = -− 1 and j = 0:

≤ j-Ci−2
- + kCi−1

- + 2(Ii−2
- + Ii−1

- ) + (-− k − j)-i−1

≤ (-− 1)Ci−1
- + 2(Ii−2

- + Ii−1
- ) + -i−1 (7)

However, if py′ ,∈ Bi+1,λ(pz) we declare the path from
x to x ′ to be incomplete. We can then guarantee that:

δ(x, Vi+1) ≤ δ(x, z) + δ(z, pz) + δ(pz, p̂z)

≤ ( j-i−1 + k′-i−2) + Ii−2
-

+(Ii−2
- + Ii−1

- + (-− k − j)-i−1 − k′-i−2)

≤ Ii−1
- + 2Ii−2

- + -i − k-i−1 (8)

Case 3. As in case 2 let pz = pi−1(z), py′ = pi (y′), py =
pi−1(y), and p̂y = pi+1(py). By the incompleteness of the
(i − 1)-segment from y′ to y and the completeness of the
first k′(i − 2)-segments from y to z it follows from Defini-
tion 1(2) that δ(z, pz) ≤ Ii−2

- and δ(y′, py′) ≤ Ii−1
- − k′-i−2.

See Fig. 8 for a depiction of this case.
By the definition of Si−1 and the triangle inequality we

have δSi−1(y, py) = δ(y, Vi−1) ≤ δ(y, z) + δ(z, pz) =
k′-i−2 + Ii−2

- . Whether the whole path from x to x ′ is com-
plete depends on whether py′ is in Bi+1,λ(py). If it is we
have:

δSi (x, x ′) ≤ δSi−2(x, y) + δSi−1(y, py) + δSi (py, py′)

+ δSi (py′ , y′) + δSi−1(y′, x ′)

≤ -(-− k − 1)Ci−2
- + 2(Ii−2

- + Ii−1
- )

+-i−1 + kCi−1
-

≤ (-− 1)Ci−1
- + 2(Ii−2

- + Ii−1
- ) + -i−1 (9)

On the other hand, if py′ is not in the set Bi+1,λ(py) then
we can conclude that δ(py, p̂y) ≤ Ii−2

- + Ii−1
- + -i−1 and

therefore that

δ(x, Vi+1) ≤ δ(x, y) + δ(y, py) + δ(py, p̂y)

≤ (-− k − 1)-i−1 + 2Ii−2
- + Ii−1

- + -i−1 + k′-i−2

≤ Ii−1
- + 2Ii−2

- + -i + (-− 1)-i−2 − k-i−1 (10)

The last line is maximized at k′ = - − 1. Taking the max-
imum over Equations (6,7,9) and (8,10) we can easily write
inductive expressions for Ci

- and Ii
- in terms of Ci−1

- , Ii−1
- ,

and Ii−2
- , for any i ∈ [2, o].

Ci
- ≤ max

{
-Ci−1

-

(-− 1)Ci−1
- + 2(Ii−1

- + Ii−2
- ) + -i−1

Ii
- ≤ Ii−1

- + 2Ii−2
- + -i + (-− 1)-k−2

We now prove valid bounds on Ci
- and Ii

- for i ∈ {0, 1}.
Let x, x ′ ∈ V be such that δ(x, x ′) = -0, i.e., (x, x ′) is
an edge. If δ(x, V1) > 1 then x ′ ∈ B1,λ(x) and therefore
δS0(x, x ′) = δ(x, x ′) = 1. That is, for any - ≥ 1, the
assignment C0

- = I0
- = 1 is valid. Turning to the case i = 1,

let (x = x0, . . . , x- = x ′) be a path from x to x ′ with
length -. Let (x-−k−1, x-−k) be the last edge not present
in S0. That is, if we view the path as oriented from x ′ to
x , (x-−k, x-−k−1) is the first incomplete 0-segment. Using
the observation above it follows that δ(x-−k, V1) ≤ I0

