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ABSTRACT
One of the oldest unresolved problems in extremal combi-
natorics is to determine the maximum length of Davenport-
Schinzel sequences, where an order-s DS sequence is defined
to be one over an n-letter alphabet that avoids alternat-
ing subsequences of the form a · · · b · · · a · · · b · · · with length
s + 2. These sequences were introduced by Davenport and
Schinzel in 1965 to model a certain problem in differential
equations and have since become an indispensable tool in
computational geometry and the analysis of discrete geo-
metric structures.

Let λs(n) be the extremal function for such sequences.
What is λs asymptotically? This question has been an-
swered satisfactorily (by Hart and Sharir, Agarwal, Sharir,
and Shor, and Nivasch) when s is even or s ≤ 3. However,
since the work of Agarwal, Sharir, and Shor in the 1980s
there has been a persistent gap in our understanding of the
odd orders, a gap that is just as much qualitative as quan-
titative.

In this paper we establish the following bounds on λs(n)
for every order s.

λs(n) =



n s = 1

2n− 1 s = 2

2nα(n) +O(n) s = 3

Θ(n2α(n)) s = 4

Θ(nα(n)2α(n)) s = 5

n2(1+o(1))αt(n)/t! s ≥ 6, t = b s−2
2
c

These results refute a conjecture of Alon, Kaplan, Nivasch,
Sharir, and Smorodinsky and run counter to common sense.
When s is odd, λs behaves essentially like λs−1.
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1. INTRODUCTION
Consider the classic problem of bounding the complexity

of the lower envelope of n univariate functions f1, . . . , fn,
each pair of which crosses at most s times. In other words,
how many maximal connected intervals of the {fi} are con-
tained in the graph of fmin(x) = min{f1(x), . . . , fn(x)}? In
the absence of further information about the functions {fi}
this problem can be completely stripped of its geometry by
transcribing the lower envelope fmin as a Davenport-Schinzel
(DS) sequence of order s, namely, a repetition-free sequence
over the alphabet {1, . . . , n} that does not contain any al-
ternating subsequences of the form a · · · b · · · a · · · b · · · with
length s + 2, for any a, b ∈ {1, . . . , n}.1 Although Daven-
port and Schinzel [9] introduced this problem nearly 50 years
ago, DS sequences only became well known in the compu-
tational geometry community in the 1980s [5, 24]. Since
then DS sequences and lower envelopes have found a truly
startling number of geometric applications, with a growing
number [20, 16, 4, 6, 11, 18] that are not overtly geometric.
See Sharir and Agarwal [23] for a survey of DS sequences up
to 1995 and Klazar’s 2002 survey [14] for a more detailed
history of the problem.

Davenport and Schinzel [9] established n1+o(1) upper bounds
on the length of DS sequences of every order s. In order to
properly survey the improvements that followed [8, 25, 10,
21, 22, 15, 2, 13, 17] we must define some notation for for-
bidden subsequences and their extremal functions.

Sequence Notation and Terminology.
Let |σ| be the length of a sequence σ = (σi)1≤i≤|σ| and

let ‖σ‖ be the size of its alphabet Σ(σ) = {σi}. Two equal
length sequences are isomorphic if they are the same up to
a renaming of their alphabets. We say σ is a subsequence of

1If the sequence corresponding to the lower envelope con-
tained an alternating subsequence abab · · · with length s+2
then the functions fa and fb must have crossed at least s+1
times, a contradiction.



σ′, written σ≺ σ′, if σ can be obtained by deleting symbols
from σ′. The predicate σ ≺ σ′ asserts that σ is isomorphic
to a subsequence of σ′. If σ ⊀ σ′ we say σ′ is σ-free. If P is
a set of sequences, P ⊀ σ′ holds if σ ⊀ σ′ for every σ ∈ P .
The assertion that σ appears in or occurs in or is contained
in σ′ means either σ ≺ σ′ or σ ≺ σ′, which one being clear
from context. The projection of a sequence σ onto G ⊆
Σ(σ) is obtained by deleting all non-G symbols from σ. A
sequence σ is k-sparse if whenever σi = σj and i 6= j, then
|i− j| ≥ k. A block is a sequence of distinct symbols. If σ is
understood to be partitioned into a sequence of blocks, JσK
is the number of blocks. The predicate JσK = m asserts that
σ can be partitioned into m blocks. The extremal functions
for generalized Davenport-Schinzel sequences are defined as

Ex(σ, n,m) = max{|S| : σ ⊀ S, ‖S‖ = n, and JSK ≤ m}
Ex(σ, n) = max{|S| : σ ⊀ S, ‖S‖ = n, and S is ‖σ‖-sparse}

where σ may be a single sequence or a set of sequences. The
conditions “JSK ≤ m” and “S is ‖σ‖-sparse” guarantee that
the extremal functions are finite. The extremal functions for
(standard) Davenport-Schinzel sequences are defined to be
λs(n,m) = Ex(σs+2, n,m) and λs(n) = Ex(σs+2, n), where
σs+2 = abab · · · is the alternating sequence with length s+2.
Note that the sparseness condition in the definition of λs(n)
only forbids immediate repetitions since ‖σs+2‖ = 2.

Bounds on generalized Davenport-Schinzel sequences are
expressed as a function of“the” inverse-Ackermann function,
though there is no universally agreed-upon definition. All
definitions in the literature differ by at most a constant,
which usually obviates the need for more precision. Our
upper bounds refer to the following variant of Ackermann’s
function.

a1,j = 2j j ≥ 1

ai,1 = 2 i ≥ 2

ai,j = ai,j−1 · ai−1,ai,j−1 i, j ≥ 2

Note that in the table of {ai,j} values, the first column
is constant (ai,1 = 2) and the second merely exponential
(ai,2 = 2i), so we have to look to the third column to find
Ackermann-type growth. The double and single argument
versions of the inverse-Ackermann function are defined to be

α(n,m) = min{i | ai,j ≥ m, where j = max{dn/me, 3}}
α(n) = α(n, n)

We could have defined α(n,m) without direct reference to
Ackermann’s function. Note that j = log(a1,j). One may
convince oneself that j = log?(a2,j)−O(1), j = log??(a3,j)−
O(1), and in general, that j = log[i−1](ai,j) − O(1), where
[i− 1] is short for i− 1 ?s.2 Up to O(1) differences α(n,m)

is min
{
i
∣∣∣ log[i−1](m) ≤ max{dn/me, 3}

}
. We state pre-

vious results in terms of the single argument version of α.
However, they all generalize to the two-argument version by
replacing λs(n) with λs(n,m) and α(n) with α(n,m).

