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ABSTRACT
For decades, randomized exponential backoff has provided a
critical algorithmic building block in situations where mul-
tiple devices seek access to a shared resource. Surprisingly,
despite this history, the performance of standard backoff
is poor under worst-case scheduling of demands on the re-
source: (i) subconstant throughput can occur under plausi-
ble scenarios, and (ii) each of N devices requires Ω(logN)
access attempts before obtaining the resource.

In this paper, we address these shortcomings by offering
a new backoff protocol for a shared communications chan-
nel that guarantees expected constant throughput with only
O(log(log∗N)) access attempts in expectation. Central to
this result are new algorithms for approximate counting and
leader election with the same performance guarantees.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: [Computations on discrete structures, sequencing
and scheduling]; C.2.0 [Computer-Communication Net-
works]: [Data communications]

Keywords
Distributed computing, exponential backoff; energy effi-
ciency; multiple-access channel; randomized backoff.

1. INTRODUCTION
Randomized exponential backoff [37] is a classic algorithm
for resolving contention when there is a collection of devices
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that all need to broadcast on a channel, but only one device
can successfully broadcast at a time. If two or more devices
try to broadcast on the channel simultaneously, the broad-
casts interfere with each other and only noise gets transmit-
ted. This channel might be a communication channel, such
as one finds in Ethernet [37], but it could be any resource
for which devices require temporary exclusive access.1 In
this paper we design a substitute for randomized exponen-
tial backoff that is globally efficient (in terms of throughput),
locally efficient (in terms of per device costs), and impervi-
ous to adversarially scheduled inputs.

1.1 The Multiple-Access Channel Model
In classic algorithmic analyses of randomized backoff, there
are N indistinguishable players that arrive over time, each
of which needs to transmit a packet on a so-called multiple-
access channel .2 Time is divided into discrete slots. We
assume that in each time slot we can convey a single packet
of at least logN -bits.3

We assume an adaptive adversary, which controls pre-
cisely how many players are injected into the system in each
slot. In making its decisions, the adaptive adversary has
access to the entire state of the system so far, the internal
state of each player, but not the outcomes of future coin
tosses. We do not assume a universal numbering scheme for
the slots, that is, a global clock from which a newly injected
player can infer the lifetime of the system, slot parity, etc.

In each time slot, each player in the system can do one
of four actions, (i) sleep, (ii) send their packet, (iii) send
a packet-sized message—a logN -bit number, or (iv) listen
to the channel. Players who take actions (ii), (iii), or (iv)
are said to access the channel. If no players send, then the
slot is empty ; if two or more players send, the slot is full
and noisy ; if exactly one player sends, then the slot is full

1Randomized exponential backoff is implemented in a broad
range of applications including local-area networks [37] wire-
less networks [36,54], transactional memory [33], lock acqui-
sition [43], email retransmission [11, 19], congestion control
(e.g., TCP) [34, 39], and a variety of cloud computing sce-
narios [27,41,50].
2Although it is usually fine to conflate the player with its
associated packet, we find it useful to distinguish them. For
example, in our protocols, players are obliged to do more
than merely guarantee that their packet is sent.
3The notation log indicates the logarithm base 2.
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and the transmission is successful . All players who access
the channel (actions (ii), (iii), and (iv)) can distinguish these
three outcomes, and if the transmission is a successful one of
type (iii), all listeners learn the logN -bit number. A player
is allowed to exit the system only after its packet has been
successfully transmitted.

There are several axes along which we can evaluate a pro-
tocol. A global measure of effectiveness is utilization , de-
fined as the ratio of the number of slots for which at least one
of the N players is in the system divided by N , and its re-
ciprocal, which is called throughput . From a single player’s
perspective, there is some nonzero cost to access the channel
(rather than take action (i), sleeping) and depending on the
technology, the cost of sending (actions (ii) and (iii)) may
be different from the cost of listening (action (iv)). Our goal
is to design protocols that guarantee constant expected uti-
lization and that minimize the expected number of channel
accesses per player.

Our second objective (access cost) is meaningful in the
multitude of applications where the channel-access cost is
high enough to be worth conserving. For example, in a wired
network, an unsuccessful transmission wastes bandwidth. In
a wireless network, in which devices are battery powered,
sending and listening takes energy and reduces battery life.
In transactional memory, a transaction rollback (i.e., an un-
successful attempt) wastes CPU cycles.

1.2 Results
In this paper, we prove the following theorem.

Theorem 1. There exists a randomized contention-
resolution protocol enabling N online players to transmit
their packets on a multiple-access channel such that:
• An expected constant fraction of the slots have success-

fully transmitted packets.
• Each player sends on the channel O(1) times in expec-

tation.
• Each player listens on the channel O(log(log∗N))

times in expectation.
Moreover, these bounds hold even if the arrival times of the
players are controlled by an adaptive adversary.

Theorem 1 contrasts with other randomized backoff pro-
tocols in the literature, which, for unknown N , require at
least polylog(N) channel accesses.

One of the new ideas in our algorithm are circuits for
cheaply computing functions of binary data encoded as
full/empty slots. Randomness is used inside our circuit eval-
uation protocol for load balancing, but the evaluation itself
has zero probability of error. Theorem 2 summarizes this
independent component.

Theorem 2. Let C be a Boolean circuit with ` bits of input
and c constant-fan-in gates. There exists a protocol for n
players on a multiple-access channel (n being unknown) for
evaluating C, where the input is represented by ` specified
slots (empty=0, full=1), whose sending and listening cost
per player is O(1 + c

n
) in expectation.