- = 1.
Now if p1(x-−k) lies inside B2,λ(x) we declare (x, . . . , x ′)
complete:

δS1(x, x ′) = δS1(x, p1(x-−k)) + δS1(p1(x-−k), x-−k)

+δS0(x-−k, x ′)

= (-− k + 1) + 1 + k = - + 2

If p1(x-−k) lies outside B2,λ(x) we can bound δ(x, V2) as:
δ(x, V2) ≤ δ(x, p1(x-−k)) = - + 1− k. Thus, the assign-
ment C1

- = - + 2 and I1
- = - + 1 is valid for all - ≥ 1.

01
Finding a closed form bound on Ci

- and Ii
- is tedious but

not at all difficult.

Lemma 10 (Tight Bounds on Ci
- and Ii

-) The sets {Ci
-} and

{Ii
-} given below are valid according to Definition 1, where

c′- = 1 + 2-+1
(-+1)(-−2) and c- = 3 + 6-−2

-(-−2) .

Ii
1 ≤ 2i+2

3 Ci
1 ≤ 2i+1

Ii
2 ≤ (i + 2

3 )2i + 1
3 Ci

2 ≤ 3(i + 1)2i

Ii
- ≤ c′--i Ci

- ≤ min
{

c--i

-i + 2c′-i-i−1

Proof What follows are six terse induction proofs bounding
{Ci

-} and {Ii
-} for - = 1, - = 2, and - ≥ 3. Each has two

base cases for i ∈ {0, 1}. The recursive expressions for Ci
-

and Ii
- come from Lemma 9.

For - = 1. We claim Ii
1 = (2i+2 − 1)/3 for i even and

Ii
1 = (2i+2−2)/3 for i odd. As base cases we have: I0

1 = 1 =
22−1

3 and I1
1 = 2 = 23−2

3 . For i > 1:

Ii
1 = 2Ii−2

1 + Ii−1
1 + 1 {Lemma 9}

=





2( 2i−1

3 ) + 2i+1−2
3 + 1 i even

2( 2i−2
3 ) + 2i+1−1

3 + 1 i odd
{Ind. hyp.}

=






2i+2−1
3 i even

2i+2−2
3 i odd.

We claim Ci
1 = 2i+1 − 1. As base cases we have: C0

1 = 1 =
21 − 1 and C1

1 = 3 = 22 − 1. For i > 1:

Ci
1 = 2(Ii−2

1 + Ii−1
1 ) + 1 {Lemma 9}

= 2( 2i

3 + 2i+1

3 − 1) + 1 = 2i+1 − 1 {Ind. hyp.}
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For - = 2. We claim Ii
2 = (i + 2

3 )2i + (−1)i

3 . As base

cases we have: I0
2 = 1 = (0 + 2

3 )20 + (−1)0

3 and I1
2 = 3 =

(1 + 2
3 )21 + (−1)1

3 . For i > 1:

Ii
2 = 2Ii−2

2 + Ii−1
2 + 3

2 2i {Lemma 9}

= 2(i − 4
3 )2i−2 + (i − 1

3 )2i−1 + (−1)i

3 + 3
2 2i {Ind.}

= (2i − 5
3 )2i−1 + 3

2 2i + (−1)i

3

= (i + 2
3 )2i + (−1)i

3

For the claimed bounds on Ci
2 we have, as base cases: C0

2 =
3 ≤ 3 · 1 · 20 and C1

2 = 4 ≤ 3 · 2 · 21. For i > 1:

Ci
2 ≤ max

{
2Ci−1

2 , {Lemma 9}
Ci−1

2 + 2(Ii−2
2 + Ii−1

2 ) + 3
2 2i

≤ max






3i2i ,

3i2i−1 + 2((i − 4
3 )2i−2 {Ind. hyp.}

+ (i − 1
3 )2i−1) + 2i−1

≤ 2i (3i/2 + i/2− 2/3 + i − 1/3 + 1/2)