A Brief History of λs.
After introducing the problem in 1965, Davenport and

Schinzel [9] proved that λ1(n) = n, λ2(n) = 2n− 1, λ3(n) =

2In general, if f : N\{0} → N is a decreasing function,

f?(m) = min{` | f (`)(m) ≤ 1}, where f (0)(m) = m and

f (`)(m) = f(f (`−1)(m)).

O(n logn), and for all s ≥ 4, that λs(n) = n · 2O(
√

logn),
where the leading constant in the exponent depends on s.
Shortly thereafter Davenport [8] improved the bound on
λ3(n) to O(n logn/ log log n). In 1973 Szemerédi [25] dra-
matically improved the upper bounds for all s ≥ 3, showing
that λs(n) = O(n log? n), where the leading constant de-
pends on s.

From a purely numerical perspective Szemerédi’s bound
settled the problem for all values of n one might encounter in
nature (the log-star function being at most 5 for n less than
1019,000). However, the problem of quantitatively estimat-
ing λs(n) has, in our view, always been a proxy for several
qualitative questions: is λs(n) linear or nonlinear? what is
the structure of extremal sequences realizing λs(n)? and
does it even matter what s is? In 1984 Hart and Sharir [10]
answered the first question. They gave a bijection between
order-3 (ababa-free) DS sequences and so-called generalized
postorder path compression schemes. Although these schemes
resembled the path compressions found in set-union data
structures, Tarjan’s analysis [26] did not imply any non-
trivial upper or lower bounds on their length. Hart and
Sharir proved that such path compression schemes have length
Θ(nα(n)), thereby settling the asymptotics of λ3(n). This
result implied that λs(n) is nonlinear for all s ≥ 3 but it left
open the possibility that λs(n) could be O(nα(n)), where s
only influences the leading constant.

Improving on results of Sharir [21, 22], Agarwal, Sharir,
and Shor [2] gave asymptotically tight bounds on order-4 DS
sequences and reasonably tight bounds on all higher order
sequences.

λ4(n) = Θ(n · 2α(n))

λs(n)


> n · 2(1+o(1))αt(n) / t!

< n · 2(1+o(1))αt(n) even s ≥ 6

< n · (α(n))(1+o(1))αt(n) odd s ≥ 5

where t = bs− 2

2
c

For even s the lower bounds are tight up to the constant in
the exponent: 1 for the upper bound and 1/t! for the lower
bound. Moreover, their lower bounds gave a qualitatively
satisfying answer to the question of how extremal sequences
are structured at the even orders. For odd s the gap between
upper and lower bounds was wider, the base of the exponent
being 2 at the lower bound and α(n) at the upper bound.

Remark 1.1. The results of Agarwal, Sharir, and Shor [2]
force us to confront another question, namely, when is it
safe to declare victory and call the problem closed? As Ni-
vasch [17] observed, the “+o(1)” in the exponent necessar-
ily hides a ±Ω(αt−1(n)) term if we express the bound in
an “Ackermann-invariant” fashion, that is, in terms of the
generic α(n), without specifying the precise variant of Ack-
ermann’s function for which it is the inverse. Furthermore,
under any of the definitions in the literature α(n) is an
integer-valued function whereas λs(n)/n must increase fairly
smoothly with n, that is, an estimate of λs(n)/n that is
expressed as a primitive recursive function of any integer-

valued α(n) must be off by at least a 2Ω(αt−1(n)) factor. A
reasonable definition of sharp bound (when dealing with gen-
eralized Davenport-Schinzel sequences) is an expression that
cannot be improved, given ±Θ(1) uncertainty in the defini-



tion of α(n). For example, λ4(n) = Θ(n2α(n)) is sharp in
this sense since the constant hidden by Θ reflects this un-
certainty. In contrast, λ3(n) = Θ(nα(n)) is not sharp in
an Ackermann-invariant sense. See the tighter bounds on
λ3(n) cited below and in Theorem 1.2.

In 2009 Nivasch [17] presented a simplified construction
of even-order sequences and a better analysis of λs(n) for
both even and odd s. In addition, he provided a tight lower
bound on the leading constant of λ3(n), matching an earlier
upper bound of Klazar [13].

λs(n) =


2nα(n) +O(n

√
α(n)) s = 3; see [13]

Θ(n · 2α(n)) s = 4

n · 2(1+o(1))αt(n) / t! even s ≥ 6

λs(n) < n · (α(n))(1+o(1))αt(n) / t! odd s ≥ 5

where t = bs− 2

2
c (Niv)

This essentially closed the problem for even s ≥ 6 (the
leading constant in the exponent being precisely 1/t!) but
left the odd case open. The (Niv) bounds are actually corol-
laries of a more general theorem in [17] concerning the length
of sequences avoiding catenated permutations,3 which were
introduced by Klazar [12]. Define Perm(r, s+1) to be the set
of sequences obtained by concatenating s+ 1 permutations
over an r-letter alphabet. For example, abcd cbad badc abcd
dcba ∈ Perm(4, 5). Let Λr,s(n) = Ex(Perm(r, s + 1), n) be
the extremal function for Perm(r, s+1)-free sequences. The
“s+ 1” here is chosen to highlight the parallels with order-s
DS sequences. Every member of Perm(2, s+ 1) contains an
alternating sequence abab · · · with length s + 2,4 so order-
s DS sequences are also Perm(2, s + 1)-free, implying that
λs(n) ≤ Λ2,s(n).

Alon, Kaplan, Nivasch, Sharir, and Smorodinsky [3, 17]
conjectured that the upper bounds (Niv) for odd orders are
tight, that is, the base of the exponent is, in fact, α(n). This
conjecture was spurred by their discovery of similar func-
tions that arose in an apparently unrelated combinatorial
problem.

New Results.
We give new bounds on the length of Davenport-Schinzel

sequences and in the process refute conjectures due to Alon
et al. [3, 17] and Pettie [19].

Theorem 1.2. Let λs(n) be the maximum length of a
repetition-free sequence over an n-letter alphabet avoiding
subsequences isomorphic to abab · · · (length s+ 2). Then λs
satisfies:

λs(n) =



n s = 1

2n− 1 s = 2

2nα(n) +O(n) s = 3

Θ(n2α(n)) s = 4

Θ(nα(n)2α(n)) s = 5

n2(1+o(1))αt(n)/t! s ≥ 6, t = b s−2
2
c

3Nivasch called these formation-free sequences.
4The first permutation contributes 2 symbols and every sub-
sequent permutation contributes at least one.