We also give an extremely efficient protocol for estimating
N and for leader-election.

Theorem 3. There exists a randomized protocol enabling N
players with a synchronized protocol-start time to (1) esti-
mate N to within a constant factor and (2) elect a leader,
such that

• each player sends on the channel O(1) times in expec-
tation, and
• each player listens on the channel O(log(log∗N))

times in expectation.

1.3 Related Work
One variant of exponential backoff can be described as se-
lecting slots within windows. When a new player is injected
into the system it partitions future time into consecutive
windows of length W0,W1,W2, . . .. If, at the beginning of
window Wi, the player has yet to transmit its packet success-
fully, it attempts to do so at a slot in Wi chosen uniformly
at random. Bender et al. [5] analyzed such backoff schemes
more generally. The main take-away messages from [5] are
that no monotone backoff strategy (in which Wi+1 ≥ Wi)
has constant throughput, but when all the players start at
once, a simple nonmonotone strategy called sawtooth does
have constant throughput.4 These backoff strategies only
access the channel by sending, not listening, and their send-
ing cost is Ω(logN) in expectation.

Queuing theory arrivals. For many years, most of the an-
alytic results on backoff assumed statistical queuing-theory
models and focused on the question of what packet-arrival
rates are stable (see [23,24,26,31,32,42]). Interestingly, even
with Poisson arrivals, there are better protocols than binary
exponential backoff, such as polynomial backoff [31].

The notion of saturated throughput—roughly, the maxi-
mum throughput under stable packet arrival rates—has been
examined [12, 51]. The guarantees in our paper are much
stronger because we guarantee constant utilization for arbi-
trarily large arrival rates.

Worst-case/Adversarial-queueing theory arrivals.
More recently, there has been work on adversarial queueing
theory, looking at the worst-case performance of these
protocols [1, 2, 5, 6, 15, 16, 22, 25, 28, 53]. A common
theme throughout these papers, however, is that dynamic
arrivals are hard to cope with. When all the players
begin at the same time, very efficient protocols are possi-
ble [2,5,6,21,22,28,29,53]. When players begin at different
times, the problem is much harder. The dynamic-arrival
setting has been explicitly studied in the context of the
wake-up problem [13, 14, 17], which looks at how long it
takes for a single transmission to succeed when packets
arrive dynamically.

First successful transmission/estimating N .
Willard [53] considered a contention-resolution prob-
lem in which the goal is to minimize the first moment that
some player transmits successfully. Sharp time bounds of
Θ(log logN) (in expectation) are proved when the N players
begin at the same time. In [35], for any constant ε > 0,
the authors provide an algorithm with O((log logN)ε)
cost for achieving a constant-factor estimation of N , with
high probability. In their model, no collision detection is
assumed, which makes their problem harder to deal with
compared to ours.

4The backoff-backon idea behind sawtooth has been discov-
ered in other contexts in the past [20,30].
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Adversarial fault tolerance. A number of elegant results
exist on contention resolution when the channel is subject to
(possibly malicious) noise [3, 40, 44–48]. A recent result by
Bender et al. [7] also addresses worst-case online arrivals
of players and, in the face of an unknown T noisy slots
scheduled by an adaptive adversary, achieves expected con-
stant utilization with an expected polylog(N + T ) number
of broadcasts.

Relationship to balanced allocations. Scalable backoff is
closely related to balls-and-bins games [4,8–10,18,38,49,52].
Bins correspond to time slots and balls correspond to play-
ers. The objective is for each ball to land in its own bin;
if several balls share the same bin, they are rethrown. The
flow of time gets modeled by restrictions on when balls get
thrown and where they may land. As mentioned earlier, lis-
tening during a slot corresponds to observing whether balls
landed in a bin, and decoding an O(logN)-bit number, if a
single ball landed in the bin. Our results show that, remark-
ably, we can achieve an expected O(log log∗N) throws and
bin observations, while still achieving a constant utilization.

1.4 Algorithm Overview
At any moment in a contention-resolution protocol we can
measure the contention in a single slot by summing up the
probabilities of each player sending in that slot. In order
to have constant throughput, we need the contention on a
constant fraction of the slots to be constant. If there are
currently n ≤ N players in the system, a natural way to
achieve constant contention at a single slot is to have all
players send with probability Θ(1/n), which requires that
players estimate n, either implicitly (via some kind of back-
off) or explicitly. The first difficulty is that n is unknown
and unbounded. The second is that n is constantly chang-
ing: players successfully transmit their packets and leave
the system, and the adversary injects new players into the
system.

We give an efficient protocol for estimating n when the
n players start at the same time, that is, they agree on a
slot zero. Once all n players have a mutually agreed-upon
estimate ñ of n, they can skip directly to the proper itera-
tion of the sawtooth algorithm and finish in Θ(ñ) slots with
probability 1− 1/poly(n), each player sending in O(1) slots
in expectation. The sawtooth is truncated on both sides: a
prefix of the execution is skipped (because we know an esti-
mate of n) and the algorithm ends after Θ(ñ) slots regardless
of whether a few packets still need to be transmitted.

The protocol outlined above demands perfect synchroniza-
tion. Even if the players are out of step by just one time
slot, the protocol could fail.5 Thus, in our algorithms, we
develop new mechanisms to achieve synchronization. Al-
though the players arrive at various times, they organize
themselves into batches. In each batch, all players have
an agreed-upon time zero. In each batch, the players run a
protocol for estimating n and then run truncated sawtooth.