< 3(i + 1)2i

For - ≥ 3. For the claimed bounds on Ii
- we have, as base

cases: I0
- = 1 ≤ c′--0 and I1

- = - + 1 ≤ c′--1. For i > 1:

Ii
-≤ 2Ii−2

- + Ii−1
- + -i + (-− 1)-i−2 {Lemma 9}

≤ -i (c′-( 2
-2 + 1

-) + 1 + 1
- − 1

-2 ) {Ind. hyp.}
= -i ((1 + 2-+1

(-+1)(-−2) )(
-+2
-2 ) + 1 + -−1

-2 ) {Def.c′-}
= -i (1 + 2-+1

-2 + (2-+1)(-+2)
(-+1)(-−2)-2 )

= -i (1 + (2-+1)[(-+1)(-−2)+-+2]
(-+1)(-−2)-2 )

= -i (1 + 2-+1
(-+1)(-−2) )

= c′--i {Definition ofc′-}

We first show that Ci
- ≤ c--i , then that Ci

- ≤ -i +
2c′-i-i−1. For the first bound on Ci

- our base cases are:
C0

- = 1 ≤ c--0 and C1
- = - + 2 ≤ c--. For i > 1:

Ci
- ≤ max






-Ci−1
- ,

(-− 1)Ci−1
- + -i−1 {Lemma 9}

+ 2(Ii−2
- + Ii−1

- )

≤ max






-c--i−1,

(-− 1)c--i−1 + -i−1 {Ind. hyp.}
+ 2(c′--i−2 + c′--i−1)

≤ c--i + -i−1(−c- + 2c′-
- + 2c′- + 1)

≤ c--i {Definition of c- = 1 + 2c′- + 2c′-
- }

For the second bound on Ci
- our base cases are: C0

- = 1 ≤
-0 + 2c′- · 0 · -−1 and C1

- = - + 2 ≤ - + 2c′-. For i > 1:

Ci
- ≤ max






-Ci−1
- ,

(-− 1)Ci−1
- + -i−1 {Lemma 9}

+ 2(Ii−2
- + Ii−1

- )

≤ max






-i + 2c′-(i − 1)-i−1,

(-− 1)(-i−1 + 2c′-(i − 1)-i−2) {Ind.}
+-i−1 + 2(c′--i−2 + c′--i−1)

≤ -i + -i−1(2c′-(i − 1) + 2c′- + 2c′-−2c′-(i−1)

- )

≤ -i + 2c′-i-i−1 {For i ≥ 2}

This concludes the proof of Lemma 10. 01

Notice that Lemma 10’s bound on Io
- is c′--o, which is

vacuous because Vo+1 is empty. In other words, every o-seg-
ment (a path with length -o) must be complete. The intuitive
reason for this is that every hilltop in Vo−1 sees every hilltop
in Vo at distance λo. Thus, if δ(u, v) = -o, the multiplicative
distortion of S for the pair u, v is δS(u, v)/δ(u, v) = Co

-/-o.
With this observation in hand, Theorem 7 easily follows from
Lemma 10.

Theorem 7 Let S be the Fibonacci spanner generated with
parameters o ∈ [2, logφ log n], ε ∈ (0, 1], and λ = 3o/ε+2.
Then, with high probability,

E[|S|] = O((o/ε)φn
1+ 1

Fo+3−1 )

and for every pair of vertices u, v, if δ(u, v) = d then δS(u, v)

is bounded from above by:






d · 2o+1 d = 1
d · 3(o + 1) d = 2o

d · (3 + 6-−2
-(-−2) ) d = -o, for - ≥ 3

d = (3o/ε′)o,

d · (1 + ε′) for any ε′ ∈ [ε, 1]

Proof The maximum - we wish to use is 3o/ε. Note that in
the proof of Lemma 9 we often make the inference that if v ∈
Vi−1, u ∈ Vi , and δ(v, u) ≤ λi , either δSi (v, u) = δ(v, u)

or δ(v, pi+1(v)) ≤ λi . Here λi is never more than Ci
- or Ii

-.
One can easily check (see Lemma 10) that Ci

- and Ii
- are at

most (- + 2)i . Thus, the analysis of Lemma 9 and 10 goes
through as long as - ≤ λ− 2. This justifies our choice of λ.