Theorem 1.2 is optimal in that it provides the sharpest
bounds on λs(n) that can be expressed in an Ackermann-
invaraint fashion (see Remark 1.1), and in this sense closes
the Davenport-Schinzel problem. (For s ≥ 6, the exponent
is actually the Ackermann-invariant expression αt(n)/t! +
O(αt−1(n)).) However, we believe our primary contributions
are not the tight asymptotic bounds per se but the structural
differences they reveal between even and odd s. We can now
give a cogent explanation for why odd orders s ≥ 5 behave
essentially like the preceding even orders and yet why they
are intrinsically more difficult to understand.

To what extent can Theorem 1.2 be extended to larger
classes of generalized Davenport-Schinzel sequences? Sur-
prisingly little, it turns out. We are able to extend the
techniques to double Davenport-Schinzel sequences. Define
λdbl
s (n) to be the extremal function of dbl(σs+2)-free se-

quences, where σs+2 = abab · · · is the alternating sequence
with length s+ 2 and dbl(σ) is obtained by doubling every
symbol in σ save the first and last. For example, dbl(abab) =
abbaab.5 We can show that λdbl

s (n) obeys all the upper and
lower bounds of Theorem 1.2, except at s = 5, where the
upper bound is weaker by an α1+o(1)(n) factor.

The situation becomes stranger when we attempt to ex-
tend the bounds of Theorem 1.2 to Perm(r, s + 1)-free se-
quences. When s = 3 or s is even it was known that
Λr,s(n) behaves like λs(n) for any r ≥ 2. (Nivasch’s up-
per bounds [17] match the lower bounds of [10] and [2] for
these parameters.) We prove that Λr,s(n) behaves like λs(n)
only if s = 3, or s is even, or r = 2. For all odd s ≥ 5 and
r ≥ 3 we give a new lower bound construction showing that
Nivasch’s upper bound is essentially tight.

Theorem 1.3. Let Λr,s(n) be the maximum length of an
r-sparse, Perm(r, s+1)-free sequence over an n-letter alpha-
bet. For all s ≥ 1, t = b s−2

2
c, and all r ≥ 2, we have

Λr,s(n) =

Θ(n) s ∈ {1, 2}, r ≥ 2

Θ(nα(n)) s = 3, r ≥ 2

Θ(n2α(n)) s = 4, r ≥ 2

Ω(nα(n)2α(n)) and O(nα2+o(1)(n)2α(n)) s = 5, r = 2

n · (α(n))(1+o(1))α(n) s = 5, r ≥ 3

n · 2(1+o(1))αt(n)/t! even s ≥ 6, r ≥ 2

n · 2(1+o(1))αt(n)/t! odd s ≥ 7, r = 2

n · (α(n))(1+o(1))αt(n)/t! odd s ≥ 7, r ≥ 3

Theorem 1.3 is rather surprising, even in retrospect and
even given Theorem 1.2. Refer to [7] for implications of
Theorem 1.3 on the size of sets of permutations with fixed
VC-dimension.

Organization.
In Section 2 we introduce notation used throughout the

paper and review Nivasch’s recurrence [17], which captures
even-order DS sequences well. In Section 3 we discuss the

5Why not consider higher multiplicities? It is fairly easy to
show that repeating symbols more than twice, or repeating
the first and last at all, affects the extremal function by at
most a constant factor. See Adamec, Klazar, and Valtr [1].



difficulties of analyzing the odd orders. Our approach is
to view DS sequences not just as 1-dimensional objects but
in terms of a hierarchical decomposition called a derivation
tree. Section 4 defines the derivation tree and identifies use-
ful structural properties. In Section 5 we present a new re-
currence for odd orders. The recurrences of Sections 2 and
5 ultimately lead to the upper bounds of Theorem 1.2, with
the exception of order s = 5. The matching lower and upper
bound on λ5 are omitted from this extended abstract.

2. BASIC UPPER BOUNDS

2.1 Sequence Decomposition
Let S be a sequence over an n = ‖S‖ letter alphabet con-

sisting of m = JSK blocks. Suppose we partition S into m̂
intervals of consecutive blocks S1S2 · · ·Sm̂, where mq = JSqK
is the number of blocks in interval q. Let Σ̌q be the alpha-
bet of symbols local to Sq (that do not appear in any Sp,

p 6= q) and let Σ̂ = Σ(S)\
⋃
q Σ̌q be the alphabet of all

other global symbols. The cardinalities of Σ̌q and Σ̂ are ňq
and n̂, thus n = n̂ +

∑m̂
q=1 ňq. A global symbol in Sq is

called first, last, or middle if it appears in no earlier inter-
val, no later interval, or appears in both earlier and later
intervals, respectively. Let Σ́q, Σ̀q, Σ̄q, Σ̂q be the subset of
Σ(Sq) consisting of, respectively, first, last, middle, and all
global symbols, and let ńq, ǹq, n̄q, and n̂q be their cardi-

nalities. Let Šq, Ŝq, Śq, S̀q, S̄q be the projection of Sq onto

Σ̌q, Σ̂q, Σ́q, Σ̀q, and Σ̄q. Note that Ŝ1 consists solely of first
occurrences; if the last occurrence of a symbol appeared in
Ŝ1 the symbol would be classified as local to S1, not global.
The same argument shows that Ŝm̂ consists solely of last
occurrences. Let Š, Ŝ, Ś, S̀, and S̄ be the subsequences of lo-
cal, global, first, last, and middle occurrences, respectively,
that is, Š = Š1 · · · Šm̂, Ŝ = Ŝ1 · · · Ŝm̂, Ś = Ś1 · · · Śm̂−1,
S̀ = S̀2 · · · S̀m̂, and S̄ = S̄2 · · · S̄m̂−1, the last of which would
be empty if m̂ = 2. Let Ŝ′ = Σ̂1 · · · Σ̂m̂ be an m̂-block
sequence obtained from Ŝ by replacing each Ŝq with a sin-

gle block containing its alphabet Σ̂q, listed in order of first

appearance in Ŝq.

2.2 Nivasch’s Recurrence
We can reduce any m-block sequence to a 2-sparse one by

removingm−1 duplicate symbols at block boundaries, hence
λs(n,m) ≤ λs(n)+m−1 for any order s. Lemma 2.1 follows
from this observation and the known bounds on λ1(n) and
λ2(n).

Lemma 2.1. λ1(n,m) = n + m − 1 and, for m ≥ 2,
λ2(n,m) = 2n+m− 2.