Batches never run concurrently. Consider the point of
view of a new player entering the system. Because of the
nonconcurrency requirement, this player must quickly dis-
tinguish between two situations: (i) no batch is currently
running, in which case one can be started, possibly with

5In practice, there are methods for robust synchronization;
however, these are implementation/protocol-specific and are
orthogonal to our work.

other players waiting in the system, or (ii) some batch is
running, in which case the player must determine precisely
when it will end so that a new batch can be started imme-
diately afterward. All the players participating in a batch
will collectively guarantee that at least one slot in every con-
stant number of consecutive slots is filled with humming ;
humming indicates that a batch is currently running and
prevents new players from starting a concurrent batch.

The protocol components are given in more detail below.

The players are synchronized. Suppose that n ≤ N play-
ers enter the system at the same time and that they im-
plicitly agree on time slot zero. The players begin with an
Estimation Phase, where the goal is to compute a Θ(1)-
approximation ñ of n collectively.

First we address the simpler problem of testing whether
or not n is close to 2i. In a series of Ω(i) slots, each player
makes noise in each slot with probability 2−i. If n is close
to 2i, Chernoff bounds imply that a large constant fraction
of the slots are empty and a large constant fraction of the
slots are full. In contrast, if n is far from 2i, then the slots
are either mostly full or mostly empty. One can construct
a Θ(i)-sized circuit Ci that counts the number of 1 inputs
(full slots=1, empty slots=0) and compares this sum against
a threshold, which implies (see Theorem 2) that the players
can cheaply test whether or not n is close to 2i.

Suppose that we have deduced that n ≥ X. We
build circuit testers that test n against powers of 2 from

2logX , 21+logX , . . . , 2X
1/3

. The aggregate size of these cir-
cuits is O(X2/3) = O(n2/3), so they can all be simulated
cheaply using Theorem 2. If no circuit outputs 1 then we

have a better lower bound on n, namely n > 2X
1/3

. Now we
can afford to simulate a much larger collection of circuits in
the next iteration.

On the other hand, if n is in the range [X, 2X
1/3

], then
some subset of the players will learn an estimate of n ≈ 2i,
namely, the players that simulated the output gate of the
circuit Ci. In order for this subset of players to notify every-
one else that n ≈ 2i, they first elect a leader, using another
O(X2/3) slots. In a designated slot, the leader announces
“ 2i ” and every other player listens. The total expected cost
for any player to simulate a batch of circuits and elect a
leader is O(1) channel accesses.

A sequential search for n would involve evaluating log∗ n
batches of circuits. To speed up this algorithm the n play-
ers initially perform a straightforward exponential and then
binary search for log∗ n± 1, which requires O(log(log∗ n))
slots and channel accesses per player. Remarkably, this es-
timate of log∗ n implies a decent enough lower bound on n,
that the players need only simulate O(1) batches of circuits.
The Estimation Phase is described in detail in Section 4.

The process of estimating n may yield a significant under-
estimate or overestimate. Additionally, even if the estimate
is accurate, a leader may fail to be elected. In either case,
the probability of such a bad event is very small and is de-
tectable by the players who then remedy the situation by
restarting at the beginning of the Estimation Phase. These
restarts do not change the players’ expected cost.

The sawtooth contention resolution protocol of [5] is some-
what similar to the windowed version of binary exponential
backoff, but is nonmonotonic. It consists of iterations in-
dexed by i ≥ 0, each of which consists of windows of length
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2i, 2i−1, 2i−2, . . .. It is fairly straightforward to show that
at any iteration i ≥ logn + O(1), all n packets are success-
fully transmitted, and are actually transmitted within the
first log logn+O(1) windows of iteration i, with high prob-
ability. Thus, once we have an estimate ñ, we can jump to
iteration log ñ+O(1) of the sawtooth protocol. By stopping
after log log ñ + O(1) windows, the worst-case sending cost
per player is O(log log ñ), the expected sending cost is O(1),
and all n players finish with high probability in n. This is
the Truncated Sawtooth Phase.

Batches and humming. Players arrive online and must be
organized into synchronized batches. Each batch is a set
of players that execute the Estimation and Truncated Saw-
tooth phases, which together define one epoch . Players in
the current batch are called active. Our algorithm guar-
antees (via a humming mechanism described shortly) that
inactive players injected into the system in the middle of
an epoch quickly learn that fact (so they do not interfere
with the current batch) and eventually learn precisely when
the epoch ends so that they may become active in the next
batch. Thus, epochs are disjoint. If a player does not suc-
ceed in transmitting its packet during the Truncated Saw-
tooth phase of its epoch, that player joins the next batch.

The players in the current batch take turns humming in
a constant fraction of the slots. The first purpose of hum-
ming is to never let the channel go silent for more than O(1)
slots so that any new inactive player can detect if it entered
in the middle of an epoch.6 The second purpose is to no-
tify new players precisely when the current epoch will end.
In the Truncated Sawtooth the players know exactly how
many slots are left, say t, and will announce “ t ” when it is
their turn to hum. Once a new player hears “ t ” it can sleep
for t slots, wake up, and join the next batch. If, however,
the current epoch is still in the Estimation Phase, no player
knows when the epoch will end. In this case they encode
their current estimate of log∗ n using O(log(log∗ n)) slots
(full=1, empty=0) so that new players can sleep until Trun-
cated Sawtooth has begun or a better estimate of log∗ n is
known. The listening cost for inactive players to determine
when the current epoch will end is O(log(log∗ n)).

Organization
This paper is organized as follows. Section 2 explains how
the players can collectively simulate a circuit, proving The-
orem 2. The Estimation Phase is described in Sections 3
and 4. The Truncated Sawtooth is described and analyzed
in Section 5. Section 6 describes how Humming is intro-
duced into both the Estimation and Truncated Sawtooth
phases.