The first three lines in the claimed bound on δS(u, v)

follow directly from Lemma 10. We prove the last line; in
particular, why the choice of - = 3o/ε′ gives a multiplica-
tive distortion of 1 + ε′. By Lemma 10, if δ(v, u) = -o =
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(3o/ε′)o it follows that:

δS(v, u) ≤ (3o/ε′)o + 2c′-o(3o/ε′)o−1

= δ(v, u)
(

1 + 2c′-o
3o/ε′

)

= δ(v, u)
(

1 +
(

2ε′
3

) (
1 + 2-+1

(-+1)(-−2)

))

{Def. ofc′-}
≤ δ(v, u)

(
1 +

(
2ε′
3

) (
1 + 13

28

))

{- ≥ 3o ≥ 6}
< δ(v, u)

(
1 + ε′

)

01

We think the most interesting parametrization of Theo-
rem 7 is when the order o = logφ log n − O(1), yielding
a nearly linear size spanner. However, in this case the dis-
tortion for very close vertices is 2o+1 = 2logφ log n−O(1) ≈
(log n)1.44. Theorem 2 will give us an O(

log n
log log log n )-spanner

with size O(n log log n). By including such a spanner with a
Fibonacci spanner we obtain the distortion bounds stated in
Corollary 1.

Corollary 1 Any graph on n vertices contains a spanner
with size O(n(ε−1 log log n)φ) such that for any vertices u, v,
if δ(u, v) = d then δS(u, v) is bounded from above by:





d · O(
log n

log log log n ) d ≥ 1
d · 3(logφ log n) d ≥ (log n)logφ 2 ≈ (log n)1.44

d · (3 + 6-−2
-(-−2) ) d ≥ (log n)logφ -, for - ≥ 3

d = (3o/ε′)o,

d · (1 + ε′) for any ε′ ∈ [ε, 1]
Proof The parameters of the spanner are o = logφ log n− 2
and λ = 3o/ε+2. Note that the bounds of Theorem 7 hold for
distances that are of the form -o for some integer - ≤ λ−2.
Of course, in general d1/o may not be an integer and d may
be much greater than (λ − 2)o. We choose not to pursue a
detailed analysis for such distances. If d is not a nice num-
ber we round it up to

⌈
d1/o⌉o and apply Theorem 7. If d is

too large to apply Theorem 7 directly (i.e., if d > (3o/ε)o)
we simply chop it up into 2d/(3o/ε)o3 pieces with length at
most (3o/ε)o and apply Theorem 7 separately to each piece.

01

4.4 Distributed construction

Our spanner is composed of a collection of shortest paths
that is determined solely by the initial random sampling. In
the first stage of the algorithm every node v must, for each
i ∈ [1, o], ensure that a path P(v, pi (v)) is included in the
spanner or determine that δ(v, Vi ) > λi−1. This stage can
be executed in λi−1 time steps using unit-length messages.
In the first step each vertex in Vi notifies its neighbors that
it is in Vi . In general, in the kth step each vertex v receives
a message from each neighbor w indicating the Vi -vertex

with the minimum unique identifier at distance k − 1 from
w. In the (k + 1)th step v sends the minimum among these
Vi -vertices to all neighbors that it has yet to receive a mes-
sage from. Thus, after λi−1 steps each v ∈ V knows the
first edge on the path P(v, pi (v)) or knows that δ(v, Vi ) ≥
λi−1.

In the second stage we must connect each x ∈ V = V0
with each y ∈ B1,λ(x) and each x ∈ Vi−1 with each y ∈
Bi+1,λ(x). Since the radius of any of these balls is at most λo,
this stage is trivial to execute in O(λo) time with unbounded
messages. However, if our budget constrains us to messages
with length Õ(n1/t ) we need to be more careful.