Nivasch’s [17] upper bounds (Niv) are a consequence of a
recurrence for λs that builds on that of Agarwal, Sharir, and
Shor [2]. Here we present a streamlined version of Nivasch’s
recurrence.

Recurrence 2.2. Let m,n, and s ≥ 3 be the block count,
alphabet size, and order parameters. For any block parti-
tion {mq}1≤q≤m̂ and alphabet partition {n̂} ∪ {ňq}1≤q≤m̂,
where m =

∑
qmq and n = n̂+

∑
q ňq, we have λs(n,m) ≤∑m̂

q=1 λs(ňq,mq) + 2 · λs−1(n̂,m) + λs−2(λs(n̂, m̂)− 2n̂,m).

Proof. We adopt the notation and definitions from Sec-
tion 2.1, where S is an extremal order-s DS sequence with

‖S‖ = n and JSK = m. We shall bound |S| by considering

its four constituent subsequences Š, Ś, S̀, and S̄.
Each Šq is an order-s DS sequence, therefore the con-

tribution of local symbols is |Š| ≤
∑m̂
q=1 λs(ňq,mq). We

claim each Śq is an order-(s − 1) DS sequence. By virtue

of being categorized as first in Ŝq, every symbol in Śq ap-

pears at least once after Śq. Therefore an occurrence of
an alternating sequence σs+1 = abab · · · (length s + 1),

in Śq would imply an occurrence of σs+2 in S, a contra-

diction. By symmetry it also follows that S̀q is an order-

(s−1) DS sequence, hence |Ś|+ |S̀| =
∑m̂−1
q=1 λs−1(ńq,mq)+∑m̂

q=2 λs−1(ǹq,mq) ≤ λs−1(n̂,m−mm̂)+λs−1(n̂,m−m1) <

2 ·λs−1(n̂,m). Note that
∑
q ńq = n̂ and

∑
q ǹq = n̂ as each

sum counts each global symbol exactly once. Furthermore,
λs is clearly superadditive.6

The same argument shows that S̄q is an order-(s− 2) DS
sequence. Symbols in S̄q were categorized as middle, so an
alternating subsequence σs = baba · · · (length s) in S̄q, to-
gether with an a preceding S̄q and either an a or b following
S̄q (depending on whether s is even or odd), yields an in-
stance of σs+2 in S, a contradiction. Thus the contribution
of middle symbols is

|S̄| ≤
m̂−1∑
q=2

λs−2(n̄q,mq)

≤ λs−2

(
m̂−1∑
q=2

n̄q,m−m1 −mm̂

)
≤ λs−2(|Ŝ′| − 2n̂,m−m1 −mm̂) (1)

≤ λs−2(λs(n̂, m̂)− 2n̂,m) (2)

Inequality (1) follows from the fact that
∑
q n̄q counts the

length of Ŝ′, save the first and last occurrence of each global
symbol, that is, 2n̂ occurrences in total. Since Ŝ′ is a sub-
sequence of S, it too is an order-s DS sequence, so |Ŝ′| ≤
λs(n̂, m̂). Inequality (2) follows.

Recurrence 2.2 only offers us the freedom to choose the
block partition {mq}1≤q≤m̂ and this is where Ackermann’s
function comes into play. When we invoke Recurrence 2.2
it is with respect to a constant c ≥ s − 2 and an index
i ≥ 1. Let j be minimum such that m ≤ aci,j and let w =
ai,j−1. When i, j > 1 we choose m̂ = dm/wce and partition
the given sequence into intervals of wc blocks, so mq = wc

for q ≤ dm/wce − 1 and the leftover mm̂ may be smaller.
We call this a uniform block partition with width wc. The
intention is that λs(ňq,mq) will be bounded by invoking
Recurrence 2.2 with parameters c, i, and j − 1, λs−1(n̂,m)
with parameters c, i, and j, λs(n̂, m̂) with parameters c, i−1,
and w,7 and λs−2(λs(n̂, m̂)−2n̂,m) with parameters c, i, and
j. In our analysis of the odd orders it is important that the
sequence decomposition (determined by the choice of m̂) be
independent of s, hence our introduction of the parameter
c. In the base cases we apply Lemma 2.1 when s ≤ 2 and
Lemma 2.3 when i = 1 or j = 1. Lemma 2.3 implies a weak
bound of λs(n,m) = O(n+m logs−2 m).

6That is, λs(n
′,m′) + λs(n

′′,m′′) ≤ λs(n
′ + n′′,m′ + m′′)

for all n′, n′′,m′,m′′.
7Note that m̂ = dm/wce = dm/aci,j−1e ≤ (ai,j/ai,j−1)c =
aci−1,w, so the “j” parameter for index i− 1 is w.



Lemma 2.3. Fix s ≥ 2 and c ≥ max{s − 2, 1}. Whether
i = 1 and j ≥ 1 or j = 1 and i > 1, if m ≤ aci,j then

λs(n,m) ≤ 2s−1n+ (cj)s−2(m− 1).

Proof. Fix c = 1. We will prove that for m ≤ a1,j ,
λs(n,m) ≤ 2s−1n + js−2(m − 1). This will establish the
lemma since for c > 1, ac1,j = (2j)c = a1,cj and aci,1 = 2c =
a1,c.

At s = 2 the claim follows directly from Lemma 2.1. At
s ≥ 3, j = 1, the claim is trivial since there are only 2 = a1,1

blocks and λs(n, 2) = 2n. In the general case we have s ≥ 3
and j > 1. Let S be an order-s, m-block sequence over an
n-letter alphabet, where m ≤ a1,j . Let m̂ = 2 and S = S1S2

be the uniform block partition with width a1,j−1 = 2j−1, so

JS1K = a1,j−1 and JS2K = m − a1,j−1. Note that Ŝ′ = β1β2

consists of two blocks, where each βq is some permutation of

the global alphabet Σ̂. Since there are no middle occurrences
in S we can apply a simplified version of Recurrence 2.2.

λs(n,m)

≤
∑
q=1,2

λs(ňq, JSqK) + λs−1(n̂, JS1K) + λs−1(n̂, JS2K)

{local, first, and last}
≤ 2s−1(n− n̂) + (j − 1)s−2(m− 2) + 2(2s−2n̂)

+ (j − 1)s−3(m− 2) {Inductive hypothesis}
< 2s−1n + js−2(m− 1)

The last inequality follows from the fact that (j − 1)s−2 +
(j − 1)s−3 ≤ js−2. This concludes the induction.