2. DECENTRALIZED SIMULATION OF
CIRCUITS

Let C be a constant-fan-in circuit with ` input bits and
c gates g1, . . . , gc, listed in some topological order. There
are ` designated slots that encode the input to the circuit
(empty=0, full=1) and n players, who must collectively eval-
uate C. Every player knows C and the particular topological
sort g1, . . . , gc, but not n. Our simulation scheme will make

6This aspect of humming is based on the “busy signal” idea
of [7].

use of ` + 2c time slots. The first c slots are control slots,
which allow the players to take responsibility for implement-
ing certain gates. We guarantee that at least one player is
assigned to each gate. The next ` time slots are the input
slots, each of which is either empty or full. The last c time
slots are circuit slots which encode the output bit of each
gate.

Control slots. The c control slots enable the players to co-
ordinate among themselves to guarantee that (with proba-
bility 1) each gate is simulated by at least one player.

Each player P picks one uniformly random control slot τP
and broadcasts in that slot. Let τ ′P be the first control slot
following τP in which some player is broadcasting, or just
c+1 if no such slot exists. Then player P will be responsible
for simulating gates gτP , . . . , gτ ′P−1. In order for P to know

exactly which gates it is responsible for, P listens to the
control slots following τP until another player transmits or
the control slots end, thereby defining τ ′P .

Some special treatment is needed for the prefix of empty
control slots, since there must be at least one player that
is responsible for simulating the corresponding gates. To
solve this, we have all of the players be responsible for sim-
ulating these gates, thereby guaranteeing that every gate is
simulated.

Input slots. Each input slot is either empty or full (0 or
1), and how it got to be empty or full is not the concern
of this simulation. (As we will see in Sections 3 and 4, in
our application it is the players themselves who determine
the input. They decide, probabilistically, whether to send
during an input slot.)

Circuit slots. The ith circuit slot encodes the output of
gate gi. If player P is responsible for simulating gi then
it listens during the slots corresponding to the inputs of gi
(either input slots or previous circuit slots) and sends noise
on circuit slot i if and only if the output of gi is 1. Since all
the players simulating gi will compute the same output bit,
they will all either send noise or stay silent.

Lemma 4. The expected number of gates that a player is
responsible for is O(1 + c

n
).

Proof. Each player P is responsible for gτP and a fake
gate g0, and the runs of unclaimed gates immediately fol-
lowing g0 and gτP . A gate gi is unclaimed if the ith control
slot is empty. Each control slot is empty with probabil-
ity (1 − 1

c
)n < exp(−n/c). Moreover, conditioned on one

slot being empty, the probability that the next is empty is
smaller. Thus, the expected number of empty slots in the
run following control slot τP (or control slot 0) is less than
(1 − exp(−n/c))−1 − 1, which is negligible for n � c and
always O( c

n
).

Proof of Theorem 2. The circuit is correctly evalu-
ated with probability 1. The only uncertainty is the cost
paid by the players. Being responsible for a gate entails
listening for O(1) slots (because C was assumed to have
bounded fan-in) and sending in the output slot for that
gate. The number of gates that a player is responsible for is
O(1 + c

n
) in expectation.

Note that if a player wants to learn the output of C, it
must also listen to all the circuit slots corresponding to the
output gates.
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3. A CIRCUIT FOR TESTING logn
Consider the following experiment for determining whether
i ≤ logn of i > logn. In each of ` slots each player sends
with probability 1/2i. If i = logn then we expect to see
`(1− 1/2i)n ≈ `/e empty slots. If we see fewer empty slots
we conclude i ≤ logn; if we see more empty slots we conclude
i > logn. We are only concerned with the accuracy of this
test when |i− logn| is a sufficiently large constant (e.g., 1).
It is clearly likely to give an incorrect answer when i is very
close to logn. We use a circuit simulation of Thr`,(1−1/e)`

(defined below) to let the players determine the outcome of
this test.

Lemma 5. For any natural numbers ` and t, there exists an
Θ(`)-gate circuit Thr`,t : {0, 1}` → {0, 1} such that, for any
binary string x of length `, Thr`,t(x) = 1 if and only if the
Hamming weight (number of 1s) of x is at most t.

Proof. We give a circuit construction based on counting
the number of 1s in x and then comparing with the target t.
The construction is based upon gates with constant fan-in
and fan-out.

For the counting phase, we simulate a binary tree, where
the input gates at the leaves ingest the bits in x, and the
log ` outputs at the root count up to `.

The construction builds upon standard one-bit adders,
which take two one-bit inputs and return two outputs (a
sum bit and a carry bit). The construction also uses linear-
sized, constant-fan-in-fan-out, multiple-bit adders that are
based upon one-bit adders (e.g., ripple-carry adders).

The root returns ` in binary using log ` outputs. At the
root, there is an adder, which sums the outputs from the
left and right children of the root (i.e, summing the num-
ber of 1s in the left and right halves of string x). The
adder has Θ(log `) gates since it adds two log `-sized num-
ber. Thus, the recurrence for the number of gates in the
tree, is S(`) = 2S(`/2) + log ` = Θ(`).

Once the Hamming weight ` of x is represented in binary,
the circuit for comparing ` with t takes O(log `) gates, and
is built upon standard one-bit comparator gates (which also
have constant-fan-in-fan-out).