Consider the following protocol for computing Si . Each
node y ∈ Vi will attempt to broadcast its identity to all nodes
at distance at most λi . In the kth step each z ∈ V will receive
a message from each neighbor w listing all Vi -nodes at dis-
tance k−1 from w. (Thus, in the (k+1)th step z will send to w

all Vi -nodes received in the kth step, excluding those already
known to w.) If z ever needs to send a message longer than
the maximum Õ(n1/t ) it ceases participation in this protocol.
After λi time each x ∈ Vi−1 will know the set of Vi -verti-
ces at distance λi , excluding those that were blocked due to
cessation of nodes. In other words, this protocol will work
correctly if every “blocked” y ∈ Vi at distance δ(x, y) ≤ λi

does not appear in Bi+1,λ(x). We claim that with probability
1−n−%(1) this protocol works correctly if the message length
is bounded at s ≥ 4q−1

i+1qi ln n. Consider the situation from
the point of view of x ∈ Vi−1. Let y ∈ Bi+1,λ(x) and sup-
pose that z blocked x from becoming aware of y by ceasing
to participate after the kth step, because it failed to transmit
the set {y, y1, . . . , ys} to a neighbor (See Fig. 9). If follows
that for any y′ ∈ {y1, . . . , ys}, δ(x, y′) < δ(x, Vi+1) since
δ(x, y′) ≤ δ(x, z) + k = δ(x, y) < δ(x, Vi+1). Thus, if the
protocol fails then |Bi+1,λ(x)| > s. Since nodes in Vi are
promoted to Vi+1 with probability qi+1/qi the probability of
failure (from x’s point of view) is at most (1−qi+1/qi )

s+1 <

e−sqi+1/qi < n−4. Since
∑

i |Vi | < 2n the total probability
of failure is certainly less than 2n−3.

This Monte Carlo protocol can easily be converted to a
Las Vegas one as follows. Suppose that a vertex z ceased par-
ticipation in the construction of Si after step k. It will then
broadcast the number k to all vertices at distance at most
λi . If an x ∈ Vi−1 receives such a message and δ(x, z) +

Fig. 9 If a message should be
transmitted from y ∈ Bi+1,λ(x)
to x ∈ Vi−1, only messages
from other nodes in Bi+1,λ(x)
could possibly interfere with it
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k < δ(x, Vi+1) then x has detected a failure. It broadcasts a
message commanding all vertices at distance at most λi to
include all adjacent edges in the spanner. This error detection
mechanism can be implemented with unit-length messages
and increases the expected size of the spanner by at most(n

2

)
· 2n−3 < 1/n.

Under the usual choice of sampling probabilities the most
expensive of S0, . . . , So to compute is So, which requires
O(λo) time and messages with length:

Õ(nqo) = Õ(n
1− Fo+2−1

Fo+3−1 λ−φ(Fo+2−1)+Fo+3−(o+2))

≈ n1−1/φ ≈ n.38.

If n.38 is too much we can simply increase the order o of
the spanner, which gives us the freedom to tighten the gap
between consecutive sampling probabilities qi and qi+1. In
particular, if our desired spanner size is O(n1+αλφ) and
our desired message size is Õ(n1/t ) > nα , we find the
maximum i such that qi/qi+1 ≤ n1/t . The sampling prob-
abilities q1, . . . , qi+1 are kept as is and the remaining sam-
pling probabilities are replaced with {q ′j } j>i+1, where q ′j =
qi+1n(− j+i+1)/t . The overall effect of limiting the message
size to Õ(n1/t ) is to increase the order o by at most t . Theo-
rem 8 follows immediately from the above discussion, Theo-
rem 7, and the construction of sparse multiplicative spanners
from Section 2.