3. DIFFICULTIES AT THE ODD ORDERS
The proof of Recurrence 2.2 is indifferent to the parity of s.

However, when analyzing the contribution of middle symbols
we hinted at some structural differences between even and
odd s. It was claimed that S̄q is an order-(s−2) DS sequence.
If S̄q contained an alternating subsequence σs = baba · · ·
with length s then there must be an occurrence of σs+2

in S because both a and b appear both before and after
Sq in S. The longest permissible alternating subsequence
σs−1 = baba · · · in S̄q therefore has length s − 1. When s
is even, s− 1 is odd, meaning σs−1 begins and ends with b,
whereas when s is odd, σs−1 begins with b and ends with
a. Since we can only afford to introduce one alternation
between a and b at each boundary of Sq, the pattern of as
and bs on either side of Sq in S (and therefore on either side

of the qth block of Ŝ′) must be of the form

a∗ b∗ Sq b∗ a∗ when s is even and

a∗ b∗ Sq a∗ b∗ when s is odd.

In the first case a and b are nested and in the second case
they are interleaved (w.r.t. q). If the (Niv) bounds prove to
be tight there must be two systems for generating sequences,
one where nesting is the norm, and one where interleaving
is the norm. By norm we mean nesting/interleaving is suf-
ficiently plentiful such that S̄q can be close to an extremal
order-(s− 2) DS sequence.

Entertain the idea that interleaving is forbidden, that is,
every pair of middle symbols in a block of Ŝ′ are nested.
When s is odd, S̄q must be an order-(s− 3) DS sequence. If
S̄q were to contain an even-length alternating subsequence

σs−1 = ba · · · ba with length s − 1, then S would contain
either

ab
∣∣∣ ba · · · ba ∣∣∣ ba or ba

∣∣∣ ba · · · ba ∣∣∣ ab
where the portion between the bars comes from S̄q, that is,
S would contain σs+2, a contradiction.

We cannot simply assume interleaving does not exist, but
we can attempt to bound its prevalence. Measuring preva-
lence is tricky since nesting/interleaving is a non-transitive
pairwise relation but to argue that S̄q has order-(s − 3) we
need every pair of its symbols to be nested. Our approach
is to fully unroll the induction implicit in Recurrence 2.2.
The result is what we call a derivation tree T , the nodes
of which correspond to blocks encountered in the decom-
position of S. Whereas S’s blocks occupy the leaves of T ,
derived sequences like Ŝ′ occupy levels higher in T . Fix a
symbol a ∈ Σ(S). The projection of T onto a, call it T|a, is
obtained by deleting from T all nodes whose blocks do not
contain a.

Suppose we are interested in the nestedness of middle sym-
bols a, b in some block β in S (a leaf in T ). The projection
trees T|a and T|b both contain node β. Some nodes in pro-
jection trees are intrinsically bad; these are called feathers in
Section 4. Whether a node in T|a is a feather depends solely
on its position in T|a, not how T|a is embedded in T . Our
main structural lemma states that if β is not a feather in
T|a and not a feather in T|b, then a and b are nested with re-
spect to β. In Section 5 we use this characterization to state
two new recurrences: one on Φs(n,m), the total number of
feathers in an order-s DS sequence, and one on λs(n,m) for
odd s ≥ 5.

4. THE DERIVATION TREE
The derivation tree T = T (S, c, i) of a sequence S is an

ordered, rooted binary tree whose nodes are identified with
the blocks encountered in recursively decomposing S, as in
Lemma 2.3 and the remarks following Recurrence 2.2. The
sequence alone does not determine T , hence the need to
define it with respect to i and c. Define j to be minimum
such that JSK ≤ aci,j .

Let B(v) denote the block associated with a node v ∈ T .
The pth block of S is always identified with the pth leaf of
T in left-to-right order. As we are sometimes indifferent to
the order of symbols within a block, B(v) is often treated as
a set. We adopt the notation from Section 2.1 and the proof
of Recurrence 2.2.

Base Cases.
When i ∈ {0, 1} the construction of T (S, c, i) is indepen-

dent of c.
At i = 0 we only consider a 2-block sequence S = β1β2,

where each block contains the whole alphabet Σ(S). The
tree T (S, c, 0) consists of three nodes u, u1, u2, where u is
the parent of u1 and u2, B(u) is empty, B(u1) = β1, and
B(u2) = β2. For every a ∈ Σ(S) call u its crown and u1

and u2 its left and right heads, respectively. These nodes
are denoted cr|a, lhe|a, and rhe|a.

At i = 1 we let j′ be minimum such that JSK ≤ a1,j′ .
If j′ = 1 (JSK = 2) then T (S, c, 1) = T (S, c, 0), otherwise
take S = S1S2 to be the uniform block partition with width
a1,j′−1. Let T̂ = T (Ŝ′, c, 0) be the three-node derivation

tree for Ŝ′ and let Ť1, Ť2 be the local trees, where Ťq =



Figure 1: A derivation tree T (S, c, 1) for a 16-block
sequence S with i = 1. The dashed boxes isolate the
derivation trees with i = 0 that assign the crown and
heads for symbols a, b ∈ Σ(S).

T (Šq, c, 1). The tree T = T (S, c, 1) is formed by identifying

the root of Ťq with the qth leaf of T̂ , then placing the blocks
of S at the leaves of T . This last step is necessary since only
local symbols appear in Ť1 and Ť2 whereas the leaves of T
must be identified with the blocks of S, which include both
local and global symbols. See Figure 1 for an illustration.

The case i > 1, j = 1 is handled just like the i = 1
case, where the derivation tree T (S, c, i) will have height
log(aci,1) = log(a1,c) = c.

Inductive Case.
The construction when i, j > 1 is similar to the i = 1 case

except we take the c parameter into account. Recall that
j is minimum such that JSK ≤ aci,j and w = ai,j−1. The

tree T (S, c, i) is formed by composing T̂ = T (Ŝ′, c, i − 1)
and Ť1, . . . , Ťm̂, where Ťq = T (Šq, c, i), m̂ = dJSK/wce, and
JŠqK = wc if q < m̂. To be more specific, we identify the

root of Ťq (whose block is empty) with the qth leaf of T̂ ,
then assign the blocks of S to the leaves of T . The crown
and heads of each symbol a ∈ Σ(S) are inherited from T̂ , if
a is global, or some Ťq if a is local to Sq.

4.1 Anatomy of the Tree
The projection of T onto a ∈ Σ(S), denoted T|a, is the

tree on the node set {cr|a}∪{v ∈ T |a ∈ B(v)} that inherits
the ancestor/descendant relation from T , that is, the parent
of v in T|a, where v 6∈ {cr|a, lhe|a, rhe|a}, is v’s nearest strict
ancestor u for which a ∈ B(u).