Lemma 6. Define Ci to be the circuit Thr`,(1−1/e)`, where
` = Ω(i) is a parameter, and suppose each of the n players
makes noise in each input slot of Ci with probability 1/2i. If
i ≤ logn−1 then the probability that Ci returns 1 is at most
exp(−Ω(lnn)). If i ≥ logn + 1 then the probability that Ci
returns 0 is at most exp(−Ω(`)).

Proof. Suppose ∆ = logn − i ≥ 1. The probability
of a specific input slot being empty is (1 − 2−i)n = (1 −
2∆/n)n = p < e−2∆

≤ e−2. Let X be the number of empty
slots, so E(X) = p`. By a Chernoff bound, Pr[X ≥ `/e] =
exp(−Ω(`)), which is exp(−Ω(lnn)) if ∆ ≤ 2. For ∆ ≥ 2 we
can obtain stronger bounds by direct analysis without going
through Chernoff bounds. The probability of seeing at least

`/e empty slots is at most(
`

`/e

)
p`/e <

(
e`

`/e

)`/e
p`/e since

(
x
y

)
< (ex/y)y

= exp

(
2`

e
+
` ln p

e

)
= exp

(
(2− 2∆)`

e

)
ln p < −2∆

= exp(−Ω(lnn)) ∆ ≥ 2.

Suppose ∆ = i − logn ≥ 1. The probability of an in-
put slot being empty is (1 − 2−i)n = (1 − 1/(n2∆))n =

p > e−1/2∆

− o(1) > 1/2. The expected number of empty
slots is E(X) = p`. By a Chernoff bound, Pr[X ≤ `/e] =
exp(−Ω(`)).

4. AN O(log log∗ n) PROTOCOL FOR ES-
TIMATING n

Exponential search. For a sufficiently large constant d, de-
fine the quickly growing sequence (Xi) as:

Xi =

{
d if i = 0,

2X
1/3
i−1 if i ≥ 1.

Lemma 7. Let Xk−1 ≤ n < Xk. There exists an algorithm
in which n players agree on an integer î such that the cost
per player is O(log î) = O(log log∗Xî), the probability that

î > k + 1 (an overestimate) is at most n/Xî−1, and the

probability that î < k − 1 (an underestimate) is at most

e−n/ log3(n).

Proof. The n players perform the following experiment
to test a value i. In a single time slot each player sends
independently with probability 1/Xi. If the slot is full, then
the result of the experiment is that i < k; otherwise i ≥ k.

The algorithm uses exponential search on the index i: the
players perform repeated doubling on the index i until they
find the first value whose slot is empty; then they perform
binary search to find the value î such that the slot for value
î− 1 is full while the slot for value î is empty. At this point,
the algorithm declares î = k.

Each player listens in every slot, regardless of whether it
chooses to send. Moreover, every player knows exactly when
the exponential search ends, and the value of î. Each player
listens in O(log î) = O(log log∗Xî) slots and sends in O(1)
slots in expectation.

Suppose we are testing the value i and that k < i. If the
slot is full then we will erroneously conclude that î ≥ i+1 >
k+ 1. This occurs with probability 1− (1−1/Xi)

n ≤ n/Xi.
Thus, if î > k + 1 then when testing î− 1 the slot was full,
which happens with probability at most n/Xî−1. On the
other hand, if we are testing the value i and i < k−1 then the
probability of seeing an empty slot, and erroneously conclud-

ing that î ≤ i, is
(

1− 1
Xi

)n
≤ e−n/Xi ≤ e−n/ log3 Xi+1 ≤

e−n/ log3 n.

Super-circuits.

Lemma 8. Let Xk−1 ≤ n < Xk. Suppose all players agree
on a value i. Then there exists an algorithm in which some
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subset L of the players learn that they are in L and agree
on an integer j ∈ [logXi−1, logXi] (ideally, j ≈ logn). If
L 6= ∅, then j ∈ [logn − 1, logn + 1] with probability 1 −
1/ poly(Xi). The expected cost per player is O(1 +X

2/3
i−1/n).

If L 6= ∅, the expected size of L is O(1+n/X
2/3
i−1). Moreover,

if n < Xi/2 then the probability that L = ∅ is 1/poly(Xi).

Proof. Let C′j be the circuit Cj from Lemma 6 with an
additional input bit called the “override bit”. The output of
C′j is the OR of the output of Cj and the override bit. The
number of input bits to Cj is `, to be specified shortly.

We construct a “super-circuit” SCi composed of subcir-
cuits C′logXi−1

, C′logXi−1+1, ..., C
′
X

1/3
i−1

, which collectively test

whether n ∈ [Xi−1, Xi]. The subcircuits are chained such
that the output of C′j−1 is the override (input) bit of C′j ;
the override bit of the first subcircuit is zero. Thus, if at
least one of the subcircuits passes the threshold test, then
the output of the super-circuit is 1.

The goal of super-circuit SCi is to determine whether

logn lies in the interval [logXi−1, X
1/3
i−1] (by searching for

a j ∈ [logXi−1, X
1/3
i−1] and declaring logn ≈ j). In order to

control the probability of errors, we fix `, the number of in-
put bits of each of the subcircuits {Cj} of SCi to be exactly

Θ(log(Xi)) = Θ(X
1/3
i−1). Thus, the number of gates in SCi

is O(X
2/3
i−1).

Each input slot of Cj is generated by having all players
make noise with probability 1/2j . This allows us to apply
Lemma 6. Thus, the expected cost for generating input slots
for each player is O(1). The super-circuit is simulated using
Theorem 2, and so the simulation cost per player is expected

O(1 +X
2/3
i−1/n).