Theorem 8 Consider a synchronized distributed network in
which messages of length Õ(n1/t ) can be communicated
at each time step. Let o be an integer such that 2 ≤ o ≤
logφ log n and Fo+3 > t , and let λ = 3(o+ t)/ε +2. A span-

ner S with expected size O(λφn
1+ 1

Fo+3−1 ) can be constructed
in O(λo+t ) time such that for any u, v with δ(u, v) = d,
δS(u, v) is bounded from above by:





d · O(min{ log n
log log log n , Fo+3}) d ≥ 1

d · 3(o + t + 1) d ≥ 2o+t

d · (3 + 6-−2
-(-−2) ) d ≥ -o+t ,- ≥ 3

d ≥
(

3(o+t)
ε′

)o+t
,

d · (1 + ε′) for any ε′ ∈ [ε, 1]

Note that in the first bound, 2log∗ n−log∗ |S|/n log|S|/n n =
O(Fo+3).

The introduction stated the results of Theorem 8 for the
special case of o = logφ log n, using the (α, β)-spanner ter-
minology. We restate these claims:

Corollary 2 Consider a synchronized distributed network
in which messages of length Õ(n1/t ) can be communicated
at each time step. For λ = 3(logφ log n + t)/ε + 2, a
spanner S with expected size O(nλφ) can be constructed
in O(λlogφ log n+t ) time such that S is simultaneously:

– an O(
log n

log log log n )-spanner (see Theorem 2),
– a (3(logφ log n + t), β1)-spanner,
– a (3 + ρ, β2)-spanner,
– and a (1 + ε′, β3)-spanner, for any ε′ ≥ ε.

Here β1 = 2t (log n)logφ 2, β3 = (
3(logφ log n+t)

ε′ )logφ log n+t ,
and for any parameter - ≥ 3, ρ = 6-−2

-(-−2) and β2 =
-logφ log n+t .

5 Conclusion

In this paper, we developed new randomized algorithms for
constructing spanners with linear or near-linear size that use
relatively short messages. Furthermore, we have shown that
in any reasonable amount of time the best spanners one could
hope to find are of the (1 + ε, β) variety: there are no effi-
cient constructions of (sublinear) additive spanners unless
the density or additive distortion is very large.

Our results leave open several difficult problems. Can
a linear size O(log n)-spanner (or linear size skeleton) by
constructed in O(log n) time with unit-length messages, and
more generally, is it possible to find (2k − 1)-spanners dis-
tributively (for arbitrary, not necessary constant k) with size
O(n1+1/k)? Baswana and Sen claimed that their random-
ized distributed algorithm finds (2k − 1)-spanners whose
expected size is O(kn +n1+1/k), a bound that would be opti-
mal (assuming the girth conjecture) for k < log n/ log log n.
However, in Sect. 2 we found and corrected a flaw in
their analysis, which yields the slightly weaker bound of
O(kn + (log k)n1+1/k) on the expected size of the spanner.
The best deterministic distributed (2k−1)-spanner algorithm
[15] returns slightly denser spanners, with size O(kn1+1/k).

Perhaps the most interesting applications of spanners are
in constructing distance labeling schemes [26,38], approx-
imate distance oracles [6,9,27,35,38], and compact rout-
ing tables [1,11,12,31,37,34] that guarantee approximately
shortest routes. Nearly all results in these areas deal exclu-
sively with purely multiplicative distortion, i.e., distortion
not of the (α, β) variety. It is not clear whether one could
find approximate distance oracles (and labelings, and rout-
ing tables) whose space-distortion tradeoffs match those of
the best spanners. As a first step one might look for any non-
trivial tradeoff that beats the standard girth bound for purely
multiplicative distortion. For example, is it possible to stock
the nodes of an unweighted graph with O(n1−ε)-size routing
tables such that if δ(u, v) = d, the route taken from u to v

has length (3− ε)d + polylog(n)?

Acknowledgments We would like to thank the anonymous referees
for spotting several errors and greatly improving the readability of the
paper.
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