Definition 4.1. (Anatomy)

• The leftmost and rightmost leaves of T|a are wingtips,
denoted lwt|a and rwt|a.

• The left and right wings are those paths in T|a extend-
ing from lhe|a to lwt|a and from rhe|a to rwt|a.

• Descendants of lhe|a and rhe|a in T|a are called doves
and hawks, respectively.

• A child of a wing node that is not itself on the wing is
called a quill.

• A leaf is called a feather if it is the rightmost descen-
dant of a dove quill or leftmost descendant of a hawk
quill.

Figure 2: In this example v is a hawk leaf in T|a since
its head he|a(v) = rhe|a is the right child of cr|a. Its
wing node wi|a(v), wingtip wt|a(v), quill qu|a(v), and
feather fe|a(v) are indicated.

• Suppose v is a node in T|a. Let he|a(v) be the head an-

cestral to v and he|a(v) be the other head; let wt|a(v)
and wt|a(v) be the wingtips descending from he|a(v)

and he|a(v). Let wi|a(v) be the nearest wing node an-
cestor of v, qu|a(v) the quill ancestral to v, and fe|a(v)
the feather descending from qu|a(v). See Figure 2 for
an illustration.

Once a ∈ Σ(S) is known or specified, we will use these terms
(feather, wingtip, etc.) to refer to nodes in T|a, to their
associated blocks, or to the occurrences of a within those
blocks. For example, an occurrence of a in S would be a
feather if it appears in a block B(v) in S, where v is a feather
in T|a.

Note that the nodes he|a(v),wi|a(v), qu|a(v),wt|a(v), and
fe|a(v) are not necessarily distinct. It may be that he|a(v) =
wi|a, and it may be that v = qu|a(v) = fe|a(v) if v’s parent
in T|a is wi|a(v).

Lemma 4.2 identifies one property of T used in the proof
of Lemma 4.3.

Lemma 4.2. Suppose that on a leaf-to-root path in T we
encounter nodes u, v, x, and y (the last two possibly identi-
cal), where u, x ∈ T|a and v, y ∈ T|b. It must be that a ∈ B(v)
and therefore v ∈ T|a.

Proof. Consider the decomposition of T into a global
derivation tree T̂ and local derivation trees {Ťq}. If v were
an internal node in some Ťq then b would be classified as
local. This implies y ∈ Ťq as well and the claim follows by
induction on the construction of Ťq. If v were an internal

node in T̂ then let u′ be the leaf of T̂ ancestral to u. The
nodes u′, v, x, y ∈ T̂ also satisfy the criteria of the lemma;
the claim follows by induction on the construction of T̂ .
Thus, we can assume u is a leaf of T and v is a leaf of T̂ . By
construction all global symbols in B(u) also appear in B(v).

Since x ∈ T̂ , the symbol a is classified as global and must
appear in B(v).

4.2 Habitual Nesting
Suppose a block β in S contains two symbols a, b which

make neither their first nor last appearance in β. We call a
and b nested in β if S contains either ab β ba or ba β ab



and call them interleaved in β otherwise, that is, if the
occurrences of a and b in S take the form a∗b∗ β a∗b∗ or
b∗a∗ β b∗a∗. Lemma 4.3 is the critical structural lemma used
in our analysis. It provides us with simple criteria for nest-
edness.

Lemma 4.3. Suppose that v ∈ T is a leaf and a, b are
symbols in B(v). If the following two criteria are satisfied
then a and b are nested in B(v).

i. v is not a wingtip in either T|a or T|b.

ii. v is not a feather in either T|a or T|b.

Proof. Without loss of generality we can assert two ad-
ditional criteria.

iii. cr|b is equal to or strictly ancestral to cr|a.

iv. v is a dove in T|a.

By Criterion (iv) the leftmost leaf descendant of wi|a(v) is
wt|a(v). Let u be its rightmost leaf descendant. According
to Criteria (i,ii) v is distinct from both wt|a(v) and u since
u must be a feather. We partition the sequence outside of
B(v) into the following four intervals.

I1: everything preceding the a in B(wt|a(v)),

I2: everything from the end of I1 to B(v),

I3: everything from B(v) to the a in B(u), and

I4: everything following I3.

By Criterion (i) there must be occurrences of b both before
and after B(v). If, contrary to the claim, a and b are not
nested in B(v), all other occurrences of b must appear ex-
clusively in I1 and I3 or exclusively in I2 and I4. We show
that both possibilities lead to contradictions. Figures 3 and
4 may help illuminate the proof.

Case 1: b does not appear in I1 or I3.
According to Criterion (i) the left wingtip lwt|b of T|b is

distinct from v, and therefore appears in interval I2. Since
lwt|b and v are descendants of wi|a(v), which is a strict de-
scendant of cr|a, which, by Criterion (iii), is a descendant of
cr|b, it must also be that lwt|b and v descend from the same
child of cr|b, that is,

iv. v is a dove in T|b and therefore wt|b(v) = lwt|b.

We shall argue below that

v. In T , qu|b(v) is a strict descendant of wi|a(v) and a
strict ancestor of u, and fe|b(v) lies in interval I4.

The least common ancestor of v and wt|b(v) in T|b is by
definition wi|b(v). The quill qu|b(v) is a child of wi|b(v) not
on a wing, hence qu|b(v) cannot be ancestral to wt|b(v),
and hence qu|b(v) must be a strict descendant of wi|a(v).
By Criterion (ii) and Inference (iv), fe|b(v) is the rightmost
leaf descendant of qu|b(v) and distinct from v. However, by
supposition I3 contains no occurrences of b, so fe|b(v) must
lie in interval I4. For qu|b(v) to have descendants in both I2
and I4 it must be a strict ancestor of u in T . As we explain
below, a consequence of Inference (v) is that

vi. wt|a(v) lies to the right of fe|b(v).

According to Inference (v) qu|b(v) is a descendant of wi|a(v),
which is a descendant of he|a(v). According to Criterion (iv)
he|a(v) is the left head of T|a. Since wt|a(v) is a descendant

of he|a(v), the right sibling of he|a(v), wt|a(v) must lie to
the right of fe|b(v).

Let us review the situation. Scanning the leaves from left
to right we see the blocks wt|a(v), wt|b(v), v, u, fe|b(v), and
wt|a(v). It may be that wt|a(v) and wt|b(v) are equal and
it may be that u and fe|b(v) are equal. If either of these
cases hold then the a precedes the b in the given block. The
blocks wt|a(v),wt|b(v), v, fe|b(v),wt|a(v) certify that a and b
are nested in B(v).