The set L is the set of players that simulate the output
gate of the first circuit C′j that outputs 1. Notice that the
players in L necessarily know that they are in L and know
the value of j. If L is established, then the expected size
of L is the expected number of players to simulate a single

gate, which is O(1 + n/X
2/3
i−1).

By Lemma 6, the error probability for any subcircuit C′j is

at most e−Ω(logXi). Thus, if L 6= ∅ and j is established then
the probability that j ≤ logn − 1 or j ≥ logn + 1 is poly-
nomially small in Xi. Moreover, if n < Xi/2 then the only
way in which j will not be established is if the last circuit
C′
X

1/3
i−1

errs, which happens with probability e−Ω(logXi).

Leader election. The following simple bound on leader
election suffices for our needs, and it serves as a black-box
protocol that we can bootstrap to generate a highly efficient
leader election protocol for the entire batch of players.

Lemma 9. Suppose there exists a subset L of the players,
where each player knows whether it belongs to L, and all
players know an upper bound W > |L|. Then there exists
an algorithm that runs in O(log2 W ) time slots, after which,
with probability 1−1/ poly(W ), a single player from L estab-
lishes itself as the unique leader, and the rest of the players
from L know that a leader has been established. The worst
case cost of each player in L is O(log2 W ).

Proof. Each member of L is aware of its membership
and performs the following actions (the players not in L
do not access the channel). The first player to transmit

alone is the leader. In the first slot, each player sends with
probability 1. In every one of the next d logW consecutive
slots, each player sends with probability 1/2, where d >
0 is a sufficiently large constant; in every one of the next
d logW consecutive slots, each player sends with probability
1/4, and so on, each time halving the sending probability.
Each player in L listens in every slot throughout the entire
execution. As a result, the leader is known to all (including
the leader itself).

This continues for a total of logW iterations, at which
point the sending probability is 1/W , and the number of
slots executed is O(log2 W ). Since W > |L|, at some iter-
ation the sending probability is close to 1/|L|, and so the
probability of not picking a leader during that iteration is
polynomially small in W .

4.1 Estimating n
In this section, we give an efficient protocol enabling n play-
ers to estimate n to within a constant factor. We prove that
the expected cost to estimate n is only O(log log∗ n).

Theorem 10. There exists an algorithm for n synchronized
players to agree on an integer j such that j < logn − 1
with probability 1/ poly(n) and j > logn+ 1 with probability

1/poly(2j). The protocol lasts O(n2/3) time with probability
1−1/ poly(n). In expectation, each player sends O(1) times
and listens O(log log∗ n) times.

Proof. Our algorithm for estimating n up to a constant
factor makes use of Lemmas 7, 8, and 9. The estimation
algorithm has three types of phases.

Exponential search Phase: In the first phase, the players at-
tempt to estimate log∗ n to within an additive constant by
using Lemma 7; by the end of the phase, all the players
know this estimate. Remarkably, estimating log∗ n seems to
be the most expensive part of estimating n.

Estimating logn Phase: In the second phase, the players at-
tempt to use the estimate of log∗ n to establish a subset L
of the players that: (1) know that they are in L (and every
other player not in L knows that it is not in L), and (2) have
the same estimate of logn which is accurate up to some ad-
ditive constant. This is established by applying Lemma 8
up to three times, as follows. Let î be the value established
by the algorithm of Lemma 7. We first simulate SCî−1, and
have all of the players listen to the output of the very last
gate, which is 1 iff some subcircuit C′j outputted 1. If it is
1, some non-empty subset L of players has estimated logn
and the phase ends. Otherwise, we repeat the process by
simulating SCî, and if it its last gate outputs 0, by simulat-
ing SCî+1. If SCî+1 outputs 0 we declare failure; all players
restart the algorithm from the exponential search phase.

Leader election Phase: If L is non-empty then all members of
L agree on an estimate j ≈ logn. We apply Lemma 9 in an
attempt to elect a leader from L. The leader sends “n ≈ 2j ”
in a predesignated time slot, in which all other players listen.
If no leader is elected then this slot is empty, in which case a
failure has occurred and all the players restart the algorithm
from the exponential search phase.

Conclusion: At the end of a successful leader election phase
all the players agree on an estimate of logn which is accurate
up to ±1.

Cost analysis. We now determine the expected cost of each
player in the algorithm.
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The cost of the exponential search phase is O(log log∗Xî)

where î is the output of the algorithm in Lemma 7. Let k
be such that Xk−1 ≤ n < Xk, so k = Θ(log∗ n). Since the
probability of obtaining an overestimate is negligible, the
expected cost of the exponential search is O(log log∗ n).

The cost of the Estimating logn phase is a bit more in-
volved. The phase first simulates SCî−1 using Lemma 8,

and so the expected cost of each player is O(X
2/3

î−2
/n). If

î ≤ k + 1 this cost is O(1 + X
2/3

k̂−1
/n) ≤ O(1 + n2/3/n) =

O(1). In general the probability of having an erroneous

î > k + 1 is at most n/Xî−1, so the expected cost per
player to simulate SCî−1 in these circumstances is at most∑
î>k+1(n/Xî−1)(1 + X

2/3

î−2
/n) = O(1). The probability of

having an erroneous î < k − 1 is exp(−n/ log3 n), and the
expected cost for restarting the algorithm are negligible in
this case.

By Lemma 8, either n ≥ Xî−1/2 or
Pr(SCî−1 outputs 0) = 1/ poly(Xî−1). In either case,
the expected cost of simulating the next super-circuit SCî is

Pr(SCî−1 outputs 0)·O(1+X
2/3

î−1
/n) = O(1+n−1/3) = O(1).