Case 2: b does not appear in I2 or I4.
By Criterion (i) the right wingtip rwt|b is distinct from v

and must therefore lie in I3. Following the same reasoning
from Case 1 we can deduce that

vii. v is a hawk in T|b.

viii. In T , qu|b(v) is strict descendant of wi|a(v) and a strict
ancestor of wt|a(v).

Inference (vii) follows since v and rwt|b must be descendants
of the same head in T|b. This implies that fe|b(v) is the
leftmost leaf descendant of qu|b(v). Since fe|b(v) is distinct
from v and interval I2 is free of bs, it must be that fe|b(v)
lies in I1 and that qu|b(v) is a strict descendant of wi|a(v)
and a strict ancestor of wt|a(v). Inference (viii) follows. See
Figure 4.

It follows from Criterion (iii) and Inference (viii) that on a
leaf-to-root path one encounters the nodes wt|a(v), qu|b(v),
wi|a(v), and cr|b, in that order. Lemma 4.2 implies that
a ∈ B(qu|b(v)). We have deduced that qu|b(v) is in T|a, is
a strict descendant of wi|a(v), and is an ancestor of both
wt|a(v) and v. This contradicts the fact that wi|a(v) is the
least common ancestor of v and wt|a(v) in T|a.

5. A RECURRENCE FOR ODD ORDERS
Lemma 4.3 may be rephrased as follows. Every blocked

sequence S is the union of four sequences: two compris-
ing wingtips (first occurrences and last occurrences, each
of length n), one comprising all feathers, and one compris-
ing non-wingtip non-feathers. The last sequence is distin-
guished by the property that each pair of symbols in any
block is nested with respect to S, which is a “good” thing if
we are intent on giving strong upper bounds on odd-order
sequences. The sequence comprising feathers is “bad” in
this sense, therefore we must obtain better-than-trivial up-
per bounds on its length if this strategy is to bear fruit.

Recall that feather is a term that can be applied to nodes
in some T|a or the corresponding occurrences of a in the given
sequence S. This definition is with respect to one derivation
tree T for S, which is not necessarily the best one. Let
T ∗(S) be the derivation tree for S that minimizes the total
number of feathers.8

Recurrence 5.1. Define Φs(n,m) to be the maximum
number of feathers in any order-s, m-block DS sequence S
over an n-letter alphabet, with respect to the optimal deriva-
tion tree T ∗(S). When m ≤ 2 we have Φs(n,m) = 0.

8In other words, when i > 1 the construction can choose
any m̂ < JSK and any block partition {mq}1≤q≤m̂. When
i = 1 the construction is the same as T (S, ·, 1).



he|a(v)

wt|a(v)

Figure 3: Boxes represent nodes in T and their associated blocks. The blocks at the leaf-level correspond
to those in S. In Case 1 all occurrences of b outside of B(v) appear in intervals I2 and I4. Contrary to the
depiction, it may be that cr|a and cr|b are identical, that wt|a(v) and wt|b(v) are identical, that u and fe|b(v) are
identical, and that wi|b(v) is not a strict ancestor of wi|a(v).

Figure 4: In Case 2 all occurrences of b outside of B(v) appear in intervals I1 and I3.



For any block partition {mq}1≤q≤m̂ and alphabet partition
{n̂} ∪ {ňq}1≤q≤m̂, we have

Φs(n,m)

≤
m̂∑
q=1

Φs(ňq,mq) + Φs(n̂, m̂) + 2 · (λs−1(n̂,m)− n̂)

Proof. When m ≤ 2, Φs(n,m) is trivially 0 since every
occurrence in S is a wingtip, and feathers are not wingtips.
When m > 2 we shall decompose S as in Section 2.1. The
choice of m̂ and the block partition {mq}1≤q≤m̂ are not nec-
essarily those of the optimal derivation tree, but we do not
need them to be. We are only interested in an upper bound
on Φs(n,m). Let T̂ ∗ and {Ť ∗q }1≤q≤m̂ be the optimal deriva-

tion trees for Ŝ′ and {Šq}1≤q≤m̂, and let T be their compo-
sition, with the blocks of S placed at T ’s leaves.

The number of occurrences of local feathers w.r.t. {Ť ∗q } is

at most
∑
q Φs(ňq,mq). An occurrence of a ∈ B(v) in Ŝ will

be a dove feather in T if either (i) v is the rightmost child

of a dove feather in T̂ ∗|a or (ii) v is a non-wingtip child of the

left wingtip in T̂ ∗|a, which corresponds to an occurrence of a

in Ś. The same statement is true of hawk feathers, swapping
the roles of left and right and substituting S̀ for Ś. There
are at most Φs(n̂, m̂) feathers of type (i) and, since Ś and S̀
are order-(s− 1) DS sequences, at most 2 · (λs−1(n̂,m)− n̂)
of type (ii).

We now have all the elements in place to provide a recur-
rence for odd-order Davenport-Schinzel sequences.

Recurrence 5.2. Let m,n, and s ≥ 3 be the block count,
alphabet size, and order parameters, where s ≥ 5 is odd.
For any block partition {mq}1≤q≤m̂ and alphabet partition
{n̂} ∪ {ňq}1≤q≤m̂, we have

λs(n,m) ≤
m̂∑
q=1

λs(ňq,mq) + 2 · λs−1(n̂,m)

+ λs−2(Φs(n̂, m̂),m) + λs−3(λs(n̂, m̂),m)

Proof. As always, we adopt the notation from Section 2.1.
Define T̂ ∗, {Ť ∗q }, and T as in the proof of Recurrence 5.1.
In Recurrence 2.2 we partitioned S into local and global
symbols and partitioned the occurrences of global symbols
into first, middle, and last. We now partition the mid-
dle occurrences one step further. Define S̃′ and S̈′ to be
the subsequences of Ŝ′ consisting of feathers (according to

T̂ ∗) and non-feather, non-wingtips, respectively. That is,

|Ŝ′| = |S̃′| + |S̈′| + 2n̂. In an analogous fashion define S̃

and S̈ to be the subsequences of Ŝ consisting of children of
occurrences in S̃′ and S̈′. The sequences Ś and S̀ repre-
sent the children of dove and hawk wingtips in T̂ ∗. Thus,
|S| =

∑
q |Šq|+ |Ś|+ |S̀|+ |S̃|+ |S̈|.