By the same reasoning, the expected cost of simulating
SCî+1 is Pr(Both SCî−1 and SCî output 0) · O(1 +

X
2/3

î
/n) = O(1).

Let C′j be the first subcircuit to output 1 in SCi? , for some

i? ∈ {̂i − 1, î, î + 1}. By Lemma 6, j ∈ [logn − 1, logn + 1]
with probability 1 − 1/poly(max{n,Xi?}). The set L of
players simulating the output of C′j know that |L| ≤ W =
O(Xi?) with probability 1 − 1/ poly(Xi?). By Lemma 9, L

correctly elects a leader in O(log2 W ) = O(X
2/3
i?−1) slots with

probability 1−1/ poly(Xi?). The expected cost per player P
to participate in leader election is Pr(P ∈ L) ·O(log2 W ) =

O(1/X
2/3
i?−1) ·O(X

2/3
i?−1) = O(1).

5. THE TRUNCATED SAWTOOTH
The sawtooth protocol of Bender et al. [5] achieves constant
throughput for a single batch of n players without knowing
n, but at a cost of Ω(logn) transmission attempts per player
because of the exponential search for n. However, in our pro-
tocol since the n players already have an estimate ñ of n,
they can jump directly to the correct iteration of the saw-
tooth protocol and send all packets in O(ñ) slots with high
probability and using an expected O(1) channel accesses. In
this section we assume ñ ≥ n.

The truncated sawtooth protocol. We partition O(ñ)
slots into log log ñ + O(1) windows. The 0th window has
length precisely 2ñ and, in general, the ith window has
length 2ñ/αi for some α > 1.7 The total length of all win-
dows is less than 2ñ(α − 1)−1 = O(ñ). At the ith window,
each player that has yet to successfully transmit its packet
broadcasts in a slot chosen uniformly at random from the
window. If there is no collision, the player detects this and
refrains from participating in the remaining windows.

Analysis. We prove that with high probability the num-
ber of active players at the beginning of window i is at

7The sawtooth algorithm of [5] fixes the decay factor α to
be 2. We find it helpful in the analysis to keep α a named
parameter.

most n/f(i), where f is a function to be determined. Sup-
pose the claim holds at the beginning of window i. Since
at most n/f(i) of the 2ñ/αi slots are full, the probability
that a particular player fails to send its packet is at most
n/f(i)−1

2ñ/αi < αi

2f(i)
, independent of the choices of all other

players. Call a window successful if the number of fail-
ures is at most α times its expectation, that is, at most
nαi+1

2f2(i)
. By a Chernoff bound, Pr(window i is successful) <

exp
(
−Ω

(
(α−1)2·αin

2f2(i)

))
.

Given this definition of success we set f(i + 1) =
2f2(i)/αi+1. One can prove by induction that f(i) =

22i−1/α2i+1−i−2. Note that for small α, say α = 1.1,
f(log logn+O(1)) > n so the first log logn+O(1) windows
drastically reduce the number of active players. However,
the probability of success (as defined above) becomes very
low when f2(i) is close to n. Once f(i) is polynomial, say

at least n1/5, the current window size is still rather large:
2ñ/αlog logn+O(1) � n/ logn. Once the disparity between
the number of active players and window size is this large, it
is easy to see that all players successfully send their packets
in the next O(1) windows, with probability 1− 1/poly(n).

Lemma 11. Suppose a batch of n players run the truncated
sawtooth protocol and all agree on an upper bound ñ ≥ n.
The protocol takes O(ñ) time slots and with probability 1 −
1/poly(n) all n players send their packets. The sending cost
per player is O(1) in expectation and log log ñ+O(1) in the
worst case.

6. HUMMING
Players arrive at arbitrary times and must be organized into
batches that are synchronized , that is, they all agree on
a time 0. Once a batch of n players is formed, the players
obtain an upper bound ñ ≥ n and then run the truncated
sawtooth protocol in O(ñ) slots.

Consider the point of view of a new player entering the
system. If there is no active batch running, then the player
should be able to detect this and start a new batch, possibly
with other players who entered at the same time. Otherwise,
if there is an active batch the new player should determine
precisely how many slots it has left, say t, so it can join a
new batch beginning in t + 1 slots. One difficulty is that
players within the active batch only know how many slots
are left once they compute ñ and enter the sawtooth. Thus,
we need a mechanism with the following properties:

• New players can determine, by listening to
O(log log∗ n) slots, whether there is an active
batch and, if so, precisely how many slots remain.
• The sending cost per player in the current batch should

be O(1) in expectation.

To achieve these ends we have to ensure that an active
batch never lets the channel go silent for more than a con-
stant number of slots at a time, because this would confuse
a new player into thinking no batch is active. Thus, the n
players in the current batch collectively hum in at least one
in every constant number of slots to keep new players from
joining prematurely.

Humming in the estimation phase. We imagine a baton
being passed between groups of players; at time 0 in the Esti-
mation Phase all players hold the baton. The baton holders
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are responsible for both humming and encoding the current
estimate ρ of log∗ n. Until the Estimation Phase finishes its
binary search to find an i for which n ∈ [Xi−1, Xi+1], ρ is 0.
When the Estimation Phase is simulating circuits that test
for n ∈ [Xi−1, Xi), ρ = i.

The time slots are partitioned into chunks of 7 consec-
utive slots, only one of which is dedicated to executing the
Estimation Phase proper. The remaining slots implement
baton passing, humming, and encoding ρ.

(0) baton: Any player wishing to take the baton broad-
casts noise in this slot. All other current baton holders
listen in this slot to determine if they still hold the ba-
ton.

(1,2) humming: Any player holding the baton hums for
two consecutive slots.

(3) silence: This slot is always empty.
(4) rho: Whoever holds the baton sends the next bit in

the encoding of ρ: noise=1 and silence=0.
(5) silence: This slot is always empty.
(6) data: This slot is used to implement the Estimation

Phase algorithm.

Observe that there are never six consecutive silent slots,
and that any new player can deduce the current time slot
modulo 7 by listening to O(1) consecutive slots: it listens for
two, three, or four consecutive noisy slots (which can only
be slots (1,2) or (0,1,2) or (6,0,1,2)) followed by a silent slot,
which must be slot (3).

If the binary representation of ρ is b1b2 · · · b`, the ba-
ton holders repeatedly encode ρ in the rho slots as
110b10b20 · · · b`0. A listener can decode ρ by listening to
4` + O(1) = O(log ρ) chunks: at most 2` + O(1) chunks to
hear two consecutive 1s and 2`+O(1) more to determine ρ.

At all times the algorithm that estimates n has com-
puted a likely lower bound n̄ on n.8 Each player (even
one that holds the baton) makes noise in the baton slot
with probability 1/n̄, thereby taking the baton from what-
ever group that holds it. Thus, any player that cur-
rently holds the baton is relieved of duty with probability
(1 − 1/n̄)(1 − (1 − 1/n̄)n−1), which is Θ(1) for n ≥ n̄ > 1.
In the first chunk, all players hold the baton. Since the Es-
timation Phase lasts for O(n2/3) slots in expectation, each
player holds the baton for O(1) chunks in expectation.

Humming in the truncated sawtooth. In this phase all
nodes in the active batch have agreed on an estimate ñ,
which is Θ(n) w.h.p., and know precisely when the Trun-
cated Sawtooth phase ends. They need to communicate
this information to new players joining the system. Slots
are partitioned into chunks of three. The players maintain
the invariant that exactly one player holds the baton at any
given time. The initial baton-holder is the elected leader
who announced “ ñ ” at the end of the Estimation Phase.

(0) baton: Every non-baton holder that wishes to take
the baton broadcasts a message in this slot. If exactly
one player broadcasts, he takes the baton; if zero or
more than one players broadcast, the current baton-
holder retains the baton.

8In the binary search for log∗ n± 1 this lower bound can be
updated in every time slot. When simulating the circuits
that test for n ∈ [Xi−1, Xi) we use Xi−1 as a lower bound
n̄ on n.

(1) humming: The (unique) baton-holder sends “ t ” if
there are t slots remaining in the truncated sawtooth
phase.

(2) data: This slot is used to implement the Truncated
Sawtooth algorithm.

Each non-baton holder attempts to take the baton in slot
(0) with probability 1/ñ. Thus, the current baton holder is
relieved of duty with probability (n− 1)(1/ñ)(1− 1/ñ)n−2,
which is Θ(1) for n > 1 and n = O(ñ). Since there are O(ñ)
chunks each player attempts to take the baton O(1) times
in expectation. By symmetry each player holds the baton
for O(ñ/n) chunks in expectation.

Consider how the humming protocol allows new players to
cheaply determine when the current batch will finish. If a
player joins during the Truncated Sawtooth, it listens for at
most three slots and learns t: the exact number of remaining
slots. If a player joins during the Estimation Phase it listens
until it decodes an estimate ρ > 0, indicating that the algo-
rithm is simulating circuits testing for n ∈ [Xρ−1, Xρ). Let
Lρ = O(log2 Xρ) be the length of the simulation. In gen-
eral, whenever the player decodes ρ it sleeps for Lρ slots and
begins listening again. If the Estimation Phase is successful
then the new player may listen for O(log ρ) = O(log log∗ n)
slots in four intervals: it may decode a ρ, sleep for Lρ steps,
decode ρ+1, sleep for Lρ+1 steps, decode ρ+2, sleep for Lρ+2

steps, then listen in the Truncated Sawtooth and determine
exactly how many slots remain.

Pulling the pieces together, we can now give a proof of
Theorem 1:

Proof of Theorem 1. Define ni to be the number of
players that participate in the ith batch. By Theorem 10
and Lemma 11, with high probability in ni, the Estimation

and Truncated Sawtooth Phases take O(n
2/3
i + ni) = O(ni)

slots and transmit all packets. Moreover, each player in the
batch listens in O(log log∗ ni) slots and sends in O(1) slots,
in expectation. Under these circumstances the throughput
is constant.

The throughput can suffer if ni is underestimated (few
packets will be sent in this epoch due to high contention)
or overestimated (the epoch will likely be successful, but
take too long) or if ni is correctly estimated but collisions
prevent a large number of packets from being transmitted.
By Theorem 10, the probability that ni is underestimated
is 1/poly(ni) and the probability that it is overestimated as
ñi > 2ni is 1/ poly(ñi). By Lemma 11, when ni is correctly
estimated, the probability that not all packets are sent is
1/poly(ni). Call a slot failed if it is in a batch that failed
due to one of these three causes. Since there are O(ñi)
slots in the epoch, the expected number of failed slots per
epoch is 1/ poly(ñi), implying that the expected throughput
is constant.

A player injected during batch i will listen to
O(log log∗ ni) slots in expectation before joining batch i+1,
then listen for O(log log∗ ni+1) slots in batch i+1, in expec-
tation. The sending cost per player is O(1) in expectation in
both the Estimation and Truncated Sawtooth phases.
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