The local sequences {Šq} are order-s DS sequences. Ac-

cording to the standard argument Ś and S̀ are order-(s− 1)

DS sequences and S̃ = S̃1 · · · S̃m̂ is obtained from S̃′ by
substituting for its qth block an order-(s − 2) DS sequence

S̃q over the same alphabet. Thus |S̃| ≤ λs−2(|S̃′|,m) ≤
λs−2(Φs(n̂, m̂),m).

We claim that S̈ = S̈1 · · · S̈m̂ is obtained from S̈′ by sub-
stituting for its qth block an order-(s − 3) DS sequence

S̈q, which, if true, would imply that |S̈| ≤ λs−3(|S̈′|,m) ≤

λs−3(λs(n̂, m̂),m). Suppose for the purpose of obtaining a

contradiction that the qth block β in S̈′ contains a, b ∈ Σ̂,
and that S̈q is not an order-(s− 3) DS sequence, that is, it
contains an alternating subsequence ab · · · ab of length s−1.
Note that s − 1 is even. By definition β is a non-feather,
non-wingtip in both T|a and T|b. According to Lemma 4.3,
a and b must be nested in β, which implies that S contains
a subsequence of the form

a · · · b · · ·

∣∣∣∣∣∣· · ·
s−1︷ ︸︸ ︷

a · · · b · · · a · · · b · · ·

∣∣∣∣∣∣ · · · b · · · a
or b · · · a · · ·

∣∣∣∣∣∣· · ·
s−1︷ ︸︸ ︷

a · · · b · · · a · · · b · · ·

∣∣∣∣∣∣ · · · a · · · b
where the portion between bars is in Sq. In either case
S contains an alternating subsequence with length s + 2,
contradicting the fact that S is an order-s DS sequence.

The dependencies between λ and Φ established by Re-
currences 2.2, 5.1, and 5.2 are rather intricate. For even
s, λs depends on λs−1 and λs−2 and for odd s, λs de-
pends on λs−1, λs−2, λs−3, and Φs while Φs depends on
λs−1. Lemma 5.3 states bounds on λs(n,m) that imply
parts of Theorem 1.2. Its proof is omitted from this ex-
tended abstract.

Lemma 5.3. Let s ≥ 1, i ≥ 1, and c ≥ s−2. The following
upper bounds on λs(n,m) and Φs(n,m) hold for all s ≥ 1
and all odd s ≥ 5, respectively, where j is defined to be
minimum such that m ≤ aci,j.

λ1(n,m) ≤ n+m− 1

λ2(n,m) ≤ 2n+m− 2

λ3(n,m) ≤ (2i+ 2)n+ (3i− 2)cj(m− 1)

λs(n,m) ≤ µs,i
(
n+ (cj)s−2(m− 1)

)
all s ≥ 4

Φs(n,m) ≤ νs,i
(
n+ (cj)s−2(m− 1)

)
odd s ≥ 5

The values {µs,i, νs,i} are defined as follows, where t =
b s−2

2
c.

µs,i =

 2(i+t+3
t ) − 3(2(i+ t+ 1))t

3
2
(2(i+ t+ 1))t+12(i+t+3

t )

even s ≥ 4

odd s ≥ 5

νs,i = 4 · 2(i+t+3
t ) odd s ≥ 5

It is not difficult to show that the optimal choice of i is
α(n,m)+O(1). Since

(
i+t+O(1)

t

)
= it/t!+O(it−1), Lemma 5.3

immediately yields the following bounds on λs(n,m).

λs(n,m) =



O((n+m)α(n,m)) s = 3

O
(

(n+m)2α(n,m)
)

s = 4

O
(

(n+m)α2(n,m)2α(n,m)
)

s = 5

O
(

(n+m)2α
t(n,m)/t!+O(αt−1(n,m))

)
s ≥ 6

Using existing machinery it is possible to obtain analogous
bounds on λs(n) (in terms of α(n) rather than α(n,m))



and even to show that λ3(n) = 2nα(n) + O(n). This still

leaves an α(n) gap at order-5 between the Ω(nα(n)2α(n))
construction (which is omitted from this extended abstract)

and the O(nα2(n)2α(n)) upper bound. To shave off the extra
α(n) factor we need to consider a two layer derivation tree
for order-5 DS sequences that incorporates the derivation
trees for all order-4 DS sequences (Ś, S̀) encountered during
the sequence decomposition.

6. CONCLUSION
We have provided the strongest bounds on λs(n) that can

be expressed in an Ackermann-invariant fashion, that is, in
a way that is tolerant to O(1) uncertainty in the definition
of α(n). However, this is not necessarily the last word on
the problem. It has been pointed out to us (M. Sharir and
G. Nivasch, personal communication) that although λs−1(n)
and λs(n) cannot be distinguished by Ackermann-invariant
expressions, for odd s ≥ 7, one could conceivably bound the
ratio λs(n)/λs−1(n) in some non-constructive fashion. Our
analyses provide compelling evidence that λs(n)/λs−1(n) =
Θ(α(n)) for all odd s ≥ 3.
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Rodŕıguez-Ch́ıa. Robust mean absolute deviation
problems on networks with linear vertex weights.
Networks, 2012.

[17] G. Nivasch. Improved bounds and new techniques for
Davenport-Schinzel sequences and their
generalizations. J. ACM, 57(3), 2010.

[18] S. Pettie. Splay trees, Davenport-Schinzel sequences,
and the deque conjecture. In Proceedings 19th
ACM-SIAM Symposium on Discrete Algorithms, pages
1115–1124, 2008.

[19] S. Pettie. Generalized Davenport-Schinzel sequences
and their 0-1 matrix counterparts. J. Comb. Theory
Ser. A, 118(6):1863–1895, 2011.

[20] A. Di Salvo and G. Proietti. Swapping a failing edge
of a shortest paths tree by minimizing the average
stretch factor. Theoretical Computer Science,
383(1):23–33, 2007.

[21] M. Sharir. Almost linear upper bounds on the length
of general Davenport-Schinzel sequences.
Combinatorica, 7(1):131–143, 1987.

[22] M. Sharir. Improved lower bounds on the length of
Davenport-Schinzel sequences. Combinatorica,
8(1):117–124, 1988.

[23] M. Sharir and P. Agarwal. Davenport-Schinzel
Sequences and their Geometric Applications.
Cambridge University Press, 1995.

[24] M. Sharir, R. Cole, K. Kedem, D. Leven, R. Pollack,
and S. Sifrony. Geometric applications of
Davenport-Schinzel sequences. In Proceedings 27th
Annual Symposium on Foundations of Computer
Science (FOCS), pages 77–86, 1986.